
La teoría de juegos es un área de las matemáticas aplicadas que utiliza modelos para estudiar interacciones en estructuras formales de incentivos, es decir, los llamados «juegos».
Se ha convertido en una herramienta clave para la economía y la administración de empresas, ya que ayuda a entender mejor la conducta humana en la toma de decisiones.
Los investigadores analizan las estrategias óptimas, así como el comportamiento previsto y observado de los individuos en dichos juegos. Tipos de interacción aparentemente distintos pueden tener estructuras de incentivos similares, lo que permite representar el mismo juego una y otra vez.
La teoría de juegos estudia las estrategias óptimas de los jugadores, así como su comportamiento previsto y observado, y ha contribuido a una mejor comprensión de la toma de decisiones humana.
La teoría de juegos aborda situaciones de decisión en las que hay dos oponentes inteligentes con objetivos opuestos. Algunos ejemplos típicos son las campañas de publicidad para productos de la competencia y las estrategias bélicas entre ejércitos. Estas situaciones difieren de las estudiadas previamente, en las que no se tiene en cuenta a la naturaleza como oponente adverso.
El juego es un modelo matemático que se utiliza para entender la toma de decisiones y la interacción entre los participantes, siendo el «dilema del prisionero» uno de los más conocidos. En este escenario, dos personas son arrestadas y encarceladas, y se fija la fecha del juicio. El fiscal se entrevista con cada prisionero por separado y les ofrece la siguiente opción: si uno confiesa y el otro no, el que confiesa queda libre y el otro recibe 20 años de prisión; si ambos confiesan, ambos cumplen 5 años; y si ninguno confiesa, ambos reciben 1 año de prisión. En este dilema, el destino de cada uno depende de la decisión del otro. Aunque confesar parece ser lo mejor, si ambos lo hacen, el castigo es peor que si guardan silencio.

La teoría de juegos se ha desarrollado y formalizado a partir de los trabajos de John von Neumann y Oskar Morgenstern, especialmente durante la Guerra Fría, debido a su aplicación en la estrategia militar. Los principales conceptos de la teoría de juegos incluyen los juegos de suma cero, los juegos de suma no cero, los equilibrios de Nash, los juegos cooperativos y los juegos de información perfecta e imperfecta.
En la teoría de juegos existen conceptos fundamentales para entender las interacciones estratégicas entre los agentes. Algunos de ellos son:
- Estrategia: conjunto de acciones posibles que un jugador puede llevar a cabo en un juego. Las estrategias pueden ser puras (una acción única) o mixtas (una distribución de probabilidad sobre varias acciones).
- Equilibrio de Nash: situación en la que ningún jugador tiene incentivos para cambiar su estrategia, dado el conjunto de estrategias de los demás. Es un concepto clave que describe una situación estable en la que las decisiones de los jugadores están equilibradas.
- Juego de suma cero: tipo de juego en el que la ganancia total es constante, es decir, lo que uno gana, otro lo pierde. En estos juegos, el objetivo es maximizar la ganancia propia a expensas de los demás jugadores.
La matriz de recompensas es una herramienta clave en la teoría de juegos que representa las combinaciones de decisiones de los jugadores. Muestra los resultados, generalmente en forma de recompensas, para cada jugador según las decisiones de todos los participantes. Es decir, describe cómo las elecciones de cada jugador afectan a sus pagos o beneficios según las decisiones de los demás.
En un conflicto de este tipo hay dos jugadores, cada uno con una cantidad (finita o infinita) de alternativas o estrategias. Cada par de estrategias tiene una recompensa que un jugador paga al otro. A estos juegos se les llama de suma cero, ya que la ganancia de un jugador es igual a la pérdida del otro. Si los jugadores se representan por A y B, con m y n estrategias respectivamente, el juego se suele ilustrar con la matriz de recompensas para el jugador A.
La representación indica que si A usa la estrategia i y B usa la estrategia j, la recompensa para A es aij, y entonces la recompensa para B es —aij.
Aquí os dejo un esquema conceptual sobre la teoría de juegos.
Os dejo unos vídeos explicativos, que espero, os sea de interés:
En este vídeo se presentan los conceptos fundamentales de la teoría de juegos, que estudia cómo las decisiones de varios jugadores están interconectadas en situaciones estratégicas. A través de ejemplos visuales como matrices y árboles de decisión, se explica cómo los jugadores eligen estrategias para maximizar su utilidad teniendo en cuenta las acciones de los demás. Se destaca la importancia de entender los pagos y resultados de cada estrategia, lo que permite analizar comportamientos competitivos y cooperativos en diversos contextos.
En este otro vídeo se explican distintos tipos de juegos en teoría de juegos, como el dilema del prisionero, el juego del gato y el ratón y la batalla de los sexos, y se destacan sus equilibrios de Nash y las estrategias cooperativas o no cooperativas.
Referencias:
- Binmore, K. (1994). Teoría de juegos. McGraw-Hill.
- Friedman, J. W. (1991). Teoría de juegos con aplicaciones a la economía. Alianza Universidad.
- Kreps, D. M. (1994). Teoría de juegos y modelación económica. Fondo de Cultura Económica.
- Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2025). Game theory-based multi-objective optimization for enhancing environmental and social life cycle assessment in steel-concrete composite bridges. Mathematics, 13(2), 273. https://doi.org/10.3390/math13020273
- Meyerson, R. (1991). Game theory: Analysis of conflict. Harvard University Press.
- Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of the USA, 36(1), 48-49.
- Poundstone, W. (1992). Prisoner’s dilemma: John von Neumann, game theory, and the puzzle of the bomb. Doubleday.
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.