Preguntas sobre pavimentos de hormigón en carreteras

¿Cuáles son las propiedades clave que distinguen al hormigón para pavimentos de carreteras del hormigón estructural?

El hormigón destinado a pavimentos de carreteras debe ser capaz de soportar tanto el impacto del tráfico como las condiciones climáticas. A diferencia del hormigón estructural, que se centra principalmente en resistir la compresión, los pavimentos de hormigón requieren una alta resistencia a la flexotracción. Esto se debe a que están sometidos a cargas repetidas y a la restricción de contracción de su base, lo que provoca la aparición de fisuras. Por lo tanto, se deben realizar ensayos específicos de flexotracción para controlar su resistencia y la calidad del hormigón para carreteras debe ser superior a la del hormigón de edificación.

¿Qué requisitos de resistencia a la flexotracción y compresión se esperan generalmente para el hormigón de pavimentos?

Para pavimentar carreteras se utilizan hormigones con una resistencia característica a la flexotracción que generalmente se sitúa entre 3,5 y 4,5 MPa a los 28 días. Según la normativa española (PG-3), estos hormigones se designan como HF-3,5, HF-4,0 y HF-4,5. Estas designaciones corresponden aproximadamente a resistencias a la compresión de 25, 30 y 35 MPa a los 28 días, aunque la relación exacta varía en función de los materiales y la dosificación.

¿Qué tipo de cemento se utiliza típicamente en pavimentos de hormigón y qué consideraciones hay sobre su uso?

Generalmente, no se requieren cementos «especiales» para pavimentos de hormigón. Por lo general, se emplean cementos con una resistencia a la compresión de entre 30 y 40 MPa a los 28 días y una dosificación de entre 300 y 350 kg/m³. Se pueden utilizar cementos Portland o cementos con adiciones (como escorias, puzolanas o cenizas volantes), que suelen tener un fraguado más lento, un menor contenido energético y una menor calor de hidratación, por lo que resultan más económicos. Se recomienda utilizar cementos de la clase resistente más baja posible, preferiblemente de 32,5 con resistencia inicial normal (N) y con un alto porcentaje de adiciones activas. No obstante, si se requiere una apertura rápida al tráfico, se pueden utilizar cementos de mayor categoría (42,5 o 52,5) y con alta resistencia inicial (R). Es crucial controlar el uso de grandes volúmenes de adiciones y limitar su contenido al 20 % del cemento, sobre todo en climas fríos.

¿Cuáles son las principales recomendaciones para prevenir fisuras en el hormigón de pavimentos?

Para prevenir la aparición de fisuras en los pavimentos de hormigón, es fundamental tener en cuenta las siguientes recomendaciones:

  • Evitar relaciones agua/cemento inferiores a 0,40.
  • Impedir el intercambio de humedad con la base y el ambiente mediante una saturación temprana de la base y un curado adecuado.
  • Evitar condiciones de restricción elevadas con la base.
  • Usar áridos limpios, libres de polvo y saturados.
  • Diseñar las mezclas para asegurar una ganancia de resistencia temprana apropiada y una exudación adecuada.

¿Cuáles son los componentes principales de un pavimento rígido de hormigón y cuál es la función de cada uno?

Un pavimento rígido de hormigón se compone de varias capas esenciales:

  • Calzada de hormigón: Es la capa superior, que proporciona las características funcionales (drenaje, fricción y regularidad) y gran parte de la capacidad estructural. Actúa como barrera impermeable y su espesor varía en función del tránsito pesado.
  • Base: Ubicada debajo de la calzada, proporciona un apoyo continuo, uniforme y estable, que es crucial para la distribución de cargas y para prevenir la erosión en la interfaz losa-apoyo. Es obligatoria en vías con tráfico pesado.
  • Subbase: Situada debajo de la base, en la explanada, y su función principal es proporcionar una base uniforme para la colocación de la capa base y constituir una plataforma de construcción. Debe tener capacidad drenante y, por lo general, es necesaria como capa de transición.
  • Explanada (subrasante): Es la superficie sobre la que se asienta toda la superestructura del pavimento. Debe tener la resistencia y la regularidad geométrica adecuadas y debe compactarse para soportar la carga de diseño del tránsito.
  • Subdrenaje (opcional): Consiste en estructuras destinadas a eliminar rápidamente el agua que se filtra por juntas y fisuras para evitar efectos perjudiciales en la estructura del pavimento.

    Figura 1. Estructura tipo de un pavimento rígido

¿Qué papel juegan las juntas en los pavimentos de hormigón y cómo se gestiona la transferencia de carga entre las losas?

Las juntas son esenciales para determinar las dimensiones de las losas del pavimento y controlar la aparición de fisuras en las etapas iniciales y durante su uso. Existen juntas de contracción, que debilitan la sección, y juntas de construcción, que se moldean. El aserrado es el método más común para crearlas y debe realizarse antes de que aparezcan las fisuras, pero no demasiado pronto para evitar daños. Se recomienda sellarlas.

La transferencia de carga, es decir, la capacidad de una junta para transmitir una parte de la carga aplicada de una losa a la adyacente, se logra principalmente de dos maneras:

  • Trabazón de áridos: Se produce entre las caras de la fisura que se desarrolla debajo de la junta.
  • Pasadores: Son barras de acero lisas que se colocan en las juntas transversales. Ayudan a disminuir tensiones y deflexiones, reducen el escalonamiento, el bombeo y la rotura de esquinas sin restringir el movimiento horizontal.

En algunos casos, es posible utilizar ambas técnicas conjuntamente para lograr una transferencia óptima.

Figura 2. Pasadores en una junta de construcción de un pavimento rígido

¿Por qué es importante el uso de inclusores de aire en el hormigón para pavimentos en ciertas zonas?

En zonas donde se producen nevadas o heladas, es obligatorio añadir un inclusor de aire al hormigón. Estos aditivos crean poros microscópicos que actúan como «cámaras de expansión». De este modo, el agua del hormigón puede congelarse y aumentar de volumen sin causar desconchados ni daños durante las heladas. Además de proteger contra el daño por hielo, los aditivos aireantes también tienen un efecto plastificante y mejoran la tixotropía del hormigón fresco, lo que ayuda a evitar el desgaste de los bordes del pavimento durante su construcción con encofrados deslizantes. Es crucial controlar el nivel de aire ocluido, que debe situarse entre el 4,5 % y el 6 % en volumen, para evitar pérdidas de resistencia.

¿Qué importancia tienen los arcenes en la estructura de un pavimento de hormigón y qué otras alternativas existen para mejorar el soporte en los bordes?

Aunque no forman parte de la estructura principal de la calzada, los arcenes son fundamentales para el soporte de los bordes de los pavimentos de hormigón. Si el arcén está pavimentado con hormigón, la calzada puede transferir parte de las cargas a su estructura, lo que reduce las tensiones y deflexiones del pavimento principal. Además, minimizan la infiltración de agua desde la superficie. Otras alternativas estructurales que también contribuyen significativamente a mejorar el soporte en los bordes son la incorporación de bordillos (especialmente en pavimentos urbanos) y la ejecución de sobreanchos de calzada.

Referencias:

IECA (2012). Firmes de hormigón en carreteras. Guías técnicas. Firmes y explanadas.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Universidad Politécnica de Madrid, Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Algunas preguntas sobre el curado del hormigón

¿Qué es el curado del hormigón y por qué es imprescindible?

El curado del hormigón consiste en adoptar medidas para facilitar la hidratación del cemento, lo que implica evitar la pérdida de humedad por evaporación y, si es necesario, aportar humedad adicional. También se busca mantener una temperatura favorable durante el fraguado y los primeros días de endurecimiento. Es relevante porque, si el hormigón se seca al aire, su resistencia puede disminuir hasta en un 40 %, aumenta su porosidad y se incrementa la probabilidad de que se produzcan fisuras por retracción. Un curado adecuado garantiza el desarrollo óptimo de la resistencia y la durabilidad, ya que la impermeabilidad de las capas exteriores del hormigón depende en gran medida de un proceso de curado eficaz, lo que, a su vez, prolonga la vida útil de la estructura al proteger el recubrimiento de las armaduras.

¿Cuál es la importancia del agua en el proceso de hidratación del cemento y el curado?

El agua es imprescindible para la hidratación del cemento, que solo se produce en un entorno casi saturado. Para la hidratación completa del cemento Portland se requiere una cantidad de agua equivalente a 0,45 veces la masa del cemento hidratado, que se divide en agua químicamente combinada (0,25 veces la masa del cemento) y agua adsorbida en la estructura del gel (0,20 veces la masa del cemento). Durante el proceso de curado, es necesario añadir agua adicional para mantener los poros capilares saturados y permitir que el cemento continúe hidratándose. La proporción adecuada de agua y un curado húmedo son fundamentales para que los productos de la hidratación rellenen los poros existentes entre las partículas de cemento, lo que aumenta la resistencia y durabilidad del hormigón. Si la relación agua/cemento es baja (igual o inferior a 0,45), puede producirse autodesecación, por lo que se requiere un curado húmedo continuo, aunque la baja permeabilidad puede limitar la penetración de agua externa en la superficie.

¿Cuáles son las fases del curado del hormigón según la norma ACI 308 R?

El curado del hormigón se divide en tres fases principales que abarcan desde su colocación hasta que la estructura adquiere sus propiedades de diseño:

  • Curado inicial: cuando la superficie del hormigón empieza a secarse, incluso antes de que se complete el acabado. Su objetivo es evitar la pérdida de humedad superficial y prevenir la fisuración por retracción plástica. Es especialmente importante en hormigones con baja exudación o en entornos con alta evaporación, y se puede conseguir mediante nebulización, aditivos reductores de evaporación o modificando el entorno.
  • Curado intermedio: Es necesario cuando el acabado de la superficie se completa antes de que el hormigón haya fraguado por completo. Se pueden continuar las medidas del curado inicial o emplear métodos que no dañen la superficie aún blanda, como la aplicación suave de agua o compuestos de curado.
  • Curado final: Se aplican procedimientos una vez que el hormigón ha fraguado y comenzado a desarrollar resistencia, después del acabado. Es fundamental iniciarlo sin demora para evitar una pérdida significativa de agua por evaporación, sobre todo en acabados con gran superficie expuesta. Puede incluir aspersión, el uso de arpilleras húmedas o el riego con manguera, entre otros métodos.

¿Cómo influyen las condiciones ambientales y el tipo de hormigón en la duración e intensidad del curado?

La duración y la intensidad del curado dependen de varios factores:

  • Temperatura y humedad ambiental: A medida que las condiciones sean más adversas (por ejemplo, calor intenso o baja humedad), se requerirá un período de curado más prolongado.
  • Acción del viento y exposición directa al sol: Estos factores aumentan la velocidad de evaporación, exigiendo medidas de curado más rigurosas.
  • Tipo y cantidad de cemento: Diferentes cementos tienen distintas velocidades de hidratación, lo que influye en los requisitos de curado.
  • Relación agua/cemento (a/c): Una baja relación a/c puede llevar a la autodesecación, requiriendo un curado húmedo más intensivo.
  • Condiciones de exposición de la estructura en servicio: Las estructuras expuestas a ambientes más agresivos necesitan un curado más prolongado y efectivo para asegurar su durabilidad.

¿Qué problemas específicos presenta el curado de losas de hormigón sobre tierra y cómo se abordan?

Las losas de hormigón sobre tierra, ya sean pavimentos o cimentaciones, tienen una alta relación entre área superficial y volumen, por lo que son susceptibles a una evaporación rápida y significativa. Los principales problemas son:

  • Formación de gradientes de humedad: La pérdida de humedad en la cara superior provoca la curvatura de la losa, mientras que una base de tierra seca puede absorber agua del hormigón y generar una curvatura opuesta. Para evitarlo, hay que humedecer previamente la base y garantizar unas condiciones de humedad uniformes en ambas caras mediante un curado inicial, intermedio y final. Si se utiliza una lámina impermeable, la cara superior debe mantenerse húmeda para evitar la curvatura.
  • Riesgo de fisuración por retracción plástica: La rápida pérdida de humedad superficial aumenta este riesgo. Es crucial aplicar el curado inmediatamente después del acabado.

Entre los métodos recomendados se incluyen los reductores de evaporación, la nebulización, los compuestos de curado (preferiblemente pigmentados en blanco si la temperatura ambiente supera los 25 °C) y la protección con techado y cortavientos. El uso de agua por aspersión o inmersión es el más efectivo, ya que también ayuda a enfriar el hormigón y a reducir la fisuración térmica.

¿Qué es el curado al vapor y cuáles son sus aplicaciones principales?

El curado al vapor es un método muy eficaz para curar el hormigón, que se emplea casi exclusivamente en la prefabricación y acelera considerablemente su endurecimiento. Este proceso implica la aplicación de calor húmedo y se basa en el concepto de «maduración» del hormigón, en el que diferentes combinaciones de temperaturas y tiempos pueden producir resultados similares en cuanto a endurecimiento.

Se puede realizar de dos formas:

  • Curado a presión atmosférica: Se utiliza en estructuras encerradas construidas in situ o en grandes unidades prefabricadas.
  • Curado con vapor a alta presión: Se lleva a cabo en autoclaves y se aplica a pequeñas unidades prefabricadas.

El proceso consiste en elevar gradualmente la temperatura tras el prefraguado, mantenerla dentro de un rango establecido (entre 55 °C y 75 °C, sin superar los 80 °C) y, a continuación, reducirla de manera continua hasta alcanzar la temperatura ambiente, evitando cambios térmicos bruscos.

¿Cuáles son las ventajas del curado al vapor en comparación con los métodos convencionales?

El curado al vapor ofrece varias ventajas significativas:

  • Endurecimiento rápido: Facilita el proceso constructivo en climas fríos y permite una alta resistencia inicial, especialmente útil en la fabricación de unidades prefabricadas y pretensadas.
  • Aceleración de la construcción: Incrementa la velocidad de obra, lo que se traduce en mayor eficiencia y productividad.
  • Rapidez: Acorta los tiempos de construcción y permite una mayor rotación de proyectos en comparación con otros métodos de curado convencionales.
  • Control de la hidratación: Permite un control meticuloso para asegurar que el recinto de curado permanezca saturado de humedad, aunque requiere precaución para evitar cambios de volumen excesivos.

¿Cuáles son las desventajas del curado al vapor?

A pesar de sus beneficios, el curado al vapor presenta ciertas limitaciones:

  • Limitaciones en superficies extensas: No es adecuado para curar grandes áreas in situ, lo que puede requerir métodos alternativos.
  • Necesidad de personal capacitado: Requiere personal experimentado para garantizar resultados óptimos y prevenir problemas como cambios volumétricos excesivos, que pueden afectar la resistencia inicial del hormigón.
  • Coste inicial elevado: El equipo y los materiales necesarios para el curado al vapor suelen implicar un costo inicial más alto en comparación con los métodos de curado convencionales.

 

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comunicaciones presentadas al IX Congreso Internacional de Estructuras de ACHE

Durante los días 25-27 de junio de 2025 tendrá lugar el IX Congreso Internacional de Estructuras (ACHE), que servirá una vez más para fortalecer los lazos nacionales e internacionales de profesionales y especialistas en el campo de las estructuras. Como en ocasiones anteriores, los objetivos fundamentales de este congreso son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en edificación y en ingeniería civil e industrial) y, por otro, exponer a sus miembros, amigos y a toda la sociedad las actividades de nuestra asociación, que realiza una labor de difusión técnica sin ánimo de lucro. La situación actual, marcada por la internacionalización y la competitividad, hace imprescindible la innovación tecnológica y el intercambio de experiencias y puntos de vista entre profesionales e investigadores de la edificación y la ingeniería civil, que el Congreso facilitará mediante coloquios y debates paralelos a las sesiones de ponencias.

La ciudad elegida en esta ocasión es Granada, que cuenta con una de las universidades más antiguas de Europa y una rica historia que ha dejado numerosos hitos en su paisaje urbano y cultural. Se trata de una ciudad cosmopolita, donde a lo largo de su historia se han dado cita varias culturas, y es un ejemplo de los valores e intereses compartidos de la Unión Europea. Cuenta, además, con lugares como la Alhambra, el Generalife o el Albaycín, declarados Patrimonio de la Humanidad por la Unesco. La ciudad ofrece, además, interesantes ofertas culturales. La ciudad ofrece, además, interesantes ofertas culturales en las fechas de celebración del Congreso, como el Festival Internacional de Música y Danza. El Congreso tendrá su sede en la Escuela de Ingeniería de Caminos, Canales y Puertos, que fue fundada como quinta escuela española en 1988. Una escuela situada en pleno centro de la ciudad, moderna, magníficamente comunicada a través de transporte público (metro y autobús) y con numerosos hoteles cercanos.

La Asociación Española de Ingeniería Estructural (ACHE), entidad de carácter no lucrativo y declarada de utilidad pública, tiene como fines fomentar el progreso en los ámbitos del hormigón estructural y de las estructuras de obra civil y edificación en general, y canalizar la participación española en asociaciones análogas de carácter internacional. Para ello, desarrolla líneas de investigación, docencia, divulgación, formación continua y prenormalización. Entre otras actividades, ACHE publica monografías técnicas, edita la revista cuatrimestral Hormigón y Acero y administra una página web con amplio contenido técnico. Entre los eventos que organiza, destacan el Congreso Trienal de Estructuras y numerosas jornadas técnicas. ACHE cuenta con centenares de miembros (ingenieros, arquitectos, químicos y otros profesionales vinculados al sector), muchos de los cuales participan generosamente en comisiones técnicas y en los más de 25 grupos de trabajo activos que elaboran documentos científicos sobre aspectos relevantes de las estructuras y que se difunden entre todos los asociados.

Nuestro grupo de investigación, dentro del proyecto de investigación RESILIFE, presenta varias comunicaciones. Además, tengo el honor de participar en Comité Científico del Congreso. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; NAVARRO, I.J.; YEPES, V. (2025). Resiliencia para la sostenibilidad de las estructuras de edificación mediante forjados con losas aligeradas biaxiales. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los Métodos Modernos de Construcción (MMC) están revolucionando la industria al ofrecer soluciones sostenibles que reducen el impacto ambiental en el ciclo de vida de los edificios. Un ejemplo son las losas aligeradas biaxiales de hormigón, que optimizan el uso de materiales. Sin embargo, la corrosión en entornos agresivos supone un desafío importante para la resiliencia de estas estructuras. Este estudio propone una metodología para evaluar estrategias de mantenimiento reactivo en MMC expuestas a cloruros, analizando seis alternativas de diseño y utilizando un modelo FUCOM-TOPSIS para integrar criterios de sostenibilidad económica y medioambiental.

YEPES, V.; ALCALÁ, J.; GARCÍA, J.A.; KRIPKA, J. (2025). Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los desastres naturales y humanos causan grandes pérdidas humanas y económicas. RESILIFE optimiza el diseño y construcción de estructuras híbridas modulares, sostenibles y resilientes a eventos extremos, equiparables en seguridad a las tradicionales. Utiliza inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos para evaluar y mejorar la resiliencia. Con técnicas multicriterio como lógica neutrosófica y redes bayesianas, optimiza diseño, mantenimiento y reparación, reduciendo costes y mejorando la recuperación social y ambiental.

YEPES-BELLVER, L.; NAVARRO, I.J.; ALCALÁ, J.; YEPES, V. (2025). Redes neuronales y Kriging para la optimización de la huella de carbono de puentes losa pretensados. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

El artículo compara el rendimiento de los modelos Kriging y de redes neuronales para optimizar las emisiones de CO₂ en puentes de losa pretensada. Las redes neuronales presentan un menor error medio, pero ambos modelos destacan por conducir hacia áreas prometedoras en el espacio de soluciones. Las recomendaciones incluyen maximizar la esbeltez y reducir el uso de hormigón y armaduras, compensando con un incremento controlado de estas. Aunque los modelos proporcionan superficies de respuesta precisas, es esencial realizar una optimización heurística para obtener mínimos locales más exactos, lo que contribuye a diseños más sostenibles y eficientes.

 

Valentín Vallhonrat: ingeniería estructural y modernidad técnica en los inicios del hormigón armado en España

https://www.aperos.es/2018/12/valentin-vallhonrat-y-gomez-ingeniero-y.html

A comienzos del siglo XX, el desarrollo del hormigón armado en España transformó de forma decisiva las técnicas constructivas, dando lugar a nuevas formas de proyectar y ejecutar edificios e infraestructuras. En este contexto, surgieron figuras que, aunque no siempre fueron reconocidas en el discurso oficial de la ingeniería o la arquitectura, desempeñaron un papel esencial en la consolidación del hormigón armado como material estructural preferente. Entre ellas destaca Valentín Vallhonrat y Gómez, ingeniero de formación y constructor por vocación, cuya obra anticipó muchos de los principios que rigen el diseño estructural moderno en la actualidad.

Examinamos brevemente la trayectoria técnica y profesional de Vallhonrat, poniendo énfasis en su capacidad para integrar innovación, funcionalidad y colaboración interdisciplinaria en una época de escasa estandarización normativa. Al revisar sus principales proyectos, métodos constructivos y decisiones técnicas, se pone de manifiesto que su enfoque no solo contribuyó a resolver los desafíos de su tiempo, sino también a sentar las bases de una ingeniería estructural más precisa, eficiente y adaptada a las necesidades arquitectónicas contemporáneas.

Desde sus primeros años, Vallhonrat demostró ser una persona con un talento especial para el estudio. Nacido en Almodóvar del Campo (Ciudad Real) en 1884, finalizó sus estudios de Ingeniería de Minas en 1906 como primero de su promoción. Este dato, además de reflejar su capacidad intelectual, pone de manifiesto la fuerte vocación por el conocimiento técnico de la persona que se esconde detrás del ingeniero.

Tras finalizar sus estudios, ingresó de manera inmediata en la Sociedad Hidroeléctrica Ibérica, donde inició su especialización en construcciones de hormigón, que derivó más adelante en la fundación de su propia empresa constructora. En este ámbito, desempeñó un papel destacado como uno de los introductores de esta tecnología constructiva en el panorama técnico español. El empleo del hormigón, un material que por entonces estaba surgiendo, le permitió incorporarse al sector de las grandes presas de embalse, infraestructuras estratégicas para el aprovechamiento de la energía hidráulica. En el desarrollo de estas obras, sustituyó progresivamente a los especialistas alemanes que hasta entonces monopolizaban este tipo de intervenciones y alcanzó el cargo de jefe de explotación, como señala Urrutia y Llano.

Entre las contribuciones técnicas más relevantes, destaca su papel como introductor del uso pionero del hormigón armado en varios ámbitos: estructuras en altura, rehabilitación de patrimonio histórico, edificación industrial y obras hidráulicas. Fue responsable de la ejecución de algunas de las primeras cimentaciones especiales con hormigón armado en suelos blandos, como en el edificio del Banco Pastor, y de naves industriales de gran luz, como las de Babcock & Wilcox. Asimismo, introdujo en España el hormigón seco (sand-cement) colocado por bombeo en la presa de Ordunte, lo que supuso un salto tecnológico equivalente al que se vivía en Estados Unidos en el mismo periodo.

En paralelo, impulsó sistemas constructivos propios y desarrolló patentes como la de forjados con cielo raso plano, que se aplicaron en obras emblemáticas como el hotel Nacional. Este enfoque proyectista, alejado de una ejecución meramente repetitiva, lo sitúa como un verdadero ingeniero de diseño estructural, capaz de desarrollar soluciones adaptadas al contexto y a las necesidades arquitectónicas.

Su colaboración con arquitectos como Modesto López Otero, Luis Gutiérrez Soto y Antonio Tenreiro demuestra que Vallhonrat asumía un papel activo en la definición estructural del proyecto, integrando criterios técnicos y formales, anticipando así el perfil del ingeniero contemporáneo. Así, participó en la creación de algunos de los edificios más emblemáticos de su época, como el cine Callao o el edificio de la Unión y el Fénix, ambos en Madrid.

Anuncio publicitario. Autor desconocido. 1917. Arquitectura y construcción, (1917),
p. 394

En términos empresariales, su compañía, Valentín Vallhonrat S. A., operó durante más de tres décadas, ejecutando tanto proyectos privados como grandes contratos de obra pública, incluyendo tramos ferroviarios y presas. Su capacidad para organizar equipos técnicos multidisciplinares y licitar proyectos de gran escala revela también un avanzado perfil empresarial para la época.

La obra de Valentín Vallhonrat es un conjunto coherente de soluciones técnicas adelantadas a su tiempo. No solo fue un constructor de éxito, sino también un profesional que intervino directamente en el desarrollo y aplicación de técnicas estructurales innovadoras en contextos muy diversos. El análisis de sus obras permite detectar líneas de continuidad en su método: racionalización de procesos, atención a los condicionantes del terreno, adaptación al diseño arquitectónico y mejora de la eficiencia constructiva.

En la construcción del Banco Pastor en A Coruña (1920-1922), Vallhonrat no solo resolvió con éxito la cimentación profunda en un terreno de baja capacidad portante, sino que además lo hizo con un ritmo de ejecución que evidencia una planificación rigurosa: una planta completa cada dos semanas y media. Este dato, unido a la precisión técnica de la ejecución, proyecta una imagen de modernidad organizativa muy poco común en ese momento.

Otro ejemplo significativo es la ejecución del cine Callao, donde se utilizaron vigas tipo Vierendeel con luces de hasta 22 metros. Gracias a esta solución, se pudo prescindir de diagonales estructurales, lo que permitió crear un espacio escénico libre y adaptable. Aquí, como en otras obras, se observa cómo la estructura no impone restricciones a la arquitectura, sino que la hace posible.

La rehabilitación del Palacio de Carlos V, dentro del conjunto de la Alhambra, es un caso singular. El uso de hormigón armado en un edificio renacentista evidencia una mentalidad integradora que entendía los materiales modernos como medios para recuperar condiciones de seguridad y usos sin alterar la autenticidad formal del patrimonio. Este tipo de intervenciones, que hoy son ampliamente aceptadas, eran poco frecuentes en el momento y requerían una visión técnica sensible al contexto.

El caso de la presa de Ordunte demuestra un salto técnico y logístico. La automatización parcial del proceso de producción del hormigón y su colocación mediante bombeo, junto con el uso de materiales in situ, indican un dominio avanzado del ciclo constructivo. El empleo de 220 000 m³ de hormigón, la ejecución de un túnel hidráulico de 6000 l/s de capacidad y una conducción ovoide de más de 30 km en un contexto tecnológico limitado posicionan esta obra como un hito de la ingeniería civil española de la época.

Su biografía se completa con su posterior retorno al servicio público y la docencia tras la disolución de su empresa en 1950. Como profesor de hidráulica en la Escuela de Minas de Madrid y posteriormente como presidente del Consejo de la Minería, Vallhonrat continuó ligado a la ingeniería desde una perspectiva institucional. En un contexto marcado por los efectos de la Guerra Civil y la transformación del Estado, esta trayectoria da cuenta de una figura que, más allá de sus realizaciones, encarnó una concepción amplia de la profesión.

La obra de Valentín Vallhonrat y Gómez articula una síntesis entre conocimiento técnico, capacidad ejecutiva e innovación formal que resultó determinante para el desarrollo del hormigón armado en España y anticipó prácticas y perfiles profesionales contemporáneos. Su legado no solo perdura en las estructuras que ha dejado, sino también en la manera en que enfrentó los desafíos constructivos: con un enfoque integrador, sistemático y técnicamente solvente.

Vallhonrat se posiciona como un agente clave en la transición hacia una construcción moderna en España. Desde una perspectiva contemporánea, su figura aporta también elementos valiosos para la formación de los estudiantes de ingeniería civil: capacidad crítica, rigor técnico, apertura a la innovación y voluntad de colaborar con otras disciplinas. Reivindicar a Valentín Vallhonrat no es solo un acto de memoria profesional, sino también una oportunidad para reflexionar sobre el papel del conocimiento técnico en la construcción de nuestras ciudades y territorios.

Os dejo a continuación un par de artículo que permiten profundizar en la figura de este ingeniero. Espero que os resulten de interés.

Descargar (PDF, 1.3MB)

Descargar (PDF, 39KB)

Descargar (PDF, 2.54MB)

Compatibilidad entre cementos y aditivos: análisis y criterios de evaluación

En este artículo se resumen las ideas básicas de la guía elaborada por la Plataforma Tecnológica Española del Hormigón en relación con la compatibilidad entre cementos y aditivos.

En esta guía se analiza la compatibilidad entre cementos y aditivos superplastificantes, especialmente los basados en policarboxilatos, y se destacan los retos asociados a los cementos con menores emisiones de CO₂.

Se propone un método de ensayo con morteros normalizados para evaluar parámetros como fluidez, consistencia, densidad y tiempos de fraguado, teniendo en cuenta las implicaciones normativas y ambientales.

Además, se explica el impacto de las adiciones en el rendimiento del hormigón y la importancia de elegir aditivos adecuados para garantizar su estabilidad y funcionalidad. También se abordan las implicaciones normativas actuales y futuras en este ámbito.

El texto concluye con recomendaciones sobre la evaluación de nuevas formulaciones cementicias para mantener o mejorar las propiedades del hormigón.

Introducción al análisis de la compatibilidad cemento-aditivo

A lo largo de las últimas décadas, la industria del hormigón ha incorporado nuevas formulaciones de aditivos, en particular superplastificantes basados en polímeros de policarboxilato (PCE), que han permitido alcanzar elevados niveles de fluidez y mantener una consistencia prolongada. Sin embargo, el uso de nuevos tipos de cementos, principalmente aquellos con bajo contenido de clínker y mayor proporción de adiciones, ha planteado desafíos específicos en cuanto a su compatibilidad con estos aditivos. Esta guía se centra en identificar, comprender y evaluar dichos desafíos, y propone un método de contraste basado en ensayos de morteros normalizados que permite anticipar posibles desviaciones en el rendimiento del hormigón debidas a cambios en la química del cemento o del aditivo.

1. Objeto

El objetivo de la guía es evaluar la interacción entre cemento y aditivos superplastificantes mediante un método de ensayo basado en morteros normalizados. Esta metodología permite identificar variaciones en parámetros como fluidez, mantenimiento de la consistencia, aire ocluido, densidad y tiempos de fraguado, tanto frente a modificaciones en la composición del cemento como al empleo de distintos tipos de aditivos, utilizando un protocolo que establece relaciones a/c precisas y reproducibles.

2. Alcance

Este enfoque es especialmente adecuado para cementos con bajo contenido de clínker, elevada finura o presencia de diversas adiciones. Se centra en cementos experimentales cuyo desarrollo tiene como objetivo reducir la huella de carbono y cuya aplicación requiere validar su comportamiento antes de su uso industrial, tanto en hormigón preparado como en prefabricado. En este contexto, la evaluación de compatibilidad se vuelve una herramienta indispensable para prever rendimientos y ajustar formulaciones en función de la tecnología disponible.

3. Mecanismo de actuación de los aditivos superplastificantes y compatibilidad cemento-aditivo

Los aditivos superplastificantes basados en PCE actúan sobre la superficie de las partículas de cemento mediante adsorción, generando una repulsión estérica entre ellas. Esta acción se traduce en una mejora de la fluidez del sistema. La capacidad de mantener el efecto en el tiempo depende del equilibrio dinámico entre la fracción de aditivo adsorbida, la disuelta en solución y la encapsulada en productos de hidratación como la etringita.

La compatibilidad se define como la capacidad del sistema para mantener la consistencia deseada sin pérdidas prematuras de fluidez. Las principales causas de incompatibilidad son una adsorción excesiva o deficiente, la absorción por materiales porosos o las interacciones químicas que inhiben el aditivo. Estos efectos están estrechamente relacionados con las propiedades del cemento, como su finura, el contenido de sulfato soluble, la presencia de adiciones con baja reactividad o carácter absorbente y la relación molar SO₄²⁻/C₃A.

El uso de cementos muy finos puede acelerar la adsorción del aditivo y reducir su reserva disponible, lo que compromete la durabilidad del efecto. Las adiciones absorbentes reducen la proporción de aditivo útil, lo que provoca una pérdida prematura de fluidez. En casos extremos, como defectos de sulfato soluble, puede producirse una inactivación casi total del aditivo. Para ajustar la elección del aditivo más adecuado, es fundamental evaluar detalladamente la compatibilidad y tener en cuenta estos aspectos.

4. Método de ensayo de contraste con morteros normalizados

El procedimiento implica la elaboración de morteros con y sin aditivo superplastificante, manteniendo constante la relación a/c, y la medición de propiedades como la consistencia utilizando una mesa de sacudidas, la densidad, el aire ocluido y los tiempos de fraguado.

Se emplea equipamiento normalizado según la normativa europea (EN 196-1, EN 1015-3, EN 480-1), cuidando las condiciones de amasado y la temperatura de los componentes. El ensayo se realiza en intervalos temporales (T0, T30 y T60) para registrar la evolución de la fluidez.

Los datos obtenidos permiten contrastar el comportamiento del mortero con aditivo respecto al patrón y detectar posibles efectos de incompatibilidad. También se registra la resistencia mecánica a flexión y compresión en diferentes edades para validar el rendimiento final del sistema.

5. Cementos que se recomienda ensayar

El impulso hacia cementos con menor huella de carbono ha llevado al desarrollo de formulaciones con una mayor proporción de adiciones, como cenizas volantes, escorias, puzolanas y calizas. El objetivo de estas estrategias es reducir el contenido de clínker, el componente que más emisiones genera.

Reducir el clínker afecta a la reactividad inicial, la trabajabilidad del hormigón y su estabilidad a largo plazo. La adición de materiales puzolánicos o inertes modifica el comportamiento reológico, por lo que es posible que sea necesario incorporar activadores o ajustar la formulación del aditivo.

La utilización de cementos con adiciones suele implicar la necesidad de aditivos de alta eficiencia, incluidos superplastificantes combinados con retardadores o aceleradores, así como aditivos reductores de retracción. A la hora de elegir, hay que tener en cuenta el tipo de adición y su interacción con el sistema.

Las normativas UNE-EN 197-1, 197-5 y 197-6 han ampliado el espectro de cementos aceptados, incluyendo nuevos tipos como el CEM VI y aquellos con materiales reciclados. Estas actualizaciones ofrecen una mayor flexibilidad en la formulación de cementos sostenibles, pero también exigen métodos de validación más precisos para garantizar la compatibilidad con aditivos y la calidad del producto final.

6. Cementos empleados y sensibilidad del método

El capítulo seis de la guía analiza los resultados obtenidos al aplicar el método de contraste a diversos tipos de cementos disponibles en el mercado, especialmente a aquellos que incorporan adiciones en proporciones significativas. El objetivo de este análisis es comprobar la capacidad del método para detectar diferencias sutiles en la interacción entre el cemento y el aditivo, y así evaluar su sensibilidad ante variaciones compositivas que, en principio, podrían parecer menores.

Se ha comprobado que el método de ensayo propuesto es sensible a las diferencias específicas en los comportamientos según el tipo de adición presente en el cemento. Entre las variables ensayadas, destacan la fluidez inicial, el mantenimiento de la consistencia, la cantidad de aire ocluido, la densidad del mortero fresco y los tiempos de fraguado. Estos parámetros permiten obtener una lectura clara de los efectos derivados del uso de diferentes tipos de adiciones, como escorias, cenizas volantes, calizas o puzolanas naturales.

Asimismo, el procedimiento permite observar los efectos de adiciones con altos grados de vitrificación o bajo nivel de ionización inicial, lo que puede inducir reacciones retardadas en la adsorción del aditivo. En estos casos, el ensayo no solo refleja una merma en la fluidez inicial, sino también un fenómeno de refluidificación tardía, lo que compromete la estabilidad del mortero con el paso del tiempo.

En general, los resultados confirman que el método de contraste no solo es reproducible, sino que su sensibilidad es suficiente para discriminar entre situaciones de compatibilidad aceptable y aquellas en las que existen limitaciones importantes que podrían comprometer el rendimiento del hormigón en aplicaciones reales.

7. Conclusiones

El análisis realizado en esta guía confirma que la compatibilidad entre cemento y aditivos no es un parámetro fijo o inherente al producto, sino que depende de un equilibrio dinámico y ajustado que debe evaluarse en función de cada combinación específica. La evolución de los cementos hacia formulaciones con menor huella de carbono ha introducido nuevas variables que afectan a este equilibrio, desde cambios en la mineralogía hasta variaciones en la reactividad de las adiciones utilizadas.

El método de ensayo de contraste con morteros normalizados propuesto ha demostrado ser eficaz para anticipar el comportamiento del sistema cemento-aditivo, ya que permite identificar de manera temprana posibles desviaciones en propiedades clave como la fluidez, la consistencia, la oclusión de aire, la densidad y los tiempos de fraguado. Su implementación sistemática ofrece una herramienta de diagnóstico útil tanto en las fases de diseño como en el control de calidad de la producción industrial.

En definitiva, comprender las variables que afectan a la compatibilidad entre cementos y aditivos y disponer de herramientas de evaluación sensibles y bien estructuradas es fundamental para garantizar el rendimiento del hormigón en contextos de creciente exigencia ambiental y tecnológica.

Aquí tenéis un mapa mental de lo anteriormente expuesto.

Además, os dejo el documento completo para su consulta.

Descargar (PDF, 6.84MB)

Impacto ambiental del hormigón con cementos con adiciones: ¿menos emisiones, pero menor durabilidad?

Uno de los artículos más citados en nuestro grupo de investigación es el que vamos a explicar a continuación. El artículo de García-Segura, Yepes y Alcalá examina en profundidad si la reducción de las emisiones de gases de efecto invernadero derivadas del uso de cementos con adiciones compensa la disminución de su durabilidad y la reducción de la captura de CO₂ en comparación con el cemento Portland convencional.

Esta pregunta define con precisión el problema de investigación y estructuró el estudio en torno al impacto ambiental de diferentes mezclas de cemento, desde la producción hasta la demolición. La formulación de esta pregunta permite establecer objetivos específicos y una metodología rigurosa que garantice una evaluación cuantitativa y cualitativa de los efectos de la carbonatación y de la vida útil de las estructuras construidas con estos materiales.

El estudio se basa en un análisis del ciclo de vida (LCA, por sus siglas en inglés) aplicado a una columna de hormigón armado de 3 metros de altura y sección transversal de 30 x 30 cm², reforzada con cuatro barras de acero de 20 mm de diámetro y con un recubrimiento de hormigón de 30 mm. Se evalúa el impacto ambiental de diferentes mezclas de cemento: Portland (CEM I), cementos adicionados con cenizas volantes (CEM II/A-V y CEM II/B-V) y cementos con escoria de alto horno (CEM II/B-S, CEM III/A y CEM III/B). La metodología incluye:

  1. Producción: Se calculan las emisiones derivadas de la extracción y procesamiento de materias primas, incluyendo el transporte hasta la planta de hormigón y la fabricación de barras de acero, considerando tasas de reciclaje.
  2. Construcción: Se incluyen las emisiones por bombeo y vibrado del hormigón.
  3. Uso: Se determina la durabilidad mediante el modelo de Tuutti, diferenciando las etapas de iniciación y propagación de la corrosión del acero embebido en función de la carbonatación.
  4. Demolición y reciclaje: Se evalúa la captura de CO₂ tras la demolición, considerando el impacto del tamaño del árido reciclado y el entorno de exposición.

La captura de CO₂ se cuantifica mediante ecuaciones basadas en la difusión de carbonatación, considerando coeficientes de carbonatación variables en función de la composición del cemento y del nivel de exposición ambiental.

El trabajo aporta datos cuantitativos sobre la relación entre las emisiones iniciales y la captura de CO₂ en cada etapa del ciclo de vida del hormigón. Se identifican las siguientes contribuciones clave:

  • Reducción de emisiones en la producción: CEM III/B (80% BFS) emite 70% menos CO₂ en su fabricación comparado con el cemento Portland.
  • Durabilidad reducida: Cementos con alto reemplazo de clinker presentan una vida útil 10% menor debido a una mayor tasa de carbonatación.
  • Captura de CO₂: Durante su uso, CEM III/B captura solo el 22% del CO₂ capturado por el cemento Portland. Considerando la demolición, el porcentaje asciende a 20%.
  • Impacto de reciclaje: Si el hormigón demolido se expone al aire, la captura de CO₂ puede reducir las emisiones totales en un 47%.

Los resultados muestran que, si bien los cementos con adiciones reducen las emisiones en la etapa de producción, su menor durabilidad aumenta las emisiones anuales. El cemento CEM III/B reduce inicialmente las emisiones en un 70 %, pero solo logra una disminución del 20 % cuando se consideran las emisiones anuales. Esto sugiere que, a la hora de seleccionar cemento, hay que equilibrar la reducción de emisiones iniciales con la vida útil de la estructura. La investigación también destaca la importancia de garantizar la exposición del hormigón reciclado al aire para maximizar su capacidad de secuestro de carbono.

Se identifican tres áreas clave para futuras investigaciones:

  1. Optimización de cementos adicionados: Investigación sobre el uso de aditivos y ajustes en la dosificación para mejorar la durabilidad sin comprometer la reducción de emisiones.
  2. Impacto ambiental de diferentes climas: Evaluación de la carbonatación y la vida útil del hormigón en condiciones climáticas diversas.
  3. Estrategias para maximizar la captura de CO₂ post-demolición: Desarrollo de procesos para incrementar la exposición del agregado reciclado al aire y mejorar la captura de carbono.

En resumen, el estudio ofrece un análisis exhaustivo de las emisiones de gases de efecto invernadero asociadas al uso de cementos modificados. Aunque la reducción de emisiones en la producción de estos cementos es significativa, la menor durabilidad y la reducida captura de CO₂ requieren un análisis cuidadoso para garantizar la sostenibilidad del hormigón a largo plazo. La investigación subraya la necesidad de estrategias complementarias que optimicen la combinación entre las emisiones iniciales y la vida útil estructural para reducir el impacto ambiental global del sector de la construcción.

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0

Esta es la versión post-print de autor. La publicación se encuentra en: https://riunet.upv.es/handle/10251/49057, siendo el Copyright de Springer Verlag (Germany).

Descargar (PDF, 413KB)

Optimización del hormigón con nanocristalización catalizada: impermeabilización, protección y durabilidad

Figura 1. Plataformas petrolíferas en el Mar del Norte. Ambiente muy agresivo para el hormigón.

El hormigón es un material esencial en la construcción, pero su durabilidad se ve comprometida por factores como la carbonatación, la corrosión de las armaduras y la infiltración de agua y agentes agresivos. Las soluciones tradicionales de protección, basadas en recubrimientos superficiales, tienen limitaciones, ya que dependen de la adherencia al sustrato y pueden deteriorarse con el tiempo.

La nanocristalización catalizada surge como una alternativa innovadora que actúa desde el interior del hormigón, modificando su estructura capilar para mejorar sus propiedades mecánicas, aumentar su resistencia química y proporcionar una impermeabilización permanente sin alterar su aspecto.

Nanocristalización catalizada: una transformación desde el interior

El proceso de nanocristalización catalizada se basa en la interacción química entre nanosilicatos y el calcio libre presente en la matriz del hormigón. Para lograr una penetración efectiva, se emplea un procedimiento de nanofiltración que reduce el tamaño de las partículas de silicato a un rango comprendido entre 0,1 y 0,7 nanómetros. Así, el producto penetra profundamente en la red capilar y en los poros más finos del hormigón, donde reacciona con la cal libre para formar una estructura de nanocristales de cuarzo.

Figura 2. Recreación de la red nanocristalina generada en poros y capilares

Este proceso se desarrolla en varias etapas:

  1. Penetración por succión capilar: El nanosilicato, al estar en base acuosa, es absorbido por capilaridad. La magnitud de esta absorción depende del diámetro de los poros y la porosidad del hormigón.
  2. Gelidificación controlada: Se emplea un catalizador mineral que evita la reacción prematura con el calcio libre superficial, lo que permite una distribución homogénea del nanosilicato en el interior del hormigón.
  3. Cristalización interna: Durante un periodo de entre 12 y 15 días, los nanosilicatos reaccionan con la cal presente en el hormigón, formando una malla cristalina que sella los capilares y microfisuras.
  4. Efecto estructural: Al finalizar el proceso, la red de nanocristales aporta características similares a una armadura interna, aumentando la cohesión del material sin afectar su transpirabilidad.

Propiedades y beneficios en la construcción

El tratamiento mediante nanocristalización catalizada modifica significativamente las propiedades del hormigón, mejorando su comportamiento frente a diversas condiciones ambientales y químicas.

  • Impermeabilización profunda: A diferencia de los recubrimientos superficiales, este sistema genera una barrera cristalina en el interior del hormigón que impide la entrada de agua, pero no la sella por completo, lo que permite la salida de vapor y evita problemas de presión interna.
  • Incremento de la resistencia mecánica: La conversión de la cal libre en cuarzo aumenta la densidad y compactación del hormigón, y aumenta su resistencia a la compresión en un 32 % según ensayos de laboratorio.
  • Protección anticorrosiva: La restauración del pH por encima de 11,4 previene la oxidación de las armaduras y detiene la progresión de la carbonatación.
  • Durabilidad ampliada: Ensayos han demostrado que la vida útil del hormigón tratado puede multiplicarse entre 2,6 y 3 veces, reduciendo la necesidad de intervenciones y mantenimiento.
  • Sostenibilidad y compatibilidad con normativas: Al ser un tratamiento 100 % mineral, sin compuestos orgánicos volátiles ni disolventes, cumple con las normativas ambientales y de durabilidad estructural.

Aplicaciones en estructuras y proyectos reales

La tecnología de nanocristalización catalizada se ha implementado con éxito en diversos sectores de la construcción, tanto en estructuras nuevas como en rehabilitación de infraestructuras existentes:

  • Edificación: Se ha utilizado en cimentaciones, sótanos y elementos estructurales para prevenir filtraciones y mejorar la cohesión del hormigón. Los ensayos de penetración realizados en hormigón de 50 años han demostrado una reducción significativa de la permeabilidad al agua.
  • Puentes y viaductos: Se ha aplicado en tableros y cimentaciones para mitigar los efectos de la carbonatación y proteger las armaduras contra la acción de cloruros y sales de deshielo.
  • Túneles y muros pantalla: Su capacidad de sellado interno ha permitido eliminar filtraciones sin necesidad de aplicar recubrimientos superficiales.
  • Infraestructura portuaria: La alta resistencia a los cloruros y ambientes marinos agresivos ha reducido la erosión y el deterioro de los hormigones de muelles y diques, lo que ha minimizado los costes de mantenimiento.

Un cambio de paradigma en la protección del hormigón

El uso de la nanocristalización catalizada supone una evolución en la protección del hormigón, ya que aborda los problemas de degradación desde su origen. A diferencia de los tratamientos superficiales, que pueden desprenderse con el tiempo, esta tecnología modifica la estructura interna del material, lo que ofrece una protección e impermeabilización permanentes.

En un contexto donde la durabilidad y la sostenibilidad son prioridades, la aplicación de esta tecnología en la construcción y rehabilitación de estructuras no solo reduce los costes de mantenimiento, sino que también aumenta la vida útil de las edificaciones, alineándose con los nuevos estándares de calidad y eficiencia en la ingeniería civil.

Os dejo una presentación de la empresa sueca Komsol que os puede resultar de interés.

Descargar (PDF, 18.19MB)

 

Modelos subrogados para optimizar el coste de pasos superiores pretensados

Acaban de publicar nuestro artículo en la revista Infrastructures, indexada en el JCR. El estudio presenta una metodología de optimización de costes para puentes losa aligerados postesados mediante metamodelos, en la que se destaca la aplicación del modelo Kriging en combinación con algoritmos heurísticos.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.  A continuación, explicamos brevemente el contenido del artículo que podéis descargar gratuitamente.

La investigación se centra en un puente de tres vanos con luces de 24, 34 y 28 m, y optimiza el diseño estructural para reducir costes sin comprometer los criterios de servicio y seguridad. Se identifica una reducción del 6,54 % en los costes en comparación con enfoques tradicionales, lograda principalmente mediante la disminución del uso de hormigón en un 14,8 % y del pretensado en un 11,25 %.

El trabajo también evalúa distintas técnicas predictivas, como redes neuronales y funciones de base radial, y determina que las redes neuronales presentan el menor error de predicción, aunque requieren varias ejecuciones para garantizar estabilidad. En contraste, el modelo Kriging permite identificar óptimos locales con alta precisión. La metodología propuesta proporciona una estrategia eficiente para la toma de decisiones en ingeniería estructural, que promueve diseños de puentes más rentables sin comprometer el rendimiento estructural.

Figura. Paso superior en la autovía A-7, en Cocentaina (Alicante)

Los resultados indican que la optimización mediante modelos subrogados permite reducir significativamente los costes de diseño de pasos superiores pretensados. La estrategia adoptada optimiza variables como la profundidad de la losa, la geometría de la base y la resistencia del hormigón, y respeta las restricciones impuestas por los estados límite de servicio, que son los últimos según el Eurocódigo 2. Se observa que la metodología basada en kriging y la optimización heurística proporciona resultados prácticos con menor esfuerzo computacional en comparación con la optimización directa de todas las variables estructurales.

El modelo Kriging optimizado mediante Simulated Annealing identificó una configuración de losa con una profundidad de 1,30 m y una base de 3,15 m como la solución más rentable. Esta configuración se corrobora mediante la predicción de redes neuronales, lo que muestra coherencia en la localización del óptimo. En comparación con estudios previos, los resultados indican que la metodología utilizada en este trabajo permite obtener ahorros significativos sin necesidad de analizar exhaustivamente cada alternativa estructural.

A partir de los hallazgos obtenidos, se sugiere explorar la integración de métodos de optimización multiobjetivo que tengan en cuenta no solo el coste, sino también el impacto ambiental y los costes de mantenimiento a lo largo del ciclo de vida del puente. La inclusión de criterios de sostenibilidad podría mejorar la eficiencia global del diseño estructural y su capacidad de adaptación a normativas futuras.

Otra línea de investigación relevante consiste en aplicar modelos subrogados en el diseño de otros tipos de estructuras, como puentes de vigas o marcos de hormigón armado, para evaluar su viabilidad en distintas configuraciones estructurales. Además, el desarrollo de modelos predictivos más sofisticados, que integren aprendizaje automático y simulaciones de alta fidelidad, podría optimizar aún más los diseños propuestos.

Por último, se recomienda estudiar el impacto de la variabilidad de los materiales y las condiciones de carga en la optimización del diseño. La incorporación de análisis probabilísticos mejoraría la fiabilidad de las soluciones obtenidas, ya que se obtendrían diseños estructurales más robustos y seguros.

Referencia:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

Descargar (PDF, 1.95MB)

Robert Maillart

Robert Maillart (1872 – 1940). https://commons.wikimedia.org/w/index.php?curid=15901325

Robert Maillart (Berna, 6 de febrero de 1872 – Ginebra, 5 de abril de 1940) fue un ingeniero civil suizo que innovó en el uso del hormigón armado, creando el arco triarticulado, el arco con tablero armado para puentes y losas sin vigas con columnas en forma de seta para naves industriales. Sus puentes de Salginatobel (1929-1930) y Schwandbach (1933) transformaron la estética y la ingeniería de los puentes, y ejercieron una gran influencia en generaciones de arquitectos e ingenieros. En 1991, la Sociedad Estadounidense de Ingenieros Civiles declaró el puente de Salginatobel «Hito Histórico Internacional de la Ingeniería Civil».

Maillart creció en el seno de una familia calvinista de Berna y destacó desde joven en matemáticas y dibujo durante su educación secundaria. Entre 1890 y 1894 estudió ingeniería estructural en la Escuela Politécnica Federal de Zúrich (ETH), donde asistió a las conferencias de Wilhelm Ritter sobre estática gráfica, una disciplina clave en su formación. Tras obtener su título, regresó a Berna para trabajar con Pümpin & Herzog (1894-1896), y luego pasó dos años en la administración de la ciudad de Zúrich y en la firma Froté & Westermann. Fue en esta última donde concibió una de sus primeras innovaciones: el diseño del puente de arco de hormigón armado en Zuoz, finalizado en 1901, en el que integró la calzada con el arco estructural, generando una sección en forma de cajón de doble celda. En 1902 fundó su propia empresa, Maillart & Cie. En 1903 diseñó un foso para gasómetro en la ciudad de Sankt Gallen, donde por primera vez incorporó el análisis de los momentos flectores en los cálculos gráficos de las fuerzas internas de una cáscara cilíndrica de hormigón armado empotrada en la losa de cimentación. A finales de ese mismo año, Maillart detectó la aparición de grietas verticales próximas a los estribos en el alma de la estructura del puente de Zuoz. Esta observación derivó en la incorporación de recortes triangulares en los elementos de apoyo y, posteriormente, en 1905, en el desarrollo del puente de arco articulado en tres puntos sobre el Rin en Tavanasa, con una luz de 51 m.

En 1912 se mudó con su familia a Rusia, donde dirigió la construcción de fábricas y almacenes en Járkov, Riga y San Petersburgo, mientras el país se industrializaba con inversiones suizas. Sin embargo, con el estallido de la Primera Guerra Mundial, se vio obligado a evacuar Riga y trasladarse a Járkov. Durante su estancia en Kiev, diseñó grandes estructuras industriales para AEG y otras compañías. La muerte de su esposa en 1916 y la irrupción de la Revolución de Octubre marcaron un punto de inflexión en su vida, obligándolo a regresar a Suiza con sus tres hijos en una situación económica precaria. Al regresar a Suiza, Maillart no tenía dinero y estaba endeudado. Tras su regreso, trabajó para otras firmas, pero lo mejor de sus diseños aún estaba por llegar. En 1920 se incorporó a una oficina de ingeniería en Ginebra, que luego abrió sucursales en Berna y Zúrich. A pesar de estas dificultades, su segunda etapa creativa (1920-1940) se caracterizó por una intensa actividad que culminó con la construcción de 160 estructuras que reflejan el rigor lógico y la sensibilidad artística de su obra. Su mayor contribución a la teoría de estructuras fue la introducción del concepto de centro de cortante y la formulación clara de su teoría en la década de 1920.

Puente de Salginatobel en Schiers. De Rama – Trabajo propio, CC BY-SA 2.0 fr, https://commons.wikimedia.org/w/index.php?curid=4794735

Robert Maillart tuvo un ingenio intuitivo con el que supo aprovechar la estética del hormigón. Gracias a sus contribuciones al diseño estructural, el lenguaje arquitectónico del hormigón armado se consolidó durante la primera mitad del siglo XX. Diseñó arcos triarticulados que combinaban el tablero y las nervaduras del arco, creando estructuras integradas que evolucionaron hacia arcos rígidos de hormigón armado delgados y losas del mismo material. El puente de Salginatobel (1930) y el puente de Schwandbach (1933) son ejemplos clásicos de estos diseños, reconocidos por su elegancia y su influencia en la ingeniería de puentes posteriores. Estos conceptos superaron los límites del diseño de la época. Ambos puentes demuestran su habilidad para simplificar proyectos, maximizar el uso de materiales e integrar la belleza del entorno. Maillart fue seleccionado entre 19 participantes por el bajo coste de su propuesta y comenzó la construcción del puente de Salginatobel en Schiers en 1929, que fue inaugurado el 13 de agosto de 1930.

Maillart es conocido por su innovador diseño de columnas con forma de seta en varios edificios. Su primer techo de este tipo lo construyó para un almacén en Zúrich, para el que trató el tablero de hormigón como una losa, sin vigas. Una de sus obras más famosas es el diseño de las columnas de la planta de filtración de agua de Rorschach. Al abandonar los métodos tradicionales, Maillart creó «el método de construcción europeo más racional y bello». En su diseño de columnas, ensanchaba las partes superiores para reducir el momento flector y formar ligeros arcos que transferían las cargas al suelo. También abocinó la base de las columnas para distribuir mejor la carga y reducir la presión sobre el suelo. Aunque muchos usaron este método con madera y acero, Maillart fue pionero al emplear hormigón, que soportaba eficazmente el aislamiento contra la congelación. Su técnica se utilizó para construir el puente de Ciolo, en Apulia.

Todas las partes del puente se integraron según su función constructiva, de modo que la carretera ya no era un peso que el arco debía soportar, sino un elemento que colaboraba como parte resistente de la estructura. Los puentes de Maillart superan la tradicional separación entre peso propio y cargas útiles, y se convierten en obras de arte por su economía de medios, equilibrio armónico y fuerza constructiva. Su principal innovación fue la viga cajón de tres articulaciones que utilizó en el puente de Tavanasa sobre el río Rin, construido en 1905 y destruido en 1927. Entre sus estructuras destacadas se encuentran la nave del Almacén de Aduanas de Chiasso, en 1924, y la gran nave de hormigón para la Exposición Nacional de Suiza de 1939 en Zúrich. La invención más importante para edificios fue la construcción de techos sin vigas apoyadas en capiteles en 1908, técnica que se popularizó a partir de 1910. Este sistema elimina la transición columna-viga-losa, dejando solo la columna-losa, lo que ahorra material, reduce el tiempo de ejecución y otorga flexibilidad, ligereza y elegancia al diseño.

Aunque no destacó en teorías académicas, comprendió la importancia de hacer suposiciones y visualizar las estructuras al analizarlas. A Maillart le molestaba el uso excesivo de las matemáticas, ya que prefería emplear el sentido común para prever el rendimiento a gran escala. Como rara vez probaba sus puentes antes de la construcción, los verificaba una vez terminados y los cruzaba él mismo. Esta actitud fue clave para sus diseños innovadores. En palabras de Mirko Gottfried Roš: «Maillart fue un ingeniero en el sentido más estricto del término. Puso la teoría y los avances científicos al servicio de la arquitectura: la primera era su herramienta y la segunda su propósito. Consideraba la experiencia y el conocimiento científico como socios equivalentes».

Cuando Robert Maillart falleció el 5 de abril de 1940, el mundo de la construcción en hormigón armado perdió a un auténtico «virtuoso del hormigón» y a un genio de la ingeniería estructural. Mirko Gottfried Roš lo describió en su obituario con estas palabras: «Fuiste tanto ingeniero como artista, porque tu credo fue la armonía entre magnitud, belleza y verdad».

Principales contribuciones a la teoría de estructuras:

  • Zur Frage der Biegung [1921/1]
  • Bemerkungen zur Frage der Biegung [1921/2]
  • Ueber Drehung und Biegung [1922]
  • Der Schubmittelpunkt [1924/1]
  • Zur Frage des Schubmittelpunktes [1924/1, 1924/3]
  • Zur Entwicklung der unterzugslosen Decke in der Schweiz und in Amerika [1926]
  • Einige neuere Eisenbetonbrücken [1936]

Os dejo un vídeo sobre este insigne ingeniero.

Guía para las especificaciones técnicas del hormigón

El documento, titulado «Guía para las especificaciones técnicas del hormigón», forma parte de la serie de guías Eurocódigos, elaborada por el Ministerio de Transportes, Movilidad y Agenda Urbana de España. Su propósito es proporcionar un marco de referencia que facilite la aplicación de los Eurocódigos en el diseño y ejecución de obras de construcción, prestando especial atención al hormigón. A lo largo del texto se abordan aspectos técnicos relacionados con la especificación del hormigón, con el objetivo de garantizar el cumplimiento de las normativas europeas y de las exigencias del Código Estructural español.

La guía se enmarca en un contexto normativo que ha experimentado una notable transformación desde la implementación de los Eurocódigos en la década de 1980. Se destaca la importancia de estas normativas para armonizar los criterios de diseño y ejecución en el ámbito de la construcción en Europa. La guía se presenta como un recurso esencial para los profesionales del sector, ya que proporciona directrices claras y concisas sobre cómo especificar el hormigón de acuerdo con la normativa vigente.

Desarrollo de los aspectos más relevantes

La guía se organiza en varios capítulos que abordan desde la introducción a los Eurocódigos hasta la definición de especificaciones técnicas del hormigón. En el primer capítulo se establece el contexto y la importancia de la normativa europea en el ámbito de la construcción, y se destaca la evolución de los Eurocódigos desde su creación hasta su aplicación en proyectos de infraestructura en España. Se menciona que la serie de guías Eurocódigos se inició en 2018 con el objetivo de profundizar en el conocimiento de estas normativas en la comunidad técnica española y facilitar su aplicación en proyectos de la Dirección General de Carreteras.

Uno de los aspectos más relevantes es la definición de los requisitos básicos para especificar el hormigón, que incluyen la clase de resistencia a compresión, la clase de exposición y el tamaño máximo del árido. Estos requisitos son esenciales para garantizar que el hormigón utilizado en las obras cumpla con las propiedades mecánicas y de durabilidad necesarias para su correcto funcionamiento en las condiciones ambientales previstas. La guía detalla cómo se deben designar los hormigones y cómo se debe elaborar el cuadro de especificaciones técnicas para garantizar el cumplimiento de las normativas.

La guía también aborda la equivalencia entre las especificaciones del hormigón según los Eurocódigos y el Código Estructural, y proporciona un marco claro para interpretar y aplicar ambas normativas. Este enfoque permite a los profesionales del sector entender cómo se relacionan los requisitos de cada norma y cómo se pueden aplicar en la práctica. Se hace hincapié en la necesidad de resolver la compatibilidad entre las normas europeas de producto, ejecución y control, y el Código Estructural, motivo por el cual se ha elaborado esta guía.

Además, se incluyen recomendaciones sobre el control de calidad y la ejecución del hormigón, haciendo hincapié en la importancia de establecer niveles de control adecuados durante la producción y colocación del material. La guía sugiere que el control de conformidad de la resistencia del hormigón se realice mediante métodos estadísticos, lo que permite evaluar con mayor precisión la calidad del material utilizado en las obras. Se menciona que el control de conformidad debe incluir la verificación de la resistencia, durabilidad y otras características exigidas en el pliego de prescripciones técnicas particulares.

Otro aspecto destacado es la clasificación del hormigón en función de su tipo y función estructural. La guía establece que es conveniente incluir una distinción en función del uso previsto del hormigón, diferenciando entre hormigón en masa, hormigón armado, hormigón pretensado y hormigón no estructural. Esta clasificación permite prever las características del material definidas en la especificación, lo que es esencial para garantizar la calidad y durabilidad del hormigón en las obras.

La guía también proporciona un análisis detallado de los requisitos adicionales que pueden incluirse en la especificación del hormigón, como el tipo de cemento, la temperatura del hormigón fresco y las características exigidas para resistir daños por ciclos de hielo-deshielo. Estos requisitos adicionales son importantes para garantizar que el hormigón se adapte a las condiciones específicas del entorno en el que se utilizará, lo que contribuirá a su durabilidad y rendimiento a largo plazo.

Recomendaciones prácticas

Para aplicar correctamente las especificaciones técnicas del hormigón, se recomienda que los estudiantes y los profesionales del sector se familiaricen con los Eurocódigos, el Código Estructural y la guía en cuestión. Se recomienda realizar capacitaciones periódicas sobre las normativas vigentes, ya que esto contribuirá a una mejor comprensión de los requisitos y a su correcta implementación en proyectos de construcción.

Asimismo, se sugiere establecer protocolos claros para el control de calidad del hormigón que incluyan la realización de ensayos de resistencia y durabilidad en diferentes etapas del proceso de producción y colocación. La documentación de estos ensayos debe ser rigurosa y accesible para facilitar la trazabilidad del material utilizado en las obras.

Es fundamental fomentar la colaboración entre todos los actores involucrados en el proceso constructivo, desde los diseñadores hasta los ejecutores, para garantizar que todos comprendan y apliquen adecuadamente las especificaciones técnicas del hormigón. La comunicación efectiva entre los equipos de trabajo puede ayudar a prevenir errores y garantizar el cumplimiento de los estándares de calidad establecidos.

Conclusión

La guía de especificaciones técnicas del hormigón proporciona un marco detallado y estructurado que facilita la aplicación de normativas europeas en el ámbito de la construcción en España. Su contenido técnico y práctico resulta muy útil para el alumnado y los profesionales del sector, ya que facilita la comprensión de los requisitos necesarios para garantizar la calidad y durabilidad del hormigón en las obras. La aplicación de las recomendaciones propuestas mejorará la práctica constructiva y garantizará el cumplimiento de las normativas vigentes.

A continuación, os paso la guía completa. Espero que os sea útil.

Descargar (PDF, 3.74MB)

Curso:

Curso de fabricación y puesta en obra del hormigón.