Torres distribuidoras de hormigón: placing boom

Figura 1. Torre distribuidora de hormigón. https://socomaq.com/?product=placing-boom-truemax

Las torres distribuidoras de hormigón (TDH) o plumas de colocación estacionarias, también conocidas como placing boom, son brazos hidráulicos que complementan las bombas estacionarias, permitiendo una distribución eficiente del hormigón en elementos como losas, pilares o muros de edificios. Estas torres son un recurso clave para agilizar los procesos de hormigonado, ya que permiten distribuir el hormigón de manera independiente, tanto en elementos horizontales como verticales, sin depender de otros recursos esenciales en la obra, como la grúa pluma.

Los modelos más demandados cuentan con brazos de 28 y 32 m de longitud, lo que les permite colocar hormigón en superficies de 2810 y 3215 m², respectivamente, imitando de manera precisa el movimiento de una mano. Estas torres ahorran tiempo y dinero gracias a su fácil y rápida conversión de camión a torre, además de mejorar la seguridad en el trabajo y brindar mayor flexibilidad al contratista.

Entre sus principales ventajas se encuentran la velocidad de cobertura programable y la alta precisión en la colocación del hormigón, lo que reduce la necesidad de limpiar los encofrados y contribuye a prolongar su vida útil.

Estos equipos están formados por una columna que puede ascender a través de la estructura de hormigón armado mediante un sistema hidráulico de izaje autotrepatante. En la parte superior, el brazo articulado contiene una tubería interna que transporta el hormigón bombeado desde el nivel inferior hasta el distribuidor de hormigón.

Esta tecnología, combinada con una bomba de alimentación adecuada ubicada en la base del edificio, se presenta como una solución constructiva altamente eficiente. Permite la colocación de grandes volúmenes de hormigón, respondiendo de manera segura y rentable a las crecientes demandas de estructuras de gran altura, cada vez más complejas e innovadoras.

Figura 2. Placing boom. https://hormigonaldia.ich.cl/maquinarias/torres-de-distribucion-de-hormigon-rapidez-y-eficiencia-en-altura/

Os dejo algunos vídeos al respecto de este tipo de maquinaria de colocación del hormigón. Espero que os sean de interés.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón proyectado: gunitado

https://www.pavireal.es/hormigon-gunitado/

La técnica del gunitado, también conocida como hormigón proyectado, es un sistema constructivo que consiste en proyectar hormigón o mortero con un «cañón» (o manguera a alta presión) sobre cualquier tipo de superficie, inclusive la tierra. Su objetivo es construir un muro continuo, con mayor resistencia y menor espesor, para soportar y contener la presión ejercida por el terreno, con cualquier tipo de pendiente, ofreciendo una impermeabilización óptima gracias a su baja porosidad. Una de las grandes ventajas respecto al hormigón tradicional es que no precisa compactación (tampoco el autocompactante), por lo que se puede adaptar a superficies de todo tipo y geometría. La velocidad de impacto es la que compacta inmediatamente el material. En la actualidad, el hormigón proyectado es un elemento indispensable en los procedimientos de sostenimiento y revestimiento estructural de túneles y taludes.

Este hormigón se llamó originalmente «gunite» o «gunita» cuando Carl Akeley diseñó un duplicado de pistola de cemento de cámaras en 1910. Su aparato neumático aplicaba una mezcla de cemento y arena a gran velocidad sobre la superficie prevista. El desarrollo de la gunita en Europa siguió a EE. UU. cuando un ingeniero de la empresa CEMENT-GUN CO. americana fundó la TORKRET GmbH en 1921, utilizándose entonces la gunita en reparaciones de muros defectuosos y, en mucho menor medida, en el revestimiento de túneles y galerías.

Podemos distinguir tres procesos distintos de gunitado: mezcla seca, mezcla húmeda y mezcla semihúmeda. En el proceso de mezcla seca, se introduce y se mezcla el agua necesaria en la boquilla de aplicación, y el material seco de cemento (cenizas, escorias, humo de sílice, etc.) y los agregados se entregan a través de la pistola. El proceso de mezcla húmeda emplea hormigón que ha sido entregado y está bien mezclado, con exclusión de los aceleradores necesarios. Los ingredientes suelen entregarse en camiones mezcladoras de hormigón, listos, como se hace con el hormigón normal. La dosificación de cemento oscila entre 300 y 375 kg/m³, con relaciones agua/cemento de alrededor de 0,40 y 0,56, con la limitación del tamaño máximo de árido, que generalmente es inferior a los 10 mm, en función del tamaño de la manguera y la boquilla empleadas.

Os dejo varios vídeos sobre cómo se aplica la técnica. Espero que os gusten.

También os dejo el siguiente artículo por si os resulta de interés.

Descargar (PDF, 1.39MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1998). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y toma de decisión multicriterio

Acaban de publicarnos un artículo en Mathematics, revista indexada en el primer decil del JCR. El documento Mejora del diseño estructural de cerchas metálicas pretensadas mediante optimización multiobjetivo y MCDM. El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Estas son las principales contribuciones descritas en el artículo:

  • Marco integrado para la optimización: La investigación presenta un marco integral que integra algoritmos de optimización multiobjetivo (MOO) y técnicas de toma de decisiones multicriterio (MCDM). Este marco no solo es aplicable a las cerchas pretensadas, sino también a varios diseños estructurales, lo que mejora la toma de decisiones en ingeniería estructural.
  • Algoritmos de optimización avanzados: el estudio emplea tres algoritmos MOO avanzados (NSGA-III, CTAEA y SMS-EMAO) para optimizar el diseño estructural de las cerchas arqueadas pretensadas. Este enfoque permite evaluar de forma sólida los diferentes objetivos del diseño, como la minimización del peso, el rendimiento de carga y la capacidad de construcción.
  • Métricas de evaluación integrales: el documento incorpora una serie de visualizaciones analíticas y métricas de evaluación exhaustivas para comprender la variabilidad de las diferentes variables en el contexto de Pareto. Esto ayuda a ilustrar las ventajas y desventajas que conllevan las distintas estrategias de optimización y proporciona una visión más clara del proceso de diseño.
  • Evaluación del rendimiento de los algoritmos: la investigación evalúa el rendimiento de los algoritmos de optimización utilizando métricas de distancia generacional (GD) y distancia generacional invertida (IGD). Los resultados indican que el NSGA-III supera a los demás algoritmos en términos de convergencia con respecto a Pareto, lo que proporciona información valiosa sobre la eficacia de cada algoritmo.
  • Validación estadística de los resultados: el artículo emplea la prueba de Kruskal-Wallis para validar las diferencias de rendimiento entre los algoritmos. Esto añade credibilidad a los hallazgos y resalta las ventajas y limitaciones de cada enfoque de optimización, que es crucial para las futuras aplicaciones de optimización estructural.
  • Implicaciones prácticas para la construcción: Las innovaciones presentadas en el documento mejoran el rendimiento estructural, reducen el consumo de recursos y mejoran la capacidad de construcción y la seguridad. Estas contribuciones demuestran las implicaciones prácticas para unas prácticas de construcción más eficientes y sostenibles, y abordan la complejidad de los métodos de diseño tradicionales.

En resumen, este documento promueve significativamente la comprensión y la aplicación de las cerchas pretensadas al proporcionar un marco sólido para la optimización y la toma de decisiones, junto con información práctica para mejorar las prácticas de construcción.

Abstract:

The structural design of prestressed arched trusses presents a complex challenge due to the need to balance multiple conflicting objectives such as structural performance, weight, and constructability. This complexity is further compounded by the interdependent nature of the structural elements, which necessitates a comprehensive optimization approach. Addressing this challenge is crucial for advancing construction practices and improving the efficiency and safety of structural designs. The integration of advanced optimization algorithms and decision-making techniques offers a promising avenue for enhancing the design process of prestressed arched trusses. This study proposes the use of three advanced multi-objective optimization algorithms: NSGA-III, CTAEA, and SMS-EMOA, to optimize the structural design of prestressed arched trusses. The performance of these algorithms was evaluated using Generational Distance and Inverted Generational Distance metrics. Additionally, the non-dominated optimal designs generated by these algorithms were assessed and ranked using multiple Multi-Criteria Decision-Making techniques, including SAW, FUCA, TOPSIS, PROMETHEE, and VIKOR. This approach allowed for a robust comparison of the algorithms and provided insights into their effectiveness in balancing the different design objectives. The results of the study indicate that NSGA-III exhibited superior performance with a GD value of 0.215, reflecting a closer proximity of its solutions to the Pareto front, and an IGD value of 0.329, indicating a well-distributed set of solutions across the Pareto front. In comparison, CTAEA and SMS-EMOA showed higher GD values of 0.326 and 0.436, respectively, suggesting less convergence to the Pareto front. However, SMS-EMOA demonstrated a balanced performance in terms of constructability and structural weight, with an IGD value of 0.434. The statistical significance of these differences was confirmed by the Kruskal-Wallis test, with p-values of 2.50×10−15 for GD and 5.15×10−06 for IGD. These findings underscore the advantages and limitations of each algorithm, providing valuable insights for future applications in structural optimization.

Keywords:

Multi-objective optimization; multi-criteria decision-making; NSGA-III; CTAEA; SMS-EMOA; SAW; FUCA; TOPSIS; PROMETHEE; VIKOR

Reference:

RUIZ-VÉLEZ, A.; GARCÍA, J.; PARTSKHALADZE, G.; ALCALÁ, J.; YEPES, V. (2024). Enhanced Structural Design of Prestressed Arched Trusses through Multi-Objective Optimization and MCDM. Mathematics, 12(16), 2567. DOI:10.3390/math12162567

Descargar (PDF, 2.8MB)

Primicia editorial: Nuevo Manual de Referencia sobre Estructuras Auxiliares en la Construcción

Estoy en proceso de revisión de las pruebas de imprenta del nuevo Manual de Referencia denominado: “Estructuras auxiliares de construcción: andamios, apeos, entibaciones, encofrados y cimbras”. Estará disponible en las librerías durante el mes de septiembre del 2024.

Este libro aborda de manera amplia las estructuras auxiliares utilizadas en la construcción, abarcando tanto el ámbito de la edificación como el de las obras de ingeniería civil. El libro trata de los aspectos relacionados con los apeos y apuntalamientos, las entibaciones, los andamios, los encofrados y las cimbras. La novedad de esta obra radica en el tratamiento constructivo de estas técnicas, donde las fotografías e ilustraciones añaden valor a las explicaciones realizadas en el texto. Además de incluir una amplia bibliografía, se aportan cuestiones de autoevaluación con respuestas para el aprendizaje de los conceptos más importantes, así como problemas resueltos. Es un libro de texto dirigido a estudiantes de ingeniería y arquitectura, con una fuerte orientación hacia la construcción. No obstante, también se estructura como un manual de consulta para los profesionales relacionados con el proyecto y la construcción de obras. Además, este libro complementa los aspectos constructivos de otro tipo de textos estructurales o geotécnicos, más orientados a la teoría y los problemas.

¿Qué es un Manual de Referencia en la Universitat Politècnica de València?

Colección de carácter multidisciplinar, orientada a la formación y al ejercicio profesional. Los contenidos han sido seleccionados por el comité editorial atendiendo a la oportunidad de la obra por su originalidad en el estudio y aplicación de una materia, el apoyo gráfico y práctico con ejercicios demostrativos que sustentan la teoría, la adecuación de su metodología y la revisión bibliográfica actualizada. Los títulos de la colección se clasifican en distintas series según el área de conocimiento y la mayoría de ellos están disponibles tanto en formato papel como electrónico.

Todos los títulos de la colección están evaluados por especialistas en la materia según el método doble ciego, tal como se recoge en la página web de la Editorial (http://www.upv.es/entidades/AEUPV/info/891747normalc.html), garantizando la transparencia en todo el proceso.

Para conocer más información sobre la colección, los títulos que la componen y cómo adquirirlos puede visitar la web, enlace a la página de la colección en www.lalibreria.upv.es

Referencia:

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València. Ref. 477

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

SOBRE EL AUTOR:

Víctor Yepes Piqueras. Catedrático de universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social de la UPV. Es investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE). Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Mantenimiento preventivo sostenible de estructuras de edificios de hormigón tipo MMC en un entorno adverso

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo sobre el mantenimiento preventivo y sostenible de los métodos modernos de construcción en entornos hostiles. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción desempeña un papel significativo en la presión medioambiental, atribuido principalmente a su importante consumo de recursos, impulsado sobre todo por el auge de la construcción residencial. Los Métodos Modernos de Construcción (MMC) presentan un paradigma innovador para diseñar y construir infraestructuras y edificios de forma más eficiente, utilizando materiales convencionales con técnicas no convencionales. El artículo pretende aplicar este enfoque a una estructura de edificación basada en MMC, minimizando el impacto de su ciclo de vida mediante la optimización del consumo de materiales de construcción, con especial atención a los efectos de la fase de mantenimiento desde un punto de vista preventivo. Este estudio se centra en la evaluación de la sostenibilidad de los forjados planos de hormigón armado que emplean un sistema de cuerpo estructural hueco, haciendo hincapié explícitamente en los factores de agresividad ambiental que contribuyen a la corrosión, como la carbonatación y los cloruros. La investigación explora diez opciones de diseño para un edificio residencial público frente al mar, examinando su impacto en la economía, el medio ambiente e incluso la sociedad en lo que respecta a los ciclos de mantenimiento necesarios a lo largo de la vida útil de la estructura, en función de la estrategia preventiva empleada para cada diseño. Para evaluar la sostenibilidad de estas opciones, los investigadores emplearon una combinación del método del mejor-peor (BWM) y la técnica VIKOR, teniendo en cuenta nueve criterios relacionados con la sostenibilidad. El estudio concluyó que el hormigón con un 5% de humo de sílice es la opción más rentable y respetuosa con el medio ambiente, y que la impregnación hidrófoba reduce el impacto social. Sin embargo, en comparación con las evaluaciones unidimensionales y bidimensionales, el estudio demuestra la importancia de considerar simultáneamente los impactos económicos, medioambientales y sociales del ciclo de vida de un diseño para lograr la sostenibilidad en el mantenimiento con una visión holística. Este enfoque condujo a una calificación de sostenibilidad un 86% más alta para un diseño que utilizaba cemento sulforresistente en la mezcla de hormigón que la opción de partida.

Aspectos destacables:

  • El estudio evalúa el impacto en el ciclo de vida de diez opciones de diseño mejoradas para un módulo hotelero de tres pisos en un entorno costero, con el objetivo de mejorar la durabilidad y reducir las necesidades de mantenimiento a lo largo de la vida útil de la estructura.
  • Los resultados óptimos se obtienen del intervalo de mantenimiento preventivo, lo que hace hincapié en la importancia de las estrategias de mantenimiento proactivo para mejorar la sostenibilidad y la longevidad de las estructuras de construcción de hormigón basadas en MMC.
  • El documento proporciona evaluaciones exhaustivas del ciclo de vida según las normas ISO 14040, que abordan las tres dimensiones simultáneamente, ofreciendo una visión holística del desempeño en materia de sostenibilidad en los proyectos de construcción.
  • Al centrarse en el mantenimiento preventivo, la investigación destaca el potencial de obtener beneficios ambientales y económicos a largo de un período de 50 años, ya que contribuyen a la sostenibilidad general de las estructuras de los edificios en entornos hostiles.
  • Al incorporar las opiniones de expertos a través del método de toma de decisiones multicriterio de BMW, el estudio proporciona un análisis completo de varios aspectos de la sostenibilidad en los proyectos de construcción, promoviendo prácticas de toma de decisiones sostenibles en la industria.
  • Los resultados subrayan la importancia de la toma de decisiones sostenibles en la construcción, en consonancia con los esfuerzos mundiales para reducir el impacto ambiental y promover prácticas ecológicas en la industria.
  • La investigación hace hincapié en la importancia de las estrategias de mantenimiento preventivo sostenibles para mejorar la longevidad y la sostenibilidad de las estructuras de construcción de hormigón basadas en el MMC, y destaca los beneficios de los enfoques de mantenimiento proactivo.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S2352710224017236

Abstract:

The construction industry plays a significant role in environmental strain, attributed mainly to its substantial resource consumption, primarily driven by the surge in residential construction. Modern Methods of Construction (MMC) presents an innovative paradigm for designing and constructing infrastructure and buildings more efficiently, using conventional materials with unconventional techniques. The article aims to apply this approach to an MMC-based building structure, minimizing its life cycle impact by optimizing the consumption of building materials, with particular attention to the effects of the maintenance phase from a preventive point of view. This study focuses on assessing the sustainability of reinforced concrete flat slabs, employing a hollow structural body system, explicitly emphasizing environmental aggressiveness factors contributing to corrosion, such as carbonation and chlorides. The research explores ten design options for a waterfront public residential building, examining their impact on the economy, the environment, and even society, regarding the maintenance cycles required over the structure’s lifetime, depending on the preventive strategy employed for each design. In assessing the sustainability of these options, researchers employed a combination of the best-worst method (BWM) and the VIKOR technique, considering nine criteria related to sustainability. The study found that 5% silica fume concrete is the most cost-effective and environmentally friendly option, with hydrophobic impregnation reducing social impacts. However, compared to one— and two-dimensional evaluations, the study demonstrates the importance of simultaneously considering a design’s life cycle’s economic, environmental, and social impacts to achieve sustainability in maintenance with a holistic view. This approach led to an 86% higher sustainability rating for a design using sulforesistant cement in the concrete mix than the baseline.

Keywords:

Modern Methods of Construction; Life Cycle Assessment; Sustainable design; Multi-criteria Decision-making; Preventive maintenance; Corrosion

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering,95:110155. DOI:10.1016/j.jobe.2024.110155

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Descargar (PDF, 5.43MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comunicaciones presentadas al 28th International Congress on Project Management and Engineering AEIPRO 2024

Durante los días 3-4 de julio de 2024 tiene lugar en Jaén (Spain) el 28th International Congress on Project Management and Engineering AEIPRO 2024. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Esta investigación propone una metodología para dimensionar losas innovadoras de hormigón armado sin vigas, que permiten el uso eficiente de materiales. Utilizando un enfoque estadístico y modelos de regresión lineal, se proporcionan criterios para calcular el espesor de la losa aligerada con esferas o discos plásticos presurizados, minimizando el número de variables. Este espesor puede estimarse a partir de la luz principal entre apoyos, la altura del disco o el diámetro de la esfera, así como el uso previsto del edificio. El modelo final ajustado logra explicar el 98% de la variabilidad en el espesor de la losa para luces comprendidas entre 5 m y 16 m. Este tipo de forjado contribuye a la reducción del consumo de hormigón y acero, lo que resulta en una disminución del peso y las cargas aplicadas. Esto impacta directamente en los costos y mejora los indicadores ambientales en comparación con los sistemas tradicionales. Se presenta como una alternativa eficiente para edificaciones, permitiendo la combinación de parámetros estructurales, constructivos y sostenibles.

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Esta nueva forma de construir implica, necesariamente, un cambio en la forma de dirigir los proyectos, que pasan a ser industrializados, donde la eficiencia estructural, constructiva y la sostenibilidad ambiental y social son protagonistas. El objetivo del artículo es identificar los aspectos característicos de estas construcciones innovadoras que influyen en la ingeniería de proyectos, integrando a grupos multidisciplinares como arquitectos, ingenieros estructurales y empresas constructoras. Para ello se realizará un estudio para el caso de edificios construidos con losas planas aligeradas mediante elementos aligerantes multiaxiales. Los resultados muestran que estos diseños permiten integrar el proyecto, la fabricación de elementos y el procedimiento constructivo. El proyecto de estas construcciones permite aligerar y reducir las cuantías de hormigón y acero en aquellas zonas de las losas donde la capacidad portante es insignificante. Además, se ha comparado este diseño con otros tradicionales, destacando una reducción de costes y un aumento de la sostenibilidad a lo largo del ciclo de vida.

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

El proyecto estructural normalmente se basa en la experiencia del proyectista. En ocasiones, dicha experiencia se plasma en fórmulas de predimensionamiento que, si bien ofrecen buenos resultados, en ocasiones arrastran ineficiencias cuando se comparan con técnicas actuales de optimización que tenga en cuenta las dimensiones económicas y ambientales. En este artículo se comparan reglas de dimensionamiento previo de estructuras basadas en la experiencia con técnicas de optimización. Se aplica al caso del proyecto de tableros de puentes tipo losa pretensados aligerados. El resultado de la investigación resalta la importancia de aplicar métodos basados en la optimización heurística y en metamodelos para actualizar la experiencia de los proyectistas y proponer nuevas fórmulas de predimensionamiento más ajustadas a la optimización económica y ambiental. Además, en el trabajo se ofrecen nomogramas de predimensionamiento, con el mínimo número de datos posible, que pueden ser de utilidad al proyectista en sus diseños previos.

Os paso el vídeo de presentación del congreso.

Vertido y compactación de hormigón en soportes de sección reducida

Figura 1. Hormigonado de un pilar. https://docplayer.es/61072005-Protecciones-en-obras-de-construccion-fases-de-obra.html

El vertido y la colocación del hormigón en soportes de sección reducida, como puede ser un pilar, debe realizarse de manera que se evite la disgregación de la mezcla, además de desplazamientos en armaduras o encofrados. También debe evitarse la formación de juntas, coqueras o planos de debilidad. Antes de iniciar el hormigonado, se monta un caballete o andamio, según corresponda, para facilitar el acceso de los operarios hasta la parte superior del pilar. Para alturas superiores a 2 m y cuando no se utiliza una bomba de hormigón ni es posible ejecutar el pilar en dos fases, se emplea un embudo metálico con una manguera para evitar caídas libres mayores de 1,50 m. Durante el vertido, el hormigón debe dirigirse mediante trompas de hormigonado u otros dispositivos para evitar que golpee directamente contra el encofrado o las armaduras.

El hormigón se coloca de forma continua o en capas, cuidando de que no se formen juntas frías. Se espera que cada capa esté en estado plástico cuando se coloca la siguiente. La compactación del hormigón se realiza con vibradores de aguja, introduciendo la aguja verticalmente en la masa de manera rápida y profunda. Posteriormente, se retira lentamente y de forma constante hasta que la lechada fluya a la superficie. El vibrador debe estar siempre en el fondo del encofrado antes de verter la primera capa de hormigón. Esta primera capa es la más crítica, pues debe adherirse al hormigón endurecido. Una compactación inadecuada puede provocar la aparición de coqueras, una permeabilidad excesiva o la formación de una capa superficial débil por compactación excesiva.

El método óptimo para colocar y compactar hormigón en columnas pequeñas consiste en verterlo de forma continua a una velocidad que permita al vibrador realizar la compactación mientras se retira lentamente a una velocidad constante. La velocidad de vertido no debe superar los 300 mm en 30 segundos. Para una columna de 25 cm x 25 cm de sección y 3 m de altura, esto equivale a un tiempo total de aproximadamente 5 minutos. Si las circunstancias no permiten ejecutarlo de esta forma, es necesario limitar el espesor de cada capa a unos 300 mm. La aguja del vibrador se introduce entre 10 y 15 cm en la capa inferior.

El vertido desde tolvas móviles solo está permitido si el operador puede controlar el inicio y la parada de la descarga, asegurando que no se viertan más de tres cubetas por soporte. Si no se puede garantizar este control, es preferible verter el hormigón sobre una plataforma situada encima del soporte y distribuirlo cuidadosamente con una pala. También se puede utilizar un balde, aunque este método puede ser más lento.

Para asegurar una buena compactación en secciones pequeñas al trabajar con columnas, un vibrador de 40 mm de diámetro es suficiente, siempre que haya espacio para insertarlo en el centro. El vibrado se debe extender hasta los vértices, aristas y fondos. Es fundamental asegurarse de que el vibrador no entre en contacto con las armaduras. Se recomienda sumergir el vibrador en diferentes puntos cercanos durante períodos cortos (5 a 15 segundos) en lugar de prolongar el tiempo de vibrado en puntos más distantes. Al verter capas de 300 mm de espesor, es crucial garantizar que cada capa esté completamente compactada antes de pasar a la siguiente. Además, se recomienda verificar la superficie del hormigón para asegurar su visibilidad; en caso contrario, se aconseja utilizar una fuente de luz adecuada.

Si se utiliza una bomba para verter el hormigón, la manguera flexible debe llegar hasta el fondo y retirarse al mismo tiempo que el vibrador. Es fundamental reducir la velocidad de descarga de la bomba para permitir una correcta compactación con el vibrador. Para obtener un acabado superficial de calidad, se recomienda volver a vibrar los últimos 450 mm media hora después del vertido. Si la caída es libre desde la parte superior del encofrado, el mortero se adhiere parcialmente al encofrado y a las armaduras, lo que altera la dosificación del hormigón que llega a la base.

Después del hormigonado, se verifica el aplomado del pilar tras un período aproximado de 30 minutos para asegurarse de que no haya habido ningún desplazamiento. Conviene no olvidar que, durante el fraguado y el primer período de endurecimiento del hormigón, es crucial mantener adecuadamente su humedad mediante un correcto proceso de curado.

Dejo algunos vídeos al respecto.

Os dejo un documento que puede complementar la información que os he ofrecido.

Descargar (PDF, 843KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nomogramas para el bombeo de hormigón

Roermond, the Netherlands, – August 08, 2019. Construction of a new highway tunnel in the center of the city.

En un artículo anterior explicamos cómo se podía calcular la presión y la potencia para el bombeo del hormigón. Aquí vamos a presentar un par de nomogramas que hemos desarrollado junto a los profesores Pedro Martínez Pagán y Daniel Boulet. Además, se incluye la resolución completa de un problema utilizando estos nomogramas.

Para los que estéis interesados en ampliar conocimientos, os recomiendo un libro de 300 problemas resueltos de Maquinaria y Procedimientos de Construcción. El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras. Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 26 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Podéis conseguir el libro en el siguiente enlace: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

A continuación facilitamos un nomograma propio para el cálculo, que he elaborado junto con los profesores Martínez-Pagán y Boulet.

 

Os dejo un problema resuelto con estos nomogramas.

Descargar (PDF, 640KB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Trompas de elefante para la colocación del hormigón

Figura 1. Trompa de elefante.

Las trompas de elefante o tubos de caída son tuberías circulares que se alimentan a través de un embudo y están diseñadas para transferir el hormigón de manera vertical, evitando así la segregación que puede producirse al impactar el hormigón con las armaduras u otros obstáculos. Se utilizan cuando se descarga hormigón a diferentes niveles. Deben estar firmes y en línea, y colocarse de tal manera que el hormigón caiga verticalmente. Estas tuberías son especialmente útiles en proyectos de gran altura y en hormigonados bajo el agua. También son útiles en estructuras de pequeño canto y gran altura, como muros y otros elementos verticales, donde se busca evitar que la caída del hormigón supere los 2 m.

Las velocidades de colocación varían de 0,5 a 3 m de altura por hora, y el espaciado de las tuberías suele ser de una por cada 30 m² de superficie o con centros de radio de 4 o 5 m. No obstante, en situaciones de hormigonado sin congestión de armaduras, estas distancias pueden ser mayores.

Las tuberías pueden ser metálicas, de plástico o de goma, dispuestas en pequeños tramos de tubo ensamblados, lo que las hace flexibles y fáciles de acortar según sea necesario. Se recomienda que el diámetro de estas tuberías sea al menos 8 veces el tamaño máximo del árido en la parte superior, pero puede reducirse aproximadamente a 6 veces el tamaño máximo en la parte inferior. Es fundamental que las trompas de elefante se posicionen en vertical y se aseguren correctamente para garantizar que el hormigón se vierta con precisión.

Figura 2. Trompa de elefante. https://shop.kuhlman-corp.com/deslauriers-8-wide-concrete-mini-hopper-with-6-long-elephant-trunk-and-chains/p3517/

El embudo que suministra el hormigón a estos dispositivos debe ser de dimensiones suficientemente grandes y tener paredes inclinadas para permitir una descarga rápida y sin obstrucciones del hormigón.

Figura 3. Cuándo se utiliza una trompa de elefante

Os dejo algunos vídeos ilustrativos.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¡Portada en Nature! Investigadores de la UPV idean un nuevo método de diseño de edificios que evita colapsos catastróficos

De vez en cuando se recibe una buena noticia que marca un punto de inflexión en la investigación. Es un honor para mí pertenecer al Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia. En este contexto, el equipo del catedrático José Miguel Adam ha logrado un hito al publicar un artículo en la revista de mayor impacto por excelencia: NATURE. No solo eso, sino que, además, es portada de dicha revista. Mi más sincera enhorabuena a José Miguel y a su equipo. Os paso la noticia completa.

Un equipo del Instituto ICITECH de la Universitat Politècnica de València (UPV) ha publicado en Nature los últimos resultados de su “radical” propuesta para conseguir edificios ultrarresistentes, que sean capaces de aguantar situaciones extremas causadas por desastres naturales –riadas, inundaciones, deslizamiento de laderas…- explosiones, su propio envejecimiento, o un mantenimiento y conservación inadecuados. Esta propuesta añade al diseño de la estructura de los edificios una última línea de defensa para evitar colapsos catastróficos.

El nuevo método se inspira en cómo los lagartos se protegen de los depredadores al liberar sus colas cuando son atacados.

Los métodos de diseño actuales se basan en mejorar la conectividad entre los componentes de la estructura. En el caso de que algún componente falle, esta conectividad permite que las cargas que soportaban los componentes que fallan se redistribuyan al resto del sistema estructural. Aunque estos métodos resultan eficaces en el caso de pequeños fallos iniciales, pueden aumentar el riesgo de colapso progresivo tras grandes fallos iniciales, conduciendo así a colapsos completos o de gran magnitud. Así sucedió, por ejemplo, en las Champlain Towers y en el derrumbe de un edificio en Peñíscola en 2021, o en la ciudad iraní de Abadan en 2022. Y esto es lo que evita la propuesta surgida del ICITECH de la UPV.

“Nuestro novedoso método de diseño proporciona una solución para superar esta alarmante limitación y conseguir edificios más resilientes, capaces de aislar el colapso a solo la parte de la estructura que ha sufrido el fallo inicial, y salvaguardar el resto del edificio. El nuevo método de diseño ha sido verificado con un ensayo sobre un edificio real. Por tanto, se trata de la primera solución contra la propagación de colapsos en edificios tras grandes fallos iniciales que ha sido probado y verificado a escala real. Con la aplicación del nuevo método de diseño se conseguirá prevenir colapsos catastróficos, protegiendo así vidas humanas y minimizando los costes materiales que supondría un colapso completo de la estructura”, destaca José M. Adam, coautor de la publicación con Nirvan Makoond, Andri Setiawan y Manuel Buitrago; todos ellos miembros del ICITECH de la UPV.

Unos “fusibles” evitan el colapso total

La clave del método ideado por el equipo de la UPV reside en usar el concepto de fusible estructural, que permite aislar las partes dañadas de un edificio con el fin de evitar la propagación de grandes fallos a toda la construcción.

“Esta nueva filosofía es parecida a la forma en que las redes eléctricas se protegen frente a sobrecargas, al conectar diferentes segmentos de la red mediante fusibles eléctricos. Con nuestros diseños, el edificio presenta continuidad estructural bajo condiciones normales de funcionamiento, pero se segmenta cuando la propagación de un fallo es inevitable, reduciendo así el alcance del colapso y evitando el derrumbe total”, apunta Nirvan Makoond.

“La implementación del método repercutirá levemente, o incluso de forma despreciable, en el coste de la estructura, ya que utiliza detalles constructivos y materiales convencionales”, señala Andri Setiawan.

En su estado de desarrollo actual, el nuevo diseño de estos investigadores se puede aplicar a prácticamente cualquier edificio de nueva construcción. “Su eficacia ha sido verificada y demostrada para edificios con estructura prefabricada de hormigón. Actualmente, trabajamos en la aplicación de la metodología a edificios ejecutados con hormigón in situ y a edificios con estructura de acero”, concluye Manuel Buitrago.

Validado en un ensayo pionero a nivel mundial

El desarrollo de este nuevo método de diseño es uno de los resultados más destacados hasta la fecha del proyecto Endure, financiado por el European Research Council – ERC (Consejo Europeo de Investigación) con una ayuda Consolidator Grant de más de 2,5 millones de euros. Fue precisamente en el marco de este proyecto donde se llevó a cabo, en junio del año pasado, un ensayo pionero a nivel mundial que permitió validar sus prestaciones. Las pruebas se hicieron con un edificio completo, a escala real, en el que un gran fallo inicial en la estructura se aisló en una parte del edificio, evitando su propagación a toda la estructura. Cabe resaltar que la investigación se lleva a cabo al 100% en la UPV, siendo los cuatro autores de la publicación investigadores también de la UPV.

Portada de Nature

Nature ha publicado el trabajo del equipo del Instituto ICITECH de la UPV en la portada de su número de hoy. Además, es la primera vez que la revista publica un artículo de investigación en el campo del diseño y construcción de edificios.

Primeros pasos gracias a un proyecto financiado por la Fundación BBVA

El germen de este proyecto surgió de una Beca Leonardo que en 2017 otorgó la Fundación BBVA a José M. Adam. Ahora, siete años más tarde, el investigador del ICITECH – UPV continua con este proyecto revolucionario, de la mano del Consejo Europeo de Investigación, que permitirá levantar edificios más seguros y salvar vidas humanas.

Endure se desarrollará hasta 2026 en el laboratorio de estructuras del ICITECH de la Universitat Politècnica de València, uno de los mayores de Europa para el ensayo de grandes elementos estructurales.

Referencia

Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5

Os dejo el vídeo y el artículo completo, pues está publicado en abierto.

Descargar (PDF, 23.79MB)