Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)

Optimización de muros de hormigón mediante la metodología de la superficie de respuesta

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Optimización de muros de hormigón mediante la metodología de la superficie de respuesta“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, la metodología de la superficie de respuesta, a un cálculo estructural, en este caso, un muro. La optimización de procesos mediante la superficie de respuesta es habitual en el campo de la experimentación. La idea es considerar que el cálculo de una estructura se puede considerar también un experimento, donde los datos de entrada son las variables y parámetros que definen dicha estructura y el resultado final es el coste. En este caso, se trata de minimizar el coste. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto. En este caso se han optimizado las emisiones de CO2.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 603-615.

Descargar (PDF, 369KB)

Pantalla de lodo autoendurecible armado

Figura 1. Cuchara para excavar pantalla. https://www.geo-solutions.com/resource-category/slurry-walls-equipment/

La pantalla de lodo autoendurecible armado, también llamada pantalla de lechada armada (reinforced slurry wall) es una pantalla compuesta, de carácter estructural, donde colaboran unos elementos portantes resistentes a flexión y un relleno intermedio que los solidariza y que descarga los empujes recibidos hacia los elementos portantes. Se trata de una técnica a medio camino entre un muro berlinés y un muro pantalla.

Los elementos resistentes suelen ser tablestacas o perfiles metálicos de sección en “I” y el relleno intermedio, de una mezcla bentonita-cemento. Es por ello que el sistema también trabaja como elemento de contención del agua. Una variante es utilizar una mezcla de suelo-cemento en vez de la lechada, las llamadas pantallas de suelo-cemento armadas (reinforced soil-mixing wall).

El procedimiento constructivo para la pantalla de lodo armado utiliza las mismas herramientas de excavación (cuchara bivalva) que los muros pantalla (Figura 1), donde la lechada de bentonita-cemento actúa también como elemento estabilizante de las paredes. En la lechada fresca se colocan perfiles verticales (Figura 2).  La transmisión del empuje activo de las tierras y del agua se moviliza en el lodo endurecido por efecto bóveda hacia los perfiles, los cuales resisten a flexión gracias a los apoyos en anclajes, arriostramientos y el empotramiento bajo el fondo de excavación. En el caso de utilizar tablestacas, la pantalla funciona como un muro continuo convencional.

Figura 2. Procedimiento constructivo de una pantalla de lodo autoendurecible armado. https://www.rodiokronsa.es/contencion/pantalla-compuesta/

 

Figura 3.  Procedimiento constructivo de una pantalla de lodo autoendurecible armado.  https://www.raitoinc.com/technologies/soil-mixing-wall/

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty

Figura 1. Defensa de tesis doctoral de Vicent Penadés Plà.

Hoy 12 de marzo de 2020 ha tenido lugar la defensa de la tesis doctoral de D. Vicent Penadés Plà titulada “Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty“, dirigida por Víctor Yepes Piqueras y Tatiana García Segura. La tesis recibió la calificación de “Sobresaliente” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Actualmente existe una tendencia hacia la sostenibilidad, especialmente en los países desarrollados donde la preocupación de la sociedad por el deterioro ambiental y los problemas sociales ha aumentado. Siguiendo esta tendencia, el sector de la construcción es uno de los sectores que mayor influencia tiene debido a su alto impacto económico, ambiental y social. Al mismo tiempo, existe un incremento en la demanda de transporte que provoca la necesidad de desarrollo y mantenimiento de las infraestructuras necesarias para tal fin. Con todo esto, los puentes se convierten en una estructura clave, y por tanto, la valoración de la sostenibilidad a lo largo de toda su vida es esencial.

El objetivo principal de esta tesis es proponer una metodología que permita valorar la sostenibilidad de un puente bajo condiciones iniciales inciertas (subjetividad del decisor o variabilidad de parámetros iniciales) y optimizar el diseño para obtener puentes óptimos robustos. Para ello, se ha realizado una extensa revisión bibliográfica de todos los trabajos en los que se realiza un análisis de la sostenibilidad mediante la valoración de criterios relacionados con sus pilares principales (económico, medio ambiental o social). En esta revisión, se ha observado que la forma más completa de valorar los pilares medioambientales y sociales es mediante el uso de métodos de análisis de ciclo de vida. Estos métodos permiten llevar a cabo la valoración de la sostenibilidad durante todas las etapas de la vida de los puentes. Todo este procedimiento proporciona información muy valiosa a los decisores para la valoración y selección del puente más sostenible. No obstante, las valoraciones subjetivas de los decisores sobre la importancia de los criterios influyen en la evaluación final de la sostenibilidad. Por esta razón, es necesario crear una metodología que reduzca la incertidumbre asociada y busque soluciones robustas frente a las opiniones de los agentes implicados en la toma de decisiones.

Además, el diseño y toma de decisiones en puentes está condicionado por los parámetros inicialmente definidos. Esto conduce a soluciones que pueden ser sensibles frente a pequeños cambios en dichas condiciones iniciales. El diseño óptimo robusto permite obtener diseños óptimos y estructuralmente estables frente a variaciones de las condiciones iniciales, y también diseños sostenibles y poco influenciables por las preferencias de los decisores que forman parte del proceso de toma de decisión. Así pues, el diseño óptimo robusto se convierte en un proceso de optimización probabilística que requiere un gran coste computacional. Por este motivo, el uso de metamodelos se ha integrado en la metodología propuesta. En concreto, se ha utilizado hipercubo latino para la definición de la muestra inicial y los modelos kriging para la definción de la aproximación matemática. De esta forma, la optimización heurística basada en kriging ha permitido reducir más de un 90% el coste computacional respecto a la optimización heurística conveniconal obteniendo resultados muy similares.

El estudio del diseño óptimo y estructuralmente estable frente a variaciones de las condiciones iniciales se ha llevado a cabo variando tres parámetros iniciales (módulo de elasticidad, sobrecarga, y fuerza de pretensado). El objetivo del caso de estudio analizado ha sido obtener el diseño más económico y con menor variación de la respuesta estructural. De esta forma, se consigue una frontera de Pareto que permite seleccionar la solución óptima, la solución más robusta o una solución de compromiso entre las dos. Por otro lado, el estudio de diseños sostenibles y poco influenciables por las preferencias de los decisores se ha llevado a cabo generando una gran cantidad de decisores aleatorios para cubrir todas las posibles preferencias de los interesados. El objetivo del caso de estudio ha sido reducir la participación subjetiva de los decisores. De esta forma, se ha podido reducir todo el abanico de diseños posibles a un número reducido de diseños concretos, y seleccionar aquel diseño con mejor media sostenible o menor variabilidad en la valoración.

Esta tesis proporciona en primer lugar, una amplia revisión bibliográfica, tanto de los criterios utilizados para la valoración de la sostenibilidad en puentes como de los diferentes métodos de análisis de ciclo de vida para obtener un perfil completo de los pilares ambientales y sociales. Posteriormente, se define una metodología para la valoración completa de la sostenibilidad, usando métodos de análisis de ciclo de vida. Asimismo, se propone un enfoque que permite obtener estructuras poco influenciables por los parámetros estructurales, así como por las preferencias de los diferentes decisores frente a los criterios sostenibles. La metodología proporcionada en esta tesis es aplicable a cualquier otro tipo de estructura.

Palabras clave:

Sostenibilidad, Toma de decisiones, Análisis de ciclo de vida, Métodos de valoración del impacto del análisis de ciclo de vida, ReCiPe, Ecoinvent, SOCA, Metamodelos, Kriging, Diseño óptimo robusto, Puentes.

Figura 2. De izquierda a derecha: Julián Alcalá, Tatiana García, Víctor Yepes, Vicent Penadés, Salvador Ivorra y Rasmus Rempling

Referencias:

  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, (accepted, in press). DOI:10.1016/j.engstruct.2019.109968
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2020). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8: 398; DOI:10.3390/math8030398
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  • GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:1016/j.jclepro.2018.04.268
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295

Optimización del diseño robusto de puentes en cajón

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo tratamos de solucionar uno de los problemas que presentan las estructuras óptimas, que es su cercanía a los estados límite y demás restricciones. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En efecto, el diseño de una estructura se lleva a cabo generalmente según un enfoque determinista. Sin embargo, todos los problemas estructurales tienen asociados parámetros iniciales inciertos que pueden diferir del valor de diseño. Esto se vuelve importante cuando el objetivo es alcanzar estructuras optimizadas, pues una pequeña variación de estos parámetros inciertos iniciales puede tener una gran influencia en el comportamiento estructural. El objetivo de la optimización de un diseño robusto es obtener un diseño óptimo con la menor variación posible de las funciones objetivas. Para ello, es necesaria una optimización probabilística para obtener los parámetros estadísticos que representen el valor medio y la variación de la función objetivo considerada. Sin embargo, una de las desventajas del diseño robusto óptimo es su alto costo de cálculo. En el presente artículo, la optimización del diseño robusto se aplica al diseño de un puente peatonal continuo de sección en cajón  que sea óptimo en cuanto a su costo y robusto en cuanto a la estabilidad estructural. Además, se utiliza el muestreo de hipercubo latino y el metamodelo de kriging para hacer frente al alto costo computacional. Los resultados muestran que las principales variables que controlan el comportamiento estructural son la profundidad de la sección transversal y la resistencia a la compresión del hormigón y que se puede llegar a una solución de compromiso entre el coste óptimo y la robustez del diseño.

Abstract

The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached.

Keywords

Robust design optimization; RDO; post-tensioned concrete; box-girder bridge; structural optimization; metamodel; kriging

Reference:

Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust Design Optimization for Low-Cost Concrete Box-Girder BridgeMathematics 20208, 398.

Descargar (PDF, 1.11MB)

 

Valoración multicriterio de alternativas sostenibles para viviendas unifamiliares

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

En este artículo se presenta un estudio de tres alternativas estructurales diferentes que se aplican a un chalet adosado para facilitar la toma de decisiones, basándose en múltiples criterios y teniendo en cuenta la sostenibilidad. La metodología empleada permite identificar la estructura y evaluar las diferentes alternativas aquí propuestas para encontrar la opción óptima. Se compara una solución de referencia tradicional, un diseño prefabricado y, finalmente, una opción tecnológica basada en un sistema estructural integral de hormigón armado. El estudio proporciona un conjunto de indicadores para evaluar los aspectos ambientales, económicos y sociales de un edificio a lo largo de su ciclo de vida.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE hasta el 25 de abril de 2020 en el siguiente enlace:

https://authors.elsevier.com/a/1ah94_LqUdMgSB

Abstract

In the architecture sector, single-family housing projects are often linked to demand from private clients, without arousing very much interest from developers, who seek higher returns on other real estate assets. For any owner, the construction of a home is perhaps the biggest investment of their life, and success or failure will therefore depend on the right decision. This paper presents a study of three different structural alternatives that are applied to a terraced house to facilitate decision making by a self-promoter, based on multiple criteria and taking sustainability into consideration. The methodology used allows us to identify the structure and to evaluate the different alternatives proposed here in order to find the optimal option. A comparison is drawn between a traditional reference solution, a pre-cast design and finally a technological option based on an integral reinforced concrete structural system. Although the technical feasibility of these last two solutions has been proven, they have not yet received enough attention from researchers to allow the thermal envelope of the building to be solved at the same time as the structure itself. The last of these alternatives achieved the best valuation, although it is neither the most widely used alternative or the quickest to build. This study demonstrates the practical versatility of a method that is seldom used in residential construction and only rarely used for single-family homes. We evaluate three alternatives for optimizing the structure and enveloping walls of a self-promoted, terraced house from a sustainability perspective. The study provides a set of indicators for assessing the environmental, economic and social aspects of a building throughout its life cycle. The sustainability index of the structural envelope obtained in this way allows a self-promoter to prioritize solutions to ensure its global sustainability.

Highlights

  • Each self-promoting decisions influence the global model of sustainable construction.
  • Self-construction prioritizes economic and functional aspects in the life cycle.
  • Three alternatives comparing traditional structure with non-conventional MMC systems.
  • A balance between the indicators favours a better sustainability index.
  • Reinforced concrete technology in housing reduces 10% lead times and 23% cost.

Keywords

Single-family house
Multi-criteria decision making
Sustainable design
MIVES
Ytong
Elesdopa

Reference:

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. DOI:10.1016/j.jclepro.2020.120556

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 23 de marzo de 2020 y termina el 4 de mayo de 2020. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 87 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vídeos de las Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción

Hace pocos días que tuvo lugar las “Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción (Formación, I+D+i y Transferencia)”. He de decir que las jornadas fueron todo un éxito y que, afortunadamente, se pudieron grabar en streaming las conferencias principales. Os dejo a continuación ambas conferencias por el interés que despertaron. La grabación es completa, por lo que podéis avanzar o retroceder a aquellos minutos que os resulten de mayor interés. Podéis pulsar sobre la imagen de cada vídeo o directamente sobre el enlace que os he puesto. Espero que os gusten.

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=0dc5b890-36df-11ea-b29c-ddfb8fbe85af

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=68eef880-36df-11ea-b29c-ddfb8fbe85af

La geometría fractal en la ingeniería: las estructuras de Voronoi y el diseño paramétrico

Figura 1. Rascacielos Voronoi. https://naukas.com/2011/12/23/cada-uno-en-su-region-y-voronoi-en-la-de-todos/

La naturaleza siempre ha servido de inspiración para arquitectos, ingenieros y diseñadores. La tecnología informática ha facilitado las herramientas para analizar y simular la complejidad observada en la naturaleza y aplicarla a formas estructurales de construcción y los mecanismos de organización urbana. Entre ellas destacamos la geometría fractal y el diagrama de Voronoi.

La geometría fractal no ha dejado de evolucionar desde las investigaciones del matemático polaco nacionalizado francés y estadounidense, Benoît Mandelbrot en los años 70 del siglo pasado. Un fractal es un objeto geométrico cuya estructura básica, fragmentada o aparentemente irregular, se repite a diferentes escalas. Lo interesante es que la forma de los fractales parecen describir la Naturaleza y encuentra su geometría una gran variedad de aplicaciones en urbanismo, arquitectura, computación o ingeniería estructural (Figura 1).

El diagrama de Voronoi (nombre que se debe al matemático ruso Gueorgui Voronói) se crea al unir los puntos entre sí, trazando las mediatrices de los segmentos de unión (Figura 2). Las intersecciones de estas mediatrices determinan una serie de polígonos en un espacio bidimensional alrededor de un conjunto de puntos de control, de manera que el perímetro de los polígonos generados sea equidistante a los puntos vecinos y designan su área de influencia.

Figura 2. Diagrama de Voronoi. https://es.wikipedia.org/wiki/Pol%C3%ADgonos_de_Thiessen#/media/Archivo:Euclidean_Voronoi_diagram.svg

Hasta mediados de los ochenta, la mayoría de las implementaciones para computar el diagrama de Voronoi usaban el algoritmo incremental cuadrático, admitiendo su mayor lentitud para evitar la complejidad del código divide y vencerás (Figura 3). En 1985 Fortune inventó un inteligente algoritmo de barrido plano que resulta tan simple como el incremental, pero en tiempo O(n log n). Para los más curiosos, podéis utilizar MATLAB para realizar ejemplos sobre los diagramas de Voronoi utilizando la funciónvoronoin. El enlace lo tenéis aquí: https://es.mathworks.com/help/matlab/math/voronoi-diagrams.html

Figura 3. Pasos fundamentales del algoritmo “divide y vencerás” para construir el diagrama de Voroni. http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm

La profesora de la Universidad de Sevilla, Clara Grima, nos describe en un artículo de divulgación, “El diagrama de Voronoi, la forma matemática de dividir el mundo“, algunas aplicaciones del diagrama de Voronoi, que van desde la distribución de farmacias en una ciudad, a el mapa del cólera de John Snow o a la ventaja posicional de un equipo de fútbol.

Pero aquí lo interesante es saber que, basándose en este diagrama, se pueden diseñar estructuras y espacios urbanos de gran interés. En la Figura 4 podemos ver la oficina central de Alibaba. Este tipo de estructuras resultan agradables, estáticamente eficientes y adecuadas para trabajar como un sistema estructural espacial. Además, la estructura se puede modelar por un conjunto de puntos y admite el diseño paramétrico. Se denomina diseño paramétrico a un proceso de diseño basado en un esquema algorítmico que permite expresar parámetros y reglas que definen, codifican y aclaran la relación entre los requerimientos del diseño y el diseño resultante.

Figura 4. Oficina central de Alibaba. https://www.idealista.com/news/finanzas/emprendedores/2014/04/16/727627-asi-es-la-cueva-de-alibaba-el-tesoro-mejor-guardado-de-china

En la Figura 5 se observa la posibilidad de estos diagramas en el caso de pantallas arquitectónicas. Como vemos, las posibilidades estructurales son de un gran interés.

Figura 5. Ejemplo de uso arquitectónico de los diagramas Voronoi. https://www.carroceriasibiza.com/

Aquí tenemos una explicación de los diagramas de Voronoi. También el vídeo explica cómo construir a partir de una serie de puntos generadores los famosos Polígonos de Thiessen que conforman el diagrama antes mencionado.

En el presente vídeo se explican los fractales.

Os dejo también un artículo sobre el diagrama de Voronoi como herramienta de diseño, de María Loreto Flores. Espero que os sea de interés

Descargar (PDF, 527KB)