Nomograma para la estimación del plazo de descimbrado según el Código Estructural

Figura 1. Desencofrado parcial de un muro de hormigón armado. Imagen: V. Yepes (2023)

En un artículo anterior ya se habló del cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas de un edificio. Allí se recogieron recomendaciones para estimar el plazo de descimbrado de una estructura de hormigón.

El plazo mínimo de descimbrado depende de la evolución de la resistencia, del módulo de deformación, de las condiciones de curado, de las características de la estructura y de la relación entre la carga muerta y la carga actuante en el momento del descimbrado. Esta operación comienza quitando los puntales de las zonas más deformables del forjado (extremo de los voladizos y centros de vano) para continuar hacia los apoyos. Esto se hace para no cargar más de lo previsto y que se deforme el forjado de forma brusca.

Los comentarios al artículo 53.2 del Código Estructural proponen determinar el plazo de descimbrado utilizando la siguiente expresión, basada en el concepto de madurez del hormigón (edad equivalente entre dos hormigones dependiente del tiempo y de la temperatura). Esta fórmula solo se aplica a elementos de hormigón armado fabricados con cementos Portland sin adiciones, suponiendo que el endurecimiento se haya realizado en condiciones ordinarias:

donde:

Q            es la diferencia entre la carga que actúa en situación de proyecto y la carga que actúa en una determinada fase constructiva

G            es la carga que actúa en una determinada fase de construcción (en el momento de descimbrar), incluido el peso propio y la carga transmitida procedente de forjados cimbrados sobre el elemento a estudiar

T             es la temperatura media en °C de las máximas y mínimas diarias durante los j días

J              es el número de días desde el hormigonado hasta el descimbrado

Esta fórmula ha estado presente en las ediciones de la norma española desde 1973. Ofrece un ajuste que, si bien prioriza la seguridad, proporciona valores adecuadamente precisos. Además, considera tanto la influencia de la temperatura como la relación entre las cargas. De hecho, representa una simplificación de un enfoque más amplio que se encuentra en la Instrucción HA 61.

Si analizamos la fórmula a una temperatura de 20 °C y consideramos la carga total como la que actúa al descimbrar, obtendremos un valor de 28 días. Conforme aumenta la relación entre la carga que actuará posteriormente y la carga que actuará al descimbrar, la fórmula arroja edades de descimbrado cada vez menores, llegando incluso a valores asintóticos. En consecuencia, esta fórmula produce valores que, si bien pueden inclinarse hacia la seguridad, no generan grandes contradicciones. En la Figura 2 se representa el criterio del Código Estructural para los plazos de descimbrado.

Figura 2. Criterio del Código Estructural de descimbrado

Por ejemplo, supongamos que se quiere estimar el plazo de descimbrado de una estructura atendiendo al método sugerido en los comentarios del artículo 53.2 del Código Estructural. Para ello se considera que se ha empleado en la fabricación del hormigón un cemento Portland y el endurecimiento se ha realizado en condiciones ordinarias. Se supone que la carga que actúa en el momento de descimbrar (incluido el peso propio) es de 45 kN y que la carga total que actuará posteriormente es de 65 kN. Suponemos una temperatura media hasta el descimbrado de 18 °C. En este caso, Q = 65-45 = 20 kN; G = 45 kN. El plazo es j = 15,13 días. Por tanto, se podría descimbrar a los 16 días del hormigonado.

Ahora os presentamos un nomograma elaborado junto con el profesor Pedro Martínez-Pagán. Este recurso puede ser valioso para calcular rápidamente el tiempo de descimbrado en función de la temperatura y la relación Q/G. Por ejemplo, de un vistazo se puede determinar el tiempo necesario para el descimbrado en invierno, a 5 °C.

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

DÍAZ-LOZANO, J. (2008). Criterios técnicos para el descimbrado de estructuras de hormigón. Tesis doctoral. Departamento de ingeniería civil: construcción. Universidad Politécnica de Madrid.

GASCH, I. (2012). Estudio de la evolución de cargas en forjados y estructuras auxiliares de apuntalamiento durante la construcción de edificios de hormigón in situ mediante procesos de cimbrado, clareado y descimbrado de plantas sucesivas. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio

Acaban de publicarnos en DYNA, revista indexada en el JCR, un artículo sobre la mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo contribuye al campo de la evaluación de la sostenibilidad de los puentes en entornos agresivos mediante la aplicación de técnicas de toma de decisiones grupales en el ámbito de los criterios múltiples. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras.
  • El estudio evalúa cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero utilizando cuatro técnicas de toma de decisiones (ANP, TOPSIS, COPRAS y VIKOR). Los resultados indican que los hormigones que contienen pequeñas cantidades de humo de sílice funcionan mejor a lo largo de su ciclo de vida que otras soluciones que suelen aumentar la durabilidad.
  • La investigación contribuye al desarrollo de herramientas y métodos para evaluar la sostenibilidad de las infraestructuras y guiar las futuras acciones de diseño en diversas estructuras. Se alinea con el enfoque en promover las iniciativas de economía circular y el cumplimiento de los requisitos ambientales y sociales específicos en las licitaciones de proyectos públicos

Abstract:

The construction industry is increasingly recognized as critical in achieving Sustainable Development Goals. Construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design a focal point of current research investigating how best to contribute to sustainability as society demands. Although methods exist to assess infrastructures’ economic, environmental, and social life cycle, the challenge remains in combining these dimensions into a single holistic indicator to facilitate decision-making. This study applies four decision-making techniques (ANP, TOPSIS, COPRAS, and VIKOR) to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. The results indicate that concretes containing even small amounts of silica fume perform better over their life cycle than other solutions usually considered to increase durability, such as water/cement ratio reduction or concrete cover increase.

Keywords:

Sustainable design, bridges, life cycle assessment, Analytic Network Process, TOPSIS, VIKOR, COPRAS, Multi-criteria decision-making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Enhancing sustainability assessment of bridges in aggressive environments through multi-criteria group decision-making. DYNA, 98(5):477-483. DOI:10.6036/10816

Os paso el artículo en abierto, tanto en inglés como en español.

Descargar (PDF, 520KB)

Descargar (PDF, 390KB)

Evaluación del ciclo de vida de un puente en ambiente marino con ayuda de métodos no destructivos de detección de daños

Acaban de publicarnos un artículo en el Journal of Marine Science and Engineering, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida con ayuda de métodos no destructivos de un puente de hormigón en ambiente costero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo evalúa el uso de métodos no destructivos de detección de daños, específicamente la técnica de densidad espectral de potencia (PSD), para reducir el impacto ambiental durante la reparación y el mantenimiento de un puente costero de hormigón. Los resultados muestran una reducción del 23% en los impactos ambientales cuando se utiliza el enfoque PSD durante la vida útil del puente.

  • La investigación evalúa las capacidades no destructivas y el enfoque dinámico de la técnica PSD para predecir la cantidad y la ubicación de los daños en la evaluación del ciclo de vida (LCA) del puente. Esta evaluación ayuda a los especialistas e ingenieros en el campo de la seguridad y el mantenimiento de los puentes.

Abstract:

Recently, using economic damage identification techniques to ensure the safety of bridges has become essential. But investigating the performance of those techniques for various conditions and environments and, in addition, a life cycle assessment (LCA) through these methods depending on the situation and during the life of a structure could help specialists and engineers in this field. In these regards, analyzing the implementation of a technique for the restoration and maintenance stages of costly structures such as bridges can illustrate the effect of each damage detection method on the LCA. This research assessed non-destructive abilities and a dynamic approach to predict the amount and location of damages in the LCA. For this purpose, the power spectral density (PSD) technique’s performance by different approaches in identifying corrosion damages for a coastal bridge and the effectiveness of using this technique on reducing the environmental impact compared with a conventional method were evaluated. The results demonstrate a reduction of the environmental impacts by approximately 23% when using the PSD during the bridge’s service life. In conclusion, the PSD approach does well in anticipating the damage quantity and location on a coastal bridge, which reduces the environmental impacts during the repair and maintenance.

Keywords:

Sustainability; non-destructive damage identification technique; life cycle assessment (LCA); environmental impacts assessment; concrete coastal bridge; corrosion; power spectral density method (PSD)

Reference:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

Descargar (PDF, 5MB)

Perspectiva social de un marco modular óptimo: análisis integral del ciclo de vida

Nos acaban de publicar en la Revista CIATEC-UPF (Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, CIATEC-UPF – ISSN 2176-4565), un artículo relacionado con la optimización de pórticos de hormigón armado con sistemas de agrupación de columnas. Se trata de una colaboración con el profesor Moacir Kripka y está dentro del proyecto de investigación HYDELIFE.

Os paso a continuación el resumen y una copia descargable del artículo, pues está publicado en abierto. Espero que os sea de interés.

RESUMEN:

La perspectiva social es un aspecto fundamental en la construcción de infraestructuras sostenibles. Este estudio evalúa el análisis de ciclo de vida social de un marco articulado prefabricado de hormigón armado optimizado económicamente. Mediante el análisis de la contribución por fases al daño social total se identifica la fabricación como la etapa más influyente en el impacto social de la estructura. Adicionalmente, se verifica que la estructura modular presenta un impacto especialmente reducido en la etapa de construcción y final de vida útil. El análisis de los materiales y procesos más contribuyentes señala al acero de la armadura pasiva como el principal responsable tras el daño social de la estructura, seguido, pero en menor medida, por el hormigón y transporte. Los resultados destacan la importancia de considerar aspectos sociales en el desarrollo de la infraestructura de transporte, proporcionando información valiosa para responsables y partes interesadas en la toma de decisiones.

Palabras clave:

Marco articulado, prefabricado, análisis de ciclo de vida, optimización, sostenibilidad social

Referencia:

RUIZ-VÉLEZ, A.; ALCALÁ, J.; KRIPKA, M.; YEPES, V. (2023). Perspectiva social de un marco modular óptimo: Análisis integral del ciclo de vida. Revista CIATEC-UPF, 15(1):1-19. DOI:10.5335/ciatec.v15i1.14974

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 1.2MB)

Evaluación de la huella de carbono en la construcción de un puente basándose en la teoría de la resiliencia

Acaban de publicarnos un artículo en Journal of Civil Engineering and Management, revista indexada en el primer cuartil del JCR. El artículo propone un procedimiento para evaluar la huella de carbono en la construcción de un puente basándose en la teoría de la resiliencia. La investigación proporciona modelos teóricos y datos sobre los impactos de la resiliencia ambiental y los modelos de gestión de la resiliencia de los proyectos, lo que contribuye al control dinámico y a la evaluación del desarrollo sostenible de las estructuras de puentes a gran escala en el futuro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

 

  • El artículo contribuye al campo de la construcción de puentes al abordar la evaluación del impacto ambiental durante la etapa de construcción de puentes a gran escala, utilizando un enfoque multidisciplinario. Establece un sistema modelo teórico de resiliencia al impacto ambiental, proporcionando modelos teóricos detallados y datos de experiencia analítica avanzada para los impactos de la resiliencia ambiental y modelos de gestión de la resiliencia de proyectos.
  • La investigación destaca los beneficios de la construcción industrializada, que puede ahorrar materiales y reducir la contaminación ambiental en comparación con los métodos de construcción tradicionales. También elimina la dificultad de evaluar con precisión los factores dinámicos discretos en la construcción de puentes.
  • El estudio demuestra la aplicación de la teoría de la resiliencia al análisis del impacto ambiental de la construcción de puentes, proporcionando una base científica sólida para el control dinámico y la evaluación del desarrollo sostenible de las estructuras de puentes a gran escala en el futuro.
  • Los resultados de esta investigación pueden servir de base para la toma de decisiones en la industria de la construcción, en particular en lo que respecta a la optimización de los métodos de construcción y la minimización de la contaminación ambiental durante la fase de construcción de puentes a gran escala.

Abstract:

The construction and management of large-scale projects have the characteristics of complexity, dynamic and offline, and how to evaluate it is a research problem accurately. This study addresses this question through multidisciplinary cross-applied research. The research analyses and optimizes the environmental impact of the construction stage of superlarge bridges by establishing a theoretical model system of environmental impact resilience. The analysis shows that industrialized construction can save 56.31% of materials compared with traditional construction but increase the consumption of machinery and personnel by 11.18%. Ultimately, environmental pollution can be significantly reduced. This study breaks through the difficulty of accurately evaluating discrete dynamic factors. It has realized the application of multidisciplinary research to solve management optimization and design problems in the elastic and dynamic changes of super-large bridges during construction. This research provides rich theoretical models and advanced analytics experience data for environmental resilience impacts and project resilience management models, laying a solid scientific foundation for dynamic control and sustainable development assessment of statically indeterminate structures in the future.

Keywords:

Project management; energy; material; industrialized; environment; response.

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2023). Carbon impact assessment of bridge construction based on resilience theory. Journal of Civil Engineering and Management, 29(6):561-576. DOI:10.3846/JCEM.2023.19565

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 6.74MB)

Requisitos sobre encofrados y moldes según el Código Estructural

Figura 1. Encofrado fenólico. https://www.cosaor.com/alquiler-de-herramientas-para-encofrado/

El artículo 48.3 del Código Estructural es el que establece las características de los encofrados y moldes necesarios para la ejecución de estructuras de hormigón. Estos elementos deben ser resistentes para soportar las acciones durante el proceso constructivo de las estructuras de hormigón y mantener la rigidez para cumplir con las tolerancias del proyecto. Deben asegurar la estanqueidad de las juntas y evitar dañar el hormigón al retirarse.

Se recomienda seguir la norma UNE 180201 y garantizar la limpieza y alineación adecuadas. Además, en casos específicos, deben permitir el emplazamiento de las armaduras y evitar movimientos indeseados. La superficie en contacto con el hormigón debe mantener la geometría y textura previstas. Se pueden usar diferentes materiales, pero deben cumplir con los requisitos de no perjudicar las propiedades del hormigón. Es esencial asegurar la unión de elementos de seguridad complementarios a la estructura del encofrado.

A modo de resumen, las características generales que deben presentar los encofrados y moldes son los siguientes:

  1. Estanqueidad suficiente de las juntas para evitar fugas de lechada que afecten el acabado y durabilidad del elemento.
  2. Resistencia adecuada a las presiones del hormigón fresco y al método de compactación.
  3. Alineación y verticalidad de los paneles, especialmente en pilares y forjados en estructuras de edificación.
  4. Mantenimiento de la geometría sin abolladuras fuera de tolerancia.
  5. Limpieza de residuos en el interior de los moldes.
  6. Conservar características que permitan texturas específicas en el acabado del hormigón.
  7. En casos de encofrados dobles o contra el terreno, garantizar la operatividad de las ventanas para el vertido del hormigón.
  8. En elementos pretensados, permitir el correcto emplazamiento de las armaduras activas sin comprometer la estanqueidad.
  9. Adoptar medidas para evitar movimientos indeseados en elementos de gran longitud.
  10. Superficie encofrante que mantenga la geometría prevista y la textura especificada en el proyecto.
  11. En encofrados susceptibles de movimiento, pueden exigirse pruebas previas para evaluar el comportamiento durante la ejecución.
  12. Los encofrados pueden ser de diversos materiales que no afecten las propiedades del hormigón. En caso de madera, deben humedecerse previamente.
  13. La unión de elementos complementarios para la seguridad, como barandillas, anclajes y cimbras, debe realizarse adecuadamente a la estructura resistente del encofrado.

En apretada síntesis, los encofrados y moldes deben ser seguros, resistentes y mantener la calidad del acabado del hormigón en el proceso de construcción.

Os recojo, a continuación, el artículo 48.3 del Código Estructural.

“Los encofrados y moldes deberán ser capaces de resistir las acciones a las que van a estar sometidos durante el proceso de construcción y tener la rigidez suficiente para asegurar que se van a satisfacer las tolerancias especificadas en el proyecto. Además, deberán poder retirarse sin causar sacudidas anormales ni daños en el hormigón.

Se realizarán, preferentemente, conforme a la norma UNE 180201.

Con carácter general, deberán presentar al menos las siguientes características:

    • estanqueidad suficiente de las juntas entre los paneles de encofrado o en los moldes, previendo que las posibles fugas de lechada por las mismas no comprometan el acabado previsto para el elemento ni su durabilidad;
    • resistencia adecuada a las presiones del hormigón fresco y a los efectos del método de compactación;
    • alineación y en su caso, verticalidad de los paneles de encofrado, prestando especial interés a la continuidad en la verticalidad de los pilares en su cruce con los forjados en el caso de estructuras de edificación;
    • mantenimiento de la geometría de los paneles de moldes y encofrados, con ausencia de abolladuras fuera de las tolerancias establecidas en el proyecto o, en su defecto, por este Código;
    • limpieza de la cara interior de los moldes, evitándose la existencia de cualquier tipo de residuo propio de las labores de montaje de las armaduras, tales como restos de alambre, recortes, casquillos, etc.;
    • mantenimiento, en su caso, de las características que permitan texturas específicas en el acabado del hormigón, como por ejemplo, bajorrelieves, impresiones, etc.

Cuando sea necesario el uso de encofrados dobles o encofrados contra el terreno natural, como por ejemplo, en tableros de puente de sección cajón, cubiertas laminares, etc. deberá garantizarse la operatividad de las ventanas por las que esté previsto efectuar las operaciones posteriores de vertido y compactación del hormigón.

En el caso de elementos pretensados, los encofrados y moldes deberán permitir el correcto emplazamiento y alojamiento de las armaduras activas, sin merma de la necesaria estanqueidad.

En elementos de gran longitud, se adoptarán medidas específicas para evitar movimientos indeseados durante la fase de puesta en obra del hormigón.

La superficie encofrante que estará en contacto directo con el hormigón, tanto en los encofrados como en los moldes, deberá ser capaz de mantener las características necesarias para que los elementos de hormigón estructural reproduzcan adecuadamente la geometría prevista para ellos en el proyecto, así como para dotar a las caras vistas de dichos elementos de la textura y la uniformidad especificada, en su caso, en dicho proyecto.

En los encofrados susceptibles de movimiento durante la ejecución, como por ejemplo, en encofrados trepantes o encofrados deslizantes, la dirección facultativa podrá exigir que el constructor realice una prueba en obra sobre un prototipo, previa a su empleo real en la estructura, que permita evaluar el comportamiento durante la fase de ejecución. Dicho prototipo, a juicio de la dirección facultativa, podrá formar parte de una unidad de obra.

Los encofrados y moldes podrán ser de cualquier material que no perjudique a las propiedades del hormigón. Cuando sean de madera, deberán humedecerse previamente para evitar que absorban el agua contenida en el hormigón. Por otra parte, las piezas de madera se dispondrán de manera que se permita su libre entumecimiento, sin peligro de que se originen esfuerzos o deformaciones anormales. No podrán emplearse encofrados de aluminio, salvo que pueda facilitarse a la dirección facultativa un certificado, elaborado por una entidad de control y firmado por persona física, de que los paneles empleados han sido sometidos con anterioridad a un tratamiento de protección superficial que evite la reacción con los álcalis del cemento.

En todos los casos se realizará correctamente la unión de los elementos complementarios para la seguridad (tales como: barandillas de protección, dispositivos de anclaje para redes de seguridad, dispositivos de anclaje preparados para los equipos de protección individual y, en general, cualquier otro elemento destinado a dotar de seguridad al sistema de encofrado, diseñado y fabricado por el fabricante del mismo) a la estructura resistente del encofrado o molde y, en su caso, de las cimbras y apuntalamientos”.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Encofrados desechables de cartón para columnas y pilares

Figura 1. Encofrado desechable de sección cuadrada y rectangular. https://www.grupovalero.com/productos/soluciones-constructivas/encofrados/cuadrado/

Los encofrados desechables de cartón son la elección ideal para la construcción de columnas y pilares, especialmente cuando tienen forma redonda, aunque también sirven para formas cuadradas o rectangulares (Figura 1). Están disponibles en una amplia variedad de diámetros, que van desde 150 hasta 1300 mm, y alturas que oscilan entre 3 y 12 m, presentando un espesor de 9 mm.

Su creciente popularidad en el ámbito de la construcción se debe a la excelente calidad del acabado que proporcionan. Existen dos tipos de acabado interior: el estándar, que muestra una espiral inherente a la fabricación del encofrado, y el liso, donde el interior está revestido con bandas de K.A.P. (papel Kraft, aluminio y polietileno) para evitar juntas, logrando así una superficie completamente lisa en el pilar.

El desencofrado es un proceso rápido, con un tiempo promedio de un minuto, y permite realizar ajustes mediante simples cortes y adiciones con un serrucho y cinta adhesiva. Además, su ligereza facilita su manipulación sin esfuerzo, pudiendo manejarse el molde por una persona y sin ayuda de grúas. Los encofrados desechables pueden dejarse en su lugar durante un período prolongado para facilitar el curado y el aumento de la resistencia del concreto antes de su remoción.

En cuanto a las opciones disponibles, destacan:

  1. “Gran diámetro”: una serie de encofrados circulares desechables diseñados para diámetros de 650 a 1500 mm.
  2. “Cuadrado”: un sistema de encofrado para pilares con secciones cuadradas o rectangulares, obtenido mediante la combinación de un contramolde exterior cilíndrico y un molde interior de poliestireno expandido. La altura estándar es de 3 o 4 m, y las secciones pueden ser de cualquier combinación, desde 200 hasta 1000 mm. El aislamiento térmico del encofrado permite que el hormigón fragüe con su propia humedad.
Figura 2. Encofrado de cartón para columnas y pilares. https://www.grupovalero.com/productos/soluciones-constructivas/encofrados/cuadrado/

Una de las cualidades más sobresalientes es el acabado pulido de las superficies y la ausencia de uniones, lo que garantiza resultados estéticos muy atractivos y de alta calidad. No obstante, uno de los inconvenientes es que, en ciertos casos donde el soporte quedará visible, puede dejar una línea en espiral marcada en la superficie.

Para garantizar la calidad del hormigonado, es esencial retirar cuidadosamente el encofrado en el área correspondiente, rompiendo el molde a lo largo de su generatriz, para así detectar posibles defectos en el hormigón. Luego de esta comprobación, se recomienda volver a fijar el encofrado con alambre o cinta de embalar para prevenir cualquier daño durante la ejecución de la obra.

Entre los fallos que pueden surgir al utilizar este tipo de encofrados, se destacan los siguientes:

  1. Si el acabado interior es de plástico, cualquier corte en la lámina puede provocar que el hormigón se filtre entre la lámina y el revestimiento exterior. Por tanto, es fundamental evitar dañar el interior al insertar el molde entre las armaduras.
  2. En el caso de los revestimientos interiores hechos de cartón plastificado, el problema suele ser su adherencia puntual al hormigón. Ocasionalmente, el molde puede deformarse si se golpea durante el almacenamiento en obra, lo que se reflejará en el soporte hormigonado.
  3. Es imprescindible asegurarse de que los moldes estén limpios en su interior, sin restos de ningún tipo.

En conclusión, los encofrados de cartón son una opción popular para la construcción de columnas y pilares debido a su excelente acabado. Sin embargo, es importante tomar precauciones para evitar posibles problemas durante el proceso de hormigonado. Con un manejo adecuado y verificaciones oportunas, se pueden obtener resultados sobresalientes con este tipo de encofrados.

Os dejo algunos vídeos sobre este tipo de encofrado. Espero que os sean de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Reducción de costes en la construcción con encofrados

Figura 1. Encofrado de aluminio. https://construccionesrmc.com/tipos-de-encofrados/

Los encofrados tienen la función de moldear el hormigón según el tamaño y la forma deseados, además de controlar su posición y alineación. Sin embargo, más que simplemente ser moldes, los encofrados son estructuras temporales que soportan su propio peso, el del hormigón recién colocado y las cargas vivas de la construcción, que incluyen materiales, equipos y personal.

El encofrado es una estructura temporal en el sentido de que se construye rápidamente, soporta una carga elevada durante unas pocas horas durante el vertido del hormigón, y se desmonta en pocos días para ser reutilizada en el futuro. Además, otros elementos clásicos en su naturaleza temporal son las conexiones, refuerzos, anclajes y dispositivos de ajuste necesarios para los encofrados.

En el caso de los encofrados de hormigón, la noción de “estructuras temporales” no refleja completamente la realidad. De hecho, los encofrados, sus componentes y accesorios se utilizan una y otra vez a lo largo de su vida útil. Por esta razón, es esencial emplear materiales altamente duraderos y de fácil mantenimiento. El diseño del encofrado debe permitir su montaje y desmontaje eficiente para maximizar la productividad en las obras. El proceso de desmontaje o desencofrado de los encofrados depende de factores como la adherencia entre el hormigón y el encofrado, así como la rigidez y contracción del hormigón. En lo posible, los encofrados deberían permanecer en su lugar durante todo el período de curado.

Sin embargo, para lograr su reutilización, es crucial determinar el momento óptimo para retirarlos, lo cual se basa en señales como la ausencia de deflexiones o distorsiones excesivas y la inexistencia de grietas u otros daños en el hormigón debido a la remoción del encofrado o sus apoyos. En cualquier caso, los encofrados no deben retirarse hasta que el hormigón haya alcanzado la suficiente dureza para soportar su propio peso y cualquier otra carga adicional que pueda tener. La superficie del hormigón también debe ser lo suficientemente resistente como para no dañarse ni marcarse al retirar cuidadosamente los encofrados.

Figura 2. Encofrado metálico. https://www.arcus-global.com/wp/funcion-y-tipos-de-encofrados/

En los procedimientos constructivos que emplean encofrados, los principales objetivos son garantizar la calidad, asegurar la seguridad tanto para los trabajadores como para la estructura de hormigón, y buscar soluciones económicas que cumplan con los requisitos de calidad y seguridad. Para lograr estos objetivos, es esencial una buena cooperación y coordinación entre el proyectista y el contratista. La economía es especialmente relevante, pues los costos de los encofrados pueden representar entre el 25% y el 35% del coste total de la estructura.

Tabla 1. Distribución de los costes asignados a cada una de las unidades componentes de la estructura de hormigón (Concrete Society, 1995)

Concepto Coste del material Coste de mano de obra y varios % del coste total
Hormigón 12% 8% 20%
Armaduras 19% 6% 25%
Encofrados y cimbras 8% 27% 35%
Varios 13% 7% 20%
Total 52% 48% 100%

Por tanto, si se tuviera que reducir el coste del encofrado, se deberían atender a los siguientes aspectos:

1. Planificación para el máximo reuso: Diseñar encofrados para un uso máximo puede implicar una mayor inversión en su resistencia y costo inicial, pero esto puede resultar en ahorros significativos en el costo total del proyecto.

2. Construcción económica del encofrado:

    • Utilizar encofrados prefabricados en taller: Proporciona la máxima eficiencia en condiciones de trabajo y en el empleo de materiales y herramientas.
    • Establecer un área de taller en el lugar de la obra: Ideal para encofrados de secciones grandes o cuando los costos de transporte son altos.
    • Emplear encofrados construidos en el lugar de la obra: Adecuados para trabajos más pequeños o cuando los encofrados deben adaptarse al terreno.
    • Comprar encofrados prefabricados (para múltiples reutilizaciones).
    • Alquilar encofrados prefabricados (mayor flexibilidad para ajustarse al volumen de trabajo).

3. Colocación y desmontaje:

    • Repetir tareas para incrementar la eficiencia del equipo a medida que avanza el trabajo.
    • Utilizar conexiones metálicas con abrazaderas o pasadores especiales que sean seguros y fáciles de montar y desmontar.
    • Incorporar características adicionales que faciliten el manejo, montaje y desmontaje, como asas o puntos de elevación.

4. Grúas y montacargas:

    • Limitar el tamaño de las secciones del encofrado a la capacidad de la grúa más grande planificada para el trabajo.
    • Completar las torres de escaleras temprano en el cronograma para utilizarlas en el traslado de personal y materiales.
    • Dejar una bahía abierta para permitir el movimiento de grúas móviles y camiones de hormigón.

5. Montaje de armadura:

    • El diseño del encofrado puede permitir que las barras de refuerzo se ensamblen previamente antes de la instalación, lo que crea condiciones más favorables.

6. Colocación del hormigón:

    • Los levantamientos altos en la construcción de paredes pueden dificultar la colocación y vibración del hormigón.
    • La tasa de colocación está limitada por el diseño del encofrado.

Implementar estrategias de reducción de costos en estas áreas clave contribuirá a una construcción más eficiente y rentable, sin comprometer la calidad y seguridad del proyecto.

Referencias:

CONCRETE SOCIETY (1995). Formwork: A guide to good practice. Concrete Society Special Publication CS030. 2nd edition, London, 294 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de estructuras de hormigón armado asistida por metamodelos considerando la interacción suelo-estructura

Acaban de publicarnos un artículo en Engineering Structures, revista indexada en el primer cuartil del JCR. El artículo propone una estrategia de optimización metaheurística asistida por metamodelos para minimizar las emisiones de CO₂ de las estructuras de armazón de hormigón armado, teniendo en cuenta la interacción suelo-estructura. El enfoque permite abordar problemas de optimización estructural de alta complejidad y, al mismo tiempo, lograr un ahorro computacional de alrededor del 90%. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo son las siguientes:

  • El artículo propone una estrategia de optimización metaheurística asistida por metamodelos para minimizar las emisiones de CO₂ de las estructuras de armazón de hormigón armado, teniendo en cuenta la interacción suelo-estructura.
  • El enfoque sugerido permite abordar problemas de optimización estructural de alta complejidad y, al mismo tiempo, lograr un ahorro computacional de alrededor del 90%.
  • El estudio muestra que incluir la interacción suelo-estructura conduce a resultados de diseño diferentes a los obtenidos con los soportes clásicos, y que los cimientos también resultan importantes dentro del ensamblaje estructural.
  • El enfoque metaheurístico permite obtener resultados (de media) con una precisión de hasta el 98,24% en los suelos cohesivos y del 98,10% en los suelos friccionales, en comparación con los resultados de la optimización heurística.

Abstract:

It is well known that conventional heuristic optimization is the most common approach to deal with structural optimization problems. However, metamodel-assisted optimization has become a valuable strategy for decreasing computational consumption. This paper applies conventional heuristic and Kriging-based meta-heuristic optimization to minimize the CO2 emissions of spatial reinforced concrete frame structures, considering an aspect usually ignored during modeling, such as the soil-structure interaction (SSI). Due to the particularities of the formulated problem, there are better strategies than simple Kriging-based optimization to solve it. Thus, a meta-heuristic strategy is proposed using a Kriging-based two-phase methodology and a local search algorithm. Three different models of structures are used in the study. Results show that including the SSI leads to different design results than those obtained using classical supports. The foundations, usually ignored in this type of research, also prove significant within the structural assembly. Additionally, using an appropriate coefficient of penalization, the meta-heuristic approach can find (on average) results up to 98.24% accuracy for cohesive soils and 98.10% for frictional ones compared with the results of the heuristic optimization, achieving computational savings of about 90%. Therefore, considering aspects such as the SSI, the proposed metamodeling strategy allows for dealing with high-complexity structural optimization problems.

Keywords:

Structural optimization; Reinforced concrete; Frame structures; CO₂ emissions; Metamodel; Kriging; Soil-structure interaction

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 8.18MB)

Encofrados plásticos en forjados bidireccionales: bañeras o cubetas

Figura 1. Cubetas de plástico recuperable. https://www.ulmaconstruction.es/es-es/encofrados/encofrados-losas/encofrado-recuperable-forjado-reticular-recub

Las cubetas o bañeras son elementos de uso frecuente en forjados bidireccionales. Se presentan en dimensiones habituales de 80/80 – 90/90 y un espesor de 25/40 cm. Estos moldes, fabricados en plástico, ofrecen diversas ventajas, como su ligereza, resistencia al impacto, inmunidad al óxido y capacidad para generar superficies de hormigón lisas.

Es importante realizar una limpieza minuciosa después de cada uso, eliminando los residuos de hormigón con espátulas y aplicando agua a presión para garantizar una limpieza completa. La mayoría de estas cubetas incorpora una válvula que permite inyectar aire a presión en caso de que queden adheridas al hormigón, facilitando así su desencofrado.

Su vida útil puede variar, siendo de alrededor de dos años con un trato normal, un año con un trato descuidado y hasta cuatro años con una manipulación cuidadosa.

Cabe destacar que, en caso de rotura, estas piezas pueden ser reparadas mediante soldadura, aunque la decisión de reparar o reemplazar dependerá principalmente de criterios económicos, ya que el costo de reparación podría superar el de fabricación de una nueva pieza.

Figura 2. Forjado reticular de casetones recuperables. Imagen de Enrique Alario https://twitter.com/EnriqueAlario/status/1027113674455048192

Para prolongar la vida útil de las cubetas, es fundamental evitar ciertas prácticas. Se debe evitar tirar las piezas durante el desencofrado, instalarlas sin limpieza previa o sin aplicar desencofrantes, arrojar piezas del encofrado metálico sobre ellas, desplazarlas arrastrándolas sobre el forjado y apilarlas al aire libre sin protección. La exposición a la lluvia y al frío puede deformarlas.

Asimismo, en el mercado existen sistemas innovadores con piezas modulares plásticas que permiten un montaje rápido y ordenado desde la superficie de apoyo, gracias a su ligereza. También hay disponibles cubetas no recuperables (perdidas) diseñadas específicamente para forjados sanitarios, capaces de soportar sobrecargas de hasta 1000 kg/m².

Os dejo unos vídeos explicativos, que creo son de interés.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

MONTERO, E. (2006). Puesta en obra del hormigón. Consejo General de la Arquitectura Técnica de España, 750 pp.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.