Diseño de experimentos en cuadrado grecolatino. Ejemplo aplicado al hormigón

Figura 1. Cuadrado grecolatino de orden cuatro. Wikipedia

Un cuadrado greco-latinocuadrado de Euler o cuadrados latinos ortogonales de orden n se denomina, en matemáticas, a la disposición en una cuadrícula cuadrada n×n de los elementos de dos conjuntos S y T, ambos con n elementos, cada celda conteniendo un par ordenado (st), siendo s elemento de S y t de T, de forma que cada elemento de S y cada elemento de T aparezca exactamente una vez en cada fila y en cada columna y que no haya dos celdas conteniendo el mismo par ordenado. Si bien los cuadrados grecolatinos eran una curiosidad matemática, a mediados del siglo XX Fisher demostró su utilidad para el control de experimentos estadísticos.

El diseño de experimentos en cuadrado grecolatino constituye una extensión del cuadrado latino. En este caso se eliminan tres fuentes extrañas de variabilidad, es decir, se controlan tres factores de bloques y un factor de tratamiento. Se trata de un diseño basado en una matriz de “n” letras latinas y “n” letras griegas, de forma que cada letra latina aparece solo una vez al lado de cada letra griega. Lo interesante de este diseño es que se permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con “n” niveles en solo “n2” corridas. Se llama cuadrado grecolatino porque los cuatro factores involucrados se prueban en la misma cantidad de niveles, de aquí que se pueda escribir como un cuadro. En la Figura 1 se presenta el aspecto de los datos del diseño de orden cuatro. El inconveniente de este modelo es que su utilización es muy restrictiva. El análisis de la varianza permite comprobar las hipótesis de igualdad de letras latinas (tratamientos), de las filas, de las columnas y de las letras griegas.

Si a un cuadrado latino p x p se le superpone un segundo cuadrado latino n x n en el que los tratamientos se denotan con letras griegas, entonces los dos cuadrados tienen la propiedad de que cada letra griega aparece una y sólo una vez con cada letra latina. Este diseño permite controlar sistemáticamente tres fuentes de variabilidad extraña. Ello permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con p niveles en sólo n2 ensayos.

Por tanto, el diseño de experimentos en cuadrado grecolatino se caracteriza por lo siguiente:

  • Es un diseño con cuatro factores a n niveles
  • Se asume que no hay interacciones entre los factores
  • Requiere de n2 observaciones
  • Cada nivel de un factor aparece una vez con cada nivel de los otros factores
  • Se trata de la superposición de dos cuadrados latinos (ver Figura 2)
Figura 2. Superposición de dos cuadrados latinos

En un diseño en cuadrado greco-latino la variable respuesta yij(hp) viene descrita por la siguiente ecuación:

A continuación os presento un caso para aclarar la aplicabilidad de este diseño de experimentos. Se trata de averiguar si la resistencia característica del hormigón a flexocompresión (MPa) varía con cuatro dosificaciones diferentes. Para ello se han preparado amasadas en cuatro amasadoras diferentes, se han utilizado cuatro operarios de amasadora y los ensayos se han realizado en cuatro laboratorios diferentes. Los resultados se encuentran en la tabla que sigue. Se quiere analizar el diseño de experimentos en cuadrado grecolatino realizado.

En el caso que nos ocupa, la variable de respuesta de la resistencia característica del hormigón a flexocompresión (MPa). El factor que se quiere estudiar es la dosificación a cuatro niveles (A, B, C y D). El bloque I es el tipo de amasadora, con cuatro niveles (α, β, γ y δ). El bloque II es el operario de la amasadora, con cuatro niveles (1, 2, 3 y 4). El bloque III es el laboratorio, con cuatro niveles (las filas). Se supone que no hay interacción entre el factor y los bloques entre sí.

Lo que se quiere averiguar es si hay diferencias significativas entre las dosificaciones (el factor a estudiar). De paso, se desea saber si hay diferencias entre los laboratorios, los operarios y las amasadoras (los bloques).

Os paso un pequeño vídeo donde se explica, de forma muy resumida, este caso, tanto para SPSS como para MINITAB.

Os dejo otro vídeo donde también se explica este tipo de diseño de experimentos.

Referencias:

  • Gutiérrez, H.; de la Vara, R. (2004). Análisis y Diseño de Experimentos. McGraw Hill, México.
  • Vicente, MªL.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de Experimentos. Soluciones con SAS y SPSS. Pearson, Prentice Hall, Madrid.
  • Pérez, C. (2013). Diseño de Experimentos. Técnicas y Herramientas. Garceta Grupo Editorial, Madrid.

 

Optimización heurística de pórticos de paso de carretera de hormigón armado

A continuación recojo uno de los primeros trabajos que hizo nuestro grupo de investigación en el año 2005 sobre optimización heurística de estructuras de hormigón. Se trata de la optimización mediante varias heurísticas (máximo gradiente, aceptación por umbrales y recocido simulado) de un pórtico de paso de carretera de hormigón armado. En este caso se consideraron 28 variables para definir una solución de pórtico. Este artículo se publicó en la revista Hormigón y Acero. Espero que os sea de interés.

 

Referencia:

CARRERA, J.M.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2005). Optimización heurística de pórticos de paso de carretera de hormigón armado. Hormigón y Acero, 236: 85-95.

Descargar (PDF, 318KB)

Toma de decisiones aplicada a la construcción de un puente mixto en cajón

Os dejo a continuación un ejemplo sencillo de aplicación de la técnica AHP de toma de decisiones dirigida a la selección de alternativas en la construcción de un puente mixto en cajón. Se trata de un caso que utilizamos con nuestros estudiantes para enseñar la técnica. Tratamos de evitar que, en los estudios de soluciones, los estudiantes recurran siempre a las matrices de valoración ponderada, donde los pesos de cada criterio siempre se ponen de forma más o menos arbitraria, o bien para justificar la solución preferida. Este tipo de problemas también suelen aparecer en los concursos de licitación de obras públicas.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V. (2019). Multi-criteria decision analysis techniques applied to the construction of a composite box-girder bridge. 13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1458-1467. ISBN: 978-84-09-08619-1

Descargar (PDF, 441KB)

 

Correlación y modelo de regresión lineal. Problema resuelto en puentes losa

Figura 1. Modelo lineal simple de un tablero de puente losa postesado macizo (Yepes et al., 2009)

Uno de los temas básicos que se estudia en la asignatura de estadística de cualquier grado de ingeniería es la inferencia y los modelos de regresión lineal (Figura 1). A pesar de su sencillez, muchos estudiantes y profesionales aplican, sin más, este tipo de regresiones para interpolar valores en múltiples campos de la ingeniería, la economía, la salud, etc. El conocimiento de algunas nociones básicas nos permitiría evitar errores de bulto. Uno de ellos es intentar forzar las predicciones más allá de las observaciones realizadas. Otro error es confundir la correlación con la regresión. Buscar relaciones donde no las hay (relación espuria, Figura 2). Y por último, uno de los aspectos más descuidados es la no comprobación de las hipótesis básicas que se deben cumplir para que un modelo de regresión lineal sea válido.

Figura 2. Relaciones espuria entre el consumo de chocolate y el número de premios Nobel

Dicho de otra forma, valorar la calidad del ajuste mediante el coeficiente de determinación no equivale a valorar el cumplimiento de las hipótesis básicas del modelo. Si las hipótesis del modelo no se cumplen, se pueden estar cometiendo graves errores en las conclusiones de las inferencias. Así, las hipótesis básicas del modelo de regresión son las siguientes:

  • Linealidad: los parámetros y su interpretación no tienen sentido si los datos no proceden de un modelo lineal
  • Normalidad de los errores: se asume que la distribución de los errores es normal
  • Homocedasticidad: la varianza del error es constante
  • Independencia de los errores: las variables aleatorias que representan los errores son mutuamente independientes
  • Las variables explicativas son linealmente independientes

Para aclarar las ideas, he analizado un caso de regresión lineal simple con datos reales procedentes de 26 puentes losa postesados macizos (Yepes et al., 2009). Se trata de conocer la relación que existe entre la luz principal de este tipo de puentes y el canto del tablero. Utilizaremos los programas siguientes: MINITAB, SPSS, EXCEL y MATLAB. También os dejo un vídeo explicativo, muy básico, pero que espero sea de interés. Dejo los detalles matemáticos aparte. Los interesados pueden consultar cualquier manual básico de estadística al respecto.

Descargar (PDF, 817KB)

Referencias:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los algoritmos genéticos

Charles Darwin en una fotografía tomada por J.M. Cameron en 1869.

Resulta fascinante comprobar cómo aplicando los mecanismos básicos de la evolución ya descrita por Darwin en su obra fundamental, El origen de las especies por medio de la selección natural, o la preservación de las razas preferidas en la lucha por la vida, publicada en 1859, se pueden generar algoritmos capaces de optimizar problemas complejos. Este tipo de metaheurísticas inspiradas en la Naturaleza ya se comentaron en artículos anteriores cuando hablamos de la optimización por colonias de hormigas o de la cristalización simulada. Aunque es un algoritmo ampliamente conocido por la comunidad científica, voy a intentar dar un par de pinceladas con el único afán de divulgar esta técnica. La verdad es que las implicaciones filosóficas que subyacen tras la teoría de Darwin son de una profundidad difícil de entender cuando se lleva a sus últimos extremos. Pero el caso es que estos algoritmos funcionan perfectamente en la optimización de estructuras de hormigón, problemas de transporte y otros problemas difíciles de optimización combinatoria.

Para aquellos interesados, os paso en las referencias un par de artículos donde hemos aplicado los algoritmos genéticos para optimizar rutas de transporte aéreo o pilas de puente huecas de hormigón armado.

Sin embargo, para aquellos otros que queráis un buen libro para pensar, os recomiendo “La peligrosa idea de Darwin”, de Daniel C. Dennett. A más de uno le hará remover los cimientos más profundos de sus creencias. Os paso la referencia al final.

Básicamente, los algoritmos genéticos “Genetic Algorithms, GA”, simulan el proceso de evolución de las especies que se reproducen sexualmente. De manera muy general, se puede decir que en la evolución de los seres vivos, el problema al que cada individuo se enfrenta diariamente es el de la supervivencia. Para ello cuenta, entre otras, con las habilidades innatas provistas en su material genético. A nivel de los genes, el problema consiste en la búsqueda de aquellas adaptaciones beneficiosas en un medio hostil y cambiante. Debido en parte a la selección natural, cada especie gana cierta “información” que es incorporada a sus cromosomas.

Durante la reproducción sexual, un nuevo individuo, diferente de sus padres, se genera a través de la acción de dos mecanismos fundamentales: El primero es el cruzamiento, que combina parte del patrimonio genético de cada progenitor para elaborar el del nuevo individuo; el segundo es la mutación, que supone una modificación espontánea de esta información genética. La descendencia será diferente de los progenitores, pero mantendrá parte de sus características. Si los hijos heredan buenos atributos de sus padres, su probabilidad de supervivencia será mayor que aquellos otros que no las tengan. De este modo, los mejores tendrán altas probabilidades de reproducirse y diseminar su información genética a sus descendientes.

Holland (1975) estableció por primera vez una metaheurística basada en la analogía genética. Un individuo se puede asociar a una solución factible del problema, de modo que se pueda codificar en forma de un vector binario “string”. Entonces un operador de cruzamiento intercambia cadenas de los padres para producir un hijo. La mutación se configura como un operador secundario que cambia, con una probabilidad pequeña, algunos elementos del vector hijo. La aptitud del nuevo vector creado se evalúa de acuerdo con una función objetivo.

Los pasos a seguir con esta metaheurística serían los siguientes:

  1. Generar una población de vectores (individuos).
  2. Mientras no se encuentre un criterio de parada:
    1. Seleccionar un conjunto de vectores padre, que serán reemplazados de la población.
    2. Emparejar aleatoriamente a los progenitores y cruzarlos para obtener unos vectores hijo.
    3. Aplicar una mutación a cada descendiente.
    4. Evaluar a los hijos.
    5. Introducir a los hijos en la población.
    6. Eliminar a aquellos individuos menos eficaces.

Normalmente este proceso finaliza después de un numero determinado de generaciones o cuando la población ya no puede mejorar. La selección de los padres se elige probabilísticamente hacia los individuos más aptos. Al igual que ocurre con en la Naturaleza, los sujetos con mayor aptitud diseminan sus características en toda la población.

Esta descripción de los GA se adapta a cada situación concreta, siendo habitual la codificación de números enteros en vez de binarios. Del mismo modo se han sofisticado los distintos operadores de cruzamiento y mutación.

Os dejo a continuación un vídeo explicativo que he elaborado para mis clases de “Modelos predictivos y de optimización heurística de estructuras de hormigón“, del Máster Universitario en Ingeniería del Hormigón, de la Universitat Politècnica de València.

Referencias:

DENNETT, D.C. (1999). La peligrosa idea de Darwin. Galaxia Gutenberg. Círculo de Lectores, Barcelona.

HOLLAND, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)

MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions, 27(1): 95-112.  ISSN: 1696-2281.  (pdf)

PONZ-TIENDA, J.L.; YEPES, V.; PELLICER, E.; MORENO-FLORES, J. (2013). The resource leveling problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29(1):161-172. DOI:http://dx.doi.org/10.1016/j.autcon.2012.10.003. (link)

YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tablas de contingencia aplicadas al hormigón

Figura 1. ¿Depende la calidad del hormigón de un proveedor determinado?

En ocasiones nos encontramos con un par de variables cualitativas que, a priori, no sabemos si se encuentran relacionadas entre sí, o si pertenecen a una misma población estadística. Recordemos que las variables cualitativas son aquellas cuyo resultado es un valor o categoría de entre un conjunto finito de respuestas (tipo de defecto, nombre del proveedor, color, etc.).

En el ámbito del hormigón, por ejemplo, podríamos tener varios proveedores de hormigón preparado en central y un control del número de cubas-hormigonera aceptadas, aceptadas con defectos menores o rechazadas. Otro ejemplo sería contabilizar el tipo de incumplimiento de una tolerancia por parte de un equipo que está encofrando un muro de contención. En estos casos, se trata de saber si existe dependencia entre los proveedores o los equipos de encofradores respecto a los defectos detectados. Esto sería interesante en el ámbito del control de la calidad para tomar medidas, como pudiese ser descartar a determinados proveedores o mejorar la formación de un equipo de encofradores.

Así, podríamos tener un problema como el siguiente: Teniendo en cuenta el punto 5.6 del Anejo 11 de la EHE, donde se definen las tolerancias de muros de contención y muros de sótano, se quiere comprobar si tres equipos de encofradores producen de forma homogénea en la ejecución de muros vistos, o por el contrario, unos equipos producen más defectos de un tipo que otro. Todos los equipos emplean el mismo tipo de encofrado. Las tolerancias que deben cumplirse son:

1. Desviación respecto a la vertical
2. Espesor del alzado
3. Desviación relativa de las superficies planas de intradós o de trasdós
4. Desviación de nivel de la arista superior del intradós, en muros vistos
5. Tolerancia de acabado de la cara superior del alzado, en muros vistos

Los equipos han estado trabajando durante año ejecutando este tipo de unidad de obra. Durante este tiempo el número de defectos en relación con la tolerancia dimensional ha sido pequeño, pero se han contabilizado 375 defectos. El control de calidad ha dado como resultado el conteo de la tabla de la Figura 2.

Figura 2. Conteo de incumplimientos según el equipo de encofradores. En paréntesis figura el valor esperado.

En la Figura 2 se ha representado también la frecuencia esperada para cada uno de los casos. Por ejemplo, la fracción esperada del incumplimiento “1” es de 89/375, mientras que la fracción esperada de defectos del equipo A es de 150/375. Ello implica que el valor esperado de incumplimientos del tipo “1” para el equipo de encofradores “A” sería: (89/375)·(150/375)·375=89·150/375=35,60.

La pregunta que nos podríamos hacer es la siguiente: ¿Influye el tipo de proveedor en la calidad de la recepción del hormigón? Para ello plantearíamos la hipótesis nula: El tipo de proveedor no influye en la calidad de la recepción del hormigón. La hipótesis alternativa sería que sí que existe dicha influencia o dependencia entre las variables cualitativas.

Para ello necesitamos una prueba estadística, en este caso es la prueba χ². El fundamento de la prueba χ² es comparar la tabla de las frecuencias observadas respecto a la de las frecuencias esperadas (que sería la que esperaríamos encontrar si las variables fueran estadísticamente independientes o no estuvieran relacionadas). Esta prueba permite obtener un p-valor (probabilidad de equivocarnos si rechazamos la hipótesis nula) que podremos contrastar con el nivel de confianza que determinemos. Normalmente el umbral utilizado es de 0,05. De esta forma, si p<0,05 se rechaza la hipótesis nula y, por tanto, diremos que las variables son dependientes. Dicho de forma más precisa, en este caso no existe un nivel de significación suficiente que soporte la independencia de las variables.

Las conclusiones que se obtienen de la prueba son sencillas de interpretar. Si no existe mucha diferencia entre los valores observados y los esperados, no hay razones para dudar de que las variables sean independientes.

No obstante, hay algunos problemas con la prueba χ², uno de ellos relacionado con el tamaño muestral. A mayor número de casos analizados, el valor de la χ² tiende a aumentar. Es decir, si la muestra es excesivamente grande, será más fácil que rechacemos la hipótesis nula de independencia, cuando a lo mejor podrían ser las variables independientes.

Por otra parte, cada una de las celdas de la tabla de contingencia debería tener un mínimo de 5 observaciones esperadas. Si no fuera así, podríamos agrupar filas o columnas (excepto en tablas 2×2). También se podría eliminar la fila que da una frecuencia esperada menor de 5.

Por último, no hay que abusar de la prueba χ². Por ejemplo, podríamos tener una variable numérica, como la resistencia característica del hormigón, y agruparla en una variable categórica en grupos tales como 25, 30, 35, 40, 45 y 50 MPa. Lo correcto cuando tenemos una escala numérica sería aplicar la prueba t-Student, siendo incorrecto convertir la escala numérica en una ordinal o incluso binaria.

A continuación os dejo el problema anterior resuelto, tanto con el programa SPSS como con MINITAB.

Descargar (PDF, 326KB)

Os dejo un par de vídeos explicativos, que espero os sean de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos de construcción de cimentaciones y estructuras de contención. Segunda edición ampliada

Os presento la segunda edición ampliada del libro que he publicado sobre procedimientos de construcción de cimentaciones y estructuras de contención. El libro trata de los aspectos relacionados con los procedimientos constructivos, maquinaria y equipos auxiliares empleados en la construcción de cimentaciones superficiales, cimentaciones profundas, pilotes, cajones, estructuras de contención de tierras, muros, pantallas de hormigón, anclajes, entibaciones y tablestacas. Pero se ha ampliado esta edición con tres capítulos nuevos dedicados a los procedimientos de contención y control de las aguas subterráneas. Además, de incluir la bibliografía para ampliar conocimientos, se incluyen cuestiones de autoevaluación con respuestas y un tesauro para el aprendizaje de los conceptos más importantes de estos temas. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.

Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_328-9-2

El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

https://gdocu.upv.es/alfresco/service/api/node/content/workspace/SpacesStore/31b0d684-f0a7-4ee7-b8f4-73694e138d5e/TOC_0328_09_02.pdf?guest=true

Descargar (PDF, 476KB)

 

 

El aprendizaje profundo (deep learning) en la optimización de estructuras

Figura 1. Relación de pertenencia entre la inteligencia artificial, el aprendizaje automático y el aprendizaje profundo

En este artículo vamos a esbozar las posibilidades de la inteligencia artificial en la optimización de estructuras, en particular, el uso del aprendizaje profundo. El aprendizaje profundo (deep learning, DL) constituye un subconjunto del aprendizaje automático (machine learning, ML), que a su vez lo es de la inteligencia artificial (ver Figura 1). Si la inteligencia artificial empezó sobre los años 50, el aprendizaje automático surgió sobre los 80, mientras que el aprendizaje profundo nació en este siglo XXI, a partir del 2010, con la aparición de grandes superordenadores y por el aumento de los datos accesibles. Como curiosidad, uno de los grandes hitos del DL se produjo en 2012, cuando Google fue capaz de reconocer un gato entre los más de 10 millones de vídeos de Youtube, utilizando para ello 16000 ordenadores. Ahora serían necesarios muchos menos medios.

En cualquiera de estos tres casos, estamos hablando de sistemas informáticos capaces de analizar grandes cantidades de datos (big data), identificar patrones y tendencias y, por tanto, predecir de forma automática, rápida y precisa. De la inteligencia artificial y su aplicabilidad a la ingeniería civil ya hablamos en un artículo anterior.

Figura 2. Cronología en la aparición de los distintos tipos de algoritmos de inteligencia artificial. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Si pensamos en el cálculo estructural, utilizamos modelos, más o menos sofistificados, que permiten, si se conocen con suficiente precisión las acciones, averiguar los esfuerzos a los que se encuentran sometidos cada uno de los elementos en los que hemos dividido una estructura. Con dichos esfuerzos se identifican una serie de estados límite, que son un conjunto de situaciones potencialmente peligrosas para la estructura y comparar si la capacidad estructural del elemento analizado, dependiente de las propiedades geométricas y de sus materiales constituyentes, supera el valor último de la solicitación a la que, bajo cierta probabilidad, puede llegar a alcanzar el elemento estructural analizado.

Estos métodos tradicionales emplean desde hipótesis de elasticidad y comportamiento lineal, a otros modelos con comportamiento plástico o no lineales más complejos. Suele utilizarse, con mayor o menos sofisticación, el método de los elementos finitos (MEF) y el método matricial de la rigidez. En definitiva, en determinados casos, suelen emplearse los ordenadores para resolver de forma aproximada, ecuaciones diferenciales parciales muy complejas, habituales en la ingeniería estructural, pero también en otros campos de la ingeniería y la física. Para que estos sistemas de cálculo resulten precisos, es necesario alimentar los modelos con datos sobre materiales, condiciones de contorno, acciones, etc., lo más reales posibles. Para eso se comprueban y calibran estos modelos en ensayos reales de laboratorio (Friswell y Mottershead, 1995). De alguna forma, estamos retroalimentando de información al modelo, y por tanto “aprende”.

Figura 2. Malla 2D de elementos finitos, más densa alrededor de la zona de mayor interés. Wikipedia.

Si analizamos bien lo que hacemos, estamos utilizando un modelo, más o menos complicado, para predecir cómo se va a comportar la estructura. Pues bien, si tuviésemos una cantidad suficiente de datos procedentes de laboratorio y de casos reales, un sistema inteligente extraería información y sería capaz de predecir el resultado final. Mientras que la inteligencia artificial debería alimentarse de una ingente cantidad de datos (big data), el método de los elementos finitos precisa menor cantidad de información bruta (smart data), pues ha habido una labor previa muy concienzuda y rigurosa, para intentar comprender el fenómeno subyacente y modelizarlo adecuadamente. Pero, en definitiva, son dos procedimientos diferentes que nos llevan a un mismo objetivo: diseñar estructuras seguras. Otro tema será si éstas estructuras son óptimas desde algún punto de vista (economía, sostenibilidad, etc.).

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas. Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables.

Una de las características de la optimización mediante metaheurísticas es el elevado número de iteraciones en el espacio de soluciones, lo cual permite generar una inmensa cantidad de datos para el conjunto de estructuras visitadas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación.

Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). Se trata ahora de dar un paso más allá. Se trata de que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Tanto la inteligencia artificial como el aprendizaje automático no son una ciencia nueva. El problema es que sus aplicaciones eran limitadas por la falta de datos y de tecnologías para procesarlas de forma rápida y eficiente. Hoy en día se ha dado un salto cualitativo y se puede utilizar el DL, que como ya hemos dicho es una parte del ML, pero que utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. Digamos que el DL (redes neuronales) utiliza algoritmos distintos al ML (algoritmos de regresión, árboles de decisión, entre otros). En ambos casos, los algoritmos pueden aprender de forma supervisada o no supervisada. En las no supervisadas se facilitan los datos de entrada, no los de salida. La razón por la que se llama aprendizaje profundo hace referencia a las redes neuronales profundas, que utilizan un número elevado de capas en la red, digamos, por ejemplo, 1000 capas. De hecho, el DL también se le conoce a menudo como “redes neuronales profundas”. Esta técnica de redes artificiales de neuronas es una de las técnicas más comunes del DL.

Figura. Esquema explicativo de diferencia entre ML y DL. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Una de las redes neuronales utilizadas en DL son las redes neuronales convolucionales, que es una variación del perceptrón multicapa, pero donde su aplicación se realiza en matrices bidimensionales, y por tanto, son muy efectivas en las tareas de visión artificial, como en la clasificación y segmentación de imágenes. En ingeniería, por ejemplo, se puede utilizar para la monitorización de la condición estructural, por ejemplo, para el análisis del deterioro. Habría que imaginar hasta dónde se podría llegar grabando en imágenes digitales la rotura en laboratorio de estructuras de hormigón y ver la capacidad predictiva de este tipo de herramientas si contaran con suficiente cantidad de datos. Todo se andará. Aquí os dejo una aplicación tradicional típica (Antoni Cladera, de la Universitat de les Illes Balears), donde se explica el modelo de rotura de una viga a flexión en la pizarra y luego se rompe la viga en el laboratorio. ¡Cuántos datos estamos perdiendo en la grabación! Un ejemplo muy reciente del uso del DL y Digital Image Correlation (DIC) aplicado a roturas de probetas en laboratorio es el trabajo de Gulgec et al. (2020).

Sin embargo, aquí nos interesa detenernos en la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Un ejemplo de este camino novedoso en la investigación es la aplicabilidad de algoritmos que hibriden DL y metaheurísticas. Ya hemos publicado algunos artículos en este sentido aplicados a la optimización de muros de contrafuertes (Yepes et al., 2020; García et al., 2020a, 2020b). Además, hemos propuesto como editor invitado, un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“.

Dejo a continuación un pequeño vídeo explicativo de las diferencias entre la inteligencia artificial, machine learning y deep learning.

Referencias:

FRISWELL, M.; MOTTERSHEAD, J. E. (1995). Finite element model updating in structural dynamics (Vol. 38). Dordrecht, Netherlands: Springer Science & Business Media.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020a). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020b). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0

GULGEC, N.S.; TAKAC, M., PAKZAD S.N. (2020). Uncertainty quantification in digital image correlation for experimental evaluation of deep learning based damage diagnostic. Structure and Infrastructure Engineering, https://doi.org/10.1080/15732479.2020.1815224

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Análisis de ciclo de vida del puente atirantado sobre el río Hun He en Liaoning, China

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR, en el primer cuartil) sobre la propuesta de indicadores de sostenibilidad para el proyecto de puentes de pequeña luz.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En este trabajo se estudió impacto ambiental de un puente atirantado de tres torres mediante el software openLCA, y se analizaron más de 23.680 grupos de datos utilizando la cadena de Markov y otros métodos de investigación. La conclusión muestra que el control de la contaminación de los vehículos que pasan y la mejora de la durabilidad de los materiales de construcción son la clave para reducir la contribución del carbono.

ABSTRACT

Due to the rapid growth of the construction industry’s global environmental impact, especially the environmental impact contribution of bridge structures, it is necessary to study the detailed environmental impact of bridges at each stage of the full life cycle, which can provide optimal data support for sustainable development analysis. In this work, the environmental impact case of a three-tower cable-stayed bridge was analyzed through openLCA software, and more than 23,680 groups of data were analyzed using Markov chain and other research methods. It was concluded that the cable-stayed bridge contributed the most to the global warming potential value, which was mainly concentrated in the operation and maintenance phases. The conclusion shows that controlling the exhaust pollution of passing vehicles and improving the durability of building materials were the key to reducing carbon contribution and are also important directions for future research.

KEYWORDS

Greenhouse gas; environmental impact; cable-stayed bridge; life-cycle assessment; sustainable construction

REFERENCE:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2020). Bridge Carbon Emissions and Driving Factors Based on a Life-Cycle Assessment Case Study: Cable-Stayed Bridge over Hun He River in Liaoning, China. International Journal of Environmental Research and Public Health, 17(16):5953. DOI:10.3390/ijerph17165953

Descargar (PDF, 7.85MB)

 

Fabricación de viguetas de hormigón pretensado

http://preforsa.es/

 

Os paso a continuación un vídeo donde se muestra la fabricación de viguetas de hormigón pretensado. Espero que os guste.

Os paso también la presentación que hizo ANDECE de los forjados prefabricados de hormigón.

En el apartado 2.1 de la Guía Técnica de Forjados de ANDECE se incluyen específicamente los sistemas de forjado de vigueta y bovedilla. Os lo dejo.

Descargar (PDF, 4.38MB)