Estudio de los puentes de las cinco mayores regiones económicas de China

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR, en el primer cuartil) donde se estudia el ciclo de vida completo de seis puentes atirantados en las más importantes regiones económicas de China.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

ABSTRACT

The construction industry of all countries in the world is facing the issue of sustainable development. How to make effective and accurate decision-making on the three pillars (Environment; Economy; Social influence) is the key factor. This manuscript is based on an accurate evaluation framework and theoretical modelling. Through a comprehensive evaluation of six cable-stayed highway bridges in the entire life cycle of five provinces in China (from cradle to grave), the research shows that life cycle impact assessment (LCIA), life cycle cost assessment (LCCA), and social impact life assessment (SILA) are under the influence of multi-factor change decisions. The manuscript focused on the analysis of the natural environment over 100 years, material replacement, waste recycling, traffic density, casualty costs, community benefits and other key factors. Based on the analysis data, the close connection between high pollution levels and high cost in the maintenance stage was deeply promoted, an innovative comprehensive evaluation discrete mathematical decision-making model was established, and a reasonable interval between gross domestic product (GDP) and sustainable development was determined.

KEYWORDS

sustainable development; LCIA; LCCA; SILA; cable-stayed bridge; GDP.

REFERENCE:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Descargar (PDF, 3.24MB)

Terminan los dos primeros estudiantes del Doble Máster en Ingeniería de Caminos e Ingeniería del Hormigón

 

¡Han acabado los dos primeros estudiantes con el Doble Máster de Ingeniería de Caminos, Canales y Puertos e Ingeniería del Hormigón de la Universitat Politècnica de València! En efecto, hoy 10 de diciembre de 2020, Lorena Yepes Bellver y Alejandro Brun Izquierdo han presentado sus Trabajos Final de Máster correspondientes. El TFM de Alejandro Brun fue “Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging”, mientras que el de Lorena Yepes fue “Diseño óptimo de tableros de puentes losa pretensados aligerados frente a emisiones de CO2 utilizando metamodelos”. Ambos obtuvieron la máxima calificación de 10 Matrícula de Honor y fueron tutorados por el profesor Julián Alcalá, de nuestro grupo de investigación. ¡Enhorabuena a todos ellos!

El Máster Universitario en Ingeniería de Caminos, Canales y Puertos (en adelante MUICCP) habilita para ejercer la profesión de Ingeniero de Caminos, Canales y Puertos, mientras que el Máster Universitario en Ingeniería del Hormigón (en adelante MUIH) está orientado al campo de la ingeniería del hormigón, tanto desde el punto de vista de los materiales constituyentes como desde el punto de vista estructural, tanto desde el punto de vista profesional como científico. En este caso concreto un alumno que quiera adquirir las competencias profesionales para ejercer como Ingeniero de Caminos, Canales y Puertos y, además, quiera una especialización profesional o investigadora en ingeniería del hormigón, debería cursar ambos másteres.

En consecuencia, el doble título permite adquirir las competencias de ambos másteres a través de una trayectoria académica integrada. Todo ello con un coste temporal y económico inferior al que representa la obtención de ambos másteres de manera individualizada. De este modo, un estudiante del MUICCP, en lugar de cursar los 120 ECTS del MUICCP y los 90 ECTS del MUIH, cursa únicamente un total de 165 ECTS, representando así un ahorro de 45 ECTS y de un cuatrimestre docente.

Lo que nos dice un dendrograma sobre los puentes losa postesados aligerados

Figura 1. Paso superior sobre la N-II. https://ingedis.es/puentes.htm

Como ya habréis observado, en muchos de mis artículos os doy pistas sobre cómo utilizar determinadas herramientas que nos permiten, si sabemos utilizarlas, obtener información relevante y muchas veces no evidente de nuestras bases de datos. En esta ocasión os voy a hablar de los métodos jerárquicos de análisis cluster, y en particular, de los dendrogramas. En el contexto de la minería de datos, se consideran los algoritmos de agrupamiento (clustering), como una técnica de aprendizaje no supervisado.

Los llamados métodos jerárquicos buscan formar agrupaciones de elementos de forma sucesiva, de modo que se minimice alguna distancia o maximice alguna medida de similitud. Estos métodos se dividen, a su vez, en métodos aglomerativos -también llamados ascendentes- que comienzan con tantos grupos como individuos haya, formándose grupos de forma ascendente, de forma que al final todos los casos se engloban en un mismo aglomerado. Por contra, los métodos disociativos -descendentes- hacen lo contrario, comienzan con un conglomerado que engloba todos los casos y, con sucesivas divisiones, se forman grupos cada vez más pequeños hasta llegar a tantas agrupaciones como casos.

Un dendrograma es una representación gráfica de los datos en forma de árbol que los organiza en subcategorías que se van dividiendo hasta llegar al nivel de detalle deseado. Para formar este diagrama se forman conglomerados de observaciones en cada paso y sus niveles de similitud. El nivel de similitud se mide en el eje vertical (aunque también se puede mostrar el nivel de distancia), y las diferentes observaciones se especifican en el eje horizontal.

Veamos cómo se puede utilizar dicha herramienta. Para eso vamos a utilizar los datos recopilados de 61 puentes losa postesados aligerados (Yepes et al., 2009). Utilizamos el software Minitab para este análisis. En la Figura 2 se ha realizado un análisis para las 61 observaciones. Aunque permite determinar qué puentes son más parecidos entre sí, la verdad es que la información que nos deja es difícil de manejar.

Figura 2. Dendrograma obtenido por conglomerado de las 61 observaciones de puentes losa (Yepes et al., 2009)

En cambio, si realizamos el mismo análisis respecto a las variables que definen el puente y a su coste, obtenemos información relevante, tal y como se puede observar en la Figura 3. El conglomerado de variables a sí obtenido comienza con todas las variables separadas, cada una formando su propio conglomerado. En el primer paso, las dos variables más cercanas entre sí se unen. En el siguiente paso, una tercera variable se une a las primeras dos u otras dos variables se unen para formar un conglomerado diferente. Este proceso continuará hasta que todos los conglomerados se unan en un solo conglomerado. En el caso estudiado, se ha utilizado como medición de la distancia la correlación y el método de vinculación completo. De esta forma conseguimos que un conglomerado se encuentre dentro de una distancia máxima, tendiéndose a producir conglomerados con diámetros similares.

Figura 3. Dendrograma realizado con las variables que definen los 61 puentes losa postesados (Yepes et al., 2009)

La Figura 3 ya nos permite interpretar cómo se relacionan las variables de un puente losa postesado, siendo un análisis que es coherente con los resultados obtenidos en Yepes et al. (2009). Se observa que el coste está muy relacionado con la cuantía de armadura activa, y también, con la cuantía de hormigón empleado. También se observa la estrecha relación entre el canto y la luz del puente, que junto con la cuantía del aligeramiento interior, se aglomeran a otro nivel para configurar el coste. Otras relaciones son evidentes, como que la longitud total del puente y el número de vanos son magnitudes muy relacionadas, o cómo la anchura del tablero se relaciona con el número de apoyos existentes en el estribo.

Referencias:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Papel de la dimensión social en la optimización del mantenimiento orientado a la sostenibilidad de los puentes en entornos costeros

http://www.revistacyt.com.mx/index.php/tecnologia/324-at-reparacion-de-pilotes-submarinos-proteccion-de-estructuras-en-contacto-con-el-medio-marino

En los objetivos de desarrollo sostenible recientemente establecidos se reconoce la importancia de las infraestructuras para lograr un futuro sostenible. A lo largo de su ciclo de vida, las infraestructuras generan una serie de impactos cuya reducción ha sido uno de los principales focos de atención de los investigadores en los últimos años. La optimización de los intervalos de mantenimiento de las estructuras, como los puentes, ha despertado la atención del sector de la ingeniería civil, pues la mayoría de los impactos de las infraestructuras se producen durante la fase de servicio. Así pues, actualmente los puentes se proyectan para atender a los efectos económicos y ambientales derivados de las actividades de mantenimiento. Sin embargo, en esos análisis se suele descuidar el pilar social de la sostenibilidad. Dado que todavía no existe una metodología universalmente aceptada para su evaluación, la dimensión social no se incluye de forma efectiva en las evaluaciones del ciclo de vida de las infraestructuras. En la presente comunicación se evalúan los efectos del ciclo de vida de diseños alternativos de los tableros de hormigón de los puentes en un ambiente costero que requiere mantenimiento. Los intervalos de mantenimiento derivados de la fiabilidad se optimizan primero minimizando los impactos económicos y ambientales. En una segunda etapa del análisis, se incluye la dimensión social en el proceso de optimización y se comparan los resultados. Los resultados de optimización de estas evaluaciones combinadas se obtienen aplicando la técnica de toma de decisiones multicriterio AHP-TOPSIS. En este trabajo se muestra cómo la inclusión de la dimensión social puede conducir a estrategias de mantenimiento óptimo diferentes y más orientadas a la sostenibilidad. El enfoque tridimensional que se aplica aquí ha dado lugar a que se prefieran otras alternativas a las derivadas de la evaluación convencional que considera las perspectivas económica y ambiental. Esa conclusión apoya la idea de que se requieren evaluaciones holísticas del ciclo de vida para el diseño sostenible de las infraestructuras y de que es necesario hacer más esfuerzos urgentes para integrar la dimensión social en las evaluaciones de la sostenibilidad de las estructuras.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Role of the social dimension on the sustainability-oriented maintenance optimization of bridges in coastal environments. 10th International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2020, pp. 205-215, 3-5 June 2020, Prague, Czech Republic.

Descargar (PDF, 469KB)

Las juntas de dilatación en estructuras, ¿son absolutamente necesarias?

Figura 1. Junta de dilatación en un edificio. http://www.trabver.com/juntas-dilatacion-trabajos-verticales-valencia.htm

El aumento o la disminución de la temperatura en las estructuras ocasiona cambios de volumen que deben tenerse en cuenta. En el caso de un pavimento, la pequeña relación entre el espesor y el área superficial implica un incremento de longitud más que evidente. Si dicho elemento se encuentra confinado, aumentan los esfuerzos de compresión y pueden ocasionar efectos como alabeo en las placas o introducir esfuerzos en las estructuras adyacentes. Un efecto similar ocurre en el caso de la retracción y la fluencia del hormigón, por lo que muchas veces se estudian conjuntamente estos efectos con los cambios térmicos. Es por ello que se suele dejar una separación estructural que permita los movimientos diferenciales, tanto horizontales como verticales. A este tipo de juntas se les denomina “juntas de expansión”, “juntas de dilatación” o “juntas de aislamiento”. ¿Pero son absolutamente necesarias?

El tipo de estructura, su geometría y dimensiones, los materiales utilizados o las circunstancias ambientales, entre otros factores, influyen en el comportamiento que tenga la estructura ante las variaciones térmicas. Incluso la presencia de agua, si se congela, puede incrementar de forma significativa la acción expansiva.

La omisión de este tipo de juntas de dilatación provoca daños en los elementos estructurales (zapatas, muros de sótano, pavimentos, fábricas de ladrillo, etc.). Es por ello que las juntas de dilatación deben considerarse desde el mismo momento del proyecto de la estructura. Normalmente se usan elementos tales como cintas de espuma impregnada para sellar las juntas de dilatación, aunque también se pueden dejar abiertas.

El rango de movimiento de una junta se puede calcular multiplicando el coeficiente de dilatación del material por la dimensión inicial del elemento y por la diferencia esperada de temperaturas. No obstante, el Código Técnico de Edificación (CTE SE-AE 3.4) establece que, en los edificios habituales con elementos estructurales de hormigón o acero, pueden no considerarse las acciones térmicas cuando se dispongan juntas de dilatación de forma que no existan elementos continuos de más de 40 m de longitud, aunque la experiencia nos dice que si son menos de 40 m, mejor. En el caso de edificios de hasta 4 plantas, en zona no sísmica, la junta puede tener 2,5 cm; debiéndose calcular cuando se dan otras condiciones. Para edificios de planta rectangular y estructura a base de fábrica de ladrillo la distancia entre juntas debe ser menor de 30 m. Si la planta tiene alas en forma de “L” o “U”, de longitud mayor a 15 m (50% de 30 m), el CTE (SE-F, 2.2 Juntas de movimiento) establece que se debe disponer de juntas de dilatación cerca de sus líneas de encuentro.

Con todo, hay estudios que demuestran que se pueden superar distancias mayores a las indicadas en el CTE siempre que se cuiden los detalles constructivos de los elementos no estructurales. De hecho, la técnica permite incluso construir edificios de hasta 300 m sin este tipo de juntas. En el caso de estructuras en obras civiles, por ejemplo en puentes, es habitual ver tramos de luces mucho mayores a los 40 m del CTE sin establecer ningún tipo de junta. Incluso en el ámbito de los ferrocarriles, ya está superado el uso de la barra largo soldada, sin juntas. Pero hay que recordar que se deben tener en cuenta en el cálculo los efectos de la temperatura.

Además, no hay que olvidar que cualquier tipo de junta en una estructura supone un problema, tanto en la ejecución, como en el mantenimiento. Un argumento más para considerar los efectos térmicos, de retracción y fluencia en el cálculo  estructural e intentar evitar este tipo de juntas. El problema es la dificultad de encontrar herramientas comerciales que permitan el análisis de los efectos termohigrométricos (fluencia, retracción y cambios térmicos) junto con la fisuración, lo que lleva a que muchos técnicos se decanten por cumplir los requerimientos expuestos en el CTE.

Pero creo que lo mejor es que veáis esta clase de Juan Carlos Arroyo, que seguro, os aclarará muchas de vuestras dudas. Incluso tiene un curso sobre el tema por si a alguno le interesa: https://ten.ingenio.xyz/p/masterclass-juntas-de-dilatacion-en-estructuras

 

Diseño de experimentos en cuadrado grecolatino. Ejemplo aplicado al hormigón

Figura 1. Cuadrado grecolatino de orden cuatro. Wikipedia

Un cuadrado greco-latinocuadrado de Euler o cuadrados latinos ortogonales de orden n se denomina, en matemáticas, a la disposición en una cuadrícula cuadrada n×n de los elementos de dos conjuntos S y T, ambos con n elementos, cada celda conteniendo un par ordenado (st), siendo s elemento de S y t de T, de forma que cada elemento de S y cada elemento de T aparezca exactamente una vez en cada fila y en cada columna y que no haya dos celdas conteniendo el mismo par ordenado. Si bien los cuadrados grecolatinos eran una curiosidad matemática, a mediados del siglo XX Fisher demostró su utilidad para el control de experimentos estadísticos.

El diseño de experimentos en cuadrado grecolatino constituye una extensión del cuadrado latino. En este caso se eliminan tres fuentes extrañas de variabilidad, es decir, se controlan tres factores de bloques y un factor de tratamiento. Se trata de un diseño basado en una matriz de “n” letras latinas y “n” letras griegas, de forma que cada letra latina aparece solo una vez al lado de cada letra griega. Lo interesante de este diseño es que se permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con “n” niveles en solo “n2” corridas. Se llama cuadrado grecolatino porque los cuatro factores involucrados se prueban en la misma cantidad de niveles, de aquí que se pueda escribir como un cuadro. En la Figura 1 se presenta el aspecto de los datos del diseño de orden cuatro. El inconveniente de este modelo es que su utilización es muy restrictiva. El análisis de la varianza permite comprobar las hipótesis de igualdad de letras latinas (tratamientos), de las filas, de las columnas y de las letras griegas.

Si a un cuadrado latino p x p se le superpone un segundo cuadrado latino n x n en el que los tratamientos se denotan con letras griegas, entonces los dos cuadrados tienen la propiedad de que cada letra griega aparece una y sólo una vez con cada letra latina. Este diseño permite controlar sistemáticamente tres fuentes de variabilidad extraña. Ello permite la investigación de cuatro factores (filas, columnas, letras latinas y letras griegas), cada una con p niveles en sólo n2 ensayos.

Por tanto, el diseño de experimentos en cuadrado grecolatino se caracteriza por lo siguiente:

  • Es un diseño con cuatro factores a n niveles
  • Se asume que no hay interacciones entre los factores
  • Requiere de n2 observaciones
  • Cada nivel de un factor aparece una vez con cada nivel de los otros factores
  • Se trata de la superposición de dos cuadrados latinos (ver Figura 2)
Figura 2. Superposición de dos cuadrados latinos

En un diseño en cuadrado greco-latino la variable respuesta yij(hp) viene descrita por la siguiente ecuación:

A continuación os presento un caso para aclarar la aplicabilidad de este diseño de experimentos. Se trata de averiguar si la resistencia característica del hormigón a flexocompresión (MPa) varía con cuatro dosificaciones diferentes. Para ello se han preparado amasadas en cuatro amasadoras diferentes, se han utilizado cuatro operarios de amasadora y los ensayos se han realizado en cuatro laboratorios diferentes. Los resultados se encuentran en la tabla que sigue. Se quiere analizar el diseño de experimentos en cuadrado grecolatino realizado.

En el caso que nos ocupa, la variable de respuesta de la resistencia característica del hormigón a flexocompresión (MPa). El factor que se quiere estudiar es la dosificación a cuatro niveles (A, B, C y D). El bloque I es el tipo de amasadora, con cuatro niveles (α, β, γ y δ). El bloque II es el operario de la amasadora, con cuatro niveles (1, 2, 3 y 4). El bloque III es el laboratorio, con cuatro niveles (las filas). Se supone que no hay interacción entre el factor y los bloques entre sí.

Lo que se quiere averiguar es si hay diferencias significativas entre las dosificaciones (el factor a estudiar). De paso, se desea saber si hay diferencias entre los laboratorios, los operarios y las amasadoras (los bloques).

Os paso un pequeño vídeo donde se explica, de forma muy resumida, este caso, tanto para SPSS como para MINITAB.

Os dejo otro vídeo donde también se explica este tipo de diseño de experimentos.

Referencias:

  • Gutiérrez, H.; de la Vara, R. (2004). Análisis y Diseño de Experimentos. McGraw Hill, México.
  • Vicente, MªL.; Girón, P.; Nieto, C.; Pérez, T. (2005). Diseño de Experimentos. Soluciones con SAS y SPSS. Pearson, Prentice Hall, Madrid.
  • Pérez, C. (2013). Diseño de Experimentos. Técnicas y Herramientas. Garceta Grupo Editorial, Madrid.

 

Optimización heurística de pórticos de paso de carretera de hormigón armado

A continuación recojo uno de los primeros trabajos que hizo nuestro grupo de investigación en el año 2005 sobre optimización heurística de estructuras de hormigón. Se trata de la optimización mediante varias heurísticas (máximo gradiente, aceptación por umbrales y recocido simulado) de un pórtico de paso de carretera de hormigón armado. En este caso se consideraron 28 variables para definir una solución de pórtico. Este artículo se publicó en la revista Hormigón y Acero. Espero que os sea de interés.

 

Referencia:

CARRERA, J.M.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2005). Optimización heurística de pórticos de paso de carretera de hormigón armado. Hormigón y Acero, 236: 85-95.

Descargar (PDF, 318KB)

Toma de decisiones aplicada a la construcción de un puente mixto en cajón

Os dejo a continuación un ejemplo sencillo de aplicación de la técnica AHP de toma de decisiones dirigida a la selección de alternativas en la construcción de un puente mixto en cajón. Se trata de un caso que utilizamos con nuestros estudiantes para enseñar la técnica. Tratamos de evitar que, en los estudios de soluciones, los estudiantes recurran siempre a las matrices de valoración ponderada, donde los pesos de cada criterio siempre se ponen de forma más o menos arbitraria, o bien para justificar la solución preferida. Este tipo de problemas también suelen aparecer en los concursos de licitación de obras públicas.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V. (2019). Multi-criteria decision analysis techniques applied to the construction of a composite box-girder bridge. 13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1458-1467. ISBN: 978-84-09-08619-1

Descargar (PDF, 441KB)

 

Correlación y modelo de regresión lineal. Problema resuelto en puentes losa

Figura 1. Modelo lineal simple de un tablero de puente losa postesado macizo (Yepes et al., 2009)

Uno de los temas básicos que se estudia en la asignatura de estadística de cualquier grado de ingeniería es la inferencia y los modelos de regresión lineal (Figura 1). A pesar de su sencillez, muchos estudiantes y profesionales aplican, sin más, este tipo de regresiones para interpolar valores en múltiples campos de la ingeniería, la economía, la salud, etc. El conocimiento de algunas nociones básicas nos permitiría evitar errores de bulto. Uno de ellos es intentar forzar las predicciones más allá de las observaciones realizadas. Otro error es confundir la correlación con la regresión. Buscar relaciones donde no las hay (relación espuria, Figura 2). Y por último, uno de los aspectos más descuidados es la no comprobación de las hipótesis básicas que se deben cumplir para que un modelo de regresión lineal sea válido.

Figura 2. Relaciones espuria entre el consumo de chocolate y el número de premios Nobel

Dicho de otra forma, valorar la calidad del ajuste mediante el coeficiente de determinación no equivale a valorar el cumplimiento de las hipótesis básicas del modelo. Si las hipótesis del modelo no se cumplen, se pueden estar cometiendo graves errores en las conclusiones de las inferencias. Así, las hipótesis básicas del modelo de regresión son las siguientes:

  • Linealidad: los parámetros y su interpretación no tienen sentido si los datos no proceden de un modelo lineal
  • Normalidad de los errores: se asume que la distribución de los errores es normal
  • Homocedasticidad: la varianza del error es constante
  • Independencia de los errores: las variables aleatorias que representan los errores son mutuamente independientes
  • Las variables explicativas son linealmente independientes

Para aclarar las ideas, he analizado un caso de regresión lineal simple con datos reales procedentes de 26 puentes losa postesados macizos (Yepes et al., 2009). Se trata de conocer la relación que existe entre la luz principal de este tipo de puentes y el canto del tablero. Utilizaremos los programas siguientes: MINITAB, SPSS, EXCEL y MATLAB. También os dejo un vídeo explicativo, muy básico, pero que espero sea de interés. Dejo los detalles matemáticos aparte. Los interesados pueden consultar cualquier manual básico de estadística al respecto.

Descargar (PDF, 817KB)

Referencias:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Los algoritmos genéticos

Charles Darwin en una fotografía tomada por J.M. Cameron en 1869.

Resulta fascinante comprobar cómo aplicando los mecanismos básicos de la evolución ya descrita por Darwin en su obra fundamental, El origen de las especies por medio de la selección natural, o la preservación de las razas preferidas en la lucha por la vida, publicada en 1859, se pueden generar algoritmos capaces de optimizar problemas complejos. Este tipo de metaheurísticas inspiradas en la Naturaleza ya se comentaron en artículos anteriores cuando hablamos de la optimización por colonias de hormigas o de la cristalización simulada. Aunque es un algoritmo ampliamente conocido por la comunidad científica, voy a intentar dar un par de pinceladas con el único afán de divulgar esta técnica. La verdad es que las implicaciones filosóficas que subyacen tras la teoría de Darwin son de una profundidad difícil de entender cuando se lleva a sus últimos extremos. Pero el caso es que estos algoritmos funcionan perfectamente en la optimización de estructuras de hormigón, problemas de transporte y otros problemas difíciles de optimización combinatoria.

Para aquellos interesados, os paso en las referencias un par de artículos donde hemos aplicado los algoritmos genéticos para optimizar rutas de transporte aéreo o pilas de puente huecas de hormigón armado.

Sin embargo, para aquellos otros que queráis un buen libro para pensar, os recomiendo “La peligrosa idea de Darwin”, de Daniel C. Dennett. A más de uno le hará remover los cimientos más profundos de sus creencias. Os paso la referencia al final.

Básicamente, los algoritmos genéticos “Genetic Algorithms, GA”, simulan el proceso de evolución de las especies que se reproducen sexualmente. De manera muy general, se puede decir que en la evolución de los seres vivos, el problema al que cada individuo se enfrenta diariamente es el de la supervivencia. Para ello cuenta, entre otras, con las habilidades innatas provistas en su material genético. A nivel de los genes, el problema consiste en la búsqueda de aquellas adaptaciones beneficiosas en un medio hostil y cambiante. Debido en parte a la selección natural, cada especie gana cierta “información” que es incorporada a sus cromosomas.

Durante la reproducción sexual, un nuevo individuo, diferente de sus padres, se genera a través de la acción de dos mecanismos fundamentales: El primero es el cruzamiento, que combina parte del patrimonio genético de cada progenitor para elaborar el del nuevo individuo; el segundo es la mutación, que supone una modificación espontánea de esta información genética. La descendencia será diferente de los progenitores, pero mantendrá parte de sus características. Si los hijos heredan buenos atributos de sus padres, su probabilidad de supervivencia será mayor que aquellos otros que no las tengan. De este modo, los mejores tendrán altas probabilidades de reproducirse y diseminar su información genética a sus descendientes.

Holland (1975) estableció por primera vez una metaheurística basada en la analogía genética. Un individuo se puede asociar a una solución factible del problema, de modo que se pueda codificar en forma de un vector binario “string”. Entonces un operador de cruzamiento intercambia cadenas de los padres para producir un hijo. La mutación se configura como un operador secundario que cambia, con una probabilidad pequeña, algunos elementos del vector hijo. La aptitud del nuevo vector creado se evalúa de acuerdo con una función objetivo.

Los pasos a seguir con esta metaheurística serían los siguientes:

  1. Generar una población de vectores (individuos).
  2. Mientras no se encuentre un criterio de parada:
    1. Seleccionar un conjunto de vectores padre, que serán reemplazados de la población.
    2. Emparejar aleatoriamente a los progenitores y cruzarlos para obtener unos vectores hijo.
    3. Aplicar una mutación a cada descendiente.
    4. Evaluar a los hijos.
    5. Introducir a los hijos en la población.
    6. Eliminar a aquellos individuos menos eficaces.

Normalmente este proceso finaliza después de un numero determinado de generaciones o cuando la población ya no puede mejorar. La selección de los padres se elige probabilísticamente hacia los individuos más aptos. Al igual que ocurre con en la Naturaleza, los sujetos con mayor aptitud diseminan sus características en toda la población.

Esta descripción de los GA se adapta a cada situación concreta, siendo habitual la codificación de números enteros en vez de binarios. Del mismo modo se han sofisticado los distintos operadores de cruzamiento y mutación.

Os dejo a continuación un vídeo explicativo que he elaborado para mis clases de “Modelos predictivos y de optimización heurística de estructuras de hormigón“, del Máster Universitario en Ingeniería del Hormigón, de la Universitat Politècnica de València.

Referencias:

DENNETT, D.C. (1999). La peligrosa idea de Darwin. Galaxia Gutenberg. Círculo de Lectores, Barcelona.

HOLLAND, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)

MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions, 27(1): 95-112.  ISSN: 1696-2281.  (pdf)

PONZ-TIENDA, J.L.; YEPES, V.; PELLICER, E.; MORENO-FLORES, J. (2013). The resource leveling problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29(1):161-172. DOI:http://dx.doi.org/10.1016/j.autcon.2012.10.003. (link)

YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.