Apisonadoras estáticas de rodillos lisos

Figura 1. Apisonadora estática de rodillo liso tipo triciclo. Imagen: V. Yepes

Las apisonadoras estáticas son los compactadores más antiguos, constituidas por rodillos metálicos lisos revestidos mediante una gruesa chapa de acero. Se caracterizan por la presión estática que ejercen sobre el terreno, considerándose un área de contacto que depende del diámetro de los cilindros, del peso de la máquina y del tipo de suelo. Sin embargo, el efecto de la compactación estática alcanza muy poca profundidad, por lo que no son eficientes. Es por ello que hoy en día no se fabrican compactadores estáticos de rodillos, sino que son los vibratorios los que, en ausencia de vibración, se usan de forma estática para determinadas aplicaciones, como puede ser el planchado o sellado de la última capa compactada de suelo en una jornada o en las primeras pasadas de compactación de aglomerados asfálticos.

La densificación del suelo que provocan los rodillos lisos se reduce considerablemente a medida que éste profundiza en la tongada que se compacta y dicho efecto de compactación se produce de arriba hacia abajo.

En la compactación de suelos, estas máquinas serían adecuadas para arenas y gravas bien graduadas, limos y arcillas de baja plasticidad, en tongadas de 10-20 cm y 4-8 pasadas, pero no lo son en arenas uniformes, arenas limosas y arcillas blandas. Cuando se utiliza en arcillas y limos plásticos, es común que al cabo de cierto número de pasadas lleguen a presentarse fracturas o grietas en la parte superior de la tongada, debido a la rigidez que esta zona adquiere por excesiva compactación en comparación con la zona inferior de la misma capa. En este caso, queda la capa inferior con una rigidez y una compacidad más baja.

Existen dos tipos básicos: triciclo y tándem, pues no es habitual el uso del rodillo liso remolcado. Sus velocidades varían hasta 10-12 km/h.

Tipo triciclo

Figura 2. Apisonadora estática tipo triciclo

Consta de un cilindro delantero dividido normalmente en dos mitades con giro independiente para facilitar los cambios de dirección, y dos cilindros traseros en el eje motor de gran diámetro. Los rodillos delantero y traseros se encuentran solapados, con una anchura de compactación de unos 2 m. La distribución por eje del peso, es generalmente del 70% hacia el eje motriz (trasero) y el 30% hacia el eje direccional (delantero). La energía de trabajo se puede variar lastrándolo con agua. Sus pesos oscilan entre 7 y 20 t. Los motores diésel que los propulsan tienen una potencia media de 40 kW. La velocidad máxima de estas apisonadoras está entre 8 y 10 km/h.

El rodillo triciclo se utiliza en compactación de caminos de macadán, bacheos e incrustación de gravilla en tratamientos superficiales, no utilizándose ya en compactación de aglomerados y, menos aún, de terraplenes.

 

Tipo tándem

Figura 3. Apisonadora estática de rodillo liso tipo tándem. Imagen: V. Yepes

Lo componen dos cilindros, el delantero de dirección, y el trasero tractor, aunque a veces ambos son tractores. El movimiento direccional se obtiene con un ángulo entre los ejes de los dos rodillos. El ancho de compactación suele ser inferior a los 1,60 m. El peso normal oscila entre 5 y 15 t. La potencia de su motor diésel varía entre 25 y 125 kW. La velocidad máxima de estas apisonadoras está entre 8 y 15 km/h.

Las apisonadoras estáticas de rodillo liso son secundarias en las obras de tierra, ya que la presión transmitida al terreno es muy superficial debido a la reducida área de contacto -generatriz del cilindro. Se crea una costra rígida en superficie, por lo que muchas veces sirve la máquina para el sellado y cierre de una tongada. Otra de sus limitaciones, es que la carga transmitida siempre es constante, no adaptándose a la capacidad resistente que va adquiriendo el suelo con cada una de las pasadas.

El rodillo tándem ha quedado casi exclusivamente relegado al aglomerado, empleándose en algunos casos como compactador y en otros, simplemente como alisador, ya que con frecuencia la fase principal de compactación del aglomerado la realiza el compactador de neumáticos.

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influye el tiempo y la velocidad de aplicación de la sobrecarga en la compactación?

Figura 1. Compactador vibratorio JCB

La influencia del tiempo de actuación de la sobrecarga se observa con facilidad en un ensayo edométrico, tal y como hemos visto en una entrada anterior. Si se aplica una carga constante, la deformación aumenta con el tiempo pero tiende asintóticamente a una deformación unitaria, tal y como se ve en la Figura 2. Al mismo tiempo, se puede comprobar la pérdida de humedad por las paredes de la probeta.

Si la prueba se repite aplicando la misma carga con una probeta mayor, se comprueba que se llega a idéntica deformación unitaria, pero éstas al principio son más lentas, tardando más en salir el agua.

Figura 2. Variación de la deformación del suelo con el tiempo de aplicación de la carga

En cuanto a la influencia de la velocidad de aplicación de la sobrecarga y las deformaciones obtenidas se constata cómo la máxima se retrasa respecto a la aplicación efectiva de la máxima presión, debido a los fenómenos descritos con anterioridad. En este caso la carga se aplica de forma creciente hasta llegar a su máximo, disminuyéndola de forma análoga.

A su vez, si dicho esfuerzo se aplica con rapidez, la deformación máxima alcanzada será menor. Sin embargo, al incrementar la velocidad de traslación se puede dar un mayor número de pases por hora de trabajo, existiendo una velocidad idónea, compromiso entre ambos efectos contradictorios. Por consiguiente, y a efectos prácticos, se consideran dos vías para aumentar el efecto de la compactación: o bien incrementar la carga aplicada, o disminuir la velocidad del compactador. Estas circunstancias serán importantes en los terrenos finos, y menos en terrenos granulares.

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Mejor pocas pasadas de un compactador muy pesado?

Figura 1. Compactador vibratorio

Una pregunta que suelen hacerme es saber si resulta más económico compactar un terreno con un compactador pesado con pocas pasadas o un compactador menos pesado, pero con más pasadas. Es conocido que el número de pasadas y la profundidad de la capa de terreno a compactar dependerá no solo de las características de la máquina, sino también de la naturaleza del suelo y su humedad. La determinación de estos parámetros se puede realizar mediante un tramo de prueba. Sin embargo, en esta entrada quiero centrarme en el aspecto energético del problema. En efecto, voy a contar qué ocurre con los ciclos de carga-descarga sobre un terreno al que se le aplican deformaciones remanentes progresivas.

Si se consideran varios ciclos de carga y descarga, es interesante comprobar cómo los módulos de deformación de cada lazo de histéresis van aumentando progresivamente hasta alcanzar un valor de equilibrio. La densificación del terreno va provocando deformaciones remanentes progresivas, que llegan a un límite, en cuyo rango de presiones el suelo se comporta elásticamente (esto es cierto salvo en terrenos muy plásticos y con gran humedad).

En la Figura 2 se observa la variación de la deformación residual con el número de ciclos de carga-descarga.

Figura 2. Número de ciclos de carga-descarga con respecto a la deformación residual

Estos mismos ciclos de carga y descarga ocurren al pasar un compactador por encima de una capa que se desea compactar. Cada pasada constituye un ciclo completo de carga y descarga, con un terreno que se encuentra en una situación intermedia entre el confinamiento horizontal total y el libre, que son los dos experimentos descritos.

El proceso provoca deformaciones residuales cada vez menores, hasta llegar a una situación en el límite, donde las tensiones y deformaciones son lineales, y donde una carga mayor rompe el suelo, subiendo éste alrededor del compactador. Veamos en la Figura 3 las sucesivas relaciones entre tensiones y deformaciones que se producen en cada pasada de compactador. El área formada por los puntos OA1B1 es proporcional a la energía necesaria para obtener la deformación remanente OB1. Por tanto, cuanto mayor sea la carga del compactador, menos pasadas serán necesarias para llegar a la deformación remanente deseada, es decir, al grado de densidad especificado. Ahora bien, dicha carga debe ser inferior a la de rotura del material.

Figura 3. Relación entre tensión y deformación con ciclos de cargas y descargas sucesivas

Se presentan dos formas de llegar a la deformación remanente necesaria: o bien con muchas pasadas de un compactador menos pesado, o bien con pocas pasadas de un compactador más pesado. En el límite la energía necesaria con una sola pasada sería proporcional a la curva OAB, mientras que con muchas pasadas sería proporcional aproximadamente a OANBN. Ello podría hacer pensar que sería más económico muchas pasadas con un compactador pequeño que pocas con uno más grande. Esto no es del todo cierto ya que también se consume energía por rozamiento al trasladarse los equipos. Bajo una perspectiva energética, lo óptimo se encuentra en una situación intermedia.

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bandejas vibratorias o placas vibrantes

Figura 1. Bandeja Vibratoria Reversible VDR 26H

Son máquinas que transmiten su vibración mediante una bandeja accionada por el giro de masas excéntricas unidas a ella. Decaladas convenientemente las masas, se consigue una resultante de la fuerza centrífuga en el sentido de la marcha del operador. Las bandejas vibratorias con movimiento sólo de avance tienen una excéntrica situada en la parte delantera de la placa, mientras que las bandejas con movimiento en ambos sentidos, tienen dos. Las dos excéntricas permiten la regulación gradual de la velocidad. Son accionados por motores de gasolina o diésel, e incluso por motores eléctricos.

El motor y el manillar se montan sobre una placa separada, que está aislada de la bandeja vibratoria por muelles de acero o amortiguadores de goma. Tienen una longitud entre 0,50 y 1,00 m, con anchos entre 30 y 80 cm. Su velocidad varía entre 20 y 25 m/min. Se clasifican según su peso y frecuencia en:

  • Ligeros: alrededor de 100 kg, 100 Hz.
  • Medios: 500-1000 kg, 50 Hz.
  • Pesados: 1500-3000 kg, 20 Hz.

Las bandejas ligeras operan normalmente a altas frecuencias y bajas amplitudes. Son adecuadas para la compactación de arena y grava, cuando trabajan en capas delgadas (10-15 cm). Cuando se equipan con sistema de riego, también son útiles para el tratamiento de superficies asfálticas. Las bandejas vibratorias medio-pesadas (>400 kg) son efectivas sobre suelos semicohesivos -hasta 12-15% de finos- debido a su peso y sus mayores amplitudes. Evidentemente, no se aconsejan para trabajos de alto volumen. Suelen ser muy útiles en la compactación de rellenos de zanjas.

Se pueden acoplar varias placas a una máquina sobre neumáticos o sobre orugas constituyendo un compactador de multiplacas vibrantes.

Figura 2. Compactador de multiplacas vibrantes

 

Figura 3. Placa vibrante acoplada al brazo de una retroexcavadora. Imagen: V. Yepes

Os dejo algún vídeo para que veáis el funcionamiento de esta máquina.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Rodillos de malla o reja en la compactación

Compactador de rodillos de malla
Figura. Compactador de rodillos de malla

El rodillo de rejas constituye un compactador estático, es decir, que produce la densificación del suelo fundamentalmente por su peso propio. Esta máquina, poco habitual, se ha venido utilizando en materiales pétreos que requieren disgregación, pero en realidad también da buen resultado en una gran variedad de terrenos, incluyendo arcillas homogéneas o mezclas de arenas, limos y arcillas, con abundancia de finos. La superficie del cilindro está formada por una malla similar a una criba o una parrilla fabricada con barras de acero, que forman una cuadrícula, disminuyendo la superficie de contacto alrededor de un 50% y aumentando la presión de contacto de 1,5 a 6,0 MPa. Por lo común se fabrican con alto peso (más de 14 toneladas, lastrados). Los hay estáticos y con vibración. Es útil para compactar suelos rocosos, gravas y arenas, sobre todo si se trituran rocas blandas o terrenos finos secos. También permite triturar los firmes viejos de carreteras y compactarlos, dejándolos en condiciones de recibir una nueva capa de asfalto. La altura de la tongada puede llegar hasta 25 cm y la velocidad que alcanza es la del tractor que lo arrastra. No obstante, su utilización actual es escasa.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

¿Qué es la curva de compactación de un suelo?

Seguimos con este post la divulgación de conceptos básicos relacionados con una de las unidades de obra que más patologías conlleva a largo plazo: la compactación. En otros posts anteriores ya hablamos de los tramos de prueba y de la compactación dinámica. La compactación constituye una unidad de obra donde la interacción entre la naturaleza del suelo, sus condiciones, la maquinaria y el buen hacer de las personas que intervienen en ella son cruciales. Desgraciadamente, en numerosas ocasiones se trata a la compactación como una unidad de obra complementaria o auxiliar. Vamos, por tanto, en 8 minutos, a dar dos pinceladas sobre el concepto de curva de compactación. Espero que os guste.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Recomendaciones de trabajo en la compactación

Compactadora-Caterpillar¿Qué recomendaciones podemos dar para ejecutar correctamente la compactación de un suelo? En posts anteriores ya hemos descrito la curva de compactación, la elección de un equipo de compactación y el tramo de prueba. Ahora vamos a centrarnos en algunos consejos, espero que útiles, que permitan mejorar la productividad y la calidad de esta unidad de obra que suele presentar tantas patologías y quebraderos de cabeza. Para ello nos ayudaremos de un Polimedia que espero que os guste. Al final del post os he escrito algunas recomendaciones y algunas referencias por si os resultan útiles.

NORMAS Y RECOMENDACIONES DE TRABAJO.

  • Una vez se ha extendido el material en tongadas con espesor adecuado y con el grado de humedad determinado[1], se procede de forma ordenada a compactar, controlando el número de pases y su distribución homogénea.
  • Se pueden comentar algunas recomendaciones de “buena práctica constructiva” en relación a la compactación. Continue reading “Recomendaciones de trabajo en la compactación”