Construcción de estructura mixta: Torre BBVA Bancomer

Torre durante su construcción. https://es.wikipedia.org/wiki/Torre_BBVA_(M%C3%A9xico)#/media/Archivo:TorreBancomer_21-03-2014.JPG

La Torre BBVA Bancomer se ubica en un área de 6.600 m2 en la esquina que forman Paseo de la Reforma y la calle de Lieja, en la Colonia Juárez de la Ciudad de México. Su altura es de 235 metros hasta el helipuerto y 250 m hasta la punta de las antenas, sin embargo, la altura oficial llega a 235 m debido a que las antenas son decorativas. Cuenta con 60 pisos de 4,30 metros de altura cada uno en los pisos de oficinas y 3,7 m en los niveles de estacionamiento. La Torre aloja a 4.500 empleados, aproximadamente. El inmueble cuenta con certificación LEED ORO, amigable con el ambiente, ahorra un 40% de agua y 25% de energía.

El diseño del proyecto es de Legorreta + Legorreta y Rogers Stirk Harbour + Partners, la cimentación la realiza Cimesa y la gerencia de construcción corre a cargo de Turner y Marhnos. La construcción comenzó a principios del año 2008,  y se inauguró en el año 2016. Esta torre es la sede central en México del BBVA Bancomer, donde se ubican las oficinas principales.

Torre terminada, en 2016. https://es.wikipedia.org/wiki/Torre_BBVA_(M%C3%A9xico)#/media/Archivo:Torre_Bancomer_2016_3.jpg

Aquí os paso un par de vídeos de la construcción de esta torre, diseñada en estructura mixta. Espero que os guste.

Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación

La ciudad Estado de Singapur desarrolla una copia virtual de sí misma, un proyecto basado en big data, IoT, computación en la nube y realidad virtual. https://www.esmartcity.es/2019/03/22/singapur-gemelo-digital-posibilidades-ofrece-ciudad-inteligente-tener-copia-virtual-exacta

En menos de una década, gran parte de los ingenieros dejarán de hacer proyectos, tal y como lo conocemos ahora, y pasarán a ser gestores de gemelos híbridos digitales de infraestructuras.

Este podría ser un buen titular periodístico que, incluso podría parecer ciencia ficción, pero que tiene todos los visos de convertirse en realidad en menos tiempo del previsto. Se podría pensar que las tecnologías BIM o los modelos digitales actuales ya son una realidad, es decir, se trata de dar un nuevo nombre a lo que ya conocemos y está en desarrollo, pero de lo que estamos hablando es de un nuevo paradigma que va a revolver los cimientos de la tecnología actual en el ámbito de la ingeniería. Voy a desgranar esta conclusión explicando cada uno de los avances y los conceptos que subyacen al respecto.

La semana pasada tuve la ocasión de escuchar la conferencia magistral, en el Congreso CMMoST, de Francisco Chinesta, catedrático en la ENSAM ParisTech e ingeniero industrial egresado por la Universitat Politècnica de València. Trataba de un nuevo paradigma en la ingeniería basada en datos y no era otra que la de los gemelos híbridos digitales, un paso más allá de la modelización numérica y de la minería de datos. Este hecho coincidió con el anuncio en prensa de que Google había publicado en la prestigiosa revista Nature un artículo demostrando la supremacía cuántica, un artículo no exento de polémica, pues parece ser que se diseñó un algoritmo que tiene como objetivo generar números aleatorios mediante un procedimiento matemático muy complejo y que obligaría al superordenador Summit, que es actualmente el más potente del mundo gracias a sus 200 petaflops, a invertir 10.000 años en resolver el problema, que que el procesador cuántico Sycamore de 54 qubits de Google habría resuelto en tres minutos y 20 segundos.

Si nos centramos en la supuesta supremacía cuántica de Google, se debería matizar la noticia al respecto. En efecto, IBM ya se ha defendido diciendo que su ordenador Summit no se encuentra tan alejado, pues se ha resuelto un problema muy específico relacionado con generar números aleatorios y que parece que Sycamore sabe resolver muy bien. De hecho, IBM afirma que ha reajustado su superordenador y que ahora es capaz de resolver ese mismo problema en 2,5 días con un margen de error mucho menor que el ordenador cuántico. Aquí lo importante es saber si esta computación cuántica estará, sin trabas o límites, accesible a cualquier centro de investigación o empresa para resolver problemas de altísima complejidad computacional (problemas NP-hard como pueden ser los de optimización combinatoria). Tal vez los superordenadores convencionales servirán para resolver unos problemas específicos en tareas convencionales, y los cuánticos, imparables en resolver otro tipo de problemas. Todo se andará, pero parece que esto es imparable.

Por tanto, parece que el hardware necesario para la una computación ultrarrápida está o estará a nuestro alcance en un futuro no muy lejano. Ahora se trata de ver cómo ha cambiado el paradigma de la modelización matemática. Para ello podríamos empezar definiendo al “gemelo digital”, o digital twin. Se trata de un modelo virtual de un proceso, producto o servicio que sirve de enlace entre un ente en el mundo real y su representación digital que está utilizando continuamente datos de los sensores. A diferencia del modelado BIM, el gemelo digital no representa exclusivamente objetos espaciales, sino que también podría representar procesos, u otro tipo de entes sin soporte físico. Se trata de una tecnología que, según todos los expertos, marcarán tendencia en los próximos años y que, según el informe “Beyond the hype“, de KPMG, será la base de la cuarta Revolución Industrial.

https://www.geofumadas.com/por-que-usar-gemelos-digitales-en-la-construccion/

Sin embargo, el gemelo digital no es una idea nueva, pues a principios de este siglo ya la introdujo Michael Grieves, en colaboración con John Vickers, director de tecnología de la NASA. Esta tecnología se aplica al Internet de las Cosas, que se refiere a la interconexión digital de objetos cotidianos con internet. Además, se encuentra muy relacionada con la inteligencia artificial y con la minería de datosdata-mining“. Empresas como Siemens ya están preparando convertir sus plantas industriales en fábricas de datos con su gemelo digital, o General Electric, que cuenta ya con 800.000 gemelos digitales para monitorizar virtualmente la cadena de suministro.

Con todo, tal y como explicó el profesor Chinesta (Chinesta et al., 2018), existe actualmente un cambio de paradigma hacia los gemelos digitales híbridos que, extrapolando su uso, va a significar la gran revolución en la forma de proyectar y gestionar las infraestructuras, tal y como avancé al principio del artículo.

En efecto, los modelos utilizados en ciencia y en ingeniería son muy complejos. La simulación numérica, la modelización y la experimentación han sido los tres pilares sobre los que se ha desarrollado la ingeniería en el siglo XX. La modelización numérica, que sería el nombre tradicional que se ha dado al “gemelo digital” presenta problemas prácticos por ser modelos estáticos, pues no se retroalimentan de forma continua de datos procedentes del mundo real a través de la monitorización continua. Estos modelos numéricos (usualmente elementos finitos, diferencias finitas, volumen finito, etc.) son suficientemente precisos si se calibran bien los parámetros que lo definen. La alternativa a estos modelos numéricos son el uso de modelos predictivos basados en datos masivos big-data, constituyendo “cajas negras” con alta capacidad de predicción debido a su aprendizaje automáticomachine-learning“, pero que esconden el fundamento físico que sustentan los datos (por ejemplo, redes neuronales). Sin embargo, la experimentación es extraordinariamente cara y lenta para alimentar estos modelos basados en datos masivos.

El cambio de paradigma, por tanto, se basa en el uso de datos inteligentes “smart-data paradimg“. Este cambio se debe basar, no en la reducción de la complejidad de los modelos, sino en la reducción dimensional de los problemas, de la retroalimentación continua de datos del modelo numérico respecto a la realidad monitorizada y el uso de potentes herramientas de cálculo que permitan la interacción en tiempo real, obteniendo respuestas a cambios paramétricos en el problema. Dicho de otra forma, deberíamos poder interactuar a tiempo real con el gemelo virtual. Por tanto, estamos ante otra realidad, que es el gemelo virtual híbrido.

Por tanto, estamos ahora en disposición de centrarnos en la afirmación que hice al principio. La nueva tecnología en gemelos digitales híbridos, junto con la nueva capacidad de cálculo numérico en ciernes, va a transformar definitivamente la forma de entender, proyectar y gestionar las infraestructuras. Ya no se trata de proyectar, por ejemplo, un puente. Ni tampoco estamos hablando de diseñar un prototipo en 3D del mismo puente, ni siquiera de modelar en BIM dicha estructura. Estamos hablando de crear un gemelo digital que se retroalimentará continuamente del puente real, que estará monitorizado. Se reajustarán los parámetros de cálculo del puente con los resultados obtenidos de la prueba de carga, se podrán predecir las labores de mantenimiento, se podrá conocer con antelación el comportamiento ante un fenómeno extraordinario como una explosión o un terremoto. Por tanto, una nueva profesión, que será la del ingeniero de gemelos virtuales híbridos de infraestructuras será una de las nuevas profesiones que reemplazarán a otras que quedarán obsoletas.

Se tratará de gestionar el gemelo durante el proyecto, la construcción, la explotación e incluso el desmantelamiento de la infraestructura. Se podrán analizar cambios de usos previstos, la utilización óptima de recursos, monitorizar la seguridad, y lo más importante, incorporar nuevas funciones objetivo como son la sostenibilidad económica, medioambiental y social a lo largo del ciclo de vida completo. Este tipo de enfoque es el que nuestro grupo de investigación tiene en el proyecto DIMILIFE. Proyectos como puentes, presas, aeropuertos, redes de carreteras, redes de ferrocarriles, centrales nucleares, etc. tendrán su gemelo digital. Para que sea efectivo, se deberá prever, desde el principio, la monitorización de la infraestructura para ayudar a la toma de decisiones. Además, servirá para avanzar en la aproximación cognitiva en la toma de decisiones (Yepes et al., 2015).

Os paso a continuación un vídeo sobre el uso de los gemelos digitales en la ciudad de Singapur.

A continuación os pongo un vídeo sacado de la página de Elías Cueto, de la Universidad de Zaragoza, en la que vemos cómo se interactúa con un gemelo virtual de un conejo.

 

En este otro vídeo, el profesor Chinesta explica el cambio de paradigma del que hemos hablado anteriormente en el artículo.

¿Qué es la computación cuántica? Aquí tenemos un vídeo de Eduardo Sáenz de Cabezón:

Referencias:

Chinesta, F.; Cueto, E.; Abisset-Chavanne, E.; Duval, J.L. (2018). Virtual, Digital and Hybrid Twins: A New Paradigm in Data-Based Engineering and Engineered Data. Archives of Computational Methods in Engineering, DOI: 10.1007/s11831-018-9301-4

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Normativa peruana sobre suelos y cimentaciones

¿Es bueno aplicar una norma que se utiliza en un país distinto al nuestro? Esta pregunta se repite muchas veces cuando se abren debates, sobre todo en España sobre el uso de los Eurocódigos (véase el caso de la Instrucción de Hormigón Estructural). Es evidente que en cada país se utiliza un tipo de norma que, si bien tiende a unificar aquellas partes comunes asentadas en el ámbito técnico y científico, en numerosas ocasiones se adapta a la idiosincrasia del país y sus circunstancias. Aspectos como el riesgo sísmico o geológico, materiales y procedimientos constructivos más empleados, sistemas de control de calidad en el sector, etc., hacen que se particularicen o resalten determinados aspectos de cada norma. No obstante todo lo anterior, sería un gran avance unificar normas y criterios, aunque en cada país se adoptaran coeficientes de seguridad o parámetros de diseño particulares.

En este caso os presento la Resolución Ministerial nº 406-2018-vivienda por la que se publica la Norma Técnica E.050 sobre “Suelos y Cimentaciones” del Perú. Agradezco el documento a Christian Martín Torres Delgado. Es una de las ventajas de estar conectado a las redes sociales, en este caso LinkedIn, que permiten compartir conocimiento técnico de forma ágil. Espero que el documento os sea de interés.

Descargar (PDF, 2.72MB)

Problema de selección de una cimentación. Desarrollo del pensamiento crítico

http://cimentacioneslevante.es/muros-pantalla/

Desde el proceso de Bolonia, muchos cambios han habido en nuestras universidades y planes de estudios. Uno de ellos es la necesidad de desarrollar y evaluar las competencias del título correspondiente a través de cada una de las asignaturas y comprobar que se adquieren los resultados de aprendizaje. De este tema ya hemos hablado varias veces. Hoy os traigo un problema que me sirve para evaluar, a través de una rúbrica, la competencia transversalPensamiento Crítico” en la asignatura de Procedimientos de Construcción II, del grado de Ingeniería Civil de la Universitat Politècnica de València. Espero que os sea de interés.

También os dejo una presentación que hice en un congreso docente donde explico cómo realizamos esta evaluación.

ENUNCIADO:

Se quiere construir un edificio de 30 plantas de altura más seis sótanos (altura de 3,00 m cada sótano) en una ciudad de 500000 habitantes. El solar se encuentra entre dos medianerías, y tiene una superficie rectangular de 20 x 35 m, siendo las medianerías los lados de 20 m. Existe la posibilidad de utilizar un solar anejo para realizar la obra, de 44 x 35 m. Hay acceso directo tanto al solar donde se va a realizar el edificio como al solar disponible, según se observa en la Figura 1. El clima es atlántico, con lluvias abundantes, con temperaturas que se supone oscilan entre 5 y 25 ºC, y se tienen 10 horas de luz de media durante la construcción de la cimentación.

Figura 1. Esquema de la situación del solar del edificio, del solar disponible y de los edificios construidos

Se ha realizado un sondeo y se ha determinado un corte del terreno que se muestra en la Figura 2. Se observa que el nivel freático se encuentra a 3,50 m de la superficie. Existe un sustrato duro de areniscas de 4,00 m de espesor situado entre dos capas de limos arcillosos con trazas de arenas y gravas. A 22 m de profundidad existe una capa de calizas sanas, de al menos 15 m de potencia. Los primeros 2,20 m son un relleno antrópico donde existen tocones de árboles, basura y una mezcla de limos arcillosos y gravas.

Figura 2. Esquema básico del corte geológico

La solución a proyectar debe conjugar la posibilidad técnica de ejecución, el impacto ambiental y social sobre el entorno (contaminación, ruidos, vibraciones, etc.), la facilidad constructiva y la viabilidad económica, Use los datos del enunciado que considere importantes y, en el caso de necesitar datos, razone adecuadamente el uso de información adicional.

Preguntas de grupo:

  1. Indique qué tipo de cimentación sería la más conveniente.
  2. Razone dos procesos constructivos que podrían ser aplicados y cuál de los dos cree que será más eficaz. La respuesta debe ser de consenso entre los miembros del grupo.
  3. Define los principales pasos en la construcción de dichas cimentaciones.
  4. Descarte, justificando las razones, al menos tres procesos constructivos de cimentación que no sean aplicables a este caso.
  5. Indique si ha tenido que consultar otras fuentes para la elección de la tipología y el proceso constructivo (en dicho caso indicar cuál), o ha sido suficiente con el temario de la asignatura.

 

Preguntas individuales:

  1. Critique los dos procesos constructivos de la pregunta 2, indicando si está de acuerdo con lo consensuado por el grupo. Se valorará especialmente su opinión crítica personal justificada y si hay diversidad de opiniones entre los miembros del grupo.
  2. Realice una crítica sobre el ejercicio 1, indicando aquellas cosas con las que está de acuerdo con el grupo o no. Se valorará la justificación crítica de la respuesta.
  3. Indique los cinco riesgos para las personas más importantes que supone el procedimiento constructivo elegido y qué medidas preventivas debería utilizar.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

GARCÍA-SEGURA, T.; YEPES, V.; MOLINA-MORENO, F.; MARTÍ, V. (2017). Assessment of transverse and specific competences in civil engineering studies: ‘Critical thinking’. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3683-3692. ISBN: 978-84-617-8491-2

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Assessment of the argumentative ability in innovation management of civil engineering studies. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3904-3913. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; MOLINA-MORENO, F. (2017). Transverse competence ‘critical thinking’ in civil engineering graduate studies: preliminary assessment. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 2639-2649. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2016, Valencia, pp. 1-14. ISBN: 978-84-9048-541-5.

MARTÍ, J.V.; YEPES, V. (2016). Valoración de la competencia transversal “Pensamiento crítico” por los alumnos de GIOP (2015). XIV  Jornadas de Redes de Investigación en Docencia Universitaria 2016

MARTÍ, J.V.; YEPES, V. (2016). Evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. XIV  Jornadas de Redes de Investigación en Docencia Universitaria 2016

YEPES, V.; SEGADO, S.; PELLICER, E.; TORRES-MACHÍ, C. (2016). Acquisition of competences in a Master Degree in Construction Management. 10th International Technology, Education and Development Conference (INTED 2016), March, Valencia, pp. 718-727. ISBN: 978-84-608-5617-7.

MARTÍ, J.V.; YEPES, V. (2015). Pensamiento crítico como competencia transversal en el grado de Ingeniería de Obras Públicas: valoración previa. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-12. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1560 (link)

JIMÉNEZ, J.; SEGADO, S.; YEPES, V.; PELLICER, E. (2015). Students’ guide as a reference for a common case study in a master degree in construction management. 9th International Technology, Education and Development Conference INTED 2015, Madrid, 2nd-4th of March, 2015,  pp. 4850-4857. ISBN: 978-84-606-5763-7.

YEPES, V.; MARTÍ, J.V. (2015). Competencia transversal ‘pensamiento crítico’ en el grado de ingeniería civil: valoración previa. XIII Jornadas de Redes de Investigación en Docencia Universitaria, Alicante, 2 y 3 de julio,  pp. 2944-2952. ISBN: 978-84-606-8636-1. (link)

YEPES, V.; MARTÍ, J.V. (2015). La competencia transversal de comunicación efectiva en estudios de máster en el ámbito de la ingeniería civil y la construcción. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-14. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1540 (link)

JIMÉNEZ, J.; SEGADO, S.; PELLICER, E.; YEPES, V. (2014). Strategic evaluation of a M.Sc. degree in construction management: a faculty vs. students comparison. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain), 10-12 March, pp. 1974-1984. ISBN: 978-84-616-8412-0  (link)

YEPES, V. (2014). El uso del blog y las redes sociales en la asignatura de Procedimientos de Construcción. Jornadas de Innovación Educativa y Docencia en Red IN-RED 2014. 15-16 de julio, Valencia, pp. 1-9. ISBN: 978-84-90482711.

SEGADO, S.; YEPES, V.; CATALÁ, J.; PELLICER, E. (2014). A portfolio approach to a M.Sc. degree in construction management using a common project. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain),  10-12 March,  pp. 2020-2029. ISBN: 978-84-616-8412-0 (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de pórticos de hormigón armado con sistemas de agrupación de columnas

Nos acaban de publicar en la revista Automation in Construction (primer cuartil del JCR) un artículo relacionado con la optimización de pórticos de hormigón armado con sistemas de agrupación de columnas. Se trata de una colaboración con el profesor Moacir Kripka y está dentro del proyecto de investigación DIMALIFE.

Puedes descargar gratuitamente el artículo hasta el 22 de junio de 2019 en el siguiente enlace: https://authors.elsevier.com/a/1Y~vl3IhXMfb77

ABSTRACT

In structural design, it is common practice to adopt the same cross-sectiondimensions for a group of elements. This procedure is mainly for practical and aesthetic reasons, as well as to reduce labour costs, but it also has a positive effect of reducing the number of variables, which simplifies the usual trial and error design process. On the other hand, the total materials cost obtained is closely related to this grouping. Based on this, the present work aims to minimize the cost of reinforced concrete plane frames considering the automated grouping of columns. To achieve this objective, an optimization software was developed by the association of matrix structural analysis, dimensioning and optimization. The sections dimensions, the area of steel and the concrete strength of beams and columns were taken as design variables. For a given maximum number of groups, the optimum grouping and the corresponding values to design variables are obtained. The strategy proposed in this paper to obtain the grouping reduces significantly the number of infeasible candidate solutions during the search process and avoid the proposition of unrealistic designs. For the optimization, a variant of the Harmony Search method was adopted. Some structures were analyzed in order to validate the application of the proposed formulation, as well as to verify the influence of the grouping of elements on the final results. In these structures, it was possible to observe a significant additional reduction in the total cost when automated grouping is performed regarding a uniform grouping, even when a small number of groups is considered. For the 20-floor building frame analyzed, the cost reduction from uniform to automated grouping varied from 5.53 to 7.35%. The influence of the concrete strength on optimal results was also investigated, indicating a cost reduction of 9.74% from best (40 MPa) to worst case (20 MPa). In general, it can be concluded that, when applied in conjunction with the usual design variables, the proposed procedure can enable a significant additional economy, without affecting the structural safety.

KEYWORDS

Optimization; automated grouping; reinforced concrete; plane frames; harmony search

Reference:

BOSCARDIN, J. T.; YEPES, V.; KRIPKA, M. (2019). Optimization of reinforced concrete building frames with automated grouping of columns. Automation in Construction, 104: 331-340. DOI:10.1016/j.autcon.2019.04.024

 

 

 

Categorías para los aspectos e impactos sociales de los edificios

La evaluación del comportamiento social de los edificios no es una tarea sencilla, sobre todo cuando se trata de comparar objetivamente edificios distintos o bien cuando se trata de determinar el grado en el que el edificio alcanza o supera los requisitos mínimos. Esta evaluación debe aplicar medidas relacionadas con los aspectos y los impactos sociales durante el ciclo de vida del edificio. Pues bien, la norma europea EN-15643-3 establece el marco para la evaluación del comportamiento social de un edificio, como parte de la evaluación de su sostenibilidad. Esta norma forma parte de una serie elaborada por el Comité Técnico CEN/TC 350.

La norma citada ha establecido una serie de categorías para describir los aspectos e impactos vinculados con el comportamiento social de los edificios. A continuación se da un repaso a dichas categorías.

Accesibilidad

Es la capacidad de un espacio que permite entrar con facilidad. Puede incluir los siguientes aspectos:

  • accesibilidad de personas con necesidades específicas
  • accesibilidad a los servicios del edificio

 

Adaptabilidad

Es la capacidad del objeto de la evaluación, o parte del mismo, para ser cambiado o modificado de forma que sea adecuado para un uso específico. Puede incluir los siguientes aspectos:

  • capacidad de acomodarse a los requisitos del usuario individual
  • capacidad de acomodarse al cambio en los requisitos del usuario
  • capacidad de acomodarse a los cambios técnicos
  • capacidad de acomodarse a los cambios de uso

 

Salud y confort

Incluye los siguientes aspectos:

  • características acústicas
  • características de la calidad del aire interior
  • características de confort visual
  • características de calidad del agua
  • características electromagnéticas
  • características espaciales
  • características térmicas

 

Cargas al vecindario

Debe incluir:

  • ruido
  • emisiones al aire exterior, liberación al suelo y al agua
  • deslumbramiento y sobresombreamiento
  • golpes y vibraciones
  • efectos del viento localizados

 

Mantenimiento

Debe incluir las operaciones de mantenimiento (incluyendo los aspectos de salud y confort para el usuario del edificio y las cargas al vecindario).

 

Seguridad

La evaluación de la seguridad de las personas y bienes debe incluir:

  • resistencia al cambio climático (resistencia a la lluvia, al viento, a la nieve, a las inundaciones, radiación solar, a la temperatura)
  • resistencia a acciones accidentales (terremotos, explosiones, fuego, impactos de tráfico)
  • seguridad de las personas y los bienes frente a intrusos y vandalismo
  • seguridad de los bienes frente interrupciones de suministros

 

Implicación de las partes interesadas

Debe incluir la oportunidad de las partes interesadas de participar en el proceso de toma de decisiones para la realización de un edificio.

Referencia:

AENOR (2012). UNE-EN 15643-3. Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios. Parte 3: Marco para la evaluación del comportamiento social.

 

¿Qué indicadores se usan en la evaluación del comportamiento ambiental de los edificios?

http://www.ecohabitar.org/predecir-el-impacto-ambiental-de-la-construccion-de-edificios/

No resulta sencillo seleccionar qué indicadores son los más adecuados para evaluar el comportamiento ambiental de un edificio. Estos indicadores deberían cuantificar los impactos y los aspectos ambientales del edificio durante su ciclo de vida completo, debiendo ser relativamente sencillos en su utilización y comprensión. Recordemos que un aspecto ambiental es el elemento de las actividades, productos o servicios de una organización que puede interactuar con el medio ambiente, mientras que el impacto ambiental es cualquier cambio en el medio ambiente, ya sea adverso o beneficioso, como resultado total o parcial de los aspectos ambientales de una organización.

Para que la cuantificación anterior sea efectiva, deberíamos ponernos de acuerdo en aquellos indicadores para los que existen métodos de cálculo aceptados en el contexto del análisis de ciclo de vida (ACV). Así, por ejemplo, indicadores de interés como la toxicidad humana, la eco-toxicidad, la biodiversidad o el uso del suelo son relevantes, pero no existe un consenso en el método de cálculo que permita comparaciones objetivas.

Los indicadores deben ayudar a la toma de decisiones, para lo cual se deben analizar los cambios la variación de los cambios en el tiempo y el desarrollo de cambios con respecto a los objetivos preestablecidos. Para ello, se les debe exigir que sean objetivos y que sus resultados se puedan reproducir.

La Norma europea EN 15978Sustainability of construction works. Assessment of environmental performance of buildings. Calculation method” proporciona unas tablas con aquellos indicadores de los que existen métodos de cálculo aceptados. Estos indicadores describen impactos ambientales, uso de recursos e información ambiental adicional.

Indicadores que describen impactos ambientales:

  • Potencial de calentamiento global, GWP (Global warming potential)
  • Potencial de agotamiento de la capa de ozono estratosférica, ODP (Depletion potential of the stratospheric ozone layer)
  • Potencial de acidificación de tierra y agua, AP (Acidification potential of land and water)
  • Potencial de eutrofización, EP (Eutrophication potential)
  • Potencial de formación de oxidantes fotoquímicos del ozono troposférico, POCP (Formation potential of tropospheric ozone photochemical oxidants)
  • Potencial de agotamiento de recursos abióticos para elementos, ADP_elementos (Abiotic Resource Depletion Potential for elements)
  • Potencial de agotamiento de recursos abióticos para combustibles fósiles, ADP_combustibles fósiles (Abiotic Resource Depletion Potential of fossil fuels)

 

Indicadores que describen uso de recursos:

  • Uso de energía primaria no renovable excluyendo los recursos de energía utilizados como materia prima
  • Uso de recursos energía primaria renovable utilizados como materia prima
  • Uso de energía primaria no renovable excluyendo los recursos de energía utilizados como materia prima
  • Uso de recursos energía primaria no renovable utilizados como materia prima
  • Uso de materiales secundarios
  • Uso de combustibles secundarios renovables
  • Potencial de agotamiento de recursos abióticos para elementos, ADP_elementos (Abiotic Resource Depletion Potential for elements)
  • Potencial de agotamiento de recursos abióticos para combustibles fósiles, ADP_combustibles fósiles (Abiotic Resource Depletion Potential of fossil fuels)

 

Indicadores que describen la información ambiental adicional:

Indicadores que describen categorías de residuos

  • Residuos peligrosos vertidos
  • Residuos no peligrosos vertidos
  • Residuos radioactivos vertidos

 

Indicadores que describen los flujos de salida que abandonan el sistema

  • Componentes para reutilización
  • Materiales para el reciclaje
  • Materiales para valorización energética (que no sean residuos para incineración)
  • Energía exportada

 

Referencia:

AENOR (2012). UNE-EN 15978. Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios. Métodos de cálculo.

Evaluación de la sostenibilidad en los edificios

Figura 1. Maison solaire écoologique, île Sainte-Hélène. By Benoit Rochon [CC BY 3.0 (https://creativecommons.org/licenses/by/3.0)], from Wikimedia Commons

El Comité Técnico CEN/TC 350Sostenibilidad en la construcción” ha estado desarrollando normativa para materializar el concepto de sostenibilidad en el sector de la edificación. No solo se trata de normalizar la variable medioambiental, sino que se trata de integrar también los factores económicos y sociales para obtener una visión de conjunto. El referente normativo era necesario debido a la amplia proliferación de métodos de evaluación en los últimos años, desde la aparición del sistema BREEAM (BRE Environmental Assessment Method), en 1992, que ofreció el primer método de etiquetado de edificios. La gran proliferación de métodos, instrumentos y herramientas de evaluación presentan, en general, como desventaja más destacable, el que no proporcionan información sobre los efectos y, en no pocas ocasiones, no permiten un análisis comparativo con el objetivo de plantear acciones de mejora. Todo ello motivó la propuesta de un marco genérico de evaluación de la sostenibilidad (establecido a nivel internacional en la ISO 21929-1:2011 y en el ámbito europeo por la EN 15643-1:2010). En este sentido, se trataba de establecer una valoración de la sostenibilidad con indicadores cualitativos que se midan sin entrar en juicios de valor, capaces de cuantificar los impactos y los aspectos del comportamiento ambiental, social y económico de los edificios.

Se trata, por tanto, de establecer un estándar para comparar objetivamente los resultados de la evaluación de un edificio o una parte del mismo. Para ello se utilizan distintos tipos de información para establecer valores para los diferentes tipos de indicadores e información sobre los escenarios y las etapas del ciclo de vida incluidas en la evaluación. En la Figura 2 se muestra cómo la evaluación supone que el modelo descriptivo, con sus especificaciones técnicas y funcionales básicas, se ha definido por la reglamentación o en el pliego de condiciones del cliente.

 

Figura 2. Concepto de evaluación de la sostenibilidad de edificios. Fuente: UNE-EN 15643-1

La Norma que proporciona el marco metodológico con los principios, requisitos y directrices para la evaluación de la sostenibilidad de los edificios es la EN 15643-1. Dicha Norma establece que los objetivos de la evaluación son, en primer lugar, determinar los impactos y aspectos del edificio y de su parcela y, en segundo lugar, permitir al cliente, al usuario y al arquitecto tomar decisiones y seleccionar alternativas que ayuden a considerar la necesario sostenibilidad de los edificios.

Por otra parte, la satisfacción de los requisitos técnicos y funcionales establecidos en el pliego de condiciones del cliente o bien en las especificaciones del proyecto, generan impactos y aspectos ambientales, sociales y económicos, que pueden ser positivos o negativos, y que pueden persistir durante el ciclo de vida completo del edificio, incluso pudiendo continuar después del desmantelamiento y la demolición.

Otro de los conceptos a tener en cuenta es el denominado “equivalente funcional“. Se trata de una referencia para poder comparar los resultados de las evaluaciones del comportamiento ambiental, social y económico del edificio. Se utiliza, por tanto, el mismo equivalente funcional en la evaluación de cada una de las dimensiones individuales de la sostenibilidad. Este equivalente funcional debe incluir información, al menos, de los siguiente: (a) tipología del edificio (fábrica, oficina, etc.); (b) perfil de uso (residencia, hospital, etc.); (c) requisitos técnicos y funcionales pertinentes; y (d) vida útil requerida.

Referencias:

AENOR (2012). UNE-EN 15643-1. Sostenibilidad en la construcción. Evaluación de la sostenibilidad de los edificios. Parte 1: Margo general.

MOLINA-MORENO, F.; YEPES, V. (2015). Comparative analysis of the assessment proposed by sustainability assessment tools in Building Constructions. 6th European Conference on Energy Efficiency and Sustainability in Architecture and Planning, Donostia-San Sebastián (Spain), 29 june – 1 july,  pp. 143-148. ISBN: 978-84-9082-174-9

OWENSBY-CONTE, D.; YEPES, V. (2012). Green Buildings: Analysis of State of Knowledge. International Journal of Construction Engineering and Management, 1(3):27-32. doi: 10.5923/j.ijcem.20120103.03.

 

 

Clasificación de los sistemas de encofrado

Figura 1. Encofrados verticales. By Farina Destil (Farina Destil) [Public domain], via Wikimedia Commons

Se pueden clasificar los encofrados de muy distintas formas: atendiendo al material con el que están elaborados, al sistema de transmisión de cargas, al sistema de ejecución, etc. Sin embargo, se suelen agrupar en función de la posición del elemento que se va a encofrar: sistemas horizontales y sistemas verticales. Ejemplo del primer tipo son los forjados utilizados en edificación; en cuanto a los segundos, podrían ser aquellos utilizados en pilares o muros.

En cuanto a los materiales, si bien hasta hace pocas fechas era habitual el uso de la madera, nuevos materiales como el aluminio (con este material hay que tener precauciones, ver artículo 68.3 de la EHE-08) o el plástico han permitido estandarizar e industrializar más los procedimientos constructivos. Esta industrialización ha permitido reducir los tiempos de montaje y desmontaje, y con ello el periodo de ejecución de estas tareas. En una entrada anterior ya se realizó una introducción sobre lo que son y para qué sirven los encofrados.

Por tanto, como podemos ver, existen una serie de factores a tener en cuenta a la hora de elegir el mejor encofrado. Al aspecto económico habría que añadir otros que influyen directamente en él como es el tiempo de desencofrado, el coste de los elementos auxiliares, el coste de la mano de obra necesaria, la colocación y desencofrado, los equipos necesarios, el número de usos que se le de a los materiales y el coste del acabado de las superficies de hormigón.

A continuación he elaborado un mapa conceptual (Figura 2) para clarificar la clasificación de los sistemas de encofrado. Como podéis ver, además de la posición del elemento a encofrar, se ha considerado la transmisión de cargas y la ejecución del elemento para establecer un esquema que simplifique la comprensión de los sistemas.

Figura 2. Mapa conceptual de los sistemas de encofrado. Elaboración: V. Yepes

Los encofrados horizontales, normalmente empleados en forjados de edificación o losas de puentes, presentan tres grupos de elementos constituyentes (Figura 3):

  • Una superficie encofrante, que da la textura y que permite la transmisión de las cargas
  • Una estructura horizontal formada por vigas, sopandas o correas, que traslada las cargas de la superficie encofrante a la estructura vertical
  • Una estructura vertical, formada por puntales, que transmite las cargas a los forjados inferiores o al terreno.
Figura 3. Encofrado de forjado. Fuente: https://www.grupomaq.es/encofrado-de-forjado/

Los sistemas de encofrado vertical, típico en la ejecución de pilares y muros. Según el modo de transmisión de los esfuerzos, se clasifican a su vez en encofrados “a una cara” y encofrados “a dos caras”. Los encofrados a una cara son aquellos en los que, o bien las dos caras encofrantes se unen por tierantes, o no existe una de las caras. En este caso las presiones del hormigón fresco se absorben por estructuras externas al encofrado. En el caso del encofrado a dos caras, las presiones del hormigón se absorben por tirantes internos que atan las dos caras encofrantes. Presentan agrupaciones de elementos (Figura 4):

  • El sistema encofrante, que da textura y soporta la presión del hormigón fresco
  • La estructura de soporte, constituida por un marco exterior y unas costillas interiores de refuerzo

 

Figura 4. Encofrado para muros con vigas. Fuente: https://www.peri.es/productos/encofrados/encofrados-para-muros/vario-gt-24-girder-wall-formwork.html#&gid=1&pid=1

En el caso de encofrados verticales de grandes alturas, se pueden utilizar los encofrados trepantes o autotrepantes y los deslizantes. De ellos ya se ha hablado en otros posts anteriores.

Por último, os dejo un pequeño vídeo explicativo donde se resumen los aspectos más significativos de las tipologías de los encofrados.

Referencia:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cimbrado, recimbrado, clareado y descimbrado de plantas consecutivas

Figura 1. Apuntalamiento y encofrado de forjado. Fuente: http://www.lineaprevencion.com

Un edificio de varias plantas constituye una estructura evolutiva, que va cambiando en configuración y en resistencia conforme se va construyendo. Uno de los aspectos más importantes en la economía y seguridad del proceso constructivo de un edificio es el relacionado con el cimbrado y descimbrado de las plantas sucesivas. No hay que olvidar que durante la construcción se producen esfuerzos que pueden ser más desfavorables que los esfuerzos en servicio. Por tanto, las dos preguntas clave son qué cargas se generan durante la construcción y a qué edad el hormigón está preparado para resistir las cargas por sí mismo.

Sobre este problema se han realizado numerosos estudios que intentan evaluar de forma precisa la transmisión de las cargas entre los forjados y los puntales. Se trata de un problema complejo, pues aspectos tales como las características de la estructura (tipo de hormigón y cargas de cálculo), los cambios de temperatura y humedad ambiente o la distribución de las cargas entre forjados y puntales originado por el propio procedimiento constructivo, entre otros, son determinantes en este tipo de cálculos. Para aclarar algunos aspectos de este tema, vamos a definir los distintos procedimientos empleados, analizaremos brevemente la normativa aplicable y remitiremos a referencias actuales sobre este tema para aquellos de vosotros interesados en profundizar más. Ya os podemos adelantar que la normativa que aborda el plazo de descimbrado es muy genérica y utiliza criterios muy conservadores.

Se pueden distinguir tres procedimientos constructivos principales:

  • Cimbrado y descimbrado: Es el procedimiento más simple, pero que requiere de más material. Se descimbra toda la planta lo cual significa que deben existir tantos juegos de cimbras como plantas. Se pueden tener dos, tres o más plantas consecutivas cimbradas. Hay que tener cuidado, pues aumentar el número de juegos de puntales incrementa las cargas máximas en forjados, por lo que suele convenir n=2.
  • Cimbrado, clareado y descimbrado: El clareado o descimbrado parcial es una técnica muy empleada en España. Consiste en retirar el encofrado y la mitad o más de los puntales que soportan el forjado pocos días después del hormigonado. En este sistema los puntales no pierden nunca el contacto con la estructura. La ventaja es que se reduce el material necesario en la obra. Todo el encofrado y al menos la mitad de los puntales se recuperan entre los 3 y 5 días. Sin embargo, este procedimiento introduce estados de carga intermedios en los forjados que deben comprobarse.
  • Cimbrado, recimbrado y descimbrado: Se retira el apuntalamiento de una planta para que se deforme libremente y se redistribuyan las cargas entre los forjados. Luego se vuelven a poner en carga, de forma que colaboren con los incrementos de carga posteriores. Con este procedimiento, los forjados, a edades tempranas, y cuando se recimbran, soportan únicamente su peso propio. Esta técnica permite reducir notablemente las cargas en los puntales, el inconveniente es que es una operación complicada y delicada, que aumenta el número de operaciones a realizar, y por tanto, el coste de mano de obra. En este caso, aumentar el número de juegos de puntales reduce las cargas máximas en forjados. Este procedimiento precisa de un control de calidad muy intenso, pues se descimbra a edades tempranas. Esta técnica es poco usada en España, aunque es la técnica principal en Estados Unidos.

 

Como vemos, los tres procedimientos tienen sus ventajas e inconvenientes. Por ejemplo, una crítica al recimbrado es que los forjados se someten a altas cargas a edades tempranas. Además, cuando el “efecto suelo” deja de tener incidencia, los efectos beneficiosos del recimbrado dejan de producirse. Por tanto, si lo que se quiere es optimizar, habría que combinar las técnicas de recimbrado en las plantas inferiores con las de clareado en las superiores. La instrucción EHE-08, a la vista de las implicaciones que tiene los procesos constructivos de descimbrado, carga la responsabilidad en el proyecto. En efecto, en su artículo 94.3, indica que “en general, se comprobará que la totalidad de los procesos de montaje y desmontaje, y en su caso el de recimbrado o reapuntalamiento, se efectúan conforme a lo establecido en el correspondiente proyecto“. Al lector preocupado por el cálculo e hipótesis de estas técnicas le recomendamos el libro del profesor Calavera (2002), que es una de las referencias obligadas.

Encofrado de Mesas VR con Puntal SP. https://www.ulmaconstruction.es/es-es/encofrados/puntales-cimbras/puntales/puntal-acero-sp

Por ejemplo, el método simplificado de Grundy y Kabaila (1963) es fácil de aplicar y suele estar del lado de la seguridad, pues supone una rigidez infinita de los puntales y que todos los forjados se comportan elásticamente y presentan la misma rigidez, con una cimentación infinitamente rígida, con cargas uniformemente distribuidas sobre el encofrado y los puntales y despreciando el efecto de la retracción y la fluencia del hormigón. Sin embargo, la rigidez infinita de la cimentación (“efecto suelo”) implica que absorbe un nivel de solicitación importante, lo que provoca a su vez una sobrecarga en los puntales. Esto lleva a que, mientras el efecto dura, las cargas en los puntales se acumulan, pudiendo llegar a constituir la situación más desfavorable de todo el proceso. Una vez que este efecto desaparece, las solicitaciones en puntales pueden disminuir significativamente, lo que lleva a diseños poco optimizados si se aplica el mismo criterio en todas las alturas de la estructura. Este método simplificado nos lleva a distribuciones de cargas que, curiosamente, son independientes de algunos parámetros importantes como son la distancia entre pilares, la altura libre entre plantas, el ritmo constructivo, las dimensiones de los forjados o la resistencia característica del hormigón empleado. Es un método que solo depende del esquema constructivo empleado, es decir, del número de plantas apuntaladas y reapuntaladas.

Con un par de reglas sencillas se puede utilizar este método simplificado. La primera regla es que, una vez se descimbra una planta, la carga que soportaban los puntales se reparten proporcionalmente a los forjados existentes, siempre y cuando los puntales no apoyen en el suelo. La segunda regla es que la carga que recibe el puntal de una planta se calcula de la siguiente forma: se suma la carga del puntal de la planta anterior más el peso propio del forjado y se le resta lo que absorbe dicho forjado. En la figura que sigue se pueden ven los coeficientes de carga para dos y tres juegos de puntales. Para dos juegos, la carga máxima en un forjado se sitúa en el nivel 2 con un coeficiente de 2,25; para tres juegos, la carga máxima se sitúa en el nivel 3 con un coeficiente de 2,36. Dejamos al lector el cálculo con cuatro juegos: la máxima carga sería en el nivel 4 con un coeficiente de 2,43. Se observa que el valor máximo aparece siempre en la planta n, siendo n el número de plantas apuntaladas, es decir, la planta más cargada es la última que fue hormigonada con puntales hasta el terreno.

Coeficientes de carga para puntales y forjados con dos y tres juegos de puntales usando el método simplificado de Grundy y Kabaila (1963)

Taylor (1967) determinó que los coeficientes del método simplificado de Grundy y Kabaila podrían ser reducidos usando la técnica del recimbrado. Se añade una fase más donde se liberan los puntales y los forjados absorben todos los esfuerzos. Al volver a colocar los puntales en carga, éstos solo trabajarán ante cargas adicionales. En la figura siguiente se han calculado los coeficientes para dos juegos de puntales. Se observa que la carga máxima en forjados en este caso es de 1,5 veces el peso del forjado. Dejamos para el lector el cálculo para tres juegos, donde la carga es menor, de solo 1,33 veces el peso del forjado. Como conclusión, sin recimbrado lo mejor eran dos juegos de puntales y con recimbrado, tres juegos.

Aplicación del método simplificado de recimbrado de Taylor (1967), con dos juegos de puntales

El plazo mínimo de descimbrado depende de la evolución de la resistencia, del módulo de deformación, de las condiciones de curado, de las características de la estructura y de la relación entre la carga muerta y la carga actuante en el momento del descimbrado. Esta operación comienza quitando los puntales de las zonas más deformables del forjado (extremo de los voladizos y centros de vano) para continuar hacia los apoyos. Esto se hace para no cargar más de lo previsto y que se deforme el forjado de forma brusca. La EHE-08, en su artículo 74 propone determinar el plazo de descimbrado utilizando la siguiente expresión, basada en el concepto de madurez del hormigón (edad equivalente entre dos hormigones dependiente del tiempo y de la temperatura). Esta fórmula solo se aplica a elementos de hormigón armado fabricados con cementos Portland sin adiciones, suponiendo que el endurecimiento se haya realizado en condiciones ordinarias:

Donde:

Q es la diferencia entre la carga que actúa en situación de proyecto y la carga que actúa en una determinada fase constructiva

G es la carga que actúa en una determinada fase de construcción (en el momento de descimbrar), incluido el peso propio y la carga transmitida procedente de forjados cimbrados sobre el elemento a estudiar

T es la temperatura media en ºC de las máximas y mínimas diarias durante los j días

j es el número de días desde el hormigonado hasta el descimbrado

La EHE-08 recoge la Tabla 74 donde se indican los periodos mínimos de desencofrado y descimbrado de elementos de hormigón armado. Esta tabla se puede utilizar cuando no se disponga de datos suficientes y en el caso de haber utilizado cemento de endurecimiento normal. En el caso de períodos de helada durante el endurecimiento del hormigón, se deben incrementar convenientemente estos valores. También se incrementarán estos valores cuando se quiera limitar la fisuración a edades tempranas o sea necesario reducir las deformaciones por fluencia. Esta tabla presupone que no se cimbran plantas consecutivas sobre la considerada.

Tabla 74 EHE 08. Periodos mínimos de desencofrado y descimbrado de elementos de hormigón armado

Por último, debemos apuntar algunas de las conclusiones derivadas de las medidas experimentales de la transmisión de cargas entre puntales y forjados derivadas de la tesis doctoral de Gasch (2012). Estas conclusiones son importantes a efectos prácticos:

  • El reparto de cargas entre puntales no es uniforme. Los puntales de centro de vano presentan valores de carga máxima para cada una de las operaciones constructivas.
  • Las operaciones no previstas durante el procedimiento constructivo implican fuertes modificaciones de la transmisión de cargas esperada entre forjados y puntales.
  • Pequeñas variaciones en el apriete de los puntales pueden tener gran influencia en la distribución de cargas.
  • Al hormigonar cada forjado, la totalidad de la carga se transmite a los puntales.

 

Referencias:

Buitrago, M. (2014). Desarrollo de una aplicación informática de apoyo al cálculo del proecso constructivo de cimbrado/descimbrado de edificios en altura hormigonados in situ. Optimización del proceso aplicando técnicas de optimización heurística. Trabajo de Investigación CST/MIH. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

Calavera, J. (2002). Cálculo, construcción, patología y rehabilitación de forjados de edificación: unidireccionales y sin vigas-hormigón metálicos y mixtos. Intemac Ediciones, Madrid.

Díaz-Lozano, J. (2008). Criterios técnicos para el descimbrado de estructuras de hormigón. Tesis doctoral. Departamento de ingeniería civil: construcción. Universidad Politécnica de Madrid.

Gasch, I. (2012). Estudio de la evolución de cargas en forjados y estructuras auxiliares de apuntalamiento durante la construcción de edificios de hormigón in situ mediante procesos de cimbrado, clareado y descimbrado de plantas sucesivas. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil. Universitat Politècnica de València.

Grundy, P.; Kabaila, A. (1963). Construction loads on slabs with shored fromwork in multistory buildings. ACI Structural Proceedings, 60(12): 1729-1738.