¿Cómo formar a los arquitectos del futuro? Un modelo innovador desde la educación técnica

La transformación digital y la industrialización de la construcción están generando una demanda creciente de profesionales altamente cualificados. Tanto la arquitectura, como la ingeniería civil, requieren un cambio profundo en la forma de formar a los futuros profesionales.

En este contexto, un grupo de investigadores de la Hunan University of Science and Engineering (China) y de la Universitat Politècnica de València (España) propone un nuevo modelo formativo que conecta mejor la educación superior con las necesidades reales del sector.

El artículo examina la necesidad de modernizar la educación en arquitectura y sugiere un modelo innovador para formar a los profesionales del futuro. Este modelo busca conectar la educación superior con las demandas reales de la industria de la construcción, caracterizada por la digitalización y la industrialización. La metodología empleada incluye análisis de datos, modelos matemáticos y la integración de la teoría con la práctica profesional. El objetivo principal es preparar arquitectos con competencias sólidas en construcción industrializada y tecnología digital, adaptados a las exigencias del mercado laboral contemporáneo.

Introducción: el desafío de modernizar la educación en arquitectura

El sector de la construcción está experimentando una transformación profunda impulsada por la digitalización, la automatización y la necesidad de soluciones sostenibles. Sin embargo, los sistemas educativos técnicos no siempre han sabido adaptarse a estas exigencias. En todo el mundo, los modelos educativos tradicionales en arquitectura muestran una desconexión creciente con la realidad del mercado laboral, especialmente en áreas como la prefabricación, el diseño colaborativo con BIM o el uso de tecnologías inteligentes.

El artículo revisado se enmarca en este contexto, tomando como referencia el caso chino, pero con ideas extrapolables a otras regiones. El objetivo principal es diseñar un sistema de formación profesional que responda de forma más efectiva a los retos de la construcción industrializada, incorporando criterios técnicos, sociales y pedagógicos.

Metodología: combinar datos, teoría y práctica

El estudio emplea una metodología cuantitativa que incluye:

  • Análisis de datos nacionales e internacionales sobre educación y empleo en el sector de la construcción.
  • Modelos matemáticos de predicción, como regresiones polinómicas y simulaciones con MATLAB.
  • Aplicación del modelo de evaluación educativa de Levin, ajustado mediante métodos de entropía para ponderar factores como calidad docente, entorno familiar, habilidades cognitivas y recursos institucionales.

A partir de estos datos, se diseñó un modelo de formación por etapas —llamado «optimización innovadora de múltiples módulos»— que articula mejor el aprendizaje teórico con la práctica profesional en empresas.

Aportaciones relevantes: una formación más adaptada al mercado

El artículo presenta un nuevo marco para la formación de profesionales de la arquitectura más alineado con las necesidades del sector. Sus aportaciones clave son las siguientes:

  • Propuesta de un modelo formativo escalonado, adaptable al ritmo del alumnado y al contexto institucional.
  • Inclusión de criterios de evaluación integral: desde la calidad académica hasta factores personales y sociales.
  • Análisis detallado de las políticas públicas chinas como base para la propuesta, con énfasis en la colaboración universidad-empresa.
  • Validación de la propuesta mediante simulaciones y estudios de casos reales.

Este enfoque integrador permite preparar a profesionales técnicos con competencias sólidas en construcción industrializada, tecnología digital y gestión de obra.

Discusión de resultados: mejoras observables y retos pendientes

Los resultados del estudio muestran mejoras concretas en la motivación del alumnado, su adecuación a los puestos de trabajo y su capacidad de adaptación a entornos reales. Se observa un aumento del interés por la profesión y una mejora de la empleabilidad, especialmente en sectores vinculados con tecnologías emergentes.

No obstante, el artículo reconoce desafíos importantes, como la falta de infraestructura adecuada para la formación práctica, la escasez de docentes con experiencia en obra y las dificultades para establecer colaboraciones estables con empresas.

Futuras líneas de investigación: ampliar, adaptar, evaluar

A partir del modelo propuesto, el artículo sugiere explorar:

  • Aplicación del sistema en otros países con necesidades similares de actualización en formación técnica.
  • Seguimiento longitudinal de las trayectorias laborales del alumnado.
  • Incorporación de inteligencia artificial y plataformas digitales para personalizar la enseñanza.
  • Extensión del modelo a otras ramas de la ingeniería civil, como estructuras o transporte.

Conclusión

El artículo revisado propone una reforma de la educación técnica en arquitectura con una propuesta estructurada, ambiciosa y bien fundamentada. Su valor radica en integrar múltiples factores en un solo modelo formativo con una base matemática sólida y una clara vocación práctica. En un momento en que el sector de la construcción necesita perfiles técnicos con nuevas competencias, investigaciones como esta ofrecen herramientas útiles para transformar la manera en que formamos a los futuros talentos.

Referencia:

ZHOU, Z.; TIAN, Q.; ALCALÁ, J.; YEPES, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 9:100268. DOI:10.1016/j.caeo.2025.100268.

Este artículo está publicado en abierto, por lo que os lo dejo para su descarga.

Descargar (PDF, 9.19MB)

Glosario de términos clave

  • BIM (Building Information Modeling): Metodología de trabajo colaborativa para la creación y gestión de un proyecto de construcción. Su objetivo es centralizar toda la información del proyecto en un modelo digital.
  • Construcción industrializada: Proceso constructivo que implica la fabricación de componentes o módulos en un entorno de fábrica, bajo condiciones controladas, para luego ser ensamblados en el lugar de la obra.
  • Digitalización: Proceso de convertir información y procesos de formatos analógicos a digitales, aplicando tecnologías que permiten la automatización y mejora de la eficiencia.
  • Entropía (en evaluación educativa): Concepto utilizado en el estudio para ponderar y ajustar la importancia de diferentes factores de evaluación (calidad docente, entorno familiar, habilidades cognitivas, recursos institucionales) dentro del modelo de Levin.
  • Gestión de obra: Disciplina que abarca la planificación, organización, dirección y control de los recursos para llevar a cabo un proyecto de construcción de manera eficiente y dentro de los plazos y presupuestos establecidos.
  • MATLAB: Entorno de programación y plataforma numérica utilizada para realizar cálculos matemáticos, análisis de datos, desarrollo de algoritmos y modelado de sistemas, empleada en el estudio para simulaciones.
  • Modelo de evaluación educativa de Levin: Un marco teórico o práctico para valorar la calidad y eficacia de un sistema educativo, que en el estudio es ajustado con métodos de entropía para una ponderación más precisa de sus factores.
  • Modelos matemáticos de predicción: Herramientas que utilizan ecuaciones y algoritmos para prever comportamientos futuros o resultados basándose en datos históricos o actuales, como las regresiones polinómicas.
  • Optimización innovadora de múltiples módulos: Nombre del modelo formativo propuesto en el artículo, diseñado por etapas para integrar el aprendizaje teórico con la práctica profesional y adaptarse a diferentes contextos.
  • Prefabricación: Técnica constructiva que consiste en producir elementos o componentes de un edificio en un lugar distinto al de la obra, generalmente en una fábrica, para luego transportarlos e instalarlos en el sitio.
  • Regresiones polinómicas: Un tipo de análisis de regresión en el que la relación entre la variable independiente y la variable dependiente se modela como un polinomio de n-ésimo grado, utilizado para predicción en el estudio.
  • Sostenibilidad (en construcción): Enfoque que busca minimizar el impacto ambiental de las edificaciones a lo largo de su ciclo de vida, optimizando el uso de recursos, reduciendo residuos y promoviendo la eficiencia energética y el bienestar humano.
  • Transformación digital: El cambio integral que experimenta una organización o sector al integrar tecnologías digitales en todos los aspectos de sus operaciones, cultura y estrategias, lo que lleva a la creación de nuevos modelos de negocio y servicios.

 

Evaluación del índice de daño estructural en entornos BIM

Acaban de publicar nuestro artículo en la revista Structures, de la editorial Elsevier, indexada en Q1 del JCR. El estudio desarrolla una metodología para evaluar un índice de daño estructural en entornos BIM, con el fin de optimizar los procesos de rehabilitación.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

El artículo contextualiza la necesidad de integrar herramientas digitales en la evaluación de daños estructurales como respuesta a las exigencias de sostenibilidad y eficiencia en el sector de la construcción. Se menciona que el envejecimiento del parque edificatorio y las nuevas exigencias en materia de mantenimiento requieren un enfoque innovador. Se destaca la implementación de BIM como una solución para mejorar la gestión de activos y prolongar la vida útil de las estructuras. En este contexto, el artículo presenta Endurify, una herramienta diseñada para evaluar la durabilidad de elementos estructurales de hormigón mediante indicadores de deterioro, con el fin de optimizar los procesos de rehabilitación.

El artículo enfatiza que la rehabilitación de edificios es una estrategia fundamental para mejorar la sostenibilidad en el sector de la construcción. Al renovar estructuras existentes, se reduce el impacto ambiental al disminuir la necesidad de utilizar nuevos materiales y procesos constructivos. Además, la rehabilitación mejora el rendimiento energético de los edificios, lo que contribuye a los objetivos de desarrollo sostenible establecidos por organismos internacionales. En el contexto europeo, iniciativas como el Pacto Verde Europeo subrayan la relevancia de estas medidas para reducir las emisiones de carbono y mejorar la eficiencia en el uso de recursos.

La metodología BIM se ha convertido en un estándar en la industria de la construcción, facilitando la integración de múltiples capas de información en un único modelo digital. BIM permite almacenar y gestionar datos estructurales, materiales y operacionales, optimizando así la planificación y el mantenimiento de edificios. La literatura reciente ha demostrado que el uso de BIM mejora la sostenibilidad en la construcción, facilita la gestión de riesgos y permite realizar análisis avanzados, como simulaciones de desempeño estructural. Además, la incorporación de gemelos digitales y herramientas de simulación refuerza su capacidad para la toma de decisiones fundamentadas en datos.

El mantenimiento estructural es fundamental para garantizar la seguridad y la eficiencia de los edificios a lo largo de su vida útil. A pesar de la importancia del seguimiento del estado estructural, la investigación en este ámbito ha sido menos extensa que la dedicada al diseño y la construcción. En este contexto, BIM se presenta como una plataforma idónea para integrar estrategias de mantenimiento predictivo, ya que permite evaluar el estado real de las estructuras y anticipar las intervenciones necesarias. Sin embargo, la implementación de BIM en este ámbito enfrenta desafíos como la precisión de los datos, los costes asociados y la capacitación del personal especializado.

El desarrollo de Endurify se basó en una metodología de investigación-acción de doble ciclo, lo que permitió realizar iteraciones sucesivas para optimizar la herramienta. El proceso constó de siete etapas, que iban desde la identificación del problema hasta la validación del software en entornos reales. La herramienta se diseñó específicamente para el mercado de la vivienda en España y cumple con los requisitos del Código Estructural.

Para evaluar la durabilidad, se seleccionaron cuatro indicadores principales: carbonatación, fisuración transversal, fluencia y deformación. La metodología utilizada para determinar cada uno de estos indicadores se basa en modelos normativos y en la recopilación de datos mediante inspección visual. Los resultados se almacenan dentro del modelo BIM, lo que permite su análisis comparativo y la planificación de intervenciones de mantenimiento.

La implantación de Endurify en BIM se realizó mediante un complemento para Autodesk Revit que permite extraer datos de los elementos estructurales y realizar el análisis de daños en tiempo real. La herramienta se diseñó para trabajar con parámetros predefinidos en el modelo BIM y almacenar los resultados como atributos de los elementos analizados.

El artículo presenta Endurify, un complemento para entornos BIM que permite analizar el estado de conservación de los elementos estructurales de hormigón. La herramienta emplea cuatro indicadores de daño: carbonatación, fisuración transversal, fluencia y deformación. Su integración en BIM facilita la gestión de datos, ya que permite almacenar los resultados del análisis dentro del modelo digital. Esto posibilita una evaluación más precisa del estado estructural y contribuye a la toma de decisiones sobre el mantenimiento y la rehabilitación de edificios existentes. Cabe destacar que la herramienta evita pruebas destructivas y se ajusta a normativas como el Código Estructural de España (CE-2021).

Los estudios de caso presentados en el artículo muestran cómo se ha aplicado Endurify en elementos estructurales con distintos grados de exposición ambiental. En un primer caso, se analizó una viga interior con fisuras visibles y se determinó que la carbonatación era el factor predominante en su deterioro. En el segundo caso, se evaluó un soporte en un corredor exterior sin daños aparentes con el mismo procedimiento, confirmándose un estado avanzado de carbonatación. Los resultados demuestran que la herramienta permite identificar patrones de degradación en distintos elementos y facilita la programación de intervenciones específicas. No obstante, se reconoce que la precisión del análisis depende de la calidad de los datos de entrada y de su compatibilidad con diferentes normativas y condiciones ambientales.

El artículo sugiere que la incorporación de nuevos enfoques podría mejorar la herramienta Endurify. Se menciona la posibilidad de desarrollar un índice de daño estructural que combine los cuatro indicadores en un solo valor ponderado, aunque los autores advierten de que esto podría ocultar información relevante sobre las causas del deterioro. Asimismo, se plantea la necesidad de adaptar la metodología a distintos contextos normativos e integrar sensores IoT para obtener datos en tiempo real. Además, se destaca que una mejor definición de los parámetros de análisis podría optimizar la precisión del modelo y ampliar su aplicación a proyectos de rehabilitación a gran escala.

Por tanto, el artículo demuestra que la integración de herramientas de análisis de durabilidad en entornos BIM puede mejorar la evaluación del estado estructural de los edificios. Endurify permite almacenar y visualizar datos de deterioro en el modelo digital, lo que facilita la toma de decisiones sobre el mantenimiento y la rehabilitación. Sin embargo, su implementación depende de la calidad de los datos de entrada y de su adaptación a distintas normativas. Se identifican oportunidades para mejorar la herramienta mediante el uso de modelos predictivos y la incorporación de tecnologías emergentes, lo que podría consolidar su aplicación en la ingeniería civil.

Referencia:

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2025). Structural damage index evaluation in BIM environmentsStructures, 74:108544. DOI:10.1016/j.istruc.2025.108544

 

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

La enseñanza del vocabulario técnico de la ingeniería de la construcción

El lenguaje metafórico de los ingenieros: cuchara bivalva

Durante mi extensa carrera como profesor universitario en Ingeniería de la Construcción, he recopilado un vocabulario específico de la jerga utilizada por técnicos en el mundo de la construcción, que consiste en una variedad lingüística diferente a la lengua estándar y que a veces es incomprensible para los hablantes no familiarizados con ella. Este lenguaje se emplea con frecuencia por diferentes grupos sociales con la intención de ocultar el significado real de sus palabras a su conveniencia.

Mis estudiantes, acostumbrados a las ciencias y no a las letras, a menudo encuentran este lenguaje oscuro y difícil de aprender. Se quejan de tener que estudiar de memoria estas palabras y su significado, pero es fundamental su conocimiento para desenvolverse con soltura en la profesión. Esto de memorizar no es algo que les guste mucho, pero no hay más remedio. Es como aprender un nuevo idioma. Al principio hay que traducir el significado de las palabras, pero con el uso, se aprenden y no hay que volver a traducirlas. Por eso les aconsejo que mantengan una libreta donde anoten estos términos extraños, como “bentonita”, “sondeo”, “cimbra”, “árido”, “blondín”, “cubilote”, etc. Algunos de estos términos son específicos de determinadas zonas, como “bañera”, que se refiere a un remolque semibasculante, o “maceta”, que significa martillo en el lenguaje de los albañiles. Además, les recomiendo que intenten anotar la palabra equivalente en inglés, pues es muy probable que el día de mañana tengan que desenvolverse en otro idioma.

Otras veces se acude al lenguaje metafórico para definir determinados conceptos: “riñón”, “cabeza de pilote”, “costillas”, “nido de grava”, etc. Los interesados pueden revisar un artículo que escribí en este blog hace unos años: https://victoryepes.blogs.upv.es/2017/01/05/el-lenguaje-metaforico-de-los-ingenieros/

Un truco que utilizo a veces es emplear crucigramas o palabras cruzadas para ayudar a los estudiantes a asociar las nuevas palabras con su significado. Aquí hay un ejemplo de cuando hablamos de sondeos y perforaciones. Os animo a resolverlo.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Participación en el Comité Científico de Congreso Internacional IALCCE2023

Tengo el placer de anunciar mi participación en el Comité Científico del IALCCE2023, Eighth International Symposium on Life-Cycle Civil Engineering, que tendrá lugar en el campus del Politécnico de Milán (Italia), entre el 11 y el 15 de junio. Los Presidentes de este congreso son los profesores Fabio Biondini y Dan Frangopol.

El objetivo de IALCCE 2023 es reunir toda la investigación de vanguardia en el campo de la Ingeniería Civil de Ciclo de Vida y avanzar tanto en el estado de la técnica como en el de la práctica en este campo. Este simposio ofrecerá a académicos, ingenieros, arquitectos, consultores, contratistas, autoridades públicas y responsables de la toma de decisiones de todo el mundo la oportunidad de mantenerse al día con los últimos avances en el campo de la Ingeniería Civil de Ciclo de Vida.

Los sistemas de estructuras civiles e infraestructuras son la columna vertebral de la sociedad moderna y uno de los principales motores del crecimiento económico y el desarrollo sostenible de los países. Por lo tanto, es una prioridad estratégica consolidar y mejorar los criterios, métodos y procedimientos para proteger, mantener y mejorar la seguridad, la solidez, la durabilidad, la funcionalidad y la resistencia de los sistemas de estructuras e infraestructuras críticas en condiciones de incertidumbre.

En este contexto, la ingeniería civil está experimentando un profundo cambio hacia una filosofía de diseño orientada al ciclo de vida para satisfacer la creciente demanda de las necesidades económicas, medioambientales, sociales y políticas, y para incorporar los nuevos problemas medioambientales, como los efectos del calentamiento global y el cambio climático. También es necesario esforzarse por colmar el vacío existente entre la teoría y la práctica y fomentar la incorporación de los conceptos de ciclo de vida en los códigos, normas y especificaciones de diseño estructural. Para ello, se promueve la investigación y las aplicaciones en el seno de la Asociación Internacional de Ingeniería Civil del Ciclo de Vida (IALCCE).

 

II Jornadas de Ingeniería y Arquitectura. Colegio de España

Tengo el placer de anunciar la invitación recibida para impartir una conferencia el martes 24 de mayo de 2022, a las 18:00 h, dentro de las II Jornadas de Ingeniería y Arquitectura organizadas por el Colegio de España. El título de la misma es “Evaluación de la sostenibilidad social de puentes pretensados y mixtos a lo largo de su ciclo de vida“. Este tema está relacionado con nuestro proyecto de investigación HYDELIFE y sobre él ya escribí un artículo y edité un vídeo que podéis ver en el siguiente enlace: https://victoryepes.blogs.upv.es/2022/05/11/que-alternativa-de-puente-es-la-mas-sostenible-medioambientalmente-y-socialmente/

El Colegio de España es un organismo dependiente del Ministerio de Universidades del Gobierno español que acoge, como ha hecho a lo largo de sus casi ochenta años de historia, a profesores, investigadores, estudiantes universitarios y artistas, que cursan sus estudios, elaboran sus tesis doctorales, llevan a cabo sus trabajos de investigación o ejercen sus actividades artísticas en alguno de los centros superiores de París. Además de esta labor de alojamiento, el Colegio desarrolla una intensa labor de difusión de la cultura y las artes españolas, a través de conferencias, coloquios, seminarios, proyecciones de películas con recitales y conciertos, así como numerosas exposiciones dedicadas a las artes plásticas.

Entre los antiguos y recientes residentes en el Colegio se encuentran algunos de los más significativos pensadores, escritores, científicos y artistas de los últimos ochenta años, que componen una galería histórica de un nivel difícilmente superable.

El Colegio de España, sigue siendo en la actualidad un lugar de encuentro para estudiosos y profesionales de múltiples disciplinas, de diferentes nacionalidades, desde filósofos a matemáticos, desde informáticos a historiadores, desde médicos a pianistas, ofreciendo todos ellos la oportunidad de establecer una convivencia intelectual llena de posibilidades, puesto que propicia el intercambio de conocimientos, criterios y experiencias vitales, con lo que se consigue un ambiente enriquecedor.

Os paso el programa de las jornadas, por si os resulta de interés.

La “deconstrucción” de las estructuras y la neolengua de George Orwell

Tortilla de patata deconstruida de Ferrán Adrià. https://www.gastromakers.com/2018/07/04/receta-de-ferran-adria/

Me apetecía abrir este año 2022 metiéndome de lleno en cómo usamos el lenguaje y por qué se crean o reciclan palabras para usarlas en ámbitos diferentes a los habituales. También me pregunto por los vocablos que brotan como una moda en un contexto ajeno al que las vieron nacer. Empiezo.

Resulta curioso tropezarse con el artículo 2 del reciente Código Estructural con la palabra “deconstrucción” relacionada con las estructuras. Sería anecdótica su aparición pero, indagando algo más, el subconsciente recibe cierta sacudida porque algo está ocurriendo o se está deslizando pausadamente, sin levantar ruido. Al final del artículo relaciono la palabra con la idea de neolengua utilizada por George Orwell en su distópica novela 1984. Una sencilla búsqueda en el texto delata que la palabra aparece en 24 ocasiones a lo largo del BOE, frente a las dos veces que se menciona en la anterior norma EHE-08.

La palabra resulta, como mínimo, extraña. Si acudimos a la Real Academia de la Lengua, relaciona el vocablo con la Filosofía y la Teoría literaria, con una definición alejada del ámbito estructural: “Desmontaje de un concepto o de una construcción intelectual por medio de su análisis“. Aunque quizás para los más profanos, esta palabra nos suene como una técnica culinaria de vanguardia creada por Ferrán Adrià. El chef describe preparaciones tradicionales cuyos ingredientes se cocinan y se colocan de distinta manera en el plato, separados o reagrupados, con distintas texturas o temperaturas, aunque su sabor es el original.

Pero el deconstructivismo o deconstrucción la encontramos a finales de los años sesenta con el filósofo francés Jacques Derrida. Se trata de una nueva teoría entre filosófica, lingüística-literaria y metodológica basada en desmontar (deconstruir) las estructuras conceptuales clásicas, normativas, del lenguaje, para buscar falsedades o contradicciones.

Casa Danzante en Praga (1992-1996). https://es.wikipedia.org/wiki/Casa_Danzante

Años más tarde, en la década de los ochenta y noventa, estas teorías pasaron a la arquitectura, el interiorismo, el mobiliario, la moda o la cocina.

Si hablamos de arquitectura, este movimiento nació a finales de los 80, caracterizándose por la fragmentación, el proceso de diseño no lineal, el interés por la manipulación de las ideas de la superficie de las estructuras. La apariencia visual es de impredecibilidad y caos controlado. El nombre deriva del movimiento artístico y arquitectónico que nació en Rusia en 1914, que se llamó constructivismo ruso o soviético, de donde retoma alguna de su inspiración formal.

El Museo Guggenheim de Bilbao, del arquitecto canadiense Frank Gehry, es uno de los edificios más espectaculares del deconstructivismo. También la Casa Danzante de Praga es uno de los diseños donde colaboró Frank Gehry junto con el arquitecto checo-croata Vlado Milunić.

La crítica a la deconstrucción arquitectónica se basa por su falta de funcionalidad, su formalismo, su falta de consistencia y su aire elitista. De alguna forma fue una reacción al funcionalismo de la posguerra, aunque acabó convirtiéndose en la realización de “edificios emblemáticos” y del surgimiento de “arquitectos estrella” de la década de los 90.

Si todo esto una corriente que nació con un movimiento filosófico, ¿qué razón oculta es la que hace que “deconstrucción” se reproduzca en un documento técnico como es el Código Estructural? ¿No existen palabras como demolición o desmontaje que se han utilizado sin problema en el ámbito de la ingeniería y la arquitectura?

El capítulo 16 del Código Estructural nos avisa de la intención que tiene esta palabra al contraponer “demolición” con “deconstrucción”. Sin embargo, el matiz diferenciador es demasiado sutil como para tener que utilizar un término ciertamente ajeno al ámbito de la ingeniería estructural. Veamos las definiciones y analicemos las diferencias de los términos aplicados a una estructura de hormigón:

  • Demolición: el conjunto de procesos de desmontaje o desmantelamiento de la estructura, en su totalidad o de una parte de misma, por decisión de la propiedad y como consecuencia de la finalización de su vida de servicio.
  • Deconstrucción: el proceso ordenado de demolición de la estructura, de acuerdo con el correspondiente proyecto y con la finalidad de optimizar la reutilización de los propios elementos estructurales, en su caso, así como la separación, recogida selectiva y reciclado de los residuos generados.

Ahora parece clara la diferencia, es la reutilización, separación, recogida selectiva y reciclado de los residuos generados. Eso sí, de forma “ordenada”. Es, por tanto, el orden y la finalidad lo que diferencia la demolición de la deconstrucción. El desacuerdo es importante, pero conceptualmente dista del significado último que ofrece el término “deconstrucción”, por lo que han tenido que definir en el propio Código Estructural su significado. Pero ahora viene el punto central de este tema: Hoy en día, con los requisitos actuales en materia medioambiental, ¿se puede hacer una demolición que no contemple la la reutilización, separación, recogida selectiva y reciclado de los residuos generados? No parece lógico, por tanto, hacer dicha distinción. De hecho, el Real Decreto 105/2008, de 1 de febrero, por el que se regula la producción y gestión de los residuos de construcción y demolición no menciona ni una sola vez este vocablo.

Museo Guggenheim Bilbao. https://es.wikipedia.org/wiki/Museo_Guggenheim_Bilbao

La idea está clara, pero se ha tenido que recurrir a un término nuevo, que desde el punto de vista filosófico que busca falsedades o contradicciones y que, en arquitectura, se contrapone a la funcionalidad y se caracteriza por su falta de consistencia. Hubiese bastado aclarar en el Código Estructural cómo se debe hacer la demolición al finalizar la vida útil de una estructura.

Por tanto, hay que buscar un sentido más profundo al uso del término. Si atendemos al enfoque culinario de Ferrán Adrià, veremos que la deconstrucción se asocia a una técnica vanguardista, novedosa, a lo moderno.

Para los lectores dejo el concepto de neolengua creada en la novela de 1984 por George Orwell y las consecuencias de un uso del lenguaje forzado con fines tendenciosos. Y varias preguntas abiertas para la reflexión: ¿es necesario usar nuevas palabras para llamar la atención? ¿Se trata de una nueva moda? ¿Hay que buscar nuevas palabras cuando se vacía de contenido el significado de otras que se usan hasta la extenuación? ¿Cuánto tardaremos en cambiar o sustituir palabras como “sostenibilidad” o “resiliencia”? ¿Es el neolenguaje una forma de hablar en términos “políticamente correctos”? Lo que está claro es que no se trata de un neologismo propiamente dicho, pues aunque se tratase de una palabra con un significado nuevo, no se encuentra aceptada dicha acepción por la Real Academia Española.

Bueno, para ser el primer artículo del año creo que es suficiente. Ya sabemos, o al menos hemos profundizado algo, en la relación entre Ferrán Adrià, el neolenguaje y el Código Estructural. Los próximos tendrán contenidos más técnicos y menos filosóficos.

Os dejo un vídeo para que veáis el caos controlado de la arquitectura deconstructivista.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Hay diferencias entre Twitter y LinkedIn en cuanto al nivel cultural de sus usuarios? El ejemplo de Antoni Gaudi

Estatua de Gaudí, en El Capricho, Comillas (Cantabria). https://es.wikipedia.org/wiki/Antoni_Gaud%C3%AD

El otro día se me ocurrió una idea. Se trataba de aplicar una Tabla de Contingencia y la Prueba χ² de Pearson a las redes sociales. Se me ocurrió hacer una pregunta de cultura general relacionada con un aspecto de la vida del famoso arquitecto Antoni Gaudí. Podemos leer, por ejemplo en Wikipedia, su trágica muerte: “El 7 de junio de 1926 Gaudí se dirigía a la iglesia de San Felipe Neri, que visitaba a diario para rezar y entrevistarse con su confesor, mosén Agustí Mas i Folch; pero al pasar por la Gran Vía de las Cortes Catalanas, entre las calles Gerona y Bailén, fue atropellado por un tranvía,​ que lo dejó sin sentido.​ Siendo tomado por un mendigo, al ir indocumentado y a causa de su aspecto descuidado, con ropas gastadas y viejas, no fue socorrido de inmediato, hasta que un guardia civil paró un taxi que lo condujo al Hospital de la Santa Cruz. Al día siguiente lo reconoció el capellán de la Sagrada Familia, mosén Gil Parés, pero ya era tarde para hacer nada por él. Murió el día 10 de junio de 1926,​ a los 73 años de edad, en la plenitud de su carrera“.

Todo el que está interesado en la arquitectura normalmente ha conocido parte de la obra de este genial arquitecto, incluso ha visto documentales, leído libros o artículos que hablan de él. Su trágica muerte puede considerarse como un hecho que llama la atención, por tanto, puede ser una buena pregunta de cultura general.

El caso es que hice una pequeña encuesta en redes sociales, tanto en Twitter como en LinkedIn. Con los datos que he obtenido se pueden hacer varias reflexiones e, incluso, un análisis estadístico. Los resultados os los pongo en las figuras siguientes:

Como podéis observar, en ambas redes sociales la mayoría abrumadora ha respondido la opción correcta, que es Antoni Gaudí. Sin embargo, es curioso observar algunas cosas:

a) Para el mismo periodo de respuesta, en LinkedIn ha conseguido casi seis veces más de respuestas que en Twitter. Eso a pesar de que en Twitter tengo unos 21500 seguidores y en LinkedIn poco más de 11000. Se podría interpretar como que la red LinkedIn es más profesional y especializada que Twitter, lo cual era algo que ya sabíamos de antemano.

b) Lo curioso es que en Twitter este tuit tuvo 968 impresiones y solo 112 contestaron la encuesta (11,6%), pero en LinkedIn hubo 14482 visualizaciones y solo votaron 664 (4,6%). El resto, o no estaba interesado, o no sabía la respuesta. Por tanto, en LinkedIn hubo más impacto, pero un porcentaje menor de respuestas.

c) En LinkedIn ha sido el porcentaje de aciertos (86%) superior al de Twitter (72,4%), lo cual puede reforzar la conclusión anterior sobre la profesionalidad y especialización de estas dos redes sociales.

d) Con los datos anteriores se puede construir una Tabla de Contingencia (ver tabla siguiente). En esta tabla se puede ver que la respuesta esperada de la solución correcta en Twitter es de 106,45 aciertos, frente a los 92. En cambio, en LinkedIn la respuesta correcta esperada (556,55) es inferior a la realmente obtenida (571).

e) Por último, haciendo la Prueba χ² de Pearson, el p-valor obtenido con MINITAB es de 0,000. Como p-valor > 0,05, existen evidencias sólidas para rechazar la hipótesis nula de que las proporciones entre las poblaciones son las mismas. Es decir, diremos que las redes sociales analizadas no son homogéneas.

Es evidente que esta pequeña prueba no sirve para nada más que para lo que he comentado. Para una sola pregunta y para un solo caso, sí que se han visto diferencias significativas entre Twitter y LinkedIn. Pero no se puede generalizar. Para ello se podría proponer otro tipo de cuestionarios, con una mejor estratificación muestral y con mayor amplitud de miras. Pero eso es otra historia. Igual hasta hay posibilidad de hacer un trabajo de investigación sobre este tema.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Presentación de la tercera edición del libro: Análise estrutural para Engenharia Civil e Arquitetura. Estruturas isostáticas

Es un placer y todo un honor recibir la invitación del Prof. Moacir Kripka para presentar la tercera edición de su libro “Análise estrutural para Engenharia Civil e Arquitetura. Estruturas isostáticas“. Se trata de una edición, recién publicada este año 2021 (ISBN: 978-65-86235-11-1).

El profesor Kripka, es catedrático de estructuras en la Universidade de Passo Fundo, en Brasil, donde ejerce de profesor desde el año 1991. Ha sido director del Departamento de Ingeniería Civil y del Grado en Ingeniería, siendo actualmente editor de la revista Journal of Applied and Technological Sciences – CIATEC/UPF. Su área de investigación se centra fundamentalmente en la optimización de estructuras, por lo que ha sido de gran productividad para nosotros compartir experiencias durante su estancia de investigación (septiembre a diciembre de 2018). Fruto de esta colaboración, a parte de los relacionados con la investigación, se extienden al futuro intercambio de estudiantes y profesorado entre nuestras respectivas universidades y en la participación conjunta en proyectos de investigación y de transferencia tecnológica.

Las estructuras isostáticas son el sustento de la ingeniería como el suelo es el sustento de la vida o el lenguaje lo es para la comunicación. Una lectura atenta de este libro permite comprender el comportamiento de las estructuras isostáticas y su diseño. El libro abarca los conceptos fundamentales necesarios para el funcionamiento de las estructuras y los modelos estructurales, las reacciones de apoyo, las acciones en las estructuras y los esfuerzos solicitados. Didáctico, con explicaciones paso a paso para el análisis de vigas, pórticos, cerchas y rejillas, facilitará la apropiación de los conocimientos por parte de los estudiantes. Esta tercera edición incluye un nuevo capítulo sobre el cálculo de los desplazamientos en las estructuras. La teoría y los cálculos se acompañan de ejemplos e ilustraciones de obras civiles y, al final de cada capítulo, los ejercicios ayudan a comprender y fijar los conceptos involucrados, así como su aplicación en cualquier situación que se presente. Este libro está dirigido a los estudiantes de Ingeniería Civil y Arquitectura y sirve de guía para los profesores que imparten la asignatura.

Os dejo a continuación mi presentación a la tercera edición del libro en español (el original está en portugués). Espero que os sea de interés.

La ingeniería es algo vivo que se aplica y se transmite a las futuras generaciones. Nunca se empieza desde cero y, como le dijo Isaac Newton en una carta a Robert Hook “si he visto más lejos es porque estoy sentado sobre los hombros de gigantes”. Por tanto, la labor docente en ingeniería sustenta el avance técnico. Sin embargo, este progreso no es gratuito; necesita un esfuerzo ingente para resolver los problemas cada día más complejos a los que se enfrentan los ingenieros y requiere de una fuerte dedicación. Por ello, la docencia en ingeniería es algo vivo, debe nutrirse de la actividad profesional y de la investigación.

Una de las grandes satisfacciones que permite el mundo académico es encontrar almas gemelas cuyas preocupaciones técnicas y científicas son similares a las tuyas. Es el caso del profesor Moacir Kripka. Tuvimos la ocasión de mantener largas charlas durante una estancia de investigación que realizó hace unos meses en la Universitat Politècnica de València. El amor por las estructuras, la optimización o la sostenibilidad son campos comunes que permitieron un intercambio de ideas y experiencias que se plasmaron en varios artículos científicos de impacto internacional. Lo que empezó siendo un encuentro entre colegas terminó, al cabo de unos meses, en una complicidad y amistad que pervive en el tiempo.

Ha sido esta complicidad la que me ha hecho imposible rechazar la petición que me hizo para redactar el prólogo de su nuevo libro sobre análisis estructural. Todo un honor para mí, y por ello le estoy muy agradecido, pues se trata de introducir un libro redactado por un extraordinario docente en el ámbito de las estructuras en ingeniería civil y en arquitectura. Se trata de un texto capaz de explicar de forma sencilla los a veces complejos aspectos que presenta el análisis estructural. El libro aborda mediante ilustraciones y ejemplos los conceptos fundamentales del comportamiento de las estructuras, y por tanto, de su dimensionamiento. Aunque se trata de un texto orientado a la formación universitaria en el ámbito técnico, seguro que es una guía de apoyo para aquellos otros que se encuentran desarrollando plenamente su profesión.

Por último, y antes de que el lector empiece con avidez la lectura de este libro, me gustaría reflexionar sobre la necesidad de establecer fuertes cimientos conceptuales en el ámbito del análisis estructural. En efecto, hoy día estamos inmersos en la Cuarta Revolución Industrial, también conocida como Industria 4.0. Este concepto, acuñado en 2016 por Klaus Schwab, fundador del Foro Económico Mundial, incluye las tendencias actuales de automatización y de intercambio de datos. En este contexto se incluye la inteligencia artificial, la minería de datos, el Internet de las cosas, los sistemas ciberfísicos y los gemelos digitales, entre otros.

Pues bien, la simulación numérica, la modelización y la experimentación han sido los tres pilares sobre los que se ha desarrollado la ingeniería en el siglo XX. La modelización numérica, que sería el nombre tradicional que se ha dado al “gemelo digital” presenta problemas prácticos por ser modelos estáticos, pues no se retroalimentan de forma continua de datos procedentes del mundo real a través de la monitorización continua. Estos modelos numéricos (usualmente elementos finitos, diferencias finitas, volumen finito, etc.) son suficientemente precisos si se calibran bien los parámetros que lo definen. La alternativa a estos modelos numéricos son el uso de modelos predictivos basados en datos masivos big-data, constituyendo “cajas negras” con alta capacidad de predicción debido a su aprendizaje automático “machine-learning“, pero que esconden el fundamento físico que sustentan los datos (por ejemplo, redes neuronales). Sin embargo, la experimentación es extraordinariamente cara y lenta para alimentar estos modelos basados en datos masivos.

El cambio de paradigma, por tanto, se basa en el uso de datos inteligentes “smart-data paradigm“. Este cambio se debe basar, no en la reducción de la complejidad de los modelos, sino en la reducción dimensional de los problemas, de la retroalimentación continua de datos del modelo numérico respecto a la realidad monitorizada y el uso de potentes herramientas de cálculo que permitan la interacción en tiempo real, obteniendo respuestas a cambios paramétricos en el problema. Dicho de otra forma, deberíamos poder interactuar en tiempo real con el gemelo virtual. Por tanto, estamos ante otra realidad, que es el gemelo virtual híbrido.

Pues bien, todo este cambio de paradigma no debe olvidar los fundamentos en los que se basan los modelos. En el caso de las estructuras, la comprensión de los principios básicos que fundamentan su análisis resulta clave para la modelización numérica y la experimentación. Una buena base para estos cimientos es, por tanto, este libro del profesor Kripka sobre análisis estructural. Espero que disfruten de su lectura.

Víctor Yepes

Valencia, noviembre de 2019

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Percepción de los estudiantes de postgrado de ingeniería y arquitectura sobre el diseño sostenible

 

La construcción es uno de los responsables de los niveles actuales de estrés ambiental, pero también se reconoce como un sector esencial para promover el bienestar humano, el acceso a la educación o la la erradicación de la pobreza mediante el desarrollo de infraestructuras y servicios. Por ello, desde el reciente establecimiento de los Objetivos de Desarrollo Sostenible en 2015, los arquitectos e ingenieros civiles se han erigido como actores clave para el futuro sostenible al que aspiramos. Sin embargo, la complejidad de la sostenibilidad reclama cambios fundamentales en los actuales planes de estudio universitarios para formar profesionales que puedan afrontar dicho reto. Los cursos universitarios convencionales de ingeniería y arquitectura suelen quedarse cortos a la hora de proporcionar una educación holística en la que los estudiantes perciban adecuadamente la relevancia de considerar no sólo los requisitos funcionales de sus diseños, sino también sus consecuencias sociales y medioambientales. La presente comunicación pretende ofrecer una herramienta de evaluación para detectar las principales lagunas en la formación de estos profesionales a partir de las percepciones de los estudiantes de posgrado sobre el diseño sostenible. Se realiza una encuesta a los alumnos de los posgrados “Modelos predictivos y optimización de estructuras de hormigón” del Máster Universitario en Ingeniería del Hormigón, y “Gestión de la innovación en el sector de la construcción” del Máster en Planificación y Gestión en Ingeniería Civil, ambos impartidos en la Universidad Politécnica de Valencia. La consistencia de las respuestas se evalúa de forma objetiva a partir del método del Proceso Analítico Jerárquico, sacando a la luz los campos educativos en los que se debe poner especial empeño a la hora de adaptar los planes de estudio universitarios hacia la educación en sostenibilidad.

Figura. Matriz AHP completa

Referencia:

NAVARRO, I.J.; SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2021). Engineering and architecture postgraduate student’s perceptions on sustainable design. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 2554-2563, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 378KB)