Sostenimiento de un túnel según el índice Q de Barton

Los sistemas de clasificación del macizo rocoso se basan fundamentalmente en un enfoque empírico y se desarrollaron como una herramienta de diseño sistemática en la ingeniería civil y minera. Tratan de ordenar y sistematizar los procedimientos de las investigaciones en campo. La mayoría de estos sistemas clasifican las condiciones geomecánicas en varios grupos diferentes que representan diferentes capacidades portantes de la roca. Sin embargo, no deberían ser utilizadas como sustitutos de los estudios analíticos, las observaciones y mediciones en campo o aportaciones de expertos, sino en conjunción con otras técnicas. La clasificación Q de Barton es una de las clasificaciones geomecánicas más empleadas en los macizos rocosos, junto con la clasificación RMR de Bieniawski.

La clasificación Q fue desarrollada por Barton, Lien y Lunde en 1974 a partir de un estudio empírico de un gran número de túneles. Esta clasificación permite estimar parámetros geotécnicos del macizo y diseñar sostenimientos para túneles y cavernas subterráneas. El índice Q se basa en seis parámetros que indican el tamaño de los bloques, la resistencia a corte entre los bloques y la influencia del estado tensional:

Donde:

RQD       Índice de calidad de la roca (Rock Quality Designation)

Jn            Índice de diaclasado, que indica el grado de fracturación del macizo rocoso

Ja            Índice que indica la alteración de las discontinuidades

Jw            Coeficiente reductor por la presencia de agua

SRF        Coeficiente que tiene en cuenta la influencia del estado tensional del macizo rocoso (Stress Reduction Factor)

El índice Q varía entre 0,001 y 1.000, correspondiendo los valores bajos a rocas malas y los altos a las rocas buenas.

Una de las aplicaciones que tiene este índice es que permite establecer qué tipo de sostenimiento debería tener un túnel excavado en un macizo rocoso. A continuación os dejo un problema resuelto que, espero, os sea de interés. Un problema similar lo resolvimos en un artículo anterior, en particular el que calculaba la longitud de avance sin sostenimiento de un túnel.

Descargar (PDF, 438KB)

También os dejo un documento que creo que os puede resultar de muchísimo interés:

Descargar (PDF, 2.44MB)

Referencias:

BARTON, N.; GRIMSTAD, E. (2000). (C.L. Jimeno et al.) El sistema Q en el método Noruega de excavación de túneles. Ingeo Tuneles, Madrid.

BARTON, N.; LIEN, R.; LUNDE, J. (1974). Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, Springer Verlag, vol. 6, pp. 189-236.

BIENIAWSKI, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley-Interscience, pp. 40–47.

GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco. Bilbao, España, 277 pp.

GRIMSTAD, E.; BARTON, N. (1993). Updating the Q-Sytem for NMT. Proceedings of the International Symposium on Sprayed Concrete – Modern Use of Wet Mix Sprayed Concrete for Underground Support. Fagemes, Norway. Ed. Kompen, Opsahi and Berg. Norwegian Concrete Association. Oslo.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Longitud de avance sin sostenimiento en un túnel

https://www.sulzer.com/es-es/spain/shared/campaign/keeping-the-water-where-you-want-it-in-tunnel-construction

Para definir el tamaño de galería máximo que sea estable frente a las roturas en masa o roturas completas se pueden emplear métodos empíricos, el método de las curvas de confinamiento convergencia y el método de cálculo numérico con programas informáticos (por ejemplo, Plaxis o Abaqus, entre otros). Sin embargo, antes de empezar a calcular, sería interesante estimar el tamaño de galería estable frente al sostenimiento (Gallo et al., 2016).

A continuación os paso un problema resuelto que utiliza el índice Q de Barton y relación con el RMR (Rock Mass Rating) para estimar la longitud de pase (longitud de avance sin sostenimiento). Además, os explico cómo estimar la carga de roca o presión sobre el sostenimiento y cómo se puede predimensionar el tipo de excavación y sostenimiento a realizar. Espero que os sea de utilidad.

Descargar (PDF, 521KB)

Referencias:

BIENIAWSKI, Z. T. (1989). Engineering rock mass classifications: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley-Interscience, pp. 40–47.

GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco. Bilbao, España, 277 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fuerza de arranque en la excavación mecánica de túneles

Figura 1. Cabeza de una microtuneladora. https://sinducor.es/productos/marca/microtuneladoras-2/

Las máquinas de excavación mecánica de túneles, como por ejemplo las microtuneladoras, utilizan cabezales equipados con útiles de corte como rascadores, picas y discos de corte. Para conocer el rendimiento del corte en la excavación mecánica de un túnel necesitamos conocer la penetración específica (cociente entre la penetración y el empuje). De esta forma, el desgaste de un cortador se mide como el recorrido, en km, de un disco cortador o el consumo de discos cortadores por m3 de material excavado.

Javier Gallo propuso en su tesis doctoral (Gallo, 2011) un modelo empírico que estima la fuerza de arranque en este tipo de excavación. La ventaja de su propuesta es que es aplicable a todo tipo de útil en la excavación, tanto en suelos como en rocas. Permite obtener la fuerza normal a aplicar sobre el útil para romper un fragmento, denominado penetración, y que coincide con el avance la máquina por revolución del cabezal. La ecuación se ha obtenido empíricamente para túneles excavados en diámetros entre 2 y 2,5 m, con útiles de corte tipo disco de diámetros 280 mm y 305 mm, y rascadores de 60 mm de ancho. La ventaja es que no es necesario conocer el área de contacto entre el útil y el terreno. El método se ajusta a una ecuación que el autor denomina función T:

Donde

F             Fuerza (kN)

P             Penetración (mm)

RC          Resistencia a compresión (MPa)

RT           Resistencia a tracción (MPa)

De esta forma, conocida la resistencia a tracción y compresión del macizo rocoso y la penetración que se pretende realizar durante el avance, podemos determinar la fuerza que debe resistir el filo del cortador. Ello permite la selección más adecuada, según los datos del fabricante. Análogamente, si conocemos de antemano la fuerza, se puede obtener la penetración máxima con la que avanzaría la tuneladora. La penetración aumenta cuanto menor sea la resistencia del terreno (Gallo et al., 2016).

Os paso un problema resuelto que espero os sea de interés.

Descargar (PDF, 166KB)

Referencias:

GALLO, J. (2011) Definición de un modelo para la estimación de la fuerza de arranque en la excavación mecánica de túneles en suelos y rocas. Tesis doctoral. Universidad del País Vasco. Bilbao, España.

GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco. Bilbao, España, 277 pp.

INSTITUTO TECNOLÓGICO Y GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie: Tecnología y Seguridad Minera. Segunda edición, Madrid, 541 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Machine learning aplicado a la construcción: Un análisis de los avances científicos y del futuro próximo

Acaban de publicarnos un artículo en la revista Automation in Construction, que es la revista indexada de mayor impacto JCR en el ámbito de la ingeniería civil. En este caso se ha realizado un análisis bibliométrico del estado del arte y de las líneas de investigación futura del Machine Learning en el ámbito de la construcción. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. En este caso, se trata de una colaboración con grupos de investigación de Chile, Brasil y España.

El artículo lo puedes descargar GRATUITAMENTE hasta el 11 de octubre de 2022 en el siguiente enlace: https://authors.elsevier.com/c/1fdIq3IhXMtgv2

Los complejos problemas industriales, junto con la disponibilidad de una infraestructura informática más robusta, presentan muchos retos y oportunidades para el aprendizaje automático (Machine Learning, ML) en la industria de la construcción. Este artículo revisa las técnicas de ML aplicadas a la construcción, principalmente para identificar las áreas de aplicación y la proyección futura en esta industria. Se analizaron estudios desde 2015 hasta 2022 para evaluar las últimas aplicaciones de ML en la construcción. Se propuso una metodología que identifica automáticamente los temas a través del análisis de los resúmenes utilizando la técnica de Representaciones Codificadoras Bidireccionales a partir de Transformadores para posteriormente seleccionar manualmente los temas principales. Hemos identificado y analizado categorías relevantes de aplicaciones de aprendizaje automático en la construcción, incluyendo aplicaciones en tecnología del hormigón, diseño de muros de contención, ingeniería de pavimentos, construcción de túneles y gestión de la construcción. Se discutieron múltiples técnicas, incluyendo varios algoritmos de ML supervisado, profundo y evolutivo. Este estudio de revisión proporciona directrices futuras a los investigadores en relación con las aplicaciones de ML en la construcción.

Highlights:

  • State-of-the-art developed using natural language processing techniques.
  • Topics analyzed and validated by experts for consistency and relevance.
  • Topics deepened through application of bigram analysis and clustering in addition to traditional bibliographic analysis.
  • Identified five large areas, and detailed two to three groups of relevant lines of research.

Abstract:

Complex industrial problems coupled with the availability of a more robust computing infrastructure present many challenges and opportunities for machine learning (ML) in the construction industry. This paper reviews the ML techniques applied to the construction industry, mainly to identify areas of application and future projection in this industry. Studies from 2015 to 2022 were analyzed to assess the latest applications of ML techniques in construction. A methodology was proposed that automatically identifies topics through the analysis of abstracts using the Bidirectional Encoder Representations from Transformers technique to select main topics manually subsequently. Relevant categories of machine learning applications in construction were identified and analyzed, including applications in concrete technology, retaining wall design, pavement engineering, tunneling, and construction management. Multiple techniques were discussed, including various supervised, deep, and evolutionary ML algorithms. This review study provides future guidelines to researchers regarding ML applications in construction.

Keywords:

Machine learning; BERT; Construction; Concretes; Retaining walls; Tunnels; Pavements; Construction management

Reference:

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

Procedimiento Triger de excavación bajo nivel freático

Figura 1. Un esquema de un cajón abierto ideado por Triger (1846). https://es.wikipedia.org/wiki/Jacques_Triger

Tal día como hoy, 11 de marzo, nació el geólogo francés Jacques Triger (1801-1867), inventor del “procedimiento Triger” para ejecutar excavaciones bajo nivel freático. Se trata de realizar la excavación en el interior de una cámara o cajón abierta en su parte inferior a la que se bombea aire comprimido para evitar la entrada de agua (Figura 1).

Se empezó a emplear en las minas de carbón en 1839 (minas de Chalonnes-sur-Loire). Estas minas estaban situadas bajo el lecho del río Loira, y para llegar a la roca había que cortar 20 m de aluvión anegado de agua. En este caso, se inyectaba el aire a presión mediante una bomba de vapor.

En la Figura 2 se puede ver con mayor detalle cuál era el procedimiento constructivo ideado por Triger. Sobre la sección inferior presurizada y sellada por el terreno (B), había otra sección, (A), con esclusas arriba y abajo (M y N), con dos válvulas y un grifo. Una de las válvulas suministraba el aire comprimido a la caja y la otra lo llevaba al tubo. La válvula posibilitaba reponer el equilibrio de presión, entre la caja y las secciones contiguas. El agua se evacuaba por un tubo desde el fondo al exterior impulsado por la presión el aire, sin necesidad de bombas (S). Los descensos del tubo ocurrían al bajar la presión de la cámara.

Figura 2. Procedimiento de Jacques Triger en el pozo de Chalonne. https://jluisgsa.blogspot.com/2020/03/la-cara-oculta-de-los-puentes-con-pilas.html

Su invento fue ampliamente utilizado en la ingeniería de la construcción, especialmente para hundir los cimientos de los pilares de los puentes en los lechos de los ríos. Esta tecnología se utilizó por primera vez en Italia en la década de 1850 bajo la supervisión de empresas de construcción británicas y francesas. También se utilizó el procedimiento en obras emblemáticas como en la cimentación del puente de Brooklyn o en el puente del Firth of Forth en Escocia o en la cimentación de dos de los cuatro pilares de la Torre Eiffel (Figura 3).

Figura 3. Construcción de los cimientos de la Torre Eiffel (1887). https://es.wikipedia.org/wiki/Jacques_Triger

Esta técnica presenta riesgos elevados para los trabajadores, pues el entorno hiperbárico provoca graves daños si no se realiza una descompresión adecuada. Hoy en día, su uso es marginal y tiende a desaparecer. Otros métodos más seguros y económicos han sustituido a esta técnica.

En un artículo escrito en este blog sobre cimentación mediante aire comprimido se analiza con mayor detalle este procedimiento constructivo. Actualmente también es posible controlar el nivel freático mediante aire comprimido en excavaciones realizadas por escudos. Remito al lector a un artículo específico que escribimos en su día de esta tecnología.

Referencias:

  • GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco, Bilbao, 277 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

56 años de la inauguración de túnel del Mont Blanc

Entrada al túnel desde el Valle de Aosta (Italia). https://es.wikipedia.org/wiki/T%C3%BAnel_de_Mont_Blanc

El 16 de julio de 1965 se inauguró el túnel de Mont Blanc, justo cuando fue mi primer cumpleaños. Tres días después cruzó el primer vehículo la flamante infraestructura subterránea. Se trata de un túnel de 11,6 km de largo, el más largo construido en ese momento, y 8,6 m de ancho. Une por carretera la ciudad francesa de Chamonix, en la Alta Saboya, con la italiana Courmayeur, en el Valle de Aosta. De este aniversario se hizo eco el programa de Radio Nacional de España “Gente despierta”. Me hicieron una pequeña entrevista que os dejo a continuación.

Se trata de una obra de gran trascendencia pues hay que pensar que hasta la tercera parte de las mercancías que exporta Italia al norte de Europa pasan por este túnel. No obstante, la idea del túnel se remonta al siglo XIX. En aquellos años, atravesar los Alpes podía tomar tres días, y no siempre era posible, pues los pasos de montaña quedaban cerrados gran parte del año debido a la nieve y el hielo.

Nunca hasta ese momento se había construido un túnel tan largo. Hoy ya tenemos túneles de mayor longitud, como el túnel de Laerdal, en Noruega, que ostenta el récord con 24,5 km de longitud. Trabajaron en el túnel de Mont Blanc cientos de hombres durante años, aguantando un calor intenso mientras duraban los trabajos. Murieron en la obra 12 trabajadores, con decenas de heridos por avalanchas, inundaciones y desprendimientos. Incluso se tuvo que suspender los trabajos durante 5 meses debido al enterramiento que sufrió la maquinaria en un momento dado.

No obstante, este túnel será recordado por el gravísimo incendio que sufrió el 24 de marzo de 1999, donde una colilla fue la que, al parecer, incendió un camión belga cargado de harina y margarina. El incendio duró 53 hora y se cobró la vida de 39 personas. Tras el incendio, el túnel se cerró durante 3 años y se abrió de nuevo en 2002. Se tuvo que reparar la parte dañada y mejorar la seguridad. Se construyeron nichos cada 100 m, una estación de primeros auxilios en el centro del túnel, un refugio conectado a una calería de escape independiente (bajo el suelo) y se prohibió el paso de camiones con materiales peligrosos, con estrictos límites de velocidad y distancia de seguridad entre vehículos.

Os dejo el reportaje que sobre el incidente hizo National Geographic. Es de visión obligatoria para todos los profesionales y estudiantes de ingeniería civil.

Contención del agua mediante escudos de aire comprimido

Figura 1. Distribución de presiones en el frente del escudo

La necesidad de equilibrar suelos inestables que además se encuentran bajo el nivel freático, ha desarrollado un conjunto de escudos con diversas tecnologías que estabilizan el frente empleando aire comprimido, lodos o las propias tierras extraídas en la excavación.

El aire comprimido es el sistema más antiguo empleado como medio de estabilización en la excavación de túneles. En 1874, James H. Greathead plantea el primer escudo que utiliza aire comprimido, aunque no se llegó a emplear. En 1879, De Witts Haskins maneja por primera vez la presurización a 0,24 MPa en la construcción del túnel en Nueva York, bajo el río Hudson, y del túnel Antwerp Docks recurriendo a dovelas de fundición.

En sus primeras aplicaciones se utilizaron escudos abiertos con una presurización integral del túnel, para construir túneles bajo niveles freáticos poco importantes (0,1 a 0,2 MPa), entre el frente y la esclusa inicial de entrada. En el frente bastaban simples escudos de entibación u otros con rueda abierta, pues el único condicionante era disponer un frente con un coeficiente de permeabilidad al aire bajo, compuesto en su mayoría por arenas finas, arcillas y limos. Estos escudos tenían acceso al frente de excavación por medio de dos sistemas de esclusas de cierre hermético: una para la entrada y salida del personal, y otra para la evacuación del escombro.

Sin embargo, es a partir de los años 1950-60 cuando se reconocen los problemas que plantea el trabajo prolongado en condiciones hiperbáricas. En efecto, cualquier pérdida de aire podría implicar un desastre de enormes proporciones.

En terrenos con frentes con suelos granulares no cohesivos, el riesgo es alto de accidentes debido a la inestabilidad del frente por su rotura. Además, los rendimientos son muy bajos, pues la entrada al túnel del personal y la maquinaria se hace a través de esclusas para mantener la presión. Incluso trabajando por debajo de los 0,3 MPa, se exigen tiempos de descompresión cercanos a las 4 horas, por lo que solo son útiles de 2 a 3 horas por turno, lo cual dispara los costes.

Los inconvenientes de esta forma de trabajo, especialmente por razones de seguridad y salud para los operarios, han eliminado por completo la presurización integral del túnel. Sin embargo en escudos cerrados, el aire comprimido cuando el terreno reúne las condiciones necesarias, puede ser un medio de estabilización eficaz, aplicable en combinación con otros medios de sustentación. Por tanto, se presuriza exclusivamente el terreno del frente, es decir, el espacio comprendido entre la rueda de corte y un mamparo, que es lo que se denomina “cámara de tierras”. De esta forma, se aísla la presión del resto de la máquina, pudiendo los operarios trabajar a presión atmosférica. Hoy día solo se entra en la cámara presurizada para la revisión de la rueda de corte y la reposición de herramientas, siempre con la máquina parada. De todas formas, los escudos de aire comprimido apenas se utilizan hoy en día, pues el aire comprimido complica mucho la organización de la obra. Solo se emplean en labores complementarias o túneles muy cortos y siempre con presiones inferiores a unos 0,3 MPa.

El reparto desigual de presiones sobre el frente de excavación, puede ser un inconveniente tanto más importante cuanto mayor sea la altura del escudo según se aprecia en el esquema siguiente: en escudos de grandes dimensiones la diferencia de cota entre la solera y la clave del túnel, puede llegar a establecer importantes diferencias de presión. Para una diferencia h2 – h1 » 10 m la sobrepresión en clave sería del orden de una atmósfera.

Por otra parte, para que el aire comprimido sea un medio efectivo de sostenimiento arenas o gravas, es necesario que el suelo contenga una proporción mínima (>10 %) de finos, es decir, son necesarios terrenos muy homogéneos. En el caso de materiales no cohesivos con riesgo de roturas del frente, se prefieren otro tipo de escudos, tal y como se describirá en lecciones posteriores.

Los principales componentes de un escudo de aire comprimido son los siguientes:

  • Cabeza de corte, formada por cuchillas y dientes
  • El escudo cilíndrico de protección. Su parte frontal está cerrada por un mamparo que separa la cámara presurizada donde está la cabeza de corte, del resto
  • Gatos hidráulicos de empuje horizontal

En estos escudos la extracción del escombro se realiza hasta la zona despresurizada a través de un tornillo sinfín, que puede descargar en una válvula esférica rotativa. Cuando existen dificultades, se pueden adicionar espumas o polímeros para conformar un gel viscoso manejable.

Existe un tipo especial de tuneladora denominada escudo abierto de aire comprimido, donde la excavación se realiza con un minador puntual o rozadora, mientras que el frente se sostenien con aire comprimido.

La realidad, la presurización neumática actual de la cámara frontal del escudo queda reducida a situaciones de emergencia en escudos de presión de lodos o de tierras para, mediante una esclusa situada en la cabeza de la máquina, permitir el acceso para la sustitución de picas, reparar o solucionar alguna situación inesperada.

Referencias:

  • GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco, Bilbao, 277 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tuneladoras de frente en presión de lodos: los hidroescudos

Vista frontal de un hidroescudo. https://www.eurohinca.com/escudo-cerrado-hidroescudo.html

Los escudos de frente en presión de lodos, o hidroescudos (hydroshield, en inglés) son tuneladoras que emplea lodos tixotrópicos para garantizar la estabilidad del frente, con un sistema de conducción del escombro por vía húmeda mediante bombeo. Estas máquinas surgieron en los años sesenta para resolver el problema de la presurización de los frentes de excavación en materiales no cohesivos.

Actualmente, los hidroescudos son aptos para trabajar para excavar bajo nivel freático en terrenos complicados, formados por arenas y gravas u otros materiales blandos y fragmentados. El límite del tamaño máximo transportable hidráulicamente es de 80 a 100 mm. No obstante, si se incorpora una trituradora en la cabeza de la máquina, se puede abordar el desalojo de tamaños mayores. Cuando el porcentaje de finos (tamiz 200) supera el 20%, la solución no es económica por la dificultad de separar el escombro de la bentonita. Además, se trata de una máquina especialmente indicada para la perforación de pequeños diámetros. No obstante, siempre con los inconvenientes propios de este medio de estabilización: vertido de los lodos y sobrecoste de la instalación para su preparación, bombeo y recuperación.

Estos escudos son las más apropiados para excavar túneles en terrenos inestables sometidos a una elevada presión de aguas subterráneas o a filtraciones que deben contenerse proporcionando sostenimiento al frente de excavación con un fluido a presión. Este fluido de excavación normalmente es una suspensión de bentonita o bien una mezcla de arcilla y agua.

El fluido de perforación se bombea hacia el interior de la cámara de excavación, donde llega al frente de excavación y penetra en el suelo formando la torta de filtro o el mamparo impermeable en suelos finos, o la zona impregnada en suelos gruesos, que garantiza la presión en el frente. La función de los lodos, además de estabilizar el terreno, es facilitar la evacuación del escombro que, mezclado con ellos, se bombea y dirige hacia el exterior.

En estos escudos, la parte de la máquina que realiza la excavación, está separada del resto por una mampara completamente estanca. Los lodos ocupan una cámara con dos compartimentos: uno anterior lleno de lodos con el escudo en funcionamiento y otro posterior en el que se regula la presión por medio de un colchón de aire que está separado de la cámara por un diafragma. El volumen de lodos, se controla automáticamente con un regulador de nivel superior e inferior que actúa sobre los sistemas de alimentación y de extracción del detritus, de forma que cuando los lodos alcanzan uno de estos niveles, las bombas de impulsión o extracción se paran automáticamente.

En la Figura 2 se representan las distintas partes de la que consta un hidroescudo.

Figura 2. Esquema básico de un hidroescudo

La numeración de las partes del hidroescudo de la Figura 2 es la siguiente:

  1. Rueda de corte
  2. Accionamiento
  3. Suspensión de bentonita
  4. Sensor de presión
  5. Esclusa de aire comprimido
  6. Erector de dovelas
  7. Dovelas
  8. Cilindros de propulsión
  9. Burbuja de aire comprimido
  10. Mamparo sumergible
  11. Machacadora
  12. Tubería de extracción

Como en cualquier aplicación con lodos bentoníticos, la permeabilidad del terreno tiene un límite (k > 10-2 cm/s.) a partir del cual la capa de gel ya no se forma sobre el terreno y en consecuencia ha de recurriese a otro medio auxiliar de excavación.

La mezcla con los residuos se bombea desde la cámara de excavación hasta una planta de separación situada en la superficie, compuesta generalmente por cribas y ciclones, lo cual permite reciclar la suspensión de bentonita y arcilla.

Por último, resulta relevante comentar que los hidroescudos son la única forma de excavar un túnel bajo nivel freático cuando las presiones del agua son muy elevadas, por encima de los 5 Bar.

Os dejo a continuación la Figura 3, tomada de Mendaña y Fernández (2011), donde se pueden ver, de una forma aproximada, los rangos de utilización de los hidroescudos frente a los escudos EPB. A la izquierda de la figura tenemos en azul los terrenos cohesivos, donde lo ideal son los escudos EPB, mientras que a la derecha son terrenos no cohesivos con escasez de finos, donde lo más adecuado son los hidroescudos. Existe, como siempre, un campo intermedio donde se debe estudiar con mayor detenimiento la aplicación. En cualquier caso, es muy importante elegir bien los aditivos adecuados.

Figura 3. Campo de aplicación de los escudos presurizados (Mendaña y Fernández, 2011)

Os dejo a continuación un artículo de Mendaña y Fernández publicado en la Revista de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/2011/2011_octubre_3525_04.pdf

Descargar (PDF, 1.27MB)

Referencias:

  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 115 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Medición del grado de fracturación de un macizo rocoso: el índice RQD

La fracturación de un macizo rocoso se define por el número, espaciado y condiciones de las discontinuidades que presenta, cualquiera que sea su origen y clase. El grado de fracturación se suele expresar mediante el índice RQD (Rock Quality Designation), que representa la relación entre la suma de las longitudes de los fragmentos de testigo mayores de 10 cm y la longitud total del tramo considerado. Este índice fue desarrollado por D. U. Deere entre 1963 y 1967, en principio, para rocas ígneas.

 Para estimar el RQD solo se consideran los fragmentos o trozos de testigo de material fresco, excluyéndose los que presentan un grado de alteración importante. La medida de este índice se realiza en cada maniobra de sondeo o en cada cambio litológico, siendo recomendable que la longitud de maniobra no exceda de 1,5 m. Además, el diámetro mínimo de los testigos debe ser de 48 mm.

Se puede decir que un RQD inferior a 25 indica un macizo rocoso de muy mala calidad, mientras que de 90 a 100, indica una calidad muy buena. Una calidad media en relación con la fracturación podría situarse entre 50 y 75.

Aunque este índice es muy utilizado, hay que tener en cuenta que no tiene en cuenta aspectos tan relevantes como la orientación del sondeo, separación, rellenos y demás condiciones de las discontinuidades, por lo que no es suficiente para describir completamente las características de la fracturación de un macizo rocoso.

Si no se dispone de datos de sondeos, el RQD aproximado puede estimarse por medio de la siguiente fórmula:

RQD ≈ 115 – 3,3 Jv

donde Jv es el número de fracturas observado por metro cúbico de roca.

Os recomiendo el artículo de Enrique Montalar acerca de este índice. Recojo las referencias de dicho artículo.

Referencias:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.