Drenaje de excavaciones mediante bombeo desde pozos eyectores

Figura 1. Bombeo desde pozos eyectores. https://wjgroup.org/our-services/ejector-dewatering/

El sistema de pozos eyectores combina las ventajas de los pozos profundos y de las lanzas de drenaje (wellpoints), pero con algunas desventajas. Los pozos profundos precisan un diámetro suficiente para alojar en su interior una bomba sumergible, con el coste correspondiente, además, presentan una relativa fragilidad que puede solucionarse con el sistema de pozos profundos con eyectores. En este caso, la elevación del agua se realiza inyectando agua a alta presión hasta el fondo del sondeo, donde el efecto venturi succiona el agua y la eleva al exterior. Trabaja por succión, pero a diferencia de los wellpoints, ésta se produce en el fondo del pozo. La ventaja respecto a los pozos profundos es que los eyectores presentan un diámetro pequeño. Las bombas de presión se sitúan en superficie y son del tipo normal, lo cual resulta de interés por su fácil vigilancia y facilidad de mantenimiento y sustitución. Además, a diferencia de las electrobombas sumergibles, que pueden quemarse rápidamente si funcionan en seco, los eyectores pueden bombear mezclas de aire y agua sin problemas. Por tanto, el coste unitario de los eyectores es significativamente menor que el de los pozos profundos, por lo que pueden utilizarse en espaciamientos más pequeños cuando las condiciones son adecuadas.

La desventaja es su rendimiento energético bajo y su aplicabilidad se centra en caudales bajos. En efecto, en suelos con cierta cantidad de finos, con más del 5%, los métodos de drenaje gravitacionales son muy lentos y los conos de depresión tardan en formarse. Por tanto, el sistema es adecuado cuando se quiere rebajar el nivel freático en terrenos de baja permeabilidad (limo o arena fina) a más de 5 m, que sería el límite de un wellpoint de una sola etapa. En estos terrenos con conductividad tan baja, el uso de vacío garantiza un mejor drenaje del suelo. Además, si la columna del filtro en el pozo se sella con bentonita, el vacío se transmite por entero al terreno, acelerando el drenaje en los suelos finos que se encuentren atravesados por capas más permeables, aumentando la resistencia al corte del terreno.

Sin embargo, a profundidades mayores a 45-50 m, este sistema llega a ser ineficiente, optándose por un pozo profundo con bomba en el fondo. Además, los sistemas eyectores son sensibles a distintos componentes del agua subterránea como el hierro o el manganeso, que si precipitan pueden atascar el sistema, perdiendo rendimiento, al igual que por bioincrustaciones o por el desgaste de la boquilla, lo cual implica un mantenimiento regular del equipo.

La instalación consta de una serie de pozos, con una sola instalación de bombeo, cuya disposición depende de las condiciones del suelo. Los pozos están equipados por conductos o tuberías de alimentación, un expulsor (venturi), y un conducto de retorno. En la cabeza del pozo, la tubería de alimentación es conectada a una línea de alimentación de alta presión, y la tubería de retorno es conectada a una tubería de evacuación de baja presión. Las líneas de retorno están conectadas a una planta especial de bombeo la cual abastece a la línea de alimentación con agua a gran presión, y recoge el agua de la línea de evacuación. La elevada presión de agua que pasa a través del venturi, succionará el agua del suelo y la enviará a la superficie a través de la tubería de retorno. Pueden ser de dos tipos: de tubería única (dos concéntricas) o de dos tuberías. Este sistema se usa en suelos con baja permeabilidad (Figura 2).

Figura 2. Esquemas de eyector de dos tuberías o de tubería única (Powers, 1992)

A pesar del alto costo de la instalación de estos pozos, pueden resultar en algunos casos más económicos y fáciles de operar que los wellpoints. Los pozos pueden ser instalados en la superficie de la tierra fuera del área de construcción bajando el nivel de agua en una sola etapa. La distancia entre eyectores es similar a la utilizada en el sistema de wellpoints. En un principio, las profundidades de operación no están limitadas por la altura de succión, habiendo eyectores capaces de trabajar hasta 150 m de profundidad, aunque lo normal es estar entre los 30 y los 50 m en una sola etapa. Cuando se utilizan eyectores de una sola conducción, el diámetro interno de la perforación puede llegar a ser tan pequeño como 50 mm, lo que hace que este sistema sea  muy factible económicamente.

Una estación de bombeo suele constar de un tanque y una o más bombas, con válvulas y tuberías de conexión. La bomba toma agua del tanque y la impulsa a presión a la línea de abastecimiento, a las que están conectadas las tuberías de inyección de cada eyector. El agua inyectada y extraída del terreno vuelve al tanque a través de la línea general de retorno, a la que se conectan las tuberías de descarga de los eyectores. Una sola estación puede abastecer hasta 75 pozos eyectores.

Os paso una animación para que veáis cómo funciona un eyector. Espero que os sea útil.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Contención del agua mediante ataguías celulares

Figura 1. Ataguía celular para la construcción de isla artificial de conexión puente-túnel del Hong Kong-Zhuhai-Macao Bridge. http://www.americanpiledriving.com/wordpress/2011/12/12/

Las ataguías celulares son estructuras de contención utilizadas con profundidades importantes, formadas por cilindros huecos contiguos, normalmente tablestacas de acero unidas, que soportan los empujes mediante la fricción de su base (Figura 1).

Estos cilindros son relativamente grandes, con diámetros típicos de 12 a 20 m. Se utilizan en la construcción de presas, muelles (Figura 2), pilas de puentes y recintos en general donde debe trabajarse en seco.

Los recintos construidos con ataguías celulares se pueden construir sobre terrenos firmes o de calidad media. Los depósitos de suelos blandos hasta gran profundidad pueden ser inadecuados.

Figura 2. Muelle de recintos de tablestacas. http://www.puertos.es/es-es/BibliotecaV2/ROM%200.5-05.pdf

En el caso de corrientes importantes, por ejemplo en un gran río, es importante conocer el campo de velocidades entorno a la zona donde se colocarán las ataguías celulares. En este caso, la propia ataguía reduce la sección del río y provoca un aumento de la velocidad del agua, con la posible erosión del fondo del cauce, en especial hacia las esquinas, por lo que conviene redondearlas.

Las celdas se rellenan con un material del mayor peso específico posible, normalmente una mezcla de arenas y gravas. En el caso de desmontar las celdas, antes debe extraerse el material de relleno. En cambio, si se rellenan de hormigón quedan como estructuras permanentes, como es el caso de la construcción de diques en obras portuarias.

El ancho medio de una ataguía celular sobre roca oscila entre el 70 y el 80% de la altura del agua exterior que retiene (Figura 3). En el caso de estar sobre suelos arenosos, al igual que ocurre con las ataguías de tablestacas de doble pared, debe tener un espaldón en el interior. Con grandes calados de agua, estas ataguías de doble pared se pueden rellenar de hormigón y sostenerse por puntales, lo cual ahorra un espacio considerable y permiten asegurar una buena impermeabilización con anchos muy pequeños.

Figura 3. Sección de ataguía celular de doble pared de tablestacas

Existen distintas configuraciones de recintos que se construyen con formas circulares de tablestacas planas, creando celdas independientes que después se unen mediante arcos de tablestacas con formas especiales. En la Figura 4a se observan arcos circulares conectados por diafragmas rectos; en la Figura 4b vemos celdas circulares conectadas por arcos circulares; en la Figura 4c vemos la estructura tipo trébol, que consta de grandes celdas circulares subdivididas por diafragmas rectos. Las ataguías de tabiques rectos requieren menos tablestacas que las celdas circulares, aunque el relleno debe hacerse con cuidado para que los tabiques de separación no sufran presiones descompensadas. Con los recintos circulares, se pueden rellenar las celdas de forma independiente. Con los recintos de diafragmas, han de hacerse los rellenos simultáneamente, utilizándose un mayor número de tablestacas. Su posible ventaja radica en menores esfuerzos en la tablestaca para un mismo calado.

Figura 4. Configuraciones de ataguías celulares

Las ataguías celulares se deben diseñar para ofrecer seguridad estructural en distintos aspectos:

  • Se debe evitar el vuelco y su puesta fuera de alineación
  • Debe estar al abrigo del deslizamiento
  • Debe presentar seguridad a la rotura por cortante en el relleno interior de la célula
  • Las juntas no deben romperse, teniendo en cuenta la corrosión
  • Las almas de las tablestacas deben presentar un factor de seguridad razonable frente a la rotura
  • No deben haber distorsiones ni deformaciones fuera de límites aceptables

La ventaja de construir las ataguías celulares con tablestacas es que precisan poco andamiaje, bastando unas guías superiores e inferiores para hacer descenderlas (Figura 5). Se pueden construir desde tierra, de forma que cada célula terminada sirve de plataforma de trabajo para hincar en la siguiente (Figura 6). Sobre lechos rocosos irregulares, las longitudes de las tablestacas se adaptan al perfil de la roca. Sobre suelos arenosos o de grava, se dispone de un banco de tierra interior (Figura 3) para conseguir que la longitud de la filtración sea suficiente para evitar el colapso por surgencia.

Figura 5. Ataguía celular para dique de Carena. https://www.soletanche-bachy.com/es

 

Figura 6. Ataguía celular para dique de Carena. https://www.soletanche-bachy.com/es

Uno de los mayores riesgos de colapso de las ataguías celulares es el fallo de cualquier unión. Por eso no se aconseja usar estas ataguías sobre terrenos con cantos u otros obstáculos que puedan abrir las tablestacas o la ruptura de las uniones.

A continuación os dejo algunos vídeos sobre el uso de las ataguías celulares. Espero que os sean de interés.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • PUERTOS DEL ESTADO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias ROM 0.5-05. Ministerio de Fomento, Madrid, 537 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes de penetración transversal: drenes californianos

Figura 1. Drenes californianos. http://civogal.com/drenes-californianos

Cuando se quiere reducir las presiones intersticiales en taludes y zonas de difícil acceso, son muy útiles los drenes de penetración transversal. Son perforaciones ascendentes comúnmente llamadas drenes californianos (horizontal drains), debido a que el Departamento de Carretas de California empezó a utilizarlo a partir de los últimos años de la década de 1930.

Son perforaciones de pequeño diámetro y gran longitud realizadas frecuentemente con los mismos carros perforadores empleados en la instalación de bulones o ejecución de sondeos. En su interior se dispone un tubo de policloruro de vinilo (PVC) ranurado, de un diámetro mínimo de 50 mm capaces de soportar cierta carga por si la perforación colapsara, tubo en ocasiones rodeado de un geotextil que actúe de filtrante para evitar el taponamiento o la erosión interna del terreno al escapar los finos. No obstante, si las deformaciones esperadas superan al radio del tubo, entonces se utilizan drenes metálicos. Asimismo, se pueden disponer drenes sin tubo interior, especialmente en roca sana, donde no se esperen movimientos que obstruyan la perforación, ni materiales que puedan obstruirla.

Los drenes se disponen con una pequeña inclinación, de al menos el 3% sobre la horizontal, normalmente entre 5-10º, para evacuar el agua por gravedad, debiéndose introducir, al menos, en 2-3 m en la zona de acumulación de agua. Es por ello que a veces también se llaman drenes subhorizontales. Se debe dejar también, entre 2 y 3 m del tubo más próximo a la boca del taladro sin orificios ni ranuras. En otras ocasiones se pueden disponer más inclinados, incluso en vertical en galerías de drenaje.

Los drenes de penetración transversal tienen como objeto reducir las presiones intersticiales, agotar un embalsamiento de agua o rebajar el nivel freático. En el caso de taludes, los drenes se utilizan para estabilizar deslizamientos profundos, tal y como se puede apreciar en la Figura 2. Son especialmente eficaces en terrenos permeables, rocas fisuradas o cuando interceptan capas permeables saturadas, perdiendo eficacia en suelos arcillosos homogéneos.

Figura 2. Localización del nivel freático antes y después de la instalación de un dren horizontal

Si bien la disposición de los drenes depende de las condiciones hidrogeológicas y morfológicas del talud o ladera, normalmente se disponen 1-2 filas de tubos distanciados entre 7 y 30 m, siendo lo más frecuente entre 10 y 15 m. En el caso de taludes de más de 60 m de altura, se disponen bermas y una línea de drenes al pie de cada berma, recogiendo el agua a una cuneta impermeable. Con alturas superiores a 100 m, la longitud de perforación necesaria es tan alta que su coste se dispara. Si en nivel freático se encuentra entre 30 y 60 m por encima del pie del talud, se prolongan los drenes desde el pie hasta una profundidad igual a la altura del talud, con un máximo de 90-100 m.

La perforación simultánea de los drenes con desmontes de alturas superiores al de la maquinaria ordinaria facilita su ejecución y mejora las condiciones de drenaje durante la excavación. No se emplean lodos tixotrópicos durante la perforación, sino entubaciones provisionales al atravesar terrenos inestables o tramos de falla, hasta instalar el tubo definitivo. El agua drenada por los tubos debe canalizarse adecuadamente a cunetas u otros elementos del drenaje superficial. Además, estos drenes deben someterse a revisiones periódicas, con un mantenimiento que incluya su limpieza con aire a presión.

Los drenes de penetración transversal presentan como ventajas su rápida y sencilla instalación en comparación con otros sistemas de drenaje profundo, permite alcanzar toda la superficie del talud, puede ejecutarse una vez iniciadas las inestabilidades y el desagüe se realiza por gravedad, sin el uso de bombas o sistemas auxiliares. Sin embargo, su área de influencia es limitada en comparación con otros sistemas de drenaje profundo y se ejecutan una vez hecho el talud, por lo que su estabilidad puede complicarse.

Como información complementaria, os dejo la ficha técnica realizada por GEOCISA sobre al ejecución de anclajes y drenes californianos en el castillo de Jadraque (Guadalajara).

Descargar (PDF, 277KB)

REFERENCIAS:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Empujes sobre entibaciones según Terzaghi y Peck

Figura 1. Entibación en excavación de zanja. https://commons.wikimedia.org/wiki/File:Sbh_s600.JPG

Ya se habló en un artículo anterior de la altura crítica, que si se sobrepasa, obliga a entibar una excavación. Este es un aspecto de gran importancia en la seguridad de las personas. Para ello resulta fundamental el cálculo de los empujes del terreno sobre la entibación para dimensionar correctamente los elementos constitutivos de esta estructura auxiliar.

La deformación que se desarrolla en el terreno al ir entibando una excavación, poniendo puntales de arriba hacia abajo, es diferente a la que desarrollan la condición de empuje activo en los muros. Este hecho provoca que la distribución real de los empujes sobre una entibación sea diferente a la clásica ley triangular que aparecen en los muros. Esto se debe, entre otros motivos, a que la entibación va a girar respecto a un punto situado en la parte superior (primer apuntalamiento), frente al típico muro en ménsula, donde el giro se realiza, aproximadamente, en la base de la estructura.

En la Figura 2 podemos ver que los empujes reales no crecen proporcionalmente con la profundidad y que, en el fondo de la excavación, acaban anulándose. Por tanto, la parte superior, que se apuntala desde el primer momento, recibe unos empujes superiores a los de la ley triangular, y en la parte inferior, son menores. La ley de empujes, por tanto, se aproxima a una parábola.

Figura 2. Empujes reales de forma parabólica sobre entibaciones

Terzaghi y Peck (1967) propusieron algunos esquemas simplificados útiles para determinados suelos típicos. Son los denominados “diagramas de presión aparente“, deducidos a partir de medidas realizadas en diferentes obras a mediados del siglo XX (Berlín, Múnich, Chicago, Nueva York y Oslo) en entibaciones apuntadas, no ancladas, de más de 6 m de profundidad.  No se trata realmente de unos diagramas de empujes únicos, sino de las envolventes empíricas de los distintos diagramas reales que se observan en una fase de excavación y que pueden ser bastante complicados (secuencia de construcción, temperatura, acomodo entre pantalla y apoyos, etc.).

Teniendo en cuanto los valores a, b y c de la Figura 3, se pueden estimar la ley de empujes en función de la Tabla 1 (Izquierdo, 2001). Hay que tener presente que estos empujes, sacados de mediciones realmente tomadas en obra, son aplicables a los empujes sobre entibaciones, por lo que no es de aplicación directa a superficies continuas y mucho más rígidas como los muros pantalla.

Figura 3. Distribuciones propuestas para empuje sobre entibaciones

 

Tabla 1. Procedimiento empírico de Terzaghi y Peck (1967) para determinar las cargas sobre los puntales en una excavación entibada (Izquierdo, 2001)

En la Tabla 1, Ka es el coeficiente de empuje activo, cu la cohesión del terreno sin drenaje y γ su peso específico.

REFERENCIAS:

  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, Barcelona, 309 pp.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • LAMBE, T.W.; WHITMAN, R.V. (1996). Mecánica de suelos. Limusa, México, D.F., 582 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MINISTERIO DE LA VIVIENDA (2006). Código Técnico de la Edificación
  • TERZAGHI, K.; PECK, R. (1967). Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Motores térmicos de dos tiempos

Motor de dos tiempos. Wikipedia

El motor de dos tiempos, es un motor de combustión interna que realiza las cuatro etapas del ciclo termodinámico (admisión, compresión, explosión y escape) en dos movimientos lineales del pistón (una vuelta del cigüeñal). Este motor presenta, en condiciones similares de cilindrada, número de cilindros, etc., doble de potencia que el de cuatro, pero presenta el inconveniente de que su potencia queda algo disminuida por las deficiencias de barrido de los gases producidos en la combustión. Estos motores se caracterizan por su ligereza y bajo coste, no presentando válvulas, lo cual supone una eliminación de complicaciones mecánicas.

  • Primer tiempo: se produce la combustión, expansión de los gases y descenso del pistón; llega un momento en que éste descubre la lumbrera de escape, al mismo tiempo que comprime por su parte inferior los gases, empujándolos a través de la galería de trasiego o paso hacia el cilindro.
  • Segundo tiempo: sube el pistón, descubriéndose la lumbrera de admisión, si cono es normal no lleva válvulas. Se cierra a continuación la galería y la lumbrera de escape y se produce la compresión de los gases.
Motor Otto de dos tiempos. Wikipedia

 

Para tener una visión más completa de este motor, os dejo el siguiente objeto de aprendizaje de la Universidad de La Laguna. Espero que os sea útil.

Otro vídeo explicativo es el siguiente:

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

 

Grúa araña

Las grúas araña (spider crane) constituyen máquinas muy compactas que, en los modelos actuales, ofrecen gran capacidad y alcance. Se trata de una solución de gran interés cuando el acceso a un recinto es restringido o el espacio de trabajo es limitado. Las más pequeñas tienen 600 mm de ancho y un peso de 1.050 kg, con potencias de carta desde 0,9 hasta 7,5 toneladas. Su accionamiento puede ser con gasolina, diésel o con funcionamiento eléctrico. También presentan accesorios específicos para la manipulación de cristales y ventosas especiales para su sujeción.

Os dejo a continuación un vídeo de una grúa araña Octopus, de 23 metros de alcance vertical.

Aquí otros vídeos de cómo se monta una grúa araña.

Os dejo un catálogo de este tipo de máquinas para que os sirva de referencia en cuanto a características y prestaciones, en este caso se trata de la empresa Transgruma.

Descargar (PDF, 4.97MB)

Referencia:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

Pantallas de tablestacas arriostradas con anclajes al terreno

Si se pretende realizar una excavación profunda, dejando el recinto libre de obstáculos, tendremos que realizar un arriostramiento de las pantallas de tablestacas mediante anclajes al terreno. De esta forma podremos limitar las deformaciones en la pantalla.Esto permite realizar excavaciones junto a elementos a proteger, como edificaciones, instalaciones, etc. Eso sí, siempre que se pueda realizar el anclaje correspondiente.

El método constructivo pasa por realizar la excavación por fases, de forma que se puedan efectuar los anclajes y su tesado antes de proseguir con la excavación a mayor profundidad.

Este tipo de arriostramiento permite su uso en grandes recintos con muy diversas geometrías. Además, al no presentar la excavación obstáculos, se pueden alcanzar grandes rendimientos en los vaciados dentro del recinto.

Aunque en este post no vamos a dedicarlo al cálculo de estas estructuras, sí que es importante mencionar que una parte nada despreciable de roturas de tablestacas ancladas se han debido a un incorrecto o poco cuidadoso diseño o ejecución de los dispositivos de unión entre el tirante y la pantalla.

 

 

Os paso una animación de cómo se realiza el anclaje:

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Hinca de tablestacas por impacto

La hinca de tablestacas por impacto, percusión o golpeo es una de las técnicas más antiguas y que se emplea en aquellos casos de suelos de mayor consistencia donde la vibración no es suficiente. El martillo de golpeo sujeta a la tablestaca por su parte superior y le transmite los impactos generados por una maza alojada en su interior.

Resulta muy importante la razón entre el peso de la maza y el peso de la o las tablestacas que van a introducirse en el suelo. Es necesario un sobreretes y sufrideras para distribuir el golpe y proteger la cabeza de la tablestaca. El sombrerete o casco de protección es una pieza de acero fundido o chapones soldados que se colocan en la cabeza de la tablestaca, la sufridera es una pieza colocada en la parte superior del sombrerete que distribuye la onda de choque de la maza y la galleta o almohadilla, de pequeño espesor, asegura el buen asiento del sombrerete con la cabeza de la tablestaca.

Se pueden distinguir dos tipos fundamentales:

  • Martillos de simple efecto: el ariete cae libremente sobre la tablestaca. Sirve para cualquier terreno. Se utilizan mazas pesadas con recorridos cortos para minimizar el daño en la cabeza de la tablestaca y el ruído. Normalmente se dan unos 60 golpes por minuto.
  • Martillos de doble efecto: el ariete cae acelerado por la presión suministrada por aire/vapor o un sistema hidráulico. Son más eficientes, con hasta 120 golpes por minuto.

Según el Art. 673 del PG-3, En el caso de mazas de simple efecto, el peso de la maza propiamente dicha no será inferior a la cuarta parte (1/4) del peso de la tablestaca, si se hinca la tablestaca de una en una, o a la mitad del peso de la misma si se hinca por parejas. La energía cinética desarrollada en cada golpe, por las mazas de doble efecto, será superior a la producida, también en cada golpe, por la de simple efecto especificada, cayendo desde una altura de sesenta centímetros (60 cm).

Asismismo, las tecnologías empleadas para accionar el martillo de golpeo son:

  • Accionamiento neumático, para usarse sustentado por una grúa
  • Accionamiento diésel, acoplado a un vehículo autotransportado

 

Os dejo un vídeo de un martillo diésel que espero os guste:

Y este otro martillo neumático, que como veréis, es bastante pequeño y efectivo:

Referencias:

BENEGAS, M.J. (1977). Tablestacas: Sistemas de hinca y su práctica. Revista de Obras Públicas, 3141: 29-35.  (link)

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Ingeniería civil humanitaria. Cómo afrontar una emergencia: Lecciones aprendidas de Totalán

Comienzo de los trabajos realizados por la Brigada de Salvamento Minero. Fuente: Ángel García, 2019

En muy pocas ocasiones redacto artículos de opinión en mi blog. Sin embargo, en este caso, la importancia del tema me obliga a tomar posición y escribir acerca de un asunto que, creo en España, podría hacerse mucho al respecto. Se trata de cómo afrontar una emergencia difícil, donde hay vidas en juego. Voy a intentar aprovechar la experiencia de un suceso dramático para extraer algunas lecciones aprendidas que, espero, alguien tenga a bien leer y aplicar.

Todo ello viene por la conferencia impartida el pasado martes 24 de septiembre de 2019 en la Escuela de Ingeniería de Caminos de Valencia por parte de Ángel García y Mauricio Delgado. Todo el mundo conoce la noticia: durante trece días España estuvo pendiente del rescate del pequeño Julen, en el municipio malagueño de Totalán. Tanto Ángel como Mauricio, integrantes de un equipo reducido de ocho ingenieros de caminos, explicaron con mucho detalle las circunstancias técnicas y humanas que supuso esta tragedia. El salón de actos de la Escuela se abarrotó, quedando muchas personas en pie escuchando la charla. Reconozco que me emocioné profundamente al escuchar el relato, al igual que todas y cada una de las personas que acudieron al acto. Se trató, tal y como dijeron los conferenciantes, de una obra de ingeniería civil humanitaria sin precedentes. Especialmente interesante fue resaltar la importancia de los procedimientos constructivos en la resolución del problema, algo que me satisface personalmente por se catedrático de esta asignatura en la Escuela de Caminos de Valencia. El resultado fue que la profesión de ingeniería de caminos demostró su vocación de servicio público y su capacidad técnica, aumentando, si cabe, su prestigio ante la opinión pública. Sin embargo, los riesgos tomados fueron excesivos.

Se trató de un acto de coraje personal y técnico, donde en un instante determinado, de forma espontánea, se juntaron en el momento y lugar preciso, un grupo de personas que, dejando atrás cualquier tipo de consideración, de forma voluntaria, asumiendo una responsabilidad por encima de lo exigible y jugándose el prestigio profesional propio y de toda la profesión, fueron capaces de acometer un trabajo descomunal, de elevadísima complejidad técnica y con una presión brutal por parte de los medios de comunicación y de la opinión pública en general. No era para menos, se trataba de salvar contrarreloj la vida de un niño de apenas dos años. Todos, desde el primer momento asumieron el problema como propio, Julen era el hijo de cada uno de ellos y, a través de la televisión, de cada uno de nosotros.

Fotografía con Ángel García Vidal, en la Escuela de Ingeniería de Caminos de Valencia

Por otra parte, yo conocía a través de las redes sociales a Ángel García, delegado del Colegio de Ingenieros de Caminos en Málaga, antes incluso de que ocurrieran los hechos de Totalán. Persona afable, cariñosa con los suyos, muy de su tierra. Pero el martes tuve la ocasión de conocer personalmente tanto a Ángel como a Mauricio. Todo lo bueno que pensaba sobre ellos se multiplicó y agrandó con el trato directo. Es difícil encontrar a personas con un grado de humanidad, de entrega y de profesionalidad tan grande. Con el permiso de ellos, creo que se creó una amistad que va a durar eternamente. Al tiempo.

Pero justo aquí está el meollo del problema sobre el que quiero reflexionar: en este caso particular, único en el mundo por su complejidad, se tuvo la suerte de juntar en un momento determinado a un conjunto muy especial de técnicos (no solo nuestros compañeros ingenieros, sino todo el operativo que trabajó en el rescate) que, muy difícilmente se podría repetir en otro caso parecido. Que unas personas como Ángel, Mauricio y el resto del equipo dejaran todo, se pusieran en la boca del lobo, asumieran la tremenda responsabilidad de resolver un problema de esta magnitud y tuvieran el temple necesario para tomar las decisiones adecuadas en cada momento, fue una gran suerte para todos. Pero eso, justamente, no puede ser en un Estado moderno como España. Se pudo llegar a rescatar (desgraciadamente ya sin vida) el cuerpo del niño, pero las probabilidades de fracaso y de accidentes y pérdidas humanas durante el rescate fueron, desde mi punto de vista, demasiado altas.

Analicemos con mayor detalle el problema desde la distancia en el tiempo y la independencia que supone no haber participado directamente en este problema. Vemos con una frecuencia cada vez mayor en los medios de comunicación cómo ocurren hechos de gravedad extraordinaria (inundaciones, crisis alimentarias, epidemias, accidentes, incendios, terremotos, atentados, etc.). Incluso este tipo de incidentes superan la ficción: Argameddon es una película donde se acomete un problema cuya posibilidad de ocurrencia no es nula, que es el impacto de un meteorito destructivo en nuestro planeta; Chernobyl no solo ha sido una serie de éxito, sino también una realidad que pone de manifiesto la posibilidad real de accidentes de gran impacto. Para el lector inquieto, recomiendo la lectura de la teoría del cisne negro, de Nassim Taleb.

Una crisis de este tipo presenta una serie de características que alejan su resolución de los casos habituales a los que nos enfrentamos los técnicos todos los días, por difíciles que éstos sean. Se puede caracterizar este tipo de crisis, sin pretender se exhaustivos, por lo siguiente:

  • El tiempo para resolver la crisis es extremadamente limitado, pues hay vidas en juego.
  • A veces se pueden perder más vidas en la resolución del problema que en la propia crisis.
  • La crisis aparece en cualquier parte, por lo que los medios físicos y humanos para resolverla pueden no existir o tardar en llegar.
  • La resolución técnica del problema es compleja, pues no se tienen todos los datos necesarios para tomar decisiones y tampoco hay tiempo para obtenerlos.
  • Es necesaria la participación de distintos tipos de profesionales, a los que se les debería exigir una gran competencia y experiencia en su campo.
  • Se deben tomar decisiones rápidamente, estando éstas sujetas a un elevado grado de incertidumbre, asumiéndose riesgos que, en otras circunstancias serían inaceptables. Se trabaja con coeficientes de seguridad inferiores a los normales.
  • Es difícil coordinar una crisis si no existe una jerarquía clara en el mando de la operación y en la toma de decisiones.
  • Los factores psicológicos pesan sobre los responsables, sobre los que cae toda la gravedad de la toma de decisiones y sobre los que se ejerce una presión insoportable. Suelen acabar con estrés postraumático.
  • Suele existir una presión muy importante que, incluso, suele terminar en un espectáculo mediático debido al gran interés social despertado.
  • La comunicación con los medios de comunicación es clave en la crisis. Es necesaria la transparencia, la prudencia y la veracidad de lo que se comunique.

Seguramente me he dejado cosas, pero lo anterior ya supone un reto de gran magnitud. ¿Qué se debería hacer, por tanto, para aumentar la probabilidad en la resolución del éxito de una crisis? Pues de la lectura de las anteriores características de una crisis, se podrían dar algunas recomendaciones:

  • Se debe trabajar en protocolos de actuación que reduzcan drásticamente las incertidumbres en la toma de decisiones en caso de crisis.
  • El Estado debe asumir la responsabilidad, desde el primer momento, del mando, coordinación y resolución del problema. No se puede delegar en la buena voluntad de unas personas, por magníficas que sean, el peso de la responsabilidad y las consecuencias que pudieran ocurrir en el caso de accidentes, muertes, etc. Pueden existir responsabilidades civiles o penales.
  • Se debe inventariar un conjunto de máquinas especiales y medios técnicos considerados “estratégicos” en la resolución de este tipo de crisis. Deben estar geolocalizados, siempre en disposición de ser utilizados en caso de emergencia y con acuerdos previos sobre este tipo de situaciones con las empresas correspondientes. No se puede delegar el uso de maquinaria estratégica a la buena voluntad de las empresas.
  • Se debe realizar un listado de expertos en temas especiales que, si fuera necesario, fuesen requeridos y puestos a disposición inmediata de las autoridades. El trabajo de estos expertos sería, siempre, de asesoría, pero no de toma de decisiones, que corresponde a la Autoridad del Estado. Igual está mal empleada la palabra, pero se “militarizaría” a este personal mientras durase la crisis. Estaría sometido a la jerarquía de la autoridad y su actuación y responsabilidad por su actuación quedaría respaldada por el Estado.
  • Tanto los recursos técnicos como humanos necesarios podrían provenir de otros países. Se requeriría una estrategia conjunta de emergencias a nivel europeo o incluso de mayor nivel para casos muy excepcionales.
  • Se debe incluir, dentro de la Unidad Militar de Emergencias, o del cuerpo que así se considere oportuno, ingenieros y técnicos de todo tipo expertos en diversos campos, con una formación técnica muy sólida y con formación específica en la resolución de crisis.
  • Es necesario un procedimiento administrativo “de especial urgencia” que, de forma especialmente rápida, se resuelva la contratación inmediata de medios o empresas, con las cautelas necesarias, pero sin que suponga un entorpecimiento de la resolución de la crisis.
  • Resulta clave en la resolución de la crisis y en el impacto sobre la opinión pública, una comunicación directa, transparente, profesional, prudente y veraz de lo que está ocurriendo en cada momento. Esta competencia es difícil y debe aprenderse.

Pero este artículo no estaría completo si no conociéramos, de primera mano, lo que opinan tanto Ángel como Mauricio de este tema. Básicamente coincide con lo que yo he expuesto anteriormente, aunque su opinión es de primera mano, y por tanto, más valiosa que la mía. Os voy a transcribir la última transparencia de la conferencia que me ha pasado Ángel para este artículo, donde se expresan las conclusiones. Yo les llamaría “lecciones aprendidas”. Es oro en estado puro.

Seguramente me he dejado muchas cosas, pero creo que algo hay que hacer. Incluso en las conversaciones mantenidas con Ángel y Mauricio se habló de implicar a las universidades en la realización de algún máster o curso de especialización sobre este tipo de materias.

Os dejo el enlace a la noticia aparecida en nuestra universidad sobre la conferencia y un vídeo donde se da la noticia. Espero que os guste.

http://www.upv.es/noticias-upv/noticia-11441-rescate-en-tot-es.html

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.