Toma de decisiones aplicada a la construcción de un puente mixto en cajón

Os dejo a continuación un ejemplo sencillo de aplicación de la técnica AHP de toma de decisiones dirigida a la selección de alternativas en la construcción de un puente mixto en cajón. Se trata de un caso que utilizamos con nuestros estudiantes para enseñar la técnica. Tratamos de evitar que, en los estudios de soluciones, los estudiantes recurran siempre a las matrices de valoración ponderada, donde los pesos de cada criterio siempre se ponen de forma más o menos arbitraria, o bien para justificar la solución preferida. Este tipo de problemas también suelen aparecer en los concursos de licitación de obras públicas.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V. (2019). Multi-criteria decision analysis techniques applied to the construction of a composite box-girder bridge. 13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1458-1467. ISBN: 978-84-09-08619-1

Descargar (PDF, 441KB)

 

Especialista en tecnologías sin zanja

Os anuncio a continuación la VI edición anual del Curso de Postgrado: ESPECIALISTA EN TECNOLOGÍAS SIN ZANJA, que se desarrolla del 26 de octubre al 11 de noviembre de 2020 en la modalidad online, a través de la plataforma Microsoft Teams. Se trata un curso de 46 horas organizado por la Asociación Ibérica de Tecnología SIN Zanja (IbSTT).

Os adjunto el programa actualizado y el enlace para que puedan cumplimentar el boletín de inscripción, y la reserva de plaza: https://forms.gle/FyYRn9D8XmuENyj4A. Por cierto, podéis solicitar un “código de descuento de empresa asociada” del 10% si sois alumno mío o bien contacto, por ser miembro colaborador (dáis mi nombre al inscribiros y os harán el descuento).

También os paso, gratuitamente, la ponencia que imparto dentro del curso, que he colgado en Youtube, por si os resulta de interés. Se trata del Módulo 7-1: Aspectos generales: Peforación Horizontal Dirigida PHD.

Descargar (PDF, 399KB)

“Fake engineering”. ¿Es oro todo lo que reluce en internet?

Figura 1. https://nationalpost.com/news/toronto/historic-home-perched-five-storeys-above-solid-ground-so-50-storey-condo-can-rise-behind-19th-century-dwelling

Todos los días vemos miles de imágenes en internet. Un buen número de ellas son montajes que buscan llamar la atención para capturar visitas y aumentar los ingresos por publicidad. La ingeniería no se libra de este tipo de fenómenos.

En la Figura 1 podéis observar una imagen que, a priori es espectacular. Pero para un ingeniero supone un rompecabezas, pues es muy complicado ejecutar unos pilotes justamente debajo de un edificio. Es la típica fotografía que utilizo para que mis estudiantes piensen un poco sobre cómo se ha podido realizar este procedimiento constructivo. Muchas veces la respuesta suele ser correcta: es un montaje. Sin embargo, no es éste el caso.

En este caso, la pregunta me la hizo Marcos Barjola. La respuesta no es nada fácil a priori. No obstante, buscando por internet uno puede encontrar una nota de prensa fechada en Toronto que habla de este caso.

Se trata de una noticia del año 2014. El titular decía lo siguiente: “Una casa histórica encaramada a cinco pisos sobre tierra firme para que un condominio de 50 pisos se levante detrás de una vivienda del siglo XIX”. Además, se añadía lo siguiente: “Hay pocas posibilidades de que los ocupantes originales de la Casa John Irwin pudieran imaginar lo que pasaría con su vivienda dentro de 141 años”.

La solución fue ingeniosa y, ciertamente, costosa. Se desplazó la vivienda, se ejecutaron los pilotes y la viga riostra, y se volvió a situar la vivienda sobre la estructura. Sin embargo, se trataba de salvar un edificio de dos plantas, construido en 1873, que es único porque es una de las últimas casas existentes del siglo XIX en el centro de Toronto.

Este tipo de noticias suele dar pie a muchas reflexiones ingenieriles. Un ejemplo es la Figura 2. ¿Se trata de un montaje? ¿Es posible que la foto sea real? Os dejo la pregunta abierta, para que penséis por un rato.

Figura 2. ¿Es posible? ¿Es fotomontaje?

 

Métodos modernos de construcción (MMC): fabricación modular

Figura 1. Construcción modular. https://www.draytonfox.com/modern-methods-of-construction/

La construcción modular y la prefabricación son técnicas ya veteranas en el ámbito de la ingeniería civil y la edificación. Desde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados, la tecnología ha experimentado un avance imparable. Por otra parte, la construcción modular tiene una larga historia en la gestión de la innovación (Simon, 1962). Sin embargo, la auténtica revolución que supone la inteligencia artificial, las tecnologías BIM y los retos de la sostenibilidad están cambiando radicalmente este concepto y lo está llevando a una nueva dimensión. En efecto, estamos ante la revolución de los métodos modernos de construcción. Este es el concepto del que vamos a hablar a continuación.

Los métodos modernos de construcción (Modern Methods of Construction, MMC) , o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Este concepto MMC lo utilizó el gobierno del Reino Unido para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales son tecnologías de construcción en fábrica (Gibb, 1999). Es un término que cubre una amplia gama de tecnologías basada en la fabricación modular, ya sea “in situ” o en otra ubicación, que está revolucionando la forma de construir edificios de forma más rápida, rentable y eficiente. También suele llamarse construcción “off-site”. Un ejemplo no muy lejano ha sido la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días debido a la epidemia del coronavirus. Por ejemplo, países como Suecia y Japón lideran la construcción MMC. En Suecia, casi la mitad de las viviendas de nueva construcción utilizan este método, llegando al 80% en el caso de viviendas unifamiliares. Japón, es el país donde se construye mayor número de viviendas nuevas con este método, aunque no llegan al 20% del total. Incluso podemos leer una noticia de hace unos días donde el alcalde de Londres apoya decididamente la aplicación de diseño de viviendas modulares.

Los diferentes métodos MMC incluyen el sistema de paneles planos prefabricados, módulos volumétricos 3D (Figuras 1 y 3), construcción con losas planas, paneles de cerramiento prefabricados (Figura 2), muros y forjados de hormigón, tecnología de doble pared (Figura 4), cimientos de hormigón prefabricado, aislamiento de encofrados de hormigón, entre otros. No obstante, la gestión de los sistemas 1D/2D respecto a los volumétricos 3D es muy diferente (López, 2017).

Tabla. Principales diferencias entre los sistemas modulares basados en elementos 1D y 2D frente a celdas 3D (López, 2017)

La reciente norma UNE 127050:2020 trata justamente de los sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón, así como de los requisitos de comportamiento, fabricación, instalación y verificación.

Figura 2. Paneles de cerramiento prefabricados (precast cladding panels). https://www.designingbuildings.co.uk/wiki/Precast_concrete_cladding

Las ventajas de la construcción MMC frente a la construcción tradicional son evidentes. Los módulos permiten un ahorro de tiempo de hasta el 50%, pues éstos se elaboran en fábrica, sin incidencia del clima. Una vez llegan a la obra, se ensamblan, interrumpiendo al mínimo la propia obra, pues el 80% de la actividad de la construcción se ha realizado lejos de la obra. Permite el uso de materiales respetuosos con el medio ambiente, reduciéndose el desperdicio. Los módulos son de diseño atractivo e innovador, con materiales de elevada calidad, con un diseño a medida del cliente. La construcción en fábrica permite la fabricación con tolerancias estrictas, la reducción de los errores, promueve la seguridad, no estando los materiales a la intemperie durante la construcción. Además, permite el uso de materiales durables, que mejoran el aislamiento acústico, la protección contra incendios y la eficiencia energética. Sin embargo, en algunos países el uso de las MMC presenta costes más elevados que la construcción tradicional. Otras barreras son la falta de mano de obra especializada, la escasez de suministros o la regulación existente (Rahman, 2014). Con todo, la actual crisis del Covid-19 puede acelerar los cambios necesarios. De todos modos, los métodos MMC constituyen un producto diferente al del mercado de la construcción tradicional. La construcción modular, al tratarse de un producto alternativo, en lugar de competir, complementará el mercado tradicional. El objetivo es aumentar la productividad de los recursos disponibles mejorando la calidad, la eficiencia empresarial, la satisfacción del cliente, el rendimiento ambiental, el índice de sostenibilidad y el control de los plazos de entrega (Yepes et al., 2012; Pellicer et al., 2014, 2016).

Figura 3. Módulos volumétricos 3D (3D volumetric modules). http://www.ehu.eus/ehusfera/industrialized-architecture/page/4/

Una de las claves que acelerará, sin duda, la adopción de los métodos MMC es la introducción de la metodología BIM en los proyectos de edificación o de infraestructuras. En España, las administraciones públicas ya van dando pasos hacia la exigencia de que los proyectos de edificación o infraestructuras se realicen bajo la metodología BIM. Tanto MMC como BIM aumentan claramente la calidad del producto, la sostenibilidad y la mejora del servicio a lo largo del ciclo de vida del activo. A este respecto, recomiendo leer la guía BIM para empresas de prefabricados de hormigón (ANDECE, 2020).

En la feria Construmat de Barcelona (mayo de 2019), McKinsey & Company presentó un informe en el que se detalla cómo la tecnología basada en datos podría ayudar a las empresas españolas de infraestructuras a tomar decisiones más inteligentes, reducir el riesgo y mejorar los resultados de los proyectos. Por tanto, BIM, la automatización de procesos, la inteligencia artificial, el Big Data, las tecnologías en la nube o la interacción con Internet de las Cosas suponen el revolución que lanzará definitivamente la construcción inteligente.

Figura 4. Tecnología de doble pared (twin wall technology). https://www.cornishconcrete.co.uk/products/twin-wall/

Dentro de nuestro grupo de investigación estamos trabajando en la tesis doctoral de Antonio Sánchez Garrido sobre este tipo de aspectos. En una de sus primeras publicaciones en revista indexada en el primer decil de JCR (Sánchez-Garrido y Yepes, 2020), se han aplicado técnicas analíticas de toma de decisiones multicriterio (MCDM) y análisis del ciclo de vida, a una tipología de construcción tradicional de una vivienda unifamiliar, y a dos alternativas diferentes basadas en MMC. Se propone un índice de sosteniblidad, que incluye atributos tangibles e intangibles, así como factores de incertidumbre y riesgos, que permite a los promotores priorizar soluciones que aseguren la sostenibilidad económica, social y medioambiental.

Os dejo algunos vídeos al respecto de esta nueva tecnología.

Os dejo como información complementaria un artículo de Alejandro López de hace apenas tres años, pero donde ya se empezaba a vislumbrar un crecimiento exponencial de la construcción modular.

Descargar (PDF, 623KB)

Referencias:

AENOR (2020). UNE 127050:2020. Sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón. Requisitos de comportamiento, fabricación, instalación y verificación.

ANDECE (2020). Guía BIM para empresas de prefabricados de hormigón, 46 pp.

DOWSETT, R.; GREEN, M.; SEXTON, M.; HARTY, C.,2019. Projecting at the project level: MMC supply chain integration roadmap for small house builders. Construction Innovation-England, 19 (2): 193-211.

GIBB, A.G.F. (1999). Offsite Fabrication: Prefabrication, Preassembly and Modularisation, Whittles Publishing, Caithness

PELLICER, E.; YEPES, V.; CORREA, C.L.; ALARCÓN, L.F. (2014). Model for Systematic Innovation in Construction Companies. Journal of Construction Engineering and Management, 140(4):B4014001.

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896.

LÓPEZ, A. (2016). Declaraciones ambientales de productos prefabricados de hormigón. Materiales sostenibles, 46:42-45.

LÓPEZ, A. (2017). Construcción modular en hormigón: una tendencia al alza. Revista Técnica Cemento Hormigón, 980:48-54.

LÓPEZ, A. (2018). Declaraciones ambientales de productos prefabricados de hormigón (y 2ª parte). Ecoconstrucción, 18:24-26.

RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Journal of Management in Engineering, 30(1):69-77.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556.

SIMON, H.A. (1962). The arquitecture of complexity. Proceedings of the American Philosophical Society, 106(6):467-482.

YEPES, V.; PELLICER, E.; ORTEGA, J.A. (2012). Designing a benchmark indicator for managerial competences in construction at the graduate level. Journal of Professional Issues in Engineering Education and Practice, 138(1): 48-54.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Procedimientos de construcción de cimentaciones y estructuras de contención. Segunda edición ampliada

Os presento la segunda edición ampliada del libro que he publicado sobre procedimientos de construcción de cimentaciones y estructuras de contención. El libro trata de los aspectos relacionados con los procedimientos constructivos, maquinaria y equipos auxiliares empleados en la construcción de cimentaciones superficiales, cimentaciones profundas, pilotes, cajones, estructuras de contención de tierras, muros, pantallas de hormigón, anclajes, entibaciones y tablestacas. Pero se ha ampliado esta edición con tres capítulos nuevos dedicados a los procedimientos de contención y control de las aguas subterráneas. Además, de incluir la bibliografía para ampliar conocimientos, se incluyen cuestiones de autoevaluación con respuestas y un tesauro para el aprendizaje de los conceptos más importantes de estos temas. Este texto tiene como objetivo apoyar los contenidos lectivos de los programas de los estudios de grado relacionados con la ingeniería civil, la edificación y las obras públicas.

Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_328-9-2

El libro tiene 480 páginas, 439 figuras y fotografías, así como 430 cuestiones de autoevaluación resueltas. Los contenidos de esta publicación han sido evaluados mediante el sistema doble ciego, siguiendo el procedimiento que se recoge en: http://www.upv.es/entidades/AEUPV/info/891747normalc.html

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Es director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

https://gdocu.upv.es/alfresco/service/api/node/content/workspace/SpacesStore/31b0d684-f0a7-4ee7-b8f4-73694e138d5e/TOC_0328_09_02.pdf?guest=true

Descargar (PDF, 476KB)

 

 

La excavación por bataches

Figura 1. Excavación por bataches (Cano et al., 2020)

Cuando se está realizando una excavación para el vaciado, por ejemplo, de unos sótanos de un edificio, lo primero que se plantea es si es necesario algún sistema de contención provisional (muros pantalla, muro berlinés, tablestacas, suelo armado o apuntalamiento provisional) hasta que se permita construir unos muros o estructuras de contención definitiva de las tierras. Sin embargo, a veces no se precisa de una estructura de contención provisional, pues se puede realizar, bajo determinadas condiciones, el vaciado mediante una excavación vertical o en talud, mediante bermas o bien mediante bataches. Este artículo explica la excavación por bataches.

La primera consideración a tener en cuenta es que solo se podrán acometer excavaciones sin una contención provisional en el caso de que no se vea perjudicada por las aguas subterráneas o cuando no exista afección sobre estructuras vecinas o servicios públicos. Por tanto, la excavación por bataches solo será aplicable en el caso de que el vaciado se encuentre por encima del nivel freático, no existan cimentaciones próximas y se puedan mantener los taludes estables o se puedan apuntalar. En este caso, la excavación por bataches permite el vaciado mediante etapas. El sistema se basa en la excavación alterna de tramos del frente de una berma perimetral previamente ejecutada. En el caso de edificaciones, la excavación por bataches es habitual para un solo sótano, aunque se podrían excavar dos o tres sótanos con un sistema más complejo basado en la creación de anillos descendentes, normalmente anclados.

Tal y como se muestra en la Figura 2, el batache es la excavación que queda vertical entre dos espaldones, que actúan a modo de contrafuerte de terreno. Según la norma NTE-ADZ, el ancho E del batache no podrá superar los 2 m, ni tampoco podrá superar la altura vertical del espaldón HE, los 3 m (caso de realizar la excavación con maquinaria). En caso de que alguno de estos dos parámetros se incumpla, deberá procederse al entibado.

Con todo, hay que tener presente que en España las antiguas Normas Tecnológicas de la Edificación, NTE, del Ministerio de la Vivienda, se encuentran en desuso, haciendo referencia de forma genérica al ancho de excavación sin tener en cuenta los parámetros geotécnicos del terreno. Por tanto, estas dimensiones límite de las NTE deben ser indicativas, pues se debería realizar un estudio en mayor profundidad con datos reales para ajustar los límites en casos complejos. Por ejemplo, los anchos de los bataches podrían llegar incluso a 3-5 m en algunos casos concretos que requerirían un estudio en detalle, incluso la entibación.

Además, la norma NTE-CCT impone otra serie de restricciones a la hora de ejecutar un batache. Así, la berma superior del espaldón B deberá ser mayor a la mitad de la anchura E del batache; la distancia de la parte inferior del espaldón al paramento vertical A deberá ser mayor que su altura HE; además, la anchura del espaldón NE, deberá ser mayor a A.

Figura 2. Esquema de batache, con las condiciones impuestas por NTE-CCT

Un aspecto de obra de gran interés es hacer coincidir el ancho E del batache con las dimensiones de las placas de encofrado. Sin embargo, la excavación deberá ser algo superior a la dimensión del elemento hormigonado, pues se debe permitir la presencia de las esperas de las armaduras horizontales. El exceso puede estimarse en unos 60 cm en cada lado, con un mínimo de 20-30 cm si se opta por doblar las armaduras. Por tanto, un batache de 2 m puede irse a unos 3 m, lo cual puede poner en riesgo la estabilidad de un terreno de baja cohesión durante la construcción (Cano et al., 2020).

El aspecto más importante de la excavación por bataches es el orden de ejecución, puesto que la excavación se realiza por tramos alternados para que el sostenimiento sea viable, buscando el efecto arco del terreno entre los espaldones para evitar el derrumbe. Hay que tener en cuenta que, una vez descubiertos los bataches, deben cubrirse por los muros lo más rápidamente posible, como mucho al día siguiente del descubrimiento del batache. Un posible orden de ejecución de los tramos podría ser el descrito en las Figuras 3 y 4. En primer lugar se excavaría el batache A, ejecutándose dicho tramo de muro. A continuación se procede de la misma forma con el tramo B, y por último, con el C. Hay que tener en cuenta que la excavación mediante bataches normalmente se encofra a una sola cara el muro, dejando la otra sobre el terreno.

Figura 3. El proceso de ejecución de los muros que sostienen un vaciado empieza con el replanteo de los bataches A, B y C.

 

Figura 4. Posteriormente empieza la excavación con los bataches A, debiéndose terminar completamente el muro de dicho tramo. Luego siguen los bataches B y C.

En la Figura 5 se observa el encofrado a una cara del muro de sótano y el ferrallado de un batache. Corresponde a la ejecución de un aparcamiento subterráneo.

Figura 5. Ferrallado de un batache en aparcamiento. http://www.parkingvejer.com/index.php?page=hitos.php&lang=#prettyPhoto/62/

Os dejo un vídeo que explica el procedimiento constructivo de muros mediante excavación por bataches. Espero que os sea útil.

A continuación os dejo las normas NTE-ADZ y NTE-CCT para su consulta.

Descargar (PDF, 1.14MB)

Descargar (PDF, 199KB)

Referencias:

CANO, M.; PASTOR, J.L.; MIRANDA, T.; TOMÁS, R. (2020). Procedimiento constructivo de muros de sótano mediante bataches con juntas de conexión. Estudio del ancho óptimo de excavación en suelos mixtos. Informes de la Construcción, 72:558. http://informesdelaconstruccion.revistas.csic.es/index.php/informesdelaconstruccion/article/view/6008/7299

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Barreras dinámicas en la protección de taludes

Figura 1. Barrera dinámica http://www.geotalud.es/barreras.php

Las barreras dinámicas están formadas por una estructura de geometría variable diseñadas para detener bloques de gran tamaño que se desprenden de un talud. Estos sistemas se fundamentan en la absorción de impactos mediante la progresiva disipación de su energía cinética, convirtiéndola en trabajo de frenado. Para ello se dispone una malla de cables de acero montada sobre postes metálicos articulados en su base, a los que van unidos cables de disipación de energía, que son los que efectúan la detención. Las pantallas dinámicas para la retención de rocas en laderas inestables están formadas por una red de intercepción, postes anclados al terreno, cables de conexión y elementos disipadores de energía. Estos elementos, gracias a su capacidad de deformación, permiten que el sistema soporte una gran energía de impacto. Durante el impacto el sistema asegura que la energía de la caída de las rocas sea disipada, impidiendo movimientos adicionales.

En el mercado existen en la actualidad barreras cuyo rango de capacidad de absorción de energía  varía entre 250 kJ y 3.500 kJ, con capacidades aún mayores que pueden llegar a 5.000 kJ, 8.600 kJ y 10.000 kJ, según la norma ETAG27. Para que os hagáis una idea, un bloque de 1 m3, que puede pesar 2,5 t, en caída libre desde 100 m, desarrolla una energía cinética de unos 2500 kJ. El 16 de octubre de 2017 en Walenstadt, St. Gallen/Suiza, una barrera de protección contra la caída de rocas de la empresa suiza Geobrugg logró soportar una energía de impacto de 10.000 kJ. Un nuevo récord mundial.

Figura 2. Barrera tipo Debris Flow, para la detención de flujos de escombros y lodo. http://www.mallatalud.com/obracivil/iberobarrera.php

Os dejo algunos vídeos explicativos de este sistema de protección y estabilización de laderas.

En este vídeo podemos ver una prueba de detención de una masa de 20 toneladas mediante un sistema de la firma Geobrugg.

Sistema integral de protección de escaleras

Sistema integral de protección de escaleras red tipo Perona.

La prevención de riesgos laborales en la construcción es una de las preocupaciones más importantes que debe tener cualquier profesional del ramo. Uno de los problemas más habituales es proteger las escaleras en fase de construcción. Un sistema interesante que puede solucionar este problema es el sistema integral de protección de escaleras-red tipo Perona.

Los componentes de este sistema de protección son fáciles y económicos de conseguir en cualquier tipo de obra y  circunstancias, pues tan solo son necesarios para su instalación:

  • un paño de red (similar a las del tipo “horca”),
  • tablas de madera de 2’00 cm. de espesor , 10 cm. de ancha y de una longitud inferior en 20 cm. a la del largo de cada tramo de la escalera.
  • clavos de acero de 10 mm. (tres/cuatro unidades en cada tabla).

No es necesaria mano de obra especializada, ni condiciones especiales algunas para su montaje. El sistema permite y garantiza la protección de todos los operarios, desde el inicio de la construcción de la losa de escalera (fase de estructura), hasta la colocación de la barandilla definitiva, pasando por todas las etapas intermedias, como son: revestido de peldaños, enlucidos o acabados de caja de escalera, pintura e incluso colocación de la barandilla definitiva, sin que estorbe la protección en ningún trabajo, ni sea factible para retirarla ningún operario, por su propia constitución.  El sistema es apto para escaleras de un solo tramo, de dos, de tres o de cuatro, incluso se puede instalar en escaleras de tramos curvos.

Si queréis información adicional sobre las redes de seguridad, os recomiendo una publicación del Instituto Vasco de Seguridad y Riesgos Laborales que podéis enlazar aquí. Otra publicación interesante es de Mapfre. Además, os paso un vídeo explicativo sobre el sistema Perona que espero que os guste:

Drenes verticales como técnica de mejora de terrenos

Figura 1. Drenes verticales o drenes mecha. https://www.keller.com.es/

Hoy día existen técnicas de mejora del terreno que permiten acelerar el proceso de consolidación de un terreno blando (generalmente limos y arcillas poco permeables) provocado por una precarga.  Se puede utilizar tanto unas inclusiones verticales por columnas de grava, como la instalación de drenes verticales. Estas inclusiones se suelen instalar en patrones de distribución uniforme, al tresbolillo o en forma de cuadrícula, uno cada 1,5-2,5 m2.

Este artículo se va a centrar en la técnica de drenes verticales. Los fines buscados con este método son alcanzar un grado de consolidación suficiente dentro de un plazo aceptable en el proyecto, modificando las variables de consolidación y tiempo. Con ello se aceleran los asientos por el drenaje, con asientos insignificantes tras la construcción. A diferencia de las columnas de grava, los drenes verticales no cumplen ningún tipo de función estructural, excepto en algún específico como la posible reducción del potencial de licuefacción en algunos suelos.

Por drenes verticales se entienden las columnas verticales de material permeable instalados en suelos arcillosos compresibles con objeto de drenarlos, recogiendo y evacuando el agua expulsada durante la consolidación. Estos drenes acortan el recorrido de agua, pues al drenaje vertical existente se le suma el drenaje horizontal o radial que crea el dren vertical (Figura 2). Entre los drenes y la precarga se instalan geotextiles o bien una capa de arena para que los drenes estén en contacto con la atmósfera, a presión “cero” en su parte superior (Oteo et al., 2012).

Figura 2. Esquemas del drenaje. https://www.terratest.cl/tecnologia-mechas-drenantes.html

Las aplicaciones habituales de los drenes verticales se dan en obras en las que se presentan  suelos blandos con estratos delgados o no muy profundos, suelos blandos con cargas medias, suelos blandos con cargas superficiales o obras superficiales en las que se deseen disminuir los asientos diferenciales.

Por tanto, son técnicas habituales en obras viales (carreteras o ferrocarriles), en explanaciones (aeropuertos, naves industriales, silos, depósitos), en obras hidráulicas (costas, puertos, presas) o en depósitos naturales (terraplenes y rellenos, vertederos).

Los drenes verticales pueden ser:

  • De arena ejecutados “in situ”
  • Prefabricados de arena
  • Drenes de mecha

Los drenes prefabricados de arena van empacados en una camisa filtrante. Los drenes de mecha o simplemente mechas son los más utilizados. Las mechas pueden ser tubos de plástico corrugado flexible, en cuyo interior hay un filtro cubierto. Los más comunes son los drenes de banda, generalmente de unos 100 mm de ancho (Figura 3).

Figura 3. Mandriles para drenes de banda (Bielza, 1999)

La maquinaria empleada en la instalación de las mechas drenantes suele ser de gran tamaño, pero se consigue que no produzca perturbación en las distintas capas del terreno, siendo un sistema limpio que no genera residuos en el suelo. Con esta técnica se pueden llegar a 70 m de profundidad en caso necesario.

Las etapas del procedimiento constructivo son las siguientes:

  1. Se sitúa la máquina en el emplazamiento. Las características de la mecha y el vástago deben combinar bien con las características del suelo a tratar
  2. Se introduce el vástago junto a la mecha hasta la profundidad requerida. Se debe controlar la verticalidad del vástago y la colocación recta y estirada de la mecha.
  3. Se extrae el vástago, dejando la mecha en el terreno.
  4. Una vez extraído el vástago, se corta la mecha unos 30 cm por encima de la superficie el terreno
Figura 4. Ejecución de mechas (Oteo et al., 2012)

Entre las ventajas de los drenes prefabricados se encuentra su bajo coste, la mayor capacidad de drenaje del agua, una instalación rápida, el uso de equipos ligeros y sencillos, proceso mecanizado, la continuidad del dren, la calidad constante y garantizada, la limpieza del emplazamiento, la alteración mínima del terreno y un transporte y acopio poco significativo.

Figura 5. Ejecución de mechas. Cortesía de Terratest.

Una técnica con una finalidad similar a los drenes verticales consiste en la utilización de drenes que permiten disminuir la presión hidrostática en taludes, consiguiéndose una mayor estabilidad de éstos. Se les denomina drenes californianos, y son tubos de PVC perforados (diámetro 65 mm) cubiertos con geotextil para filtrar el arrastre de sedimentos.

En los vídeos que podéis ver a continuación se describen los trabajos de instalación de los drenes verticales. Espero que os sean de interés.

Os dejo a continuación una pequeña descripción de la técnica de drenes verticales, cortesía de la empresa Menard.

Descargar (PDF, 5.44MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Breve semblanza de José Juan-Aracil Segura, ingeniero de caminos alcoyano

Proyecto de distribución de agua potable de Benidorm (Alicante). https://histobenidorm.blogspot.com/2013/11/

Salvando las diferencias generacionales y de contexto, siempre me ha sorprendido las coincidencias biográficas que he tenido con la figura de D. José Juan-Aracil Segura. Aunque no tuve la suerte de conocerlo personalmente (falleció en 1982, el año en que comenzaba yo la carrera), ambos somos ingenieros de caminos nacidos en Alcoy (Alicante), con el número 1 de promoción en ambos casos y curiosamente, con hijos que también son ingenieros de caminos. Además, hemos sido catedráticos de universidad de la misma asignatura. En efecto, Juan-Aracil fue el catedrático de esta asignatura que en los años cuarenta se denominaba “Maquinaria y Medios Auxiliares de Obra” en la Escuela de Ingenieros de Caminos de Madrid, asignatura que luego fue cambiando de nombre hasta llegar a la de “Procedimientos Generales de Construcción y Organización de Obras“. También en esta asignatura imparto docencia en la Escuela de Valencia. A diferencia de otro tipo de asignaturas (Hormigón, Geotecnia, Materiales de Construcción, etc.), las asignaturas de Maquinaria y Medios Auxiliares, o bien de Procedimientos de Construcción, han sido impartidas en las distintas escuelas, mayoritariamente, por profesores asociados, muy ligados a las empresas constructoras. Es por ello que son pocos los catedráticos en España de esta materia. De hecho, José Luis Juan-Aracil López, su hijo, pasó a ser catedrático de la asignatura en Madrid, que la ejerció hasta su paso a Profesor Emérito. Os remito al siguiente artículo donde expliqué en su día los antecedentes históricos de la asignatura.

De interés, hoy para los coleccionistas, es la colección de 8 tomos de apuntes de Maquinaria Auxiliar de Obras, con diabramas, dibujos, esquemas, talbas, etc. Una grandísima cantidad de información y que fueron un precedente de los textos españoles en la materia. Otros libros de interés han sido el de los “Saltos de agua y presas de embalse”, escrito junto con José Luis Gómez Navarro, del año 1953. O la “Conversión de unidades del sistema inglés o norteamericano al sistema métrico y viceversa”, del año 1958. Todos estos libros, descatalogados, son de coleccionista.

Apuntes de Maquinaria Auxiliar de Obras (8 tomos). Tapa dura – 1 de enero de 1959.

Fernando Sáenz Ridruego, escribió una muy breve biografía en las páginas de la Real Academia de la Historia. José Juan-Aracil Segura nació en Alcoy (Alicante) el 5 de noviembre de 1905, falleciendo en Madrid el 19 de enero de 1982. En 1905 nacieron Christian Dior, Henry Fonda o Miguel Mihura, por poner algunos ejemplo. También en dicho año fallecieron Julio Verne, José María Gabriel y Galán o Juan Valera. Pero lo más sorprendente fue el año milagroso del Albert Einstein, que publicó la Teoría de la relatividad especial, el efecto fotoeléctirco y el movimiento browniano.

Viaducto de Segovia, Madrid. https://es.wikipedia.org/

El joven José Juan-Aracil cursó la enseñanza media en Alcoy, su pueblo natal, en el colegio Luis Vives. Se trasladó a Madrid para estudiar en la Escuela de Ingenieros de Caminos, donde terminó la carrera en 1930, con el número 1 de su promoción. Apenas terminados sus estudios, ganó en 1932, junto con el arquitecto Francisco Javier Ferrero Llusiá, y el ingeniero de caminos Luis Aldaz Muguiro  el concurso para el proyecto del viaducto sobre la madrileña calle Segovia. Es de destacar que en este concurso se presentaron proyectos técnicos de la talla del ingeniero de caminos Eduardo Torroja, y del arquitecto Secundino Zuazo. El proyecto ganador se caracteriza por empleo de hormigón armado pulido, calado en unos machones de granito. Si bien la construcción se demoró hasta 1942, debido al deterioro que sufrió por los daños de la Guerra Civil.

Recién terminada su carrera, se atisba sus inquietudes técnicas publicando, en 1931 un artículo, “Esfuerzos secundarios” en la Revista de Obras Públicas, donde publicó a partir de entonces numerosos artículos. En este artículo llenó parte del vacío de los libros y revistas de entonces sobre este tema, siendo encargado de curso de la asignatura de Construcciones Metálicas. Va a ser habitual ver artículos en esta revista donde desarrolle temas concretos de los explicados en sus clases.

En 1935 realizó un viaje de estudios pensionado por la Escuela, llevando el tema “Presas de embalse”, visitando Francia, Suiza e Italia. A su vuelta redactó una memoria que se publicó en la Revista de Obras Públicas. Durante la Guerra Civil combatió en el bando nacional, en el que se le concedió la Medalla de la Campaña. En 1939 fue nombrado profesor de Maquinaria en la Escuela de Caminos, asignatura que explicó hasta su jubilación en 1975. Fue director técnico de Obras y Servicios Públicos, S.A. (OSEPSA), empresa con la que realizó numerosas obras, entre las que destacan la construcción del acueducto de Tardienta, la reconstrucción de los puentes de Bilbao, del puente de Vizcaya y de la presa de Ordunte, destruidos durante la contienda, y la construcción de los viaductos de San Jorge, Cabriel y Narboneta, en el ferrocarril Cuenca-Valencia, así como del pantano de Amadorio, en la provincia de Alicante.

Juan-Aracil reconstruyó, tras la Guerra Civil, el Puente transbordador Bizkaia/ Vizcaya, con un proyecto que introducía bastantes cambios sobre el proyecto original. El más importante fue la eliminación de los tirantes de los extremos de la luz en el vano principal, que el autor justificaba por la dificultad que suponía la indeterminación de la actuación conjunta de péndolas y tirantes, Sin embargo, y como el propio Juan-Aracil reconocía, eso le obligó a aumentar la inercia de la viga, pasando de dos a tres metros de canto.

Puente Vizcaya, Transbordador de Portugalete a Las Arenas. Al fondo se ve Sestao. El tramo horizontal superior es una pasarela para peatones, a la que se puede acceder mediante ascensores. https://es.wikipedia.org/wiki/Puente_de_Vizcaya#/media/Archivo:Zubia_jun.jpg
Vista del puente sobre el Turia (2018). https://www.wikiwand.com/es/Puente_de_Santa_Cruz_de_Moya

Obra obra de Juan-Aracil fue el puente de Santa Cruz de Moya (también, puente Nuevo) es un viaducto existente en el término municipal de Santa Cruz de Moya, provincia de Cuenca (Comunidad de Castilla-La Mancha). Construido en la C-234 de ValenciaAdemuz sobre el río Turia en la segunda mitad de los años cincuenta. Otro ejemplo más es la traída de agua a la Celupal, proyecto finalizado el 10 de octubre de 1947 fue redactado por Juan-Aracil, entre otros, aparte de los citados, como el acueducto de Tardienta, de la presa de Ordunte, o la distribución de agua potable de Benidorm, entre otros.

Como curiosidad del carácter alcoyano de D. José Juan-Aracil, baste recordar el homenaje que se le rindió el 27 de noviembre de 1980 en un céntrico restaurante madrileño por parte de la Asociación de San Jorge en la capital de España. Juan-Aracil fue el presidente (clavario) de esta Asociación alcoyana en Madrid. Os dejo a continuación un par de textos escritos en 1949 sobre la Asociación de San Jorge Mártir de Madrid y otro de 1951 sobre Alcoy y el Cuerpo de Ingenieros de Caminos, ambos de la Revista de la Asociación de San Jorge.