¿Cuáles son las características de una buena estimación de costes?

En la ingeniería o la arquitectura, la estimación de costes no constituye únicamente una labor técnica, sino que representa un componente esencial en la planificación, gestión y toma de decisiones de todo proyecto. Ya sea para la construcción de una presa, una carretera o una infraestructura ferroviaria, es fundamental contar con una estimación precisa, bien fundamentada y comunicada adecuadamente, ya que esto puede marcar la diferencia entre el éxito y el fracaso de una iniciativa. En el presente artículo, se aborda la evaluación de las competencias que constituyen una estimación de costes sólida y conforme a las normas profesionales y las prácticas óptimas del sector.

Una estimación de costes sólida y confiable debe cumplir con cuatro características relevantes: exhaustividad, razonabilidad, credibilidad y solidez analítica. Estos principios aseguran que el análisis sea riguroso desde el punto de vista técnico, así como útil y comprensible para quienes toman decisiones.

En primer lugar, toda estimación sólida debe basarse en el rendimiento histórico de programas anteriores. Por lo tanto, es necesario utilizar datos de proyectos análogos como referencia, ya sean similares en alcance, naturaleza o contexto, para respaldar el análisis. Estas experiencias previas deben estar claramente identificadas como fuentes de datos, aportando así transparencia y reforzando la confianza en los resultados.

Sin embargo, si bien los datos históricos constituyen el punto de partida, es imperativo considerar las posibles mejoras en diseño, materiales y procesos constructivos que puedan incorporarse en el nuevo proyecto. A pesar de la ausencia de datos empíricos que respalden estos avances, es necesario evaluar su impacto de manera rigurosa y fundamentada. En tales circunstancias, se acude al juicio profesional o conocimiento experto (también denominado subject matter expertise), cuya aplicación debe estar debidamente documentada y justificada.

Otro aspecto clave es la claridad en la comunicación. Una estimación sólida debe ser comprensible, especialmente para los responsables de programas y directivos que, si bien toman decisiones estratégicas, pueden carecer del tiempo o del perfil técnico necesario para profundizar en los detalles metodológicos. Por ello, se recomienda optar por enfoques sencillos, evitando complejidades innecesarias, para que la estimación pueda ser fácilmente interpretada por sus destinatarios.

Asimismo, es preciso identificar las reglas de base y los supuestos. Como se suele decir en el ámbito del análisis: «Permítame realizar las suposiciones, y usted podrá realizar los cálculos». Esta frase resume la enorme influencia que tienen las hipótesis en cualquier estimación. Si bien es difícil que todos los agentes implicados compartan exactamente los mismos supuestos, la mejor estrategia consiste en incorporar análisis de sensibilidad. Estos instrumentos permiten evaluar la variación de la estimación ante diferentes escenarios y contribuyen a una gestión más eficiente de la incertidumbre.

Precisamente, una buena estimación debe abordar de forma explícita los riesgos y las incertidumbres inherentes al proyecto. Si bien el resultado final se manifiesta a través de una cifra concreta —conocida como «punto estimado»—, es importante destacar que dicha cifra es el resultado de una serie de supuestos. Por lo tanto, es posible que esta haya variado si los supuestos hubiesen sido distintos. Por tanto, es esencial señalar las sensibilidades del modelo y mostrar cómo afectan al resultado final, para ofrecer una visión más completa y realista del coste previsto.

Desde una perspectiva técnica, existen otras cualidades que refuerzan la validez y utilidad de la estimación. Una de las características esenciales que debe cumplir es que esté impulsada por los requisitos del proyecto. Resulta improcedente solicitar una estimación del coste de rehabilitar una cocina sin definir previamente el alcance de dicha rehabilitación. En el ámbito de los proyectos civiles de gran envergadura, resulta imperativo que los requisitos funcionales y técnicos se encuentren debidamente documentados, ya sea a través de especificaciones técnicas, documentos de alcance, solicitudes de propuesta (RFP) o, en el caso de proyectos públicos, mediante instrumentos normalizados como el «Cost Analysis Requirements Description» (CARD).

Otra condición esencial es que el proyecto esté suficientemente definido desde el punto de vista técnico y que se hayan identificado las áreas de mayor riesgo. De este modo, se garantizará una selección meticulosa de la metodología de estimación más apropiada y una aplicación precisa de las herramientas de análisis.

En proyectos de gran envergadura, especialmente en el ámbito público, se recomienda disponer de una estimación independiente. Esta función de validación externa contribuye a reforzar la credibilidad del análisis. De igual manera, es importante contar con estimaciones independientes que respalden los presupuestos en los grandes proyectos.

Finalmente, una estimación de calidad debe ser trazable y auditable. Por lo tanto, es imperativo que sea posible reconstruirla a partir de los datos, supuestos y fuentes utilizadas. Existe un consenso tácito entre los profesionales de la estimación, según el cual cualquier individuo con conocimientos básicos de análisis cuantitativo debería estar en condiciones de seguir los pasos del cálculo, aplicar los datos y reproducir el resultado. La transparencia, por tanto, no es solo un valor añadido, sino un requisito indispensable para asegurar la fiabilidad del proceso.

En el ámbito de la ingeniería civil, donde los proyectos conllevan frecuentemente inversiones significativas y pueden afectar a miles de personas, la estimación de costes deja de ser una tarea secundaria para convertirse en una herramienta estratégica esencial. El cálculo de cifras por sí solo no es suficiente; es imperativo comprender el proyecto en su totalidad, anticipar escenarios, comunicar con claridad y tomar decisiones con fundamento.

Invito a todas las personas —ya sean profesionales con experiencia o estudiantes en proceso de formación— a considerar la estimación de costes no como un mero trámite técnico, sino como una disciplina que integra ciencia, experiencia y criterio. Reflexionar sobre el proceso de construcción de nuestras estimaciones, los supuestos que las sustentan y la manera en que las comunicamos, puede resultar fundamental para mejorar la eficiencia, la transparencia y la sostenibilidad de nuestras infraestructuras.

Glosario de términos clave

  • Estimación de costes: Proceso de predecir el coste monetario de un proyecto o iniciativa, basándose en datos disponibles, supuestos y metodologías de análisis.
  • Exhaustividad: Característica de una estimación que implica considerar todos los elementos relevantes del proyecto y sus posibles costes asociados.
  • Razonabilidad: Característica que indica que la estimación está lógicamente estructurada y los valores utilizados tienen sentido dentro del contexto del proyecto y la experiencia previa.
  • Credibilidad: Característica que denota la confianza en la estimación, basada en la solidez de la metodología, la transparencia en los datos y supuestos, y la validación (interna o externa).
  • Solidez analítica: Característica que se refiere a que la estimación se basa en métodos de análisis cuantitativos rigurosos y bien aplicados.
  • Rendimiento histórico: Datos de coste y ejecución de proyectos anteriores similares que se utilizan como base empírica para una nueva estimación.
  • Juicio profesional (o conocimiento experto): Aplicación de la experiencia y conocimiento de expertos en la materia para realizar estimaciones o tomar decisiones cuando los datos empíricos son limitados.
  • Reglas de base y supuestos: Las hipótesis fundamentales y las condiciones iniciales que subyacen a una estimación y sobre las cuales se realizan los cálculos.
  • Análisis de sensibilidad: Técnica que evalúa cómo varía el resultado de una estimación cuando se modifican los supuestos o parámetros clave, ayudando a entender el impacto de la incertidumbre.
  • Punto estimado: La cifra única que representa el resultado más probable o esperado de la estimación de costes.
  • Requisitos del proyecto: Las especificaciones funcionales, técnicas y de rendimiento que definen el alcance y los objetivos de un proyecto, y que deben impulsar la estimación de costes.
  • Cost Analysis Requirements Description (CARD): Instrumento normalizado, especialmente en proyectos públicos, que documenta los requisitos necesarios para realizar un análisis de costes.
  • Estimación independiente: Una estimación de costes realizada por un equipo o entidad separada del equipo principal del proyecto, con el fin de validar o contrastar la estimación principal.
  • Trazabilidad: La capacidad de seguir y documentar el proceso de estimación, desde los datos y supuestos iniciales hasta el resultado final.
  • Auditabilidad: La capacidad de verificar la exactitud y fiabilidad de una estimación, examinando los datos, métodos y supuestos utilizados, de modo que otro analista pueda reproducirla.

Referencias:

Mislick, G. K., & Nussbaum, D. A. (2015). Cost estimation: Methods and tools. John Wiley & Sons.

Yepes, V. (2022). Gestión de costes y producción de maquinaria de construcción. Universidad Politécnica de Valencia.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Cimentaciones en suelos blandos: análisis integral de mecanismos de fallo

Acaban de publicar nuestro artículo en la revista Buildings, de la editorial Elsevier, indexada en el JCR. El trabajo ofrece una contribución significativa al estudio de los mecanismos de fallo en fosos de cimentación profunda, especialmente en entornos geotécnicos desfavorables caracterizados por suelos blandos limosos. A diferencia de los enfoques previos, que tratan los problemas de estabilidad desde una perspectiva parcial, esta investigación desarrolla un modelo integral que combina simulaciones numéricas en tres dimensiones, pruebas de campo a escala real y un enfoque de acoplamiento microestructural para analizar el comportamiento del terreno y los elementos estructurales en condiciones reales de obra.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Hunan University of Science and Engineering (China).

Uno de los principales logros del estudio radica en la aplicación de un modelo multidisciplinar acoplado que tiene en cuenta factores como la consolidación del terreno, la deformabilidad del sistema de contención, la presión del agua subterránea y la calidad de la ejecución del piloteado. Este modelo no solo permite diagnosticar fallos con alta precisión, sino también anticipar comportamientos críticos antes de que se manifiesten de forma visible. Esta capacidad predictiva supone un avance significativo en el campo del control de calidad y la seguridad estructural en cimentaciones profundas.

Además, el trabajo plantea una metodología replicable basada en el uso combinado de tecnologías de ensayo estático, pruebas de onda de baja deformación y modelado por elementos finitos. La gran cantidad de datos empíricos obtenidos, junto con su correlación con los resultados simulados, constituye una base sólida para el desarrollo de futuras normativas de control y supervisión de obras en suelos con baja capacidad portante.

La investigación se ha estructurado en torno a tres ejes metodológicos principales: pruebas de campo, ensayos de laboratorio y modelado numérico. En primer lugar, se llevaron a cabo ensayos in situ que incluyeron pruebas de penetración estándar, ensayos de penetración dinámica, pruebas de velocidad de onda de corte y muestreo mediante perforación mecánica. Estos ensayos se llevaron a cabo en el entorno del proyecto XSS-10D, una obra de gran escala con un foso de cimentación profunda sometido a condiciones geotécnicas complejas.

En segundo lugar, se realizaron ensayos geotécnicos de laboratorio sobre más de 140 muestras de suelo para determinar propiedades como la densidad seca y húmeda, el contenido de humedad, el límite líquido, la cohesión y el ángulo de fricción interna. Estos datos fueron fundamentales para definir los parámetros de entrada de los modelos numéricos.

Finalmente, se construyó un modelo tridimensional por elementos finitos utilizando el programa informático Abaqus CAE. Dicho modelo incorporó las características del suelo, las estructuras de contención, los pilotes y la acción de cargas externas, teniendo en cuenta tanto el comportamiento estático como las deformaciones diferidas. Además, se emplearon modelos viscoelásticos, como el de Kelvin, y se aplicó el criterio de rotura de Mohr-Coulomb para simular el comportamiento plástico del suelo.

Los resultados obtenidos a partir del estudio del proyecto XSS-10D confirman la eficacia del modelo acoplado para detectar defectos estructurales en cimentaciones profundas. En particular, se identificó que el pilote ZH2-194 presentaba una serie de análisis anómalos en los ensayos de baja deformación, los cuales se corroboraron mediante pruebas de carga estática y muestreo con extracción de testigos.

Las pruebas de carga estática evidenciaron desplazamientos superiores a los límites de servicio, mientras que el análisis del testigo reveló defectos de fabricación como oquedades, segregación de hormigón y contaminación con materiales finos. Estas deficiencias se atribuyeron a problemas en el proceso de hormigonado, como la intrusión de lodo en el interior de la perforación, la pérdida de trabajabilidad del hormigón y la falta de compactación adecuada.

El modelo numérico reprodujo con exactitud la distribución de esfuerzos y desplazamientos en la zona afectada y localizó los puntos de mayor concentración de tensiones en las inmediaciones del pilote defectuoso. Se observó un fenómeno de desplazamiento lateral y una redistribución de esfuerzos en el sistema de contención, lo que refuerza la necesidad de tener en cuenta la interacción entre el suelo y la estructura en su conjunto.

Los resultados también mostraron la importancia de factores como la presión del agua subterránea, la consolidación secundaria del suelo y la heterogeneidad estratigráfica en la evolución de los mecanismos de fallo. En particular, la capa de limos blandos localizada en el estrato 3 resultó ser un elemento clave en la pérdida de capacidad portante y el desarrollo de deformaciones excesivas.

A partir de los resultados del presente estudio, se abren diversas posibilidades para profundizar en el análisis de cimentaciones en entornos complejos. Una dirección prometedora consiste en incorporar técnicas de inteligencia artificial para detectar automáticamente los defectos mediante el procesamiento de datos de sensores de deformación y pruebas dinámicas. Esta integración permitiría establecer sistemas de supervisión continua con capacidad de aprendizaje adaptativo.

También es pertinente investigar nuevos materiales con propiedades reológicas adaptadas a entornos saturados o con baja resistencia al corte, como morteros tixotrópicos o mezclas de hormigón autocompactante con aditivos antifisuración.

Otra línea de investigación interesante es el estudio del comportamiento de los sistemas de contención bajo acciones cíclicas o sísmicas, ya que los modelos actuales tienden a centrarse en condiciones estáticas. La incorporación de elementos de análisis dinámico permitiría mejorar la resistencia global del sistema ante eventos extremos.

Por último, se propone la estandarización de protocolos para la inspección microestructural de pilotes defectuosos, en los que se establecen umbrales de aceptabilidad y criterios objetivos de intervención.

En conclusión, el estudio realizado constituye una aportación relevante y detallada al conocimiento sobre los mecanismos de fallo en cimentaciones profundas en suelos blandos. Su enfoque integral, que combina simulaciones numéricas, ensayos geotécnicos y análisis microestructurales, ofrece herramientas eficaces para detectar patologías estructurales de manera temprana. Además, sentará las bases para mejorar los procesos constructivos y desarrollar nuevas metodologías de control de calidad adaptadas a entornos complejos. La replicabilidad del modelo y su aplicabilidad en casos reales lo convierten en una referencia útil para estudiantes y profesionales de la ingeniería civil.

Referencia:

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

Como el artículo es en abierto, os lo dejo para su descarga:

Descargar (PDF, 20.44MB)

Josef Melan: trayectoria y contribuciones a la ingeniería de puentes

Josef Melan (1854–1941). https://jam.jihlava.cz/en/architect/3-josef-melan

Josef Melan fue un ingeniero austríaco ampliamente reconocido por su destacado papel en el desarrollo de la construcción de puentes de hormigón armado a finales del siglo XIX. Se le acredita la invención del Sistema Melan, un método innovador para la construcción de puentes reforzados. A diferencia de los enfoques previos, su sistema no incorporaba barras de hierro dentro de la estructura de hormigón armado, sino que empleaba arcos de celosía rígidos de hierro como elemento de refuerzo.

En 1898, Melan alcanzó un reconocimiento significativo tras la construcción de un puente de 42,4 m de luz en Steyr, caracterizado por un arco de altura reducida. En su momento, esta obra representó el mayor puente de hormigón armado a nivel mundial. Entre sus proyectos más notables se encuentra el Puente del Dragón en Liubliana, una de las primeras estructuras de gran escala en emplear su innovador sistema constructivo.

Nacido el 18 de noviembre de 1853 en Viena, entonces parte del Imperio austrohúngaro, Melan falleció el 6 de febrero de 1941 en Praga, en la anterior Checoslovaquia. Inició sus estudios de ingeniería civil en la Universidad Técnica de Viena en 1869 y los completó en 1874. Posteriormente, tras su graduación, se desempeñó como asistente de Emil Winkler en la cátedra de Ingeniería Ferroviaria y Construcción de Puentes, marcando así el inicio de su destacada trayectoria académica y profesional.

En 1880, presentó su tesis de habilitación sobre la teoría de puentes y ferrocarriles en la misma universidad, donde ejerció como docente hasta 1886. Durante este período, además de su labor académica, desarrolló actividades profesionales en los departamentos de diseño de la empresa de construcción de puentes Ignaz Gridl y junto al contratista Gaertner, ambos con sede en Viena. En 1880, fue nombrado profesor asociado de mecánica estructural y estática gráfica en la Universidad Técnica Alemana de Brno, y en 1890 ascendió a catedrático en la misma especialidad. Posteriormente, en 1895, asumió la Cátedra de Construcción de Puentes, y en 1902 pasó a ocupar el mismo cargo en la Universidad Técnica Alemana de Praga (fundada en 1717), donde trabajó hasta su jubilación en 1923.

Durante su estancia en Viena, Melan inició el desarrollo de cálculos relacionados con la deformación estática en grandes puentes colgantes, con el propósito de optimizar su diseño y reducir costes. En 1888, Melan publicó los resultados de sus investigaciones, lo que atrajo la atención de su antiguo compañero de estudios, Gustav Lindenthal, quien le encargó la revisión estructural del Williamsburg Bridge de Nueva York, el puente colgante más grande del mundo en aquella época.

Paralelamente, ese mismo año, el ingeniero Victor Brausewetter, en colaboración con el fabricante de cemento Adolf Pittel, fundó la empresa Pittel & Brausewetter y promovió la creación de una asociación dedicada a la realización de ensayos comparativos de carga sobre estructuras abovedadas. Estos ensayos abarcaban desde bóvedas de fábrica en hormigón simple hasta elementos de hormigón armado. Desde 1886, la empresa de Gustav Adolf Waysse ya había construido estructuras basadas en la patente de Joseph Monier, con refuerzo de malla de acero en ambas direcciones. No obstante, tras un exhaustivo análisis de los ensayos mencionados, Melan expresó su escepticismo respecto al sistema, manifestando reservas en cuanto a la resistencia de los alambres empleados.

En 1892, presentó su propio y revolucionario sistema estructural, basado en un refuerzo longitudinal rígido para bóvedas, que sentó las bases de la arquitectura moderna. Para estructuras de menor luz, se utilizaron vigas en L dobladas, mientras que para las de mayor envergadura se emplearon cerchas metálicas. Gracias a su mayor capacidad portante, este método fue rápidamente adoptado en la construcción de techos en almacenes, fábricas y grandes naves industriales. Una innovación notable fue la posibilidad de suspender el encofrado del propio refuerzo y hormigonar los arcos sin necesidad de cimbras de anillos. Pittel & Brausewetter realizó pruebas de este sistema entre 1893 y 1895 en edificaciones de menor escala, aunque lamentablemente ninguna de ellas ha perdurado hasta nuestros días.

Uno de sus discípulos, Fritz Emperger, desempeñó un papel fundamental en la difusión del método de Melan. En 1893, fundó en la ciudad de Nueva York la Melan Arch Construction Company, que en 1894 se encargó del diseño y la construcción de dos puentes en Rock Rapids (Iowa) y Cincinnati (Ohio). Antes de que finalizara el siglo, su empresa había construido veintisiete puentes más, entre ellos el puente sobre el río Kansas en Topeka (Kansas), edificado entre 1896 y 1897, con cinco arcos de 30 metros de luz cada uno.

A pesar del éxito de su sistema en Estados Unidos, la comunidad técnica europea mantuvo una actitud escéptica hasta que Melan diseñó en 1896 un puente en Steyr, construido bajo la supervisión de Victor Brausewetter en 1898. Esta estructura, ubicada en la ciudad de Steyr, Alta Austria, cruzaba un brazo del río homónimo mediante un arco de tres vanos, con una luz máxima de 42,4 m y una flecha extremadamente reducida de 1:16. Ese mismo año, Melan diseñó lo que probablemente sea el puente de hormigón armado más antiguo de las tierras checas, ubicado en Veveří, cuyo diseño se inspiró en el puente medieval original que cruzaba el foso del castillo. En 1901 se finalizó la construcción del Puente del Dragón de Liubliana, cuya estructura de hormigón visto combinada con revestimientos de bronce fue diseñada por el arquitecto dálmata Jurij Zaninović.

Puente del Dragón, en Liubliana. Imagen: V. Yepes (2018)

Simultáneamente, Melan resultó adjudicatario de un concurso público para el diseño de un puente vial en Lausana, destinado a conectar los distritos de Chauderon y Montbenon. Posteriormente, en 1912, Melan proyectó un puente de hormigón armado en Le Sépey, ubicado en el sur de Suiza.

Su labor académica en Praga tuvo un impacto significativo en el desarrollo de la oficina técnica de Pittel & Brausewetter, que se convirtió en un centro de formación para sus estudiantes. Entre 1908 y 1912, Konrad Kluge (1878-1945), uno de sus alumnos más distinguidos, diseñó varios puentes con arcos rígidos reforzados con vigas en L, ubicados en Debrny, Jihlava, Přísečnice (hoy desaparecida), česká Třebová y Oloví.

En 1920, recibió el título de doctor honoris causa de la Escuela Técnica Superior de Aquisgrán en reconocimiento a su labor como profesor y científico en el campo de la ingeniería de puentes, así como por sus avances como inventor de un nuevo tipo de puente de hormigón armado.

A pesar de su avanzada edad, Melan mantuvo una constante actividad profesional. En julio de 1928, Melan diseñó un puente de arco metálico en Ústí nad Labem, basado en una propuesta de Ernst Krob, director de la Autoridad de Construcción de la ciudad. La construcción de la obra se llevó a cabo entre 1934 y 1936, consolidando de este modo su legado en el ámbito de la ingeniería estructural.

Melan se erigió como una de las figuras más influyentes en la teoría y práctica de la construcción de puentes en Austria durante la transición desde la fase de formación disciplinar hasta el período de consolidación de la teoría de estructuras. Su innovación más destacada, el Sistema Melan, introdujo una metodología pionera que combinaba de manera innovadora acero y hormigón en la construcción de puentes. A partir de la década de 1890, este sistema fue ampliamente aceptado en Europa y Estados Unidos, posicionándose como una de las soluciones constructivas más avanzadas de su época. Su impacto fue reconocido con la medalla de oro en la Exposición Universal de París en 1900.

En 1893, Melan publicó sus estudios sobre arcos de hormigón reforzado con estructuras de hierro, lo que marcó un hito en la construcción mixta. Su prestigio internacional experimentó un notable incremento en 1898, con la construcción de un puente de 42,4 m de luz en Steyr, considerado el puente de hormigón armado más extenso de su época. En este caso, el arco metálico inicial se ejecutó mediante voladizos sucesivos con un atirantamiento provisional.

Más allá de sus aportes en la construcción mixta, Melan dejó una huella indeleble en la ingeniería de puentes metálicos. En 1888, Melan fue pionero en cuantificar los efectos de la teoría de segundo orden, un avance crucial en la modelización estructural. Sus tratados sobre puentes recibieron un reconocimiento internacional destacado, y en 1913, su obra sobre puentes en arco y colgantes fue traducida al inglés por el ingeniero estadounidense David B. Steinman.

Además de su labor teórica, Melan ejerció una influencia decisiva en el desarrollo de la ingeniería de grandes puentes en Estados Unidos. Colaboró con el Departamento de Puentes de Nueva York en la verificación de los cálculos del Williams Bridge y en la evaluación del Hell Gate Bridge, diseñado por la oficina del ingeniero Gustav Lindenthal. Su impacto en la construcción de puentes en Estados Unidos durante las dos primeras décadas del siglo XX fue sin precedentes.

Principales contribuciones a la teoría de estructuras

Josef Melan realizó importantes aportaciones a la teoría de estructuras a lo largo de su carrera, plasmadas en diversas publicaciones de referencia. Entre sus primeros trabajos destacan Beitrag zur Berechnung eiserner Hallen-Gespärre (1883), en el que abordó el cálculo de cerchas metálicas en naves industriales, y Ueber den Einfluss der Wärme auf elastische Systeme (1883), donde analizó los efectos térmicos en sistemas elásticos. Posteriormente, en Beitrag zur Berechnung statisch unbestimmter Stabsysteme (1884), se centró en la resolución de sistemas de barras estáticamente indeterminados.

Su obra Theorie der eisernen Bogenbrücken und der Hängebrücken (1888) estableció las bases para el diseño de puentes en arco de hierro y puentes colgantes, consolidando su prestigio en la ingeniería estructural. Años más tarde, en Theorie des Gewölbes und des Eisenbetongewölbes im besonderen (1908), amplió su estudio al análisis de bóvedas, con especial énfasis en las estructuras de hormigón armado.

Durante su etapa en la Universidad Técnica Alemana de Praga, Melan publicó Der Brückenbau, una serie de volúmenes basados en sus conferencias impartidas entre 1910 y 1917. Su influencia trascendió el ámbito europeo con la publicación en inglés de Theory of Arches and Suspension Bridges (1913) y Plain and Reinforced Concrete Arches (1915), obras que consolidaron su impacto en la ingeniería de puentes a nivel internacional.

Eugène Freyssinet

De Desconocido – https://efreyssinet-association.com/apropos/lhomme/, Dominio público, https://commons.wikimedia.org/w/index.php?curid=81910629

Eugène Freyssinet nació el 13 de julio de 1879 en Objat, Corrèze (Francia), y falleció el 8 de junio de 1962 en Saint-Martin-Vésubie, Alpes-Maritimes (Francia). Fue un ingeniero de gran renombre, proyectista, constructor, inventor, empresario y artista, reconocido como el inventor del pretensado.

Pasó sus primeros años en un ambiente rural, hasta que en 1885 se trasladó con su familia a París, donde asistió a una escuela local y descubrió el Museo de Artes y Oficios. Pronto se familiarizó con todos los modelos expuestos y, entre los 10 y los 12 años, participó en cursos de electricidad aplicada, química y física. Durante las vacaciones escolares, pasaba el tiempo en Objat, donde se interesó por las tareas realizadas por los agricultores locales. Este grupo de personas, orgulloso y trabajador, extraía todo lo posible de la tierra árida, apenas suficiente para sobrevivir. Por ello, los agricultores también desempeñaban otros oficios, como ebanistas, carpinteros, albañiles, herreros y tejedores. A lo largo de su vida, Freyssinet siempre se sintió parte de este grupo. De estas personas, que trabajaban mucho y hablaban poco, aprendió a utilizar habilidades manuales y astucia para crear los mejores artefactos con pocos recursos materiales. Fue aquí, siendo aún un niño, donde Freyssinet adquirió las habilidades que más tarde le permitirían llevar a cabo innovaciones fundamentales en la construcción con hormigón.

Con una admiración casi religiosa por las habilidades manuales y una beca, Freyssinet asistió a la escuela Chaptal y logró ingresar en la École Polytechnique en su segundo intento en 1899. Posteriormente, estudió en la École des Ponts et Chaussées, de la que se graduó en 1905. Allí recibió una fuerte influencia de los profesores Charles Rabut, Jean Résal y Paul Séjourné. En 1903, todavía estudiante (se licenció en 1905), obtuvo su primer cargo: ingeniero de servicios ordinarios y vecinales, con la función de asesorar técnicamente a varios alcaldes del distrito este, concretamente de Vichy y Lapalisse. Comenzó a trabajar como ingeniero júnior en la oficina local de Ponts et Chaussées en Moulins, donde asesoraba a alcaldes rurales sobre temas relacionados con la ingeniería. En este trabajo, tenía libertad para diseñar y construir estructuras, utilizando siempre el hormigón reforzado. Entre sus obras de este período destacan los tres puentes de arco de hormigón pretensado sobre el río Allier.

En 1904 se interesó por las propiedades elásticas y de deformación del hormigón armado, una combinación de acero y hormigón. La búsqueda de la perfección de este material se convirtió en su principal objetivo. Sirvió en el Ejército de Tierra francés entre 1904 y 1907, y nuevamente durante la Primera Guerra Mundial como ingeniero de carreteras. Entre 1914 y 1928 fue director técnico y socio de la empresa Mercier-Limousin, donde obtuvo su primera patente de hormigón pretensado en 1920. En 1928, patentó un sistema de pretensado y comenzó a industrializar elementos prefabricados de hormigón armado, aunque su negocio de fabricación de postes eléctricos fracasó entre 1928 y 1933.

Entre 1907 y 1911, supervisó la construcción del puente de Veurdre, donde se enfrentó a problemas relacionados con los desplazamientos verticales de los arcos de hormigón armado. Con la ayuda de trabajadores de confianza, utilizó gatos hidráulicos para elevar los arcos y salvar el puente, que funcionó bien hasta ser destruido en la Segunda Guerra Mundial.

Freyssinet descubrió que el comportamiento del hormigón no es lineal y que, con una tensión compresiva constante, la contracción aumentaba con el tiempo. Este fenómeno, que observó en el Pont du Veurdre, se conocería más tarde como fluencia. Su comprensión del comportamiento del hormigón contrastaba con la de las autoridades científicas de la teoría de estructuras, que defendían la predominancia de lo lineal. Sin embargo, se estaba gestando un cambio de paradigma.

Eugène Freyssinet (1879-1962)

El gran avance en la construcción con hormigón pretensado se produjo en 1928, cuando Freyssinet y Jean Seailles patentaron su sistema de pretensado. A pesar de algunos fracasos iniciales, Freyssinet revolucionó el sector de la construcción con hormigón, consolidando su nombre como un referente en el campo. Entre sus obras más destacadas se encuentran el hangar de dirigibles de Orly (1921-1923), el Pont de Plougastel (1926-1930) y los audaces puentes de Marne construidos en la década de 1940. A partir de 1943, la tecnología del pretensado se expandió por todo el mundo. Freyssinet fundó la empresa STUP, que en 1970 se transformó en Freyssinet International.

Entre 1929 y 1933, Freyssinet experimentó con nuevas formas de fabricación de vigas y presentó el concepto de hormigón pretensado en un artículo de 1933. Este tipo de hormigón, sometido a presiones antes de su uso, mejoraba la resistencia y permitía la construcción de estructuras más delgadas y esbeltas.

Ese mismo año se presentó a la cátedra de hormigón de la Academia de Ciencias, pero fue rechazado. Luego, se centró en probar la viabilidad del hormigón pretensado para mejorar el puerto de Le Havre en 1934. Gracias a este éxito, Edme Campenon, presidente de Enterprises Campenon-Bernard, le contrató para realizar varios proyectos en Argelia.

Sin embargo, con el inicio de la Segunda Guerra Mundial y la derrota francesa de 1940, Freyssinet tuvo que ocultar sus conocimientos para evitar que los alemanes se aprovecharan de ellos. Además, varias de sus obras fueron destruidas. A pesar de ello, no interrumpió por completo su actividad constructiva. En 1943, Edme Campenon fundó la STUP (Sociedad Técnica para la Utilización del Pretensado) para aplicar las investigaciones de Freyssinet sobre esta técnica. En la posguerra, Freyssinet perfeccionó el uso del hormigón pretensado, que implementó en nuevos puentes y en diversos edificios, como el faro de Berck y la basílica subterránea del santuario de Lourdes.

Su origen rural tuvo una gran influencia en su carrera como ingeniero, que comenzó a una edad temprana. Tendía a simplificar sus construcciones y a hacerlas económicas. A pesar de su sólida formación matemática, que utilizaba cuando era necesario, su espíritu artesano e intuitivo lo llevaba a confiar más en la experiencia. Apasionado y tenaz, Eugène Freyssinet fue muy apreciado por sus colegas.

Principales contribuciones a la teoría de estructuras: L’Amélioration des constructions en béton armé par l’introduction de déformations élastiques systématiques [1928]; Procédé de fabrication de pièces en béton armé [1928]; Note sur: Bétons plastiques et bétons fluides [1933]; Progrès pratiques des méthodes de traitement mécanique des bétons [1936/1]; Une révolution dans les techniques du béton [1936/2]; Une révolution dans l’art de bâtir: les constructions précontraintes [1941]; Ouvrages en béton précontraint destinés à contenir ou à retenir des liquides [1948/1]; Ponts en béton précontraint [1948/2]; Überblick über die Entwicklung des Gedankens der Vorspannung [1949]; Un amour sans limite [1993].

Os dejo algunos vídeos, que espero, os interesen.

Referencia:

FERNÁNDEZ-ORDÓÑEZ, J.A. (1978). Eugène Freyssinet. 2c Ediciones, Barcelona.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estimación de la velocidad de barrido en la perforación rotativa con triconos

Tricono con insertos. https://www.talleresegovia.com

La perforación rotativa con triconos se ha tratado en artículos anteriores. Se trata de uno de los procedimientos más extendidos y consiste en equipos grandes capaces de ejercer empujes elevados sobre la boca. En este artículo se explicará un procedimiento para calcular la velocidad de barrido.

El aire comprimido enfría y lubrica los cojinetes del tricono, limpia el fondo del barreno y eleva el detrito a la velocidad adecuada para el ascenso.

El aire circula desde el compresor hasta el mástil mediante un tubo y una manguera flexible protegida, pasando por la cabeza de rotación. A continuación, entra en la barra de perforación y llega a la boca, donde sale entre los conos, arrastrando los detritos y llevándolos a la superficie.

Si los fragmentos son grandes y el caudal de aire es insuficiente, vuelven al fondo y se remueven hasta alcanzar el tamaño adecuado. Esto genera un consumo innecesario de energía, una menor velocidad de penetración y un mayor desgaste de la boca. Por otro lado, una velocidad ascensional excesiva incrementa el desgaste del centralizador y de las barras de perforación.

A continuación se ofrece un nomograma original elaborado por el profesor Pedro Martínez Pagán para estimar la velocidad de barrido de perforación de un equipo rotary (Instituto Tecnológico Geominero de España, 1994).

 

Esta expresión incorpora la corrección por altura geográfica que hay que hacerle al caudal que proporciona un compresor por la pérdida que sufre:

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estimación de la velocidad de penetración en la perforación rotativa con triconos

https://construproductos.com/producto/perforadora-rotativa-md6290-CDf5f

La perforación rotativa con triconos es uno de los procedimientos más extendidos, y está constituido por grandes equipos capaces de ejercer elevados empujes sobre la boca. Esto se debe a que las unidades que trabajan con trépanos son más sencillas de diseño y de menor envergadura. Las perforadoras rotativas están formadas esencialmente por una fuente de energía, como una batería de barras o tubos individuales o conectados en serie, que transmite el peso de la rotación y el aire de barrido a una boca con dientes de acero o insertos de carburo de tungsteno que actúan sobre la roca.

En este tipo de perforación, la velocidad de penetración depende de muchos factores externos, como las características geológicas, las propiedades físicas de las rocas, la distribución de tensiones y la estructura interna. Por este motivo, determinar la velocidad de penetración durante el desarrollo de un proyecto es una tarea difícil para el ingeniero proyectista, pero necesaria, ya que la decisión que se tome va a incidir decisivamente en el resto de las operaciones.

Las fórmulas empíricas para estimar la velocidad de penetración son muy sencillas y se basan en ensayos de campo. En general, tienen en cuenta las siguientes variables: diámetro de la perforación, empuje sobre el tricono, velocidad de rotación y resistencia a compresión simple. La resistencia a compresión es la variable desconocida, cuyo valor se puede estimar fácilmente mediante un ensayo de laboratorio o de campo.

A continuación se ofrece un nomograma original elaborado por los profesores Pedro Martínez Pagán, Daniel Boulet y Trevor Blight para estimar el coeficiente de perforación de un equipo rotary basándose en la formulación empírica que dedujo Praillet en 1978. Esta fórmula es más fiable en todos los rangos de resistencias de las rocas y permite calcular el valor de la resistencia a compresión de la roca durante una operación en marcha.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • PRAILLET, R. (1984), Consideraciones de un fabricante de máquinas de perforación. Canteras y Explotaciones
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

Cálculo de la carga circulante de un circuito cerrado de molienda

Figura 1. Circuito cerrado de molienda (Álvarez, 1996).

En la industria minera, se utilizan molinos de bolas en circuito cerrado cuando se busca liberar las especies minerales antes de concentrarlas. Este proceso tiene como objetivo minimizar la generación excesiva de partículas ultrafinas. Para ello, es fundamental contar con un instrumento de clasificación que se ajuste al tamaño de las partículas y a las condiciones específicas de la operación.

En los procesos en seco, se deben utilizar clasificadores neumáticos que permitan realizar cortes granulométricos adecuados al tamaño del producto final deseado. En contraste, en operaciones que manejan pulpa, el uso de hidrociclones es lo habitual, especialmente para cortes granulométricos inferiores a 75 micrómetros. Para partículas de mayor tamaño, se pueden emplear tanto hidrociclones como clasificadores mecánicos, dependiendo principalmente de la capacidad de molienda necesaria. Es importante señalar que los hidrociclones diseñados para cortes gruesos suelen tener una alta capacidad de tratamiento que puede exceder la capacidad de molienda disponible. Entre los clasificadores mecánicos más utilizados se encuentran el tipo Akins, que utiliza un tornillo sinfín, y el tipo Dorr, que emplea rastrillos.

La Figura 1 muestra un esquema de un circuito cerrado que incluye un molino de rebose y un clasificador en espiral o tornillo. Una forma de ajustar el tamaño de corte del clasificador es añadir agua. Este procedimiento modifica la viscosidad de la pulpa, lo que influye en la carga circulante y permite un control más preciso del proceso.

En este circuito cerrado, la nueva alimentación se introduce directamente en el molino. Sin embargo, existe una variante que se utiliza cuando la nueva alimentación ya contiene una gran cantidad de finos o cuando se desea minimizar completamente su producción. En este caso, la nueva alimentación se introduce directamente en el clasificador, como se ilustra en la Figura 2.

Figura 2. Circuito cerrado con alimentación al clasificador (Álvarez, 1996).

La Figura 3 muestra la variación típica de la capacidad de un molino a medida que aumenta la carga circulante en comparación con un circuito abierto. La carga circulante se expresa comúnmente como un porcentaje en peso del retorno del molino en relación con la nueva alimentación. Un valor del 250 % se considera normal en este contexto.

Figura 3. Variación de la capacidad con la carga circulante (Álvarez, 1996)

 

A continuación os dejo un nomograma elaborado por los profesores Pedro Martínez-Pagán, Jaime Sepúlveda y Daniel Boulet que permite el cálculo de la carga circulante. Espero que os sea de interés.

Referencias:

ÁLVAREZ, R. (1996). Trituración, molienda y clasificación. Ed. Fundación Gómez Pardo. Escuela Técnica Superior de Ingenieros de Minas, Universidad Politécnica de Madrid.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

WILLS, B.A.; NAPIER-MUNN, T. (2006). Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 7th edition.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Análisis de deformaciones en cimentaciones profundas en suelo blando

Acaban de publicar nuestro artículo en la revista del primer decil del JCR Journal of Building Enginering. El artículo aborda el desafío técnico y científico que supone analizar las características de deformación en excavaciones profundas en suelos blandos. Estas excavaciones, que están aumentando en escala y complejidad, plantean problemas de estabilidad debido a las propiedades inherentes de los suelos blandos, como su alta compresibilidad, alta sensibilidad, baja permeabilidad y baja resistencia. Además, la interacción entre el agua y el suelo durante la excavación puede causar consolidación por filtración, alteraciones en el campo de tensiones y riesgos significativos para las estructuras circundantes.

Actualmente, los métodos predominantes, como el análisis por elementos finitos y la monitorización experimental, presentan limitaciones a la hora de evaluar la precisión y los efectos espaciales en grandes escalas. Este estudio propone una mejora mediante la modelación tridimensional no lineal que incorpora un modelo de interfaz deslizante. El estudio analiza el proyecto XSS-03-10D, para lo que se utilizan mediciones in situ y simulaciones numéricas con las que estudiar la evolución temporal y espacial de la deformación de los sistemas de soporte y los asentamientos superficiales.

La pregunta principal que guía este trabajo es la siguiente: ¿cómo influye la interacción entre el sistema de soporte y el suelo circundante en la estabilidad y seguridad de las excavaciones profundas en suelos blandos y qué tan efectivas son las herramientas de modelación tridimensional para predecir estos comportamientos?

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal en la Universitat Politècnica de València. Colaboramos con investigadores de la Hunan University of Science and Engineering, de China. A continuación, explicamos brevemente el contenido del artículo que podéis descargar gratuitamente.

Metodología

La metodología empleada en este estudio combina el control exhaustivo en campo con avanzadas simulaciones numéricas para evaluar las características de deformación de las excavaciones profundas. En primer lugar, se realizó un análisis detallado de las condiciones geotécnicas del terreno, incluyendo pruebas de laboratorio y muestreo de suelos en diferentes capas. Gracias a estas pruebas, se identificaron propiedades clave del suelo, como el contenido de humedad, la densidad, la cohesión y el ángulo de fricción interna, que son esenciales para los cálculos posteriores.

Posteriormente, se diseñó un modelo tridimensional no lineal en el programa informático ABAQUS que incorporó las propiedades específicas del suelo y un modelo de interfaz deslizante para simular las interacciones entre el sistema de soporte y el terreno. Este modelo se estructuró en dos capas principales de excavación: la primera, desde la superficie hasta los -7550 m, está compuesta principalmente por relleno y lodo; y la segunda, desde los -7550 m hasta los -10750 m, está formada principalmente por lodo blando.

El modelo numérico se calibró mediante la comparación con datos reales obtenidos de 197 puntos de control distribuidos en el yacimiento. Estos puntos incluían sensores para medir desplazamientos horizontales y verticales, la presión del suelo y las fuerzas axiales en los sistemas de soporte. Además, se integraron sistemas de alerta temprana que permitieron identificar zonas críticas en tiempo real y ajustar las estrategias de soporte en consecuencia.

El análisis se dividió en varias etapas:

  1. Modelación inicial: Se definieron los parámetros básicos del suelo y los límites del modelo. Se realizaron simulaciones preliminares para establecer un marco de referencia.
  2. Simulación del proceso de excavación: Se aplicaron cargas incrementales para replicar el proceso de excavación por capas, teniendo en cuenta los cambios en la presión del suelo y las interacciones dinámicas entre los sistemas de soporte y el terreno.
  3. Validación de resultados: Los resultados del modelo se compararon con los datos de supervisión in situ. Esto incluyó la evaluación de desplazamientos, deformaciones y fuerzas internas, y la realización de ajustes iterativos en el modelo para mejorar la precisión.
  4. Análisis de escenarios críticos: Se exploraron escenarios de fallo potenciales y se identificaron las zonas más vulnerables dentro del sistema de soporte y del terreno circundante.

Esta combinación de monitorización de campo y simulación numérica no solo permitió validar la precisión del modelo tridimensional, sino también obtener una visión integral de los patrones espaciotemporales de deformación.

Aportaciones relevantes

En primer lugar, este trabajo presenta un modelo tridimensional de elementos finitos que combina elasticidad y plasticidad no lineales y que está adaptado para capturar las características específicas de los suelos blandos. Este enfoque supera las limitaciones de los modelos constitutivos tradicionales al integrar datos de campo y parámetros geotécnicos.

En segundo lugar, el estudio identifica los factores clave que afectan a la estabilidad de las excavaciones profundas, como la presión lateral del suelo, los efectos de consolidación y la interacción entre el terreno y la estructura. La comparación entre los datos medidos y los simulados demostró una alta correlación, lo que confirma la precisión del modelo y su aplicabilidad práctica.

Además, el artículo destaca la importancia de realizar un seguimiento continuo y de integrar sistemas de alerta temprana para mitigar riesgos durante la construcción. Este enfoque tiene un impacto directo en la sostenibilidad de los proyectos de infraestructura, ya que reduce el riesgo de fallos estructurales y minimiza el impacto ambiental.

Otra contribución relevante es la identificación de patrones espaciotemporales en la deformación de los sistemas de soporte, lo que permite diseñar estrategias de mitigación más eficaces. Por último, el enfoque metodológico presentado puede adaptarse a otros tipos de proyectos de infraestructura, lo que amplía su aplicabilidad en el campo de la ingeniería civil.

Discusión de resultados

Los resultados del estudio muestran que la deformación de los sistemas de soporte y los asentamientos del suelo presentan patrones espaciotemporales complejos. Durante la excavación por capas, se observó que el sistema de soporte experimentaba un incremento progresivo de las fuerzas axiales, alcanzando valores cercanos a los límites de seguridad en zonas específicas. Estas áreas coinciden con zonas de transición entre diferentes propiedades del suelo y regiones con interacciones más intensas entre el agua y el suelo.

El análisis numérico reveló que el modelo tridimensional es más preciso a la hora de predecir deformaciones y fallos que los métodos tradicionales. Por ejemplo, las simulaciones anticiparon asentamientos y desplazamientos horizontales que coincidieron con los valores observados in situ, lo que proporciona una herramienta fiable para la toma de decisiones durante la construcción.

En cuanto a los desplazamientos horizontales, los datos de control mostraron que los puntos ubicados cerca de áreas de transición de suelos blandos presentaron los mayores valores de deformación. Esto subraya la importancia de diseñar sistemas de soporte que se puedan adaptar dinámicamente a las características específicas del terreno. Por otro lado, los asentamientos superficiales fueron más pronunciados en zonas adyacentes a cuerpos de agua, lo que sugiere que el nivel freático es crucial para la estabilidad de las excavaciones.

Desde el punto de vista del comportamiento estructural, las fuerzas axiales en los soportes interiores aumentaron de forma progresiva durante la excavación, alcanzando valores cercanos a los límites de diseño. Esto demuestra la necesidad de implementar estrategias de refuerzo adicionales en las fases críticas de la construcción. Los resultados también evidenciaron la presencia de efectos de acoplamiento entre el suelo y las estructuras circundantes, un aspecto que podría abordarse en futuros estudios para mejorar la precisión de los modelos predictivos.

Además, se observó que la interacción entre el sistema de soporte y el suelo puede verse significativamente influenciada por factores externos, como las condiciones climáticas y las variaciones en el nivel freático. Estas interacciones tienen implicaciones directas para la estabilidad del sistema, por lo que se deben utilizar estrategias de monitorización adaptativas. Finalmente, los patrones de deformación identificados durante el análisis ponen de manifiesto la importancia de realizar ajustes dinámicos en el diseño y el monitoreo según las condiciones cambiantes en tiempo real.

Futuras líneas de investigación

A partir de los resultados de este estudio, se identifican varias áreas prometedoras para la investigación futura. Una de ellas es mejorar los modelos constitutivos del suelo para tener en cuenta mejor los efectos de la interacción multidimensional entre agua, suelo y estructuras. Esto podría incluir la incorporación de modelos viscoelásticos para simular el comportamiento a largo plazo de los suelos blandos.

Otra línea de interés es el desarrollo de herramientas de simulación que integren datos en tiempo real procedentes de sensores distribuidos en el lugar de la obra. Esto permitiría realizar ajustes instantáneos en las estrategias de construcción, mejorando la seguridad y reduciendo los costes asociados a fallos inesperados.

Además, el estudio destaca la necesidad de investigar la influencia de eventos extremos, como terremotos o lluvias torrenciales, en la estabilidad de excavaciones profundas. Las simulaciones que integran estos escenarios podrían proporcionar datos valiosos para diseñar sistemas de soporte más resilientes.

Finalmente, la investigación sobre métodos sostenibles de construcción en suelos blandos podría beneficiarse de estudios centrados en el uso de materiales de refuerzo ecológicos y en la optimización de diseños que reduzcan la huella de carbono. Estas iniciativas contribuirían al avance de la ingeniería civil hacia un enfoque más respetuoso con el medio ambiente.

Conclusión

El trabajo ofrece un análisis exhaustivo y un marco metodológico innovador para abordar los desafíos de las excavaciones profundas en suelos blandos. Al combinar la supervisión in situ con simulaciones numéricas avanzadas, el estudio asienta las bases para mejorar las prácticas de diseño y construcción.

El uso de modelos tridimensionales no lineales ha demostrado ser una herramienta muy eficaz para predecir comportamientos complejos de deformación y diseñar estrategias de mitigación más efectivas. Esto tiene implicaciones significativas para proyectos de infraestructura en entornos similares, ya que ofrece una guía clara para mejorar la estabilidad y sostenibilidad de estas obras.

En la práctica, los hallazgos refuerzan la importancia del seguimiento continuo y la adaptación dinámica de las estrategias de soporte según las condiciones en tiempo real. Estas prácticas no solo aumentan la seguridad, sino que también reducen los costes y el impacto ambiental asociados a los fallos estructurales.

Finalmente, el estudio sentará las bases para futuras investigaciones que exploren enfoques aún más integrados, sostenibles y resilientes, y permitirá que la ingeniería civil continúe evolucionando frente a los desafíos que presentan los entornos geotécnicos complejos. Además, los resultados invitan a adoptar un enfoque interdisciplinario que combine herramientas tecnológicas avanzadas y principios de sostenibilidad para optimizar tanto los resultados estructurales como el impacto ambiental de las construcciones en suelos blandos.

Referencia:

LI, Y.J.; ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, 99:111636. DOI:10.1016/j.jobe.2024.111636

El artículo completo se puede descargar hasta el 14 de febrero de 2025 de forma gratuita en el siguiente enlace: https://authors.elsevier.com/c/1kKko8MyS9AR4g

Fracturación hidráulica

De US Environmental Protection Agency, Office of Research and Development, Washington, DC – “The Hydraulic Fracturing Water Cycle”, Dominio público, https://commons.wikimedia.org/w/index.php?curid=25673027

La fracturación hidráulica, comúnmente conocida como fracking, es una técnica que se utiliza para extraer hidrocarburos, como el gas natural y el petróleo, de formaciones rocosas subterráneas de baja permeabilidad, especialmente lutitas o esquistos. Este método ha revolucionado la industria energética, ya que permite acceder a recursos que antes eran inaccesibles, contribuyendo significativamente a la diversificación de las fuentes de energía.

El fracking consiste en perforar un pozo vertical hasta alcanzar la formación rocosa objetivo. Una vez en la profundidad deseada, la perforación se desvía horizontalmente, extendiéndose varios kilómetros dentro de la capa de lutita. A través de este pozo se inyecta una mezcla de agua, arena y productos químicos a alta presión. Esta presión fractura la roca, creando fisuras por las que se liberan los hidrocarburos atrapados, que son posteriormente extraídos a la superficie.

Evolución histórica de la fracturación hidráulica

El desarrollo del fracking no es un fenómeno reciente, sino el resultado de una evolución que se inició hace dos siglos. En 1821, la perforación del primer pozo comercial de gas de lutita cerca de Fredonia, en Nueva York, marcó el inicio de la explotación de este tipo de gas. Aunque este recurso era útil para la iluminación doméstica, no adquirió relevancia económica hasta mucho después. No fue hasta después de la Segunda Guerra Mundial, en un contexto de crecimiento industrial y demanda energética acelerada, cuando el gas natural comenzó a jugar un papel clave.

En las décadas de 1980 y 1990, los productores se enfrentaron al declive de los yacimientos convencionales y comenzaron a buscar alternativas en formaciones de baja permeabilidad, como el gas de las capas de carbón (CBM) y el gas de lutita (shale gas). Sin embargo, estos recursos presentaban limitaciones tecnológicas significativas, especialmente en lo que respecta a la capacidad para extraer hidrocarburos atrapados en micro o nanoporos. No fue hasta 2005 cuando la combinación de fracturación hidráulica y perforación horizontal demostró plenamente su viabilidad, lo que supuso un cambio de paradigma en la industria energética global.

El fracking ha transformado el panorama energético de países como Estados Unidos, donde se ha convertido en uno de los principales productores de petróleo y gas a nivel mundial. Sin embargo, esta técnica ha generado debates y regulaciones en diversas regiones debido a sus implicaciones ambientales. En Europa, por ejemplo, se ha analizado la dependencia del gas obtenido por fracking en otros países y se han criticado estas prácticas.

La historia del fracking es también una historia de innovación. Desde la mejora de los motores de fondo y los sistemas de telemetría hasta el diseño de fracturas más eficientes, cada avance ha contribuido a aumentar la recuperación de hidrocarburos y a reducir los costes asociados. Sin embargo, el desarrollo de estas tecnologías ha planteado también nuevos desafíos ambientales y sociales que no existían en las explotaciones convencionales.

De Battenbrook – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30796394

Fundamentos técnicos de la fracturación hidráulica

El fracking combina dos tecnologías clave: la perforación horizontal y la fracturación hidráulica. Ambas se han desarrollado para abordar el desafío que supone la extracción de hidrocarburos de yacimientos de baja permeabilidad, caracterizados por una porosidad extremadamente reducida y escasas conexiones entre los poros. Este tipo de formación geológica requiere la creación artificial de caminos por donde los hidrocarburos puedan fluir hacia los pozos de producción.

  • La perforación horizontal: Este enfoque, en contraste con la perforación vertical tradicional, permite acceder a una zona más extensa de la formación productora. Un pozo puede extenderse lateralmente varios kilómetros dentro del yacimiento, lo que aumenta considerablemente la cantidad de hidrocarburos que pueden recuperarse. Esto es especialmente relevante en yacimientos continuos como el gas de lutita, donde los hidrocarburos están distribuidos uniformemente en capas sedimentarias.
  • La fracturación hidráulica: Este proceso consiste en inyectar un fluido compuesto de agua, arena y aditivos químicos a alta presión. El agua actúa como medio de transporte, la arena como material de soporte de fracturas y los aditivos cumplen diversas funciones, como reducir la fricción, evitar la corrosión y mejorar la eficiencia del proceso. La fracturación crea redes de microfracturas en la roca madre, lo que aumenta la permeabilidad y permite que el gas o el petróleo fluyan hacia el pozo.
  • Avances tecnológicos adicionales: El uso de la telemetría avanzada (logging while drilling y measurement while drilling) proporciona datos en tiempo real sobre las condiciones del subsuelo. Esto permite ajustar la dirección del pozo y optimizar el diseño de las fracturas para maximizar la producción. Además, las fracturas multietapa, que dividen la sección horizontal del pozo en segmentos individuales, han demostrado ser una estrategia eficaz para estimular formaciones de gran tamaño.

Uno de los desafíos de los yacimientos de gas no convencional es el rápido declive de la producción. Este fenómeno obliga a perforar nuevos pozos de manera constante para mantener niveles de producción comercialmente viables. Por lo tanto, la explotación del gas de lutita es una actividad intensiva y duradera que requiere una planificación meticulosa y una inversión considerable.

Cómo funciona la fracturación hidráulica. https://www.todoporhacer.org/la-fractura-hidraulica/

Impactos ambientales del fracking

La fracturación hidráulica ha generado preocupaciones significativas en torno a su impacto ambiental, especialmente en lo que respecta al consumo de agua, la contaminación de acuíferos, la emisión de gases de efecto invernadero y la sismicidad inducida. Estas preocupaciones están respaldadas por pruebas documentadas que detallan tanto los riesgos como las medidas de mitigación disponibles.

  1. Consumo de agua: Cada pozo de fracturación hidráulica requiere entre 8000 y 15 000 m³ de agua, dependiendo de factores como la profundidad del pozo y el número de etapas de fracturación. Esta cantidad de agua es considerable, particularmente en regiones con recursos hídricos limitados. Para mitigar este impacto, se ha propuesto reutilizar las aguas de retorno y utilizar fuentes no convencionales de agua, como las salobres. Es esencial investigar previamente la disponibilidad de agua superficial y subterránea para garantizar la sostenibilidad del proyecto.
  2. Contaminación de acuíferos: Aunque las zonas de fractura están separadas de los acuíferos por capas de roca impermeable, las fugas a través de defectos en la cementación de los pozos suponen un riesgo. Los fluidos de fracturación, que contienen metano y aditivos químicos, pueden migrar hacia los acuíferos superficiales en caso de fallo estructural. Por ello, es esencial realizar un seguimiento continuo y diseñar adecuadamente los pozos para prevenir estos incidentes.
  3. Sismicidad inducida: La fracturación hidráulica puede causar micro-sismos de baja intensidad, imperceptibles sin instrumentos especializados. En raras ocasiones, la inyección en áreas cercanas a fallas activas ha generado sismos de mayor magnitud, aunque el límite superior para estos eventos es de 3 en la escala de Richter. La evaluación geológica previa y el monitoreo continuo son fundamentales para minimizar este riesgo.
  4. Gestión de aguas residuales: Las aguas de retorno contienen minerales disueltos, compuestos químicos y, ocasionalmente, materiales radiactivos naturales (NORM). Las estrategias de mitigación incluyen el tratamiento de residuos, la evaporación y la reutilización del agua reciclada. Estas medidas no solo reducen la demanda de agua dulce, sino que también minimizan el impacto ambiental.

Retos sociales y económicos

El desarrollo de la fracturación hidráulica enfrenta múltiples retos sociales y económicos. En términos sociales, la aceptación pública es fundamental. La percepción de riesgo asociada a la contaminación del agua, la sismicidad y la ocupación del terreno puede generar resistencia en las comunidades locales. Por otro lado, el fracking ofrece beneficios económicos significativos, como la reducción de la dependencia energética de las importaciones y la creación de empleo.

En España, las estimaciones de recursos prospectivos varían considerablemente. Según la Agencia Estadounidense de Información Energética (EIA), el país cuenta con 226 bcm de gas técnicamente recuperable, mientras que otros estudios elevan esta cifra a 1978 bcm. Estas reservas tienen el potencial de abastecer la demanda nacional durante décadas, aunque su desarrollo enfrenta desafíos como la falta de infraestructura y los altos costes de perforación.

Desde el punto de vista económico, el fracking es competitivo. El coste medio de extracción se estima en 5 céntimos de euro por kWh, lo que lo convierte en una opción viable frente a otras fuentes de energía. Sin embargo, para garantizar la sostenibilidad del sector, los beneficios deben equilibrarse con los riesgos ambientales y sociales.

Conclusiones

La fracturación hidráulica es una tecnología innovadora que ha transformado la industria energética. Aunque ofrece oportunidades significativas para la diversificación y la seguridad energética, su implementación debe abordarse con un enfoque integral que contemple tanto los beneficios económicos como sus posibles impactos ambientales y sociales. Es necesario realizar una evaluación cuidadosa y aplicar regulaciones estrictas para mitigar riesgos y garantizar una explotación sostenible de los recursos naturales. El desarrollo de recursos no convencionales en España requerirá una planificación meticulosa, un marco regulatorio sólido y un compromiso transparente con las comunidades locales.

Al adoptar medidas de mitigación efectivas y avanzar en tecnologías más sostenibles, el fracking puede desempeñar un papel crucial en la transición hacia un sistema energético más diversificado y seguro, minimizando al mismo tiempo su impacto ambiental y social.

Os dejo algunos vídeos al respecto.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Impermeabilización de puentes: técnicas, materiales y procedimientos

https://www.cantitec.es/project/impermeabilizacion-puente-ave/

La durabilidad de los puentes está relacionada con una impermeabilización adecuada, ya que el hormigón vibrado no es totalmente estanco. Las segregaciones locales permiten la entrada de agua hasta las armaduras, lo que provoca la carbonatación, disgregación y corrosión de estas. Este efecto se intensifica en regiones donde se usan sales de deshielo para evitar la formación de hielo. Muchos problemas de durabilidad se deben a una impermeabilización y drenaje inadecuados.

La eficacia de la impermeabilización depende de factores como las condiciones climáticas, que pueden afectar a la integridad de los materiales. También es crucial el diseño estructural, que debe facilitar el drenaje y evitar la acumulación de agua. Para prevenir defectos en la impermeabilización, es esencial seleccionar materiales duraderos y compatibles con el entorno, y aplicarlos correctamente.

La selección del sistema de impermeabilización para un puente debe tener en cuenta factores como las características específicas de la estructura, incluidos los materiales, la geometría, el uso y las condiciones de carga; las condiciones climáticas y ambientales locales, como temperaturas extremas, humedad y exposición a agentes corrosivos; y los requisitos de mantenimiento y la vida útil esperada, ya que algunos sistemas requieren menos mantenimiento y ofrecen una mayor durabilidad. Es esencial consultar las normativas vigentes y, en caso de duda, recurrir a expertos en la materia para determinar la solución más adecuada.

Los sistemas de impermeabilización se clasifican en tratamientos in situ y el uso de láminas prefabricadas. Dentro de los tratamientos in situ, destacan varias técnicas según el tipo de material y el método de aplicación.

Tratamientos in situ:

  • Másticos bituminosos aplicados en caliente: Se colocan en una o dos capas con espesores de 5 a 20 mm. Para evitar la formación de ampollas por la mezcla caliente sobre un tablero húmedo, se aplica una capa de imprimación y otra de descompresión, generalmente un filtro de fibra de vidrio que comunica con la atmósfera.
  • Másticos bituminosos aplicados en frío: Formados por un agregado mineral fino, fibras minerales y una emulsión bituminosa aniónica de rotura lenta, y se aplican sobre un tablero limpio tras un riego de adherencia. La cantidad aplicada varía entre 3 y 6 kg/m² en función de la rugosidad de la superficie. Son fáciles de instalar, resistentes al tráfico de obra y poseen una excelente adherencia al firme.
  • Capas finas con materiales no bituminosos (resinas): Incluyen resinas epoxi, poliuretanos y poliésteres, que se aplican en espesores de 1,5 a 3 mm. Ofrecen alta resistencia química y gran adherencia al hormigón, aunque requieren una textura fina y ausencia de humedad en el tablero. Normalmente, se aplican dos capas de resina: la segunda se extiende una vez polimerizada la primera y, antes de que se seque por completo, se esparce arena para mejorar la adherencia con el pavimento. La imprimación del tablero no es indispensable, pero, si se realiza, se utiliza la misma resina diluida.
  • Capas finas con brea-epoxi: Este material mixto combina la flexibilidad de la brea y la adherencia del epoxi, y ofrece resistencia a bajas temperaturas y un coste moderado. Su espesor promedio es de 2 mm y se usa principalmente en estructuras flexibles como puentes metálicos. La técnica de aplicación es similar a la de las resinas sintéticas, con la diferencia de que en este caso es imprescindible utilizar la imprimación correspondiente, que es la misma mezcla fluidificada.

Láminas prefabricadas:

Dentro de las láminas prefabricadas de pequeño espesor (entre 1 y 2 mm) se incluyen:

  • Láminas bituminosas autoprotegidas: La cara superior está formada por una hoja de aluminio y la cara inferior está recubierta de una masilla bituminosa reforzada con fibras de vidrio. El espesor total varía entre 3 y 4 mm.
  • Láminas elastoméricas: Las más comunes están fabricadas con caucho butilo, caucho de cloropreno y etileno-propileno. Estas láminas destacan por su gran flexibilidad, aunque presentan el inconveniente de una adherencia deficiente con los materiales bituminosos. Por ello, en la instalación de pavimentos de este tipo es habitual aplicar una imprimación bituminosa sobre la lámina una vez colocada.
  • Láminas plásticas: Son de PVC reforzado con fibras sintéticas a lo largo de todo su espesor. Estas láminas no presentan adherencia.
  • Láminas de betún altamente modificado con polímeros: Estas láminas ofrecen una excelente flexibilidad, baja susceptibilidad térmica y elevada tenacidad y ductilidad.

Las láminas prefabricadas más delgadas suelen deteriorarse con facilidad por punzonamiento. Anteriormente, solía colocarse una capa de protección, generalmente una mezcla de arena y betún, entre la lámina y el pavimento. Hoy en día, salvo en el caso de las láminas con hoja superior de aluminio, es común que las láminas incorporen gravillas incrustadas en su cara superior, lo que no solo las protege frente al punzonamiento, sino que también mejora la adherencia con el pavimento. El objetivo principal de estas membranas es garantizar la estanqueidad en todas las zonas del tablero y evitar especialmente el paso de agua en las uniones con elementos como bordillos, sumideros, barreras y juntas de dilatación.

En los últimos años, se han desarrollado y aplicado técnicas y productos innovadores en este campo. A continuación, se presentan algunas de las novedades más destacadas:

  • Membranas líquidas de poliuretano: La aplicación de membranas líquidas de poliuretano ha surgido como una solución eficaz para impermeabilizar tableros de puentes. Estas membranas destacan por su alta elasticidad, resistencia química y larga vida útil. Además, su capacidad para adaptarse a geometrías diversas facilita su aplicación en estructuras complejas. La certificación ETE (Documento de Evaluación Técnica Europeo) garantiza la calidad y eficacia de estos productos.
  • Membranas asfálticas prefabricadas: Los sistemas de impermeabilización asfáltica, especialmente los que utilizan membranas prefabricadas SBS, han demostrado su eficacia en puentes y estacionamientos. Estos sistemas se aplican mediante termofusión, lo que garantiza una adherencia sólida y una protección duradera contra filtraciones.
  • Resinas de poliuretano bicomponente: La utilización de resinas de poliuretano bicomponente, libres de brea y alquitrán, ha ganado popularidad en la impermeabilización de tableros de puentes. Estas resinas se aplican sobre el hormigón del soporte, formando una capa impermeable que protege la estructura de las inclemencias meteorológicas y de la acción de agentes corrosivos.
  • Membranas de poliurea: La aplicación de poliurea ha demostrado su eficacia en la protección contra filtraciones en la impermeabilización de puentes ferroviarios. Para lograr una impermeabilización completa y duradera, es fundamental realizar un tratamiento previo de la superficie y aplicar imprimaciones adecuadas.

En las impermeabilizaciones no completamente adheridas al tablero del puente, el agua que pueda filtrarse a través de la capa impermeabilizante o condensarse debajo de ella se evacúa mediante respiraderos o tubos de ventilación. Estos dispositivos evitan la acumulación de presión de vapor que podría provocar ampollas en la impermeabilización. Los tubos se colocan en los puntos más bajos o se distribuyen a lo largo de toda la superficie, partiendo de la cara inferior de la impermeabilización y atravesando el tablero del puente.

La impermeabilización de puentes requiere un mantenimiento periódico para garantizar su eficacia a largo plazo. Es fundamental realizar inspecciones regulares para detectar posibles daños o deterioros y llevar a cabo las reparaciones pertinentes. Si hay fallos en la impermeabilización, es posible que sea necesario rehabilitar la membrana, lo que puede implicar eliminar la capa existente y aplicar un nuevo sistema de impermeabilización.

La impermeabilización de puentes requiere cumplir diversas normativas y estándares internacionales para garantizar la eficacia y durabilidad de las soluciones implementadas. A continuación, se presenta una relación exhaustiva de las normativas y estándares más importantes en este campo:

Normativas Europeas:

  • UNE-EN 13375:2020: Establece los requisitos para las láminas flexibles utilizadas en la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón expuestas al tráfico vehicular.
  • UNE-EN 14692:2017: Define las características de las láminas flexibles para la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón para tráfico de vehículos, incluyendo la determinación de la resistencia a la compactación de una capa asfáltica.
  • UNE-EN 14694:2017: Especifica los requisitos para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras superficies de hormigón para tráfico de vehículos, enfocándose en la resistencia a la presión dinámica de agua tras degradación por pretratamiento.
  • UNE-EN 14223:2017: Detalla las propiedades de las láminas flexibles para la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, incluyendo la determinación de la absorción de agua.
  • UNE-EN 14691:2017: Establece los criterios para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, enfocándose en la compatibilidad por acondicionamiento térmico.
  • UNE-EN 13653:2017: Define los requisitos para las láminas flexibles en la impermeabilización de tableros de puentes de hormigón y otras zonas de hormigón para tráfico de vehículos, incluyendo la determinación de la resistencia al pelado.
  • UNE-EN 12039:2017: Especifica las características de las láminas bituminosas para la impermeabilización de cubiertas, incluyendo la determinación de la adherencia de gránulos.
  • UNE-EN 12691:2018: Establece los requisitos para las láminas bituminosas, plásticas y de caucho en la impermeabilización de cubiertas, incluyendo la determinación de la resistencia al impacto.
  • UNE-EN 13583:2013: Define las características de las láminas bituminosas, plásticas y de caucho para la impermeabilización de cubiertas, incluyendo la determinación de la resistencia al granizo.
  • UNE-EN 17686:2023: Establece los requisitos para las láminas flexibles en la impermeabilización de cubiertas, incluyendo la determinación de la resistencia a la carga de viento del sistema constructivo de cubiertas con sistemas de impermeabilización adheridos.

Normativas Internacionales:

  • ASTM D6083: Estándar de la ASTM que especifica los requisitos para las membranas líquidas de poliuretano utilizadas en la impermeabilización de puentes.
  • ASTM D1970: Estándar de la ASTM que define los requisitos para las membranas autoadhesivas de asfalto utilizadas en la impermeabilización de puentes.
  • AASHTO M 323: Especificación de la American Association of State Highway and Transportation Officials que establece los requisitos para las membranas de impermeabilización de puentes.

Es fundamental consultar las normativas vigentes y, en caso de duda, recurrir a expertos en la materia para determinar la solución más adecuada. Además, es recomendable revisar las especificaciones técnicas de los fabricantes y las guías de buenas prácticas para asegurar una correcta aplicación de los sistemas de impermeabilización.

Os dejo un par de vídeos sobre impermeabilización de tableros de puentes. Espero que os sean de interés.

También os dejo este catálogo de Sika sobre la impermeabilización de puentes.

Descargar (PDF, 342KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.