Pilotes de madera

Figura 1. Protección de pilotes en contacto con agua marina. Fuente: http://www.dsimarineconstruction.com/piling-repair/

Los pilotes de madera son pilotes de desplazamiento. Este tipo de cimentación profunda empezó a utilizarse en la antigüedad. Hoy día son útiles en países con abundancia en este material, con la ventaja de ser baratos, ligeros y de fácil manejo. En España, si bien se utilizaron hasta los años 60, su uso actual es muy limitado, empleando troncos de entre 20 y 30 cm de diámetro de encina o eucalipto, si bien los de pino, abeto y roble mejoran la durabilidad por contener mucha resina.

Los pilotes de madera son útiles en cimentaciones provisionales de pequeñas estructuras, como base de terraplenes o para mejorar grandes extensiones de terreno. Trabajan mejor por fricción que por punta. Se usan maderas densas, que absorben flexiones y admiten ligeras desviaciones durante la hinca. Sin embargo, son elementos de pequeña capacidad portante, entre 150 y 250 kN, no debiéndose usar para cargas mayores. Además, para atravesar estratos duros es precisa una perforación previa.

Tampoco admiten variaciones de humedad salvo que se traten para evitar la pudrición y los ataques biológicos (ver Figura 1). Para proteger la madera se usaba el “creosotado”, un derivado del fraccionamiento de los alquitranes de la hulla con cualidades biocidas; sin embargo hoy está prohibido en la Unión Europea por su potencial cancerígeno. Los pilotes duran más tiempo si están permanentemente sumergidos, de 25 a 50 años en ambiente marino. Si se encuentran por encima del nivel freático y enterrados, pueden durar hasta 100 años.

Los pilotes de madera se hincan con equipos de percusión ligeros. Para evitar el astillamiento por la maza, la cabeza del pilote se refuerza con un zuncho o anillo metálico ajustado en caliente y a presión para que al enfriarse aprisione la madera por contracción. También la punta se disgrega con los golpes, por lo que se protege con una pieza metálica, “azuche”, bien centrada para evitar desviaciones durante la hinca (ver Figura 2). Además se pueden unir tramos de pilotes con manguitos tubulares metálicos, pues sus longitudes máximas habituales son entre 10 y 20 m.

Figura 2. Protección metálica de punta de pilote de madera. Fuente: http://listado.mercadolibre.com.ar/antiguedades/pilotes-y-armaduras-de-hierro

A continuación os dejo un vídeo donde se observa cómo se coloca este tipo de pilote en zonas con muy pocos medios auxiliares.

Para aquellos que queráis mayor información sobre los pilotes de madera, os dejo información de AITIM (Asociación de Investigación Técnica de las Industrias de la Madera).

Descargar (PDF, 612KB)

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Concepto de pilote y clasificaciones

Figura 1. Armado de encepado de pilotes. Imagen: I. Serrano (www.desdeelmurete.com)

El pilotaje se utiliza cuando el terreno firme se encuentra a gran profundidad (más de 6 m o bien más de 8 diámetros del pilote). Es una solución constructiva que se remonta a los palafitos, siendo práctica habitual en los puertos o en ciudades como Murcia, donde se han usado los prefabricados de madera como cimentación. En efecto, los pilotes son piezas largas, a modo de pilares enclavados en el terreno, que alcanzan una profundidad suficiente para trasmitir las cargas de la estructura. Se denomina fuste a la parte del pilote en contacto con el suelo, mientras que altura libre es la longitud de la parte que emerge del suelo. El encepado transmite los esfuerzos de la estructura a los pilotes (Figura 1). Los pilotes pueden clasificarse de muchas formas, algunas son las siguientes.

Según la forma de trabajo (ver Figura 2) los pilotes pueden ser:

  • Pilotes por punta: alcanzan el estrato resistente, transmitiéndose las cargas por punta, comprimiéndose el pilote. El terreno circundante dificulta el pandeo. La deformación del pilote es muy pequeña por su rigidez, de forma que el movimiento relativo con el terreno no es significativa. También se llaman pilotes columna.
  • Pilotes por fuste: no alcanzan un estrato resistente, transmitiendo la carga al terreno circundante por rozamiento a través del fuste. Se llaman también pilotes flotantes o de fricción.
Figura 2. Esquema de cimentaciones profundas (pilotajes) según el Código Técnico de Edificación SE-C. Fuente: http://noticias.juridicas.com/base_datos/Admin/rd314-2006.nor7.html

Sin embargo, los pilotes trabajan de forma combinada, tanto en punta como en fuste. Además, pueden estar sometidos a tracción cuando existe subpresión que tiende a levantar la estructura por encontrarse total o parcialmente por debajo del nivel freático, es decir “flota”. En rellenos en proceso de consolidación, el pilote se ve arrastrado por el terreno que asienta, denominándose este fenómeno “rozamiento negativo”. Si la estructura recibe esfuerzos horizontales, algunos pilotes pueden trabajar a tracción y otros a compresión. También trabajan a flexión si están empotrados y resisten el empuje de las tierras al excavar.

Por tanto, los pilotes resultan muy apropiados en casos como los siguientes:

  1. Cuando se disponga de un terreno competente a poca profundidad (5-6 m)
  2. Las cargas de la estructura sean importantes y concentradas
  3. La estructura sea sensible a movimientos absolutos o diferenciales
  4. El nivel freático se encuentre muy alto y sea difícil ejecutar losas
  5. Para limitar el efecto de las cargas en estructuras próximas
  6. Como elemento de contención formando pantallas de pilotes
  7. Para contener movimientos de ladera
  8. Para resistir cargas horizontales (normalmente combinado con otros y con inclinación)
  9. Para compensar tracciones (subpresiones)

El Código Técnico de Edificación clasifica los pilotes en los siguientes tipos:

  • Pilote aislado: es un pilote alejado suficientemente de otros para no interactuar con aquellos. No se permiten pilotes aislados para diámetros menores a 45 cm. Entre 45 y 100 cm de diámetro se pueden utilizar si se arriostran lateralmente.
  • Grupo de pilotes: conjunto de pilotes suficientemente próximos para interactuar entre sí o unidos mediante elementos estructurales.
  • Zonas pilotadas: son pilotes de escasa capacidad portante individual, regularmente especiados o situados en puntos estratégicos, que sirven para reducir asientos o mejorar la seguridad frente a hundimiento de las cimentaciones.
  • Micropilotes: son aquellos compuestos por una armadura metálica formada por tubos, barras o perfiles que se introducen en un taladro de pequeño diámetro, y que pueden estar inyectados con una lechada de mortero.

El Código Técnico de Edificación también distingue los pilotes por el material:

  • Hormigón “in situ”: se pueden ejecutar mediante excavación previa del terreno o por desplazamiento de éste.
  • Hormigón prefabricado: armado (hormigones de alta resistencia) u hormigón pretensado o postensado.
  • Acero: secciones tubulares o perfiles en doble U o en H. Se hincan con protecciones en la punta (azuches).
  • Madera: para pilotar zonas blandas ampliar y como apoyo de estructuras con losa o terraplenes.
  • Mixtos: acero tubular rodeados y rellenos de mortero.

Por la forma de ejecución, este Código Técnico los clasifica en:

  • Pilotes prefabricados hincados: donde se desplaza el terreno, sin hacer excavaciones.
  • Pilotes hormigonados “in situ”: donde se excava el terreno antes de hormigonar.

Sin embargo, existen casos mixtos, con perforación e hinca, como pilotes de desplazamiento hormigonados “in situ” u otros. La tipología condiciona la alteración del terreno en el entorno del pilote y por tanto, la resistencia y deformabilidad. En lo que sigue, dividiremos los pilotes en pilotes de desplazamiento, pilotes de perforación, pilotes inyectados y micropilotes.

El profesor Celma (2014) nos sugiere los siguientes criterios para la elección del tipo de pilote (Tabla 1):

Referencias:

CELMA, J.J. (2014). Cuadernos de mecánica del suelo y cimentaciones. Apuntes Universitat Politècnica de València, 194 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Losas de cimentación

Figura 1. Tipos de losa de cimentación, según CTE DB SE-C. Fuente: http://noticias.juridicas.com/base_datos/Admin/rd314-2006.nor7.html

Las losas o placas de cimentación se caracterizan porque la dimensión en planta es mucho mayor que el canto. Se utiliza cuando la superficie de las zapatas supera el 50% de la superficie de la planta. Se aconsejan con sótanos estancos cuya cota inferior se sitúe por debajo del nivel freático, así como para reducir los asientos diferenciales. También son útiles cuando la capacidad portante del terreno es escasa y en construcciones donde la superficie es pequeña en relación al volumen, tales como rascacielos, depósitos o silos. En la Figura 1 se pueden ver distintos tipos de losas de cimentación. En la Figura 2 se comprueba cómo se integra la losa de cimentación con el soporte de la grúa que va a trabajar en la construcción del edificio.

Figura 2. Detalle del armado de una losa de cimentación. Imagen: E. Valiente

En la Figura 3 se ve cómo son necesarias varias bombas de hormigón cuando se quiere hormigonar una losa de grandes dimensiones. A este respecto, se debe prever una adecuada logística y equipos de reposición para garantizar el vertido continuo al efecto de minimizar el número de juntas de trabajo.

Figura 3. Hormigonado de una losa de cimentación. Fuente: edificio7000.obrasonline.com

Un caso interesante es la losa de cimentación postesada. La rigidez de este tipo de losas permite una construcción rápida y segura, recomendándose su uso en superficies planas sin suelo expansivo. Como ventajas destacan la rapidez en la ejecución de los cimientos, el menor volumen de excavación, la mayor capacidad de carga, y una durabilidad mayor que la losa solida convencional. Los cables postensados colocados en ambas direcciones de la losa crean una cimentación extremadamente rígida y la habilitan para resistir las fuerzas de flexión.

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Emparrillados de cimentación

Figura 1. Emparrillado de cimentación. Fuente: puntaltec.com

Los emparrillados recogen los pilares de la estructura en una única cimentación, consistente en zapatas corridas entrecruzadas en malla habitualmente ortogonal, de gran rigidez (Figuras 1 y 2). Al igual que en las vigas de cimentación, los emparrillados son menos sensibles a las heterogeneidades, oquedades o a los defectos locales del terreno. Suelen emplearse cuando la presión admisible del terreno es baja, existe una elevada deformabilidad o se esperan importantes asientos diferenciales, aunque la alternativa es la losa de cimentación. En la Figura 3 se observa una especie de emparrillado de cimentación que usa elementos para aligerar lo que sería una losa y que en una vivienda sirve de forjado sanitario.

Figura 2. Esquema de emparrillado de cimentación. Fuente: http://www.elconstructorcivil.com/

 

Figura 3. Emparrillado de cimentación con aligeramientos Daliforma. Fuente: http://www.admasarquitectura.com/

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Criterios básicos de elección del tipo de cimentación

Figura 1. Colocación de armadura en zapata. Imagen: V. Yepes

El tipo de cimentación se selecciona en función el tipo de terreno, del tipo de estructura y de la interacción con los edificios próximos. El terreno influye por su capacidad portante, por su deformabilidad, por la existencia de nivel freático, por su excavabilidad o alterabilidad, entre otros. En el tipo de estructura son determinantes las cargas, las tolerancias a los asientos y la presencia de sótanos. Son muy susceptibles aquellos edificios cercanos antiguos con cimentación somera o cuando las cargas van a ser muy diferentes entre los edificios próximos.

La cimentación por zapatas constituye la solución tradicional por economía y facilidad de ejecución. Es una buena solución cuando la resistencia del terreno es de media a alta, sin estratos blandos interpuestos. Es la cimentación ideal si el terreno presenta una cohesión suficiente para mantener verticales las excavaciones, no existe afluencia de agua y el nivel de apoyo se encuentra a menos de 1,5 m, si bien se puede rellenar la diferencia con un hormigón pobre en el caso de mayores profundidades. En edificios ligeros y muros de carga se utilizaban zapatas de hormigón en masa, si bien hoy día se realizan con hormigón armado. Cada pilar asienta de forma independiente sobre cada zapata. Como inconveniente cabe citar la escasa resistencia a giros y a desplazamientos horizontales, que pueden resolverse con riostras, zapatas combinadas o vigas de cimentación.

Figura 2. Desencofrado de zapata. Imagen: I. Serrano (www.desdeelmurete.com)

La cimentación por losa se utiliza en terrenos menos resistentes o heterogéneos, especialmente para tensiones admisibles menores a 0,15 N/mm2. Es económica si la superficie de la cimentación supera la mitad de la extensión que ocupa el edificio. Una ventaja adicional es que anula o reduce los asientos diferenciales. Asimismo se aconseja cuando el edificio presenta un sótano bajo el nivel freático, combinado con muros pantalla. La facilidad constructiva sugiere losas de canto constante, salvo en edificios con zonas cargadas de forma diferente para garantizar la compatibilidad de las deformaciones.

Figura 3. Hormigonado de una losa de cimentación. Fuente: edificio7000.obrasonline.com

Se recurre a la cimentación por pilotaje cuando no existe firme a una profundidad alcanzable mediante zapatas o pozos, normalmente más de 5 m. Los pilotes reducen los asientos de la estructura, cuando la permeabilidad u otras condiciones del terreno impiden la ejecución de cimentaciones superficiales, existen cargas muy fuertes o concentradas o bien se pretende evitar la influencia sobre cimentaciones adyacentes.

Figura 4. Sistema Omega de ejecución de pilotes. Imagen: W. Van Impe (http://scon.persianblog.ir/post/121/)

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Concepto y clasificación de las cimentaciones

Figura 1. Cargas sobre una cimentación superficial (Yepes, 2016)

La cimentación es aquella parte de la estructura, generalmente enterrada, que transmite al terreno su propio peso y las cargas recibidas, de modo que la estructura que soporta sea estable, la presión transmitida sea menor a la admisible y los asientos se encuentren limitados (ver Figura 1). La cimentación debe resistir las cargas y sujeta la estructura frente a acciones horizontales como el viento y el sismo, conservando su integridad. La interacción entre el suelo y la estructura depende de la naturaleza del propio suelo, de la forma y tamaño de la cimentación y de la flexibilidad de la estructura.

Las cimentaciones se diseñan para no alcanzar los estados límites últimos o de servicio. Los primeros llevan a la situación de ruina (estabilidad global, hundimiento, deslizamiento, vuelco o rotura del elemento estructural), mientras que los segundos limitan su capacidad funcional, estética, etc. (por ejemplo, movimientos excesivos). Se denomina capacidad portante a la máxima presión que transmite una cimentación sin alcanzar el estado último, mientras la presión admisible es aquella que no se alcanza en ningún estado límite, ya sea último o de servicio, presentando un coeficiente de seguridad respecto a la capacidad portante. Llamaremos firme al plano horizontal del estrato del terreno sobre el que se apoye la cimentación.

Otros problemas a considerar son la estabilidad de la excavación, los problemas de ataques químicos al hormigón, la posibilidad de heladas, el crecimiento de vegetación que deteriore la cimentación, los agrietamientos y levantamientos asociados a las arcillas expansivas, la disolución cárstica, la socavación, los movimientos del nivel freático, los daños producidos a construcciones existentes (Figura 2) o futuras, las vibraciones de maquinaria o los efectos sísmicos sobre el terreno, especialmente cuando existe posibilidad de licuefacción.

Los procedimientos constructivos influyen notablemente en el comportamiento de una cimentación. Hay que tener en cuenta que la construcción de la cimentación altera el terreno circundante, lo cual puede modificar algunas de las hipótesis de cálculo. A modo de ejemplo, los pilotes perforados descomprimen el terreno influyendo en la resistencia por fuste. La hinca de pilotes en limos y arenas sueltas saturadas aumenta la presión intersticial, lo que disminuye temporalmente la capacidad del pilote e incluso causar la licuefacción del terreno.

Figura 2. Descalce de una cimentación vecina durante la excavación. Imagen: E. Valiente

La cimentación puede clasificarse atendiendo a la profundidad a la que se realiza (ver Figura 3). Así, si llamamos D a la profundidad a la que se encuentra el contacto entre la cimentación y el terreno y B la dimensión menor de la cimentación, éstas se pueden clasificar en:

  • Cimentación superficial o directa:

D/B < 4

D < 3 m

  • Cimentación semiprofunda o pozos:

4 ≤ D/B ≤ 8

3 m ≤ D ≤ 6 m

  • Cimentación profunda o pilotaje:

D/B > 8

D > 6 m

Figura 3. Clasificación de las cimentaciones en función de la profundidad de apoyo (Yepes, 2016)

Existen distintos tipos de cimentaciones superficiales, tal y como se aprecia en la Figura 4.

Figura 4. Algunos tipos de cimentaciones superficiales. Imagen elaborada a partir de: http://www.generadordeprecios.info/

En la Tabla 1 se ha asignado a cada cimiento directo el tipo de elemento estructural al que sirve de cimentación.

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Palas cargadoras

pala cargadoraLa norma ISO 6165:2012 define como cargadora a la máquina autopropulsada sobre ruedas o cadenas con un equipo montado en la parte frontal cuya función principal es la operación de carga (utilizando una cuchara), con la que carga o excava mediante el movimiento de la máquina hacia delante. Por tanto, aparte de la cuchara frontal, su estructura soporte y un sistema de brazos articulados capaz de cargar y excavar mediante su desplazamiento y el movimiento de sus brazos, y de elevar, transportar y descargar materiales.

Son máquinas diseñadas para la excavación, carga y pequeño transporte de material. Se denominan genéricamente palas cargadoras, aunque otros nombres podrían ser la de pala tractora o cargadora frontal. Se trata de un tractor al que se le acopla una cuchara que se llena por empuje de la máquina sobre el terreno, dotada de un dispositivo de elevación y otro de volteo para manipular las tierras. Estas máquinas tienen como funciones principales las de cargar en las unidades de transporte materiales sueltos o la alimentación de tolvas, acopiar productos, efectuar operaciones de excavación en terrenos no muy duros o compactos, elevación y manejo de cargas y acarreos a distancias pequeñas de materiales (no más de 30 o 50 m. si no se quiere bajar rápidamente su producción). Atendiendo a su sistema de desplazamiento se dividen en palas cargadoras sobre neumáticos y sobre orugas.

Como una imagen vale más que mil palabras, os dejo unos vídeos para que veáis cómo trabaja esta máquina. En este vídeo podemos ver un Volvo L350F cargando.
Por último, os dejo algunas barbaridades que puede hacer un maquinista con una cargadora.

Referencias:

AENOR (2012). UNE-EN ISO 6165 “Maquinaria para movimiento de tierras. Tipos básicos. Identificación, términos y definiciones”.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tractor sobre ruedas: el turnadozer

Figura 1. Turnadozer Caterpillar 824

El turnadozer es un tractor montado sobre neumáticos. A diferencia de los tractores montados sobre orugas, los buldóceres (bulldozers, en inglés), los turnadozers transmiten mayor presión específica sobre el terreno (0,35 MPa). Presentan una tracción de hasta 82 t, necesitan tracción a las cuatro ruedas y son más veloces que los buldóceres (hasta 60 km/h), por lo que presentarían cierta ventaja en el desplazamiento de tierras a mayores distancias (aunque entraría en competencia con las cargadoras). Sin embargo, no son aconsejables en terrenos rocosos por el desgaste y los cortes de neumáticos. Es por ello que no son muy frecuentes en las obras. En una de mis primeras obras tuve la ocasión de utilizar uno de ellos, debido a exigencias de uso del parque de maquinaria de la empresa, pero se usaba principalmente para labores auxiliares de limpieza de la zona de carga y en el mantenimiento de pistas y caminos de obra.

Un vídeo antiguo sobre esta máquina, que espero os guste. (En el caso de que no se puedan ver los vídeos, es posible que vuestro navegador bloquee el acceso a Youtube. Debéis desactivar dicha protección).

Aquí tenéis otro vídeo ilustrativo:

En este otro podemos ver un turnadozer con múltiples ejes de ruedas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Apisonadoras estáticas de rodillos lisos

Figura 1. Apisonadora estática de rodillo liso tipo triciclo. Imagen: V. Yepes

Las apisonadoras estáticas son los compactadores más antiguos, constituidas por rodillos metálicos lisos revestidos mediante una gruesa chapa de acero. Se caracterizan por la presión estática que ejercen sobre el terreno, considerándose un área de contacto que depende del diámetro de los cilindros, del peso de la máquina y del tipo de suelo. Sin embargo, el efecto de la compactación estática alcanza muy poca profundidad, por lo que no son eficientes. Es por ello que hoy en día no se fabrican compactadores estáticos de rodillos, sino que son los vibratorios los que, en ausencia de vibración, se usan de forma estática para determinadas aplicaciones, como puede ser el planchado o sellado de la última capa compactada de suelo en una jornada o en las primeras pasadas de compactación de aglomerados asfálticos.

La densificación del suelo que provocan los rodillos lisos se reduce considerablemente a medida que éste profundiza en la tongada que se compacta y dicho efecto de compactación se produce de arriba hacia abajo.

En la compactación de suelos, estas máquinas serían adecuadas para arenas y gravas bien graduadas, limos y arcillas de baja plasticidad, en tongadas de 10-20 cm y 4-8 pasadas, pero no lo son en arenas uniformes, arenas limosas y arcillas blandas. Cuando se utiliza en arcillas y limos plásticos, es común que al cabo de cierto número de pasadas lleguen a presentarse fracturas o grietas en la parte superior de la tongada, debido a la rigidez que esta zona adquiere por excesiva compactación en comparación con la zona inferior de la misma capa. En este caso, queda la capa inferior con una rigidez y una compacidad más baja.

Existen dos tipos básicos: triciclo y tándem, pues no es habitual el uso del rodillo liso remolcado. Sus velocidades varían hasta 10-12 km/h.

Tipo triciclo

Figura 2. Apisonadora estática tipo triciclo

Consta de un cilindro delantero dividido normalmente en dos mitades con giro independiente para facilitar los cambios de dirección, y dos cilindros traseros en el eje motor de gran diámetro. Los rodillos delantero y traseros se encuentran solapados, con una anchura de compactación de unos 2 m. La distribución por eje del peso, es generalmente del 70% hacia el eje motriz (trasero) y el 30% hacia el eje direccional (delantero). La energía de trabajo se puede variar lastrándolo con agua. Sus pesos oscilan entre 7 y 20 t. Los motores diésel que los propulsan tienen una potencia media de 40 kW. La velocidad máxima de estas apisonadoras está entre 8 y 10 km/h.

El rodillo triciclo se utiliza en compactación de caminos de macadán, bacheos e incrustación de gravilla en tratamientos superficiales, no utilizándose ya en compactación de aglomerados y, menos aún, de terraplenes.

 

Tipo tándem

Figura 3. Apisonadora estática de rodillo liso tipo tándem. Imagen: V. Yepes

Lo componen dos cilindros, el delantero de dirección, y el trasero tractor, aunque a veces ambos son tractores. El movimiento direccional se obtiene con un ángulo entre los ejes de los dos rodillos. El ancho de compactación suele ser inferior a los 1,60 m. El peso normal oscila entre 5 y 15 t. La potencia de su motor diésel varía entre 25 y 125 kW. La velocidad máxima de estas apisonadoras está entre 8 y 15 km/h.

Las apisonadoras estáticas de rodillo liso son secundarias en las obras de tierra, ya que la presión transmitida al terreno es muy superficial debido a la reducida área de contacto -generatriz del cilindro. Se crea una costra rígida en superficie, por lo que muchas veces sirve la máquina para el sellado y cierre de una tongada. Otra de sus limitaciones, es que la carga transmitida siempre es constante, no adaptándose a la capacidad resistente que va adquiriendo el suelo con cada una de las pasadas.

El rodillo tándem ha quedado casi exclusivamente relegado al aglomerado, empleándose en algunos casos como compactador y en otros, simplemente como alisador, ya que con frecuencia la fase principal de compactación del aglomerado la realiza el compactador de neumáticos.

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo se distribuyen las presiones en el suelo al paso de un compactador?

Figura 1. Compactador de neumáticos

Un aspecto de gran interés práctico en la compactación es conocer cómo se distribuyen las presiones bajo la superficie por la que pasa el compactador. Si en vez de considerar las tensiones y deformaciones uniformemente distribuidas por todo el material, tal y como hemos visto en los ensayos descritos en entradas anteriores, nos centramos en lo que ocurre bajo la superficie donde se aplica la carga, comprobaremos que los efectos de la carga únicamente se soportan por una porción del suelo bajo ella.

Boussinesq desarrolló, para un suelo homogéneo, isótropo y elástico, la distribución de las tensiones bajo placas cargadas (en 1885 obtuvo una solución para los esfuerzos debidos a una carga aplicada en dirección normal a la superficie de un semiespacio elástico semi-infinito). Se forma un bulbo de presiones bajo la placa, de forma que la presión a determinada profundidad es proporcional a la presión de contacto (Figura 2).

Figura 2. Distribuciones de presiones según Boussinesq

Asimismo, la forma y el tamaño de la placa influyen en el bulbo de presiones. A igualdad de carga y superficie, una placa cuadrada produce mayores presiones a medida que aumenta la profundidad. También se observa que, para una presión de contacto dada, cuanto más ancha es la placa de carga, mayor es la profundidad alcanzada para la misma compresión. Ello explica que un compactador de neumáticos (Figura 1) -cuya huella se aproxima a un círculo- es más eficaz en cuanto a penetración que un compactador de cilindro liso (Figura 3), estando cargados por igual, y a igual superficie total de contacto.

Figura 3. Compactador de rodillo liso

Tanto las tensiones como las deformaciones disminuyen rápidamente con la profundidad de la tongada a compactar. Así en un neumático de una anchura D, con una presión de contacto con la superficie de PC, transmite a 0,5 D solo 0,6 PC, a una distancia D transmite 0,3 PC y al llegar a 2D únicamente nos llega 0,09 PC. El tamaño del bulbo nos indica qué partes de la masa del suelo serán afectadas por la carga aplicada de forma significativa, tanto en profundidad como en extensión lateral. La Tabla 1 proporciona los valores aproximados de la profundidad y ancho de los bulbos de presión de 0,2q y 0,1q.

Tabla 1
Tabla 1. Bulbos de presión bajo el terreno

Como existe una presión por debajo de la cual las deformaciones dejan de ser permanentes (se puede tomar como idea unos 0,2 MPa), por ser de tipo elástico, es fácil comprender que la presión en superficie, al ir disminuyendo, encontrará una línea divisoria por debajo de la cual no es posible compactar el terreno.

Debido a que para cada carga, existe una deformación remanente límite, independiente del número de ciclos, se obtendrá una profundidad límite de capa para cada compactador y para cada peso unitario especificado. Se puede calcular dicho espesor límite interpolando entre varios valores de deformación límite y grosor de capa, para un compactador prefijado. Las relaciones entre los pesos unitarios iniciales, especificada y las deformaciones son las descritas mediante la siguiente ecuación, basada en que el peso unitario de cada capa crece en la misma relación que disminuye la altura:donde:

ε = deformación unitaria

δ = deflexión

h = grosor de la tongada

γ0 = peso unitario inicial

γesp = peso unitario especificado

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.