Ha sido para mí un placer participar en la redacción de parte de la Orden Circular 4/2023 sobre procedimiento para la justificación de precios en la Dirección General de Carreteras y base de precios de apoyo. El reto ha consistido en presentar de forma explícita la metodología subyacente que permite la justificación del precio de las unidades de obra. En este caso, aparecen una serie de novedades que creo que son de interés para el sector. Aparece el concepto de unidades de ejecución complejas o atípicas, donde el empleo de medios singulares las aparta de una construcción estandarizada. También aparece, por vez primera, el concepto de unidades determinantes, que van a ser las que soporten la mayor parte del importe del presupuesto de una obra. Pues bien, en estos dos casos, se obliga a una justificación expresa y detallada de las unidades de obra. Solo para los casos del resto de unidades, se aporta la base de precios como un apoyo para la justificación de los precios, sin que tampoco deba considerarse como un objetivo de precio concreto a utilizar.
Un aspecto también importante ha sido dejar claros conceptos que se manejaban, con el paso del tiempo, de forma inadecuada. Un ejemplo es el Cuadro de Precios N.º 2, donde se prohíbe de forma expresa su desglose en las siguientes categorías genéricas: mano de obra, maquinaria, resto de obra, materiales y costes indirectos.
El documento presenta, también, una serie de anexos que complementan el procedimiento, en las que he participado especialmente en el Anexo 4:
Anexo 1: Convenios colectivos del sector de la construcción según provincias.
Anexo 2: Listado de precios básicos de los principales materiales.
Anexo 3: Justificación de precios de unidades de ejecución de obra. Ejemplos.
Anexo 4: Método simplificado de cálculo de producción de una máquina.
Anexo 5: Base de precios de apoyo de la D.G.C.
La redacción de este documento ha sido fruto del esfuerzo de un grupo de trabajo perteneciente a la Subdirección General de Proyectos y Obras de la Dirección General de Carreteras del Ministerio de Transportes, Movilidad y Agenda Urbana. Mi especial agradecimiento a la confianza depositada en mi persona por parte de su titular D. Fernando Pedrazo Majárrez. También se ha contado con el soporte del encargo a INECO, con la participación expresa de D. José Manuel Sáez Serrano, Dña. María del Consuelo Martín Galán y D. Javier Fernández Pedroche, entre otro personal. Igualmente, se ha contado con la participación en el grupo del trabajo del Comité de Construcción y la Comisión de Maquinaria de SEOPAN. Mi agradecimiento personal a todos ellos, pues su visión y aportes son de gran interés para el documento.
Por último, mi recomendación es que se lea con detenimiento el documento, pues existen modificaciones que deberían tenerse en cuenta a partir de este momento. Además, tal y como se ha establecido en estas reuniones, el objetivo es mejorar paulatinamente el documento en futuras ediciones. Por mi parte, este documento lo voy a poner a circular entre mis estudiantes en la Escuela de Ingeniería de Caminos, Canales y Puertos para su aplicación inmediata en TFGs y TFMs.
Figura 1. Caballetes ajustables en altura de 2 piezas. https://www.leroymerlin.es/
El andamio de borriquetas, también conocido como caballete de constructor, es una estructura de baja altura diseñada para facilitar trabajos interiores específicos en proyectos de construcción y reformas. Estas borriquetas, que deben su nombre a su forma característica, consisten en dos soportes sobre los cuales se colocan plataformas de trabajo, las cuales pueden ajustarse en altura o permanecer fijas según sea necesario. Se clasifica como un tipo de andamio ordinario debido a su facilidad de uso y generalmente es construido por los propios trabajadores en el sitio.
Este andamio consiste en una plataforma de trabajo con un ancho mínimo de 60 cm, que se sostiene mediante elementos metálicos como caballetes o borriquetas, aunque serán de 80 cm cuando se depositen materiales o herramientas. La estabilidad de este andamio es crucial, y su empleo no debe superar alturas de 6 m. Para alturas superiores a 3 m, es necesario asegurarlo mediante arriostramiento. La distancia máxima permitida entre los puntos de apoyo es de 3,5 m, y en casos de riesgo de caída, se debe instalar una barandilla de seguridad. La plataforma sobrepasará los apoyos un mínimo de 10 cm y un máximo de 20 cm.
Existen dos tipos de andamios de borriquetas, dependiendo de la altura a la que se desee trabajar:
Andamios de borriquetas sin arriostramientos. Estos se utilizan para alturas de hasta 3 m. Dentro de esta categoría, se pueden distinguir dos subtipos:
Caballete o asnilla: Se usan en obras con requisitos mínimos de altura. Deberán tener un sistema antiabertura (Figura 2).
Figura 2. Andamio de borriquetas tipo caballete.
Borriqueta vertical: Estos andamios cuentan con soportes de escalera que tienen pies de sustentación, lo que permite ajustar la altura de la plataforma deslizando los tablones. Los modelos metálicos suelen tener un travesaño intermedio móvil o son telescópicos, lo que proporciona una mayor flexibilidad en la graduación de la altura de trabajo. Esto es importante, ya que a menudo es necesario trabajar a diferentes alturas de forma segura. Para alcanzar alturas mayores, se emplean bastidores metálicos diseñados específicamente para ensamblarlos.
Figura 3. Andamio de borriquetas vertical.
Andamios de borriquetas armadas de bastidores móviles arriostrados. Estos andamios incluyen refuerzos con riostras y se emplean cuando se necesita trabajar a alturas de hasta 6 m, pero nunca superiores.
Figura 4. Andamio arriostrado
Composición del andamio de borriquetas
El andamio de borriquetas se compone principalmente de soportes, plataformas de trabajo y elementos de arriostramiento.
Soporte
El elemento de apoyo de la plataforma puede estar hecho de madera o metal. Se recomienda preferentemente el uso de elementos metálicos, aunque la legislación actual no prohíbe el uso de soportes de madera. En el caso de optar por madera, es esencial que esta esté en buenas condiciones, con una unión sólida y sin deformaciones, oscilaciones o roturas que puedan causar riesgos por fallos, roturas espontáneas o movimientos inseguros. Cuando el piso del andamio no sea una plataforma metálica prefabricada, estará constituido preferentemente por tablones de 7,5 cm de espesor, y no menos de 4 cm. Tampoco deben darse discontinuidades o huecos que puedan hacer tropezar.
Los soportes utilizados pueden ser caballetes, asnillas en forma de “V” invertida o borriquetas verticales. Las borriquetas verticales móviles tienen la ventaja de alcanzar alturas mayores, ya que se pueden ajustar mediante un travesaño intermedio móvil o telescópico.
Cuando se empleen borriquetas de caballete metálicas, estas pueden ser fijas o plegables. En el caso de las fijas, deben contar con travesaños adecuados para garantizar su estabilidad. Si se trata de caballetes plegables, es necesario que dispongan de cadenillas limitadoras para asegurar que no se abran más de lo permitido y mantener en todo momento su estabilidad.
En todas las circunstancias, es esencial que los soportes se instalen de manera completamente nivelada para prevenir cualquier riesgo asociado a trabajos en superficies inclinadas.
La distancia máxima recomendada entre dos borriquetas debe ajustarse en función del grosor y la rigidez de los tablones de la plataforma de trabajo, así como de las cargas previstas. Como regla general, esta distancia entre apoyos no debe exceder los 3,50 m cuando se utilizan tablones con un grosor de 5 cm.
Es fundamental utilizar los soportes adecuados mencionados anteriormente. En ningún caso se debe apoyar la plataforma de trabajo sobre materiales de construcción como bovedillas, bidones u otros elementos auxiliares que no estén especificados para este propósito.
Plataforma de trabajo
La plataforma de trabajo debe estar fabricada con madera de alta calidad, sin defectos ni nudos visibles, y debe mantenerse siempre limpia para que cualquier posible defecto derivado de su uso sea fácilmente identificable. Además, se requiere que tenga una anchura mínima de 60 cm.
Los tablones que componen esta plataforma deben tener un grosor mínimo de 5 cm, aunque se recomienda utilizar tablones de 7 cm de espesor para asegurar la resistencia adecuada para su propósito. Estos tablones deben estar dispuestos de manera que se ajusten perfectamente unos con otros, evitando huecos o discontinuidades, y deben estar firmemente sujetos al soporte para prevenir balanceos, deslizamientos u otros movimientos no deseados.
La plataforma de trabajo no debe sobresalir en voladizo más allá de los apoyos, a menos que sea estrictamente necesario para fijarla a las borriquetas, caballetes u otros elementos de apoyo. En este sentido, se recomienda que el voladizo máximo no exceda los 20 cm en ambos lados y que sea de al menos 10 cm.
Crucetas o arriostramientos
Las crucetas cumplen la función de conferir rigidez y monolitismo al conjunto del andamio, y se conectan a los soportes mediante los sistemas de anclaje incorporados en estos. Como mencionamos previamente, en el caso de utilizar andamios de borriquetas a alturas que oscilen entre 3 y 6 m, es imperativo contar con los arriostramientos apropiados. Estos arriostramientos tomarán la forma de crucetas de madera o metálicas, específicamente del tipo “Cruz de San Andrés”, las cuales deben ser instaladas en ambos lados del andamio.
Barandillas
Cuando las plataformas de trabajo se encuentren a una altura superior a 2 m o estén ubicadas en áreas que, aunque no superen esta altura en relación con el suelo de apoyo, presenten un riesgo de caída exterior de más de dos metros debido a su posición (como galerías o voladizos), es imprescindible instalar barandillas adecuadas alrededor de todo su perímetro. Estas barandillas deben tener una altura mínima de 90 cm y deben contar con un pasamanos, un listón intermedio y un rodapié, con una resistencia mínima del conjunto de 150 kg por metro lineal.
Las barandillas deben instalarse directamente en el andamio cuando la altura de la plataforma respecto al suelo sea superior a 2 m, siempre y cuando se asegure la estabilidad total del conjunto en caso de apoyo accidental sobre la barandilla. Sin embargo, si la plataforma se encuentra a una altura relativamente baja, pero en una zona elevada que no garantice la estabilidad del conjunto, se deben utilizar barandillas adicionales colocadas en el exterior, así como mallas o redes entre los niveles para proporcionar la protección necesaria.
Normas generales de seguridad
Al utilizar andamios de borriquetas en obras de construcción, es esencial seguir medidas preventivas para garantizar un uso adecuado y seguro de esta herramienta. A continuación, se presentan una serie de consejos a tener en cuenta al trabajar con este tipo de andamio:
No sobrecargue las plataformas de trabajo: Las plataformas deben contener solo el material necesario para la continuación de los trabajos y distribuirlo de manera uniforme para evitar cargas puntuales que puedan debilitar la resistencia de la estructura.
No agregue elementos adicionales a la estructura: Está prohibido añadir elementos extra al andamio para llevar a cabo tareas diferentes. Además, no coloque andamios de borriquetas sobre otros andamios de borriquetas, ya que estos están diseñados principalmente para trabajos de menor envergadura.
Asegure la estabilidad del equipo: Es esencial montar el andamio sobre una superficie nivelada, plana y sin obstrucciones para garantizar su estabilidad. No utilice elementos como bovedillas, bloques o bidones como soporte.
Evite movimientos peligrosos: Tome medidas para prevenir cualquier posibilidad de inclinación o movimientos peligrosos del andamio durante su uso.
Seleccione tablones adecuados: No utilice tablones con nudos o imperfecciones y evite aplicar pintura sobre ellos.
No monte andamios de borriquetas sobre andamios colgados: No emplee andamios de borriquetas, ya sea total o parcialmente, sobre estructuras colgadas.
Utilice protección personal: Cuando las condiciones de la obra lo requieran, use equipos de protección personal, como barandillas y arneses individuales, especialmente en áreas como patios, bordes de forjado o cerca de ventanas.
Estas precauciones ayudarán a garantizar un entorno de trabajo seguro y eficiente al utilizar andamios de borriquetas en proyectos de construcción.
Aquí tenéis algún vídeo sobre este tipo de andamios (trestle scaffold, en inglés).
Os dejo a continuación el documento NTP 202 sobre andamios de borriquetas, del Instituto Nacional de Seguridad e Higiene en el trabajo.
AENOR (1987). UNE 76501:1987. Estructuras auxiliares y desmontables. Clasificación y definición. Madrid.
LEDO, J.M. (1979). Andamios, apeos y entibaciones. Monografías CEAC de construcción, Barcelona.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.
Figura 1. Andamio como estructura auxiliar y desmontable. https://www.cubiequipos.com/que-es-un-andamio
La norma UNE 76501:1987 define una estructura auxiliar y desmontable como aquella que “sirve para ayudar a una obra o para una utilización pública provisional y cuya construcción puede deshacerse total o parcialmente sin inutilizar sus elementos”. Estos elementos se pueden clasificar atendiendo a su función, su naturaleza, por sus elementos constituyentes (simples y prefabricados) o por su sistema de sustentación.
La Figura 2 presenta una clasificación de las estructuras auxiliares y desmontables según la aplicación a la que están destinados. Se distinguen los andamios de obra o de utilización pública, las cimbras y apeos, los apuntalamientos y entibaciones, las estructuras para cerramientos cubiertos y otras estructuras diversas.
Figura 2. Clasificación de las estructuras auxiliares y desmontables según su función (UNE 76501:1987)
Los andamios de trabajo son andamios de obra diseñados para soportar a operarios, herramientas y los materiales necesarios en la construcción. El andamio de servicio tiene como objetivo facilitar el tránsito de operarios y materiales a diferentes áreas de construcción, así como el acceso a niveles de trabajo a diferentes alturas. Las cimbras y los apeos son estructuras temporales que sostienen un elemento estructural mientras se está construyendo, hasta que alcance la resistencia necesaria. El apuntalamiento se utiliza para brindar soporte adicional o reforzar una estructura ya construida. La entibación sostiene las excavaciones que presentan riesgo de colapso, como zanjas o túneles. También entran dentro de las estructuras auxiliares y desmontables las estructuras para cerramientos cubiertos, diseñadas para alojar personas, materiales o instalaciones, como pabellones o barracones, proporcionando un espacio cubierto, y estructuras diversas como pantallas de publicidad, torres para antenas y similares.
En la Figura 3, se muestra la clasificación de estas estructuras de acuerdo al material del cual están compuestas. Estos materiales son metálicos, fundamentalmente acero y aluminio, de madera o de otros materiales. No obstante, se pueden dar combinaciones de las anteriores, con lo cual se tendrían estructuras auxiliares “mixtas”.
Figura 3. Clasificación de las estructuras auxiliares y desmontables por su naturaleza (UNE 76501:1987)
Por sus elementos constituyentes, las estructuras auxiliares y desmontables se clasifican en simples y prefabricadas. Se consideran simples cuando están compuestas por elementos individuales, como tubos, grapas, elementos de unión y otras piezas necesarias para crear el conjunto. En cambio, se consideran prefabricadas cuando prevalecen los elementos compuestos que se ensamblan mediante diversos sistemas para formar la estructura deseada. Los elementos compuestos están formados a partir de piezas sueltas mediante uniones o dispositivos de unión fijados permanentemente, de forma que todas o algunas de las dimensiones de la estructura quedan determinadas previamente.
Finalmente, en la Figura 4 se muestra una clasificación adicional basada en su sistema de sustentación. Estas estructuras pueden ser apoyadas si descansan directamente sobre el terreno o sobre otra estructura, colgadas cuando están suspendidas de otra estructura sin cargar el suelo, y en voladizo si se extienden fuera del plano vertical de sus anclajes. En todos estos casos, estas estructuras pueden ser tanto fijas como móviles.
Figura 4. Clasificación de las estructuras auxiliares y desmontables por su sistema de sustentación (UNE 76501:1987)
Referencias:
AENOR (1987). UNE 76501:1987. Estructuras auxiliares y desmontables. Clasificación y definición. Madrid.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.
Figura 1. Pila cónica de almacenamiento de graneles al aire libre. https://jenike.com/services/conceptual-functional-engineering/stockpiles/
La utilización de montones o pilas permite el almacenamiento de grandes cantidades al aire libre de graneles sólidos de manera económica. Estos espacios pueden ser completamente abiertos o parcialmente cubiertos. En términos generales, estas instalaciones suelen generar emisiones difusas debido a la erosión eólica y/o a la manipulación de los materiales. Por lo tanto, el almacenamiento al aire libre de graneles es apropiado para aquellos materiales que no se verán afectados por las condiciones meteorológicas.
El montón se crea al dejar caer el material desde una altura específica sobre una superficie plana, que puede o no contar con elementos de retención, como muros o paredes. La cantidad de material que puede contener el montón está determinada por diversos factores, siendo notables el área disponible, la altura y el método de descarga, el ángulo de reposo y el peso específico del material.
Las pilas cónicas se generan al mantener un punto de caída con forma cónica y constante. El material cae libremente para dar forma a un cono, cuyo diámetro se encuentra restringido por el ángulo de reposo del material y las dimensiones del espacio disponible. Estas pilas se originan o renuevan mediante el uso de una cinta transportadora fija o móviles giratorias. Para manejar los materiales que rodean el perímetro de la pila, se requieren equipos de carga frontal. Estas pilas se utilizan para almacenar concentrados de minerales, escoria, granos y otros materiales similares. Sin embargo, es importante destacar que debido a la considerable altura de caída de los materiales almacenados en las pilas cónicas, se generan grandes cantidades de polvo si no se cubren adecuadamente.
En lo que respecta a los equipos empleados en la construcción de estas pilas, los volquetes, como camiones y vagones basculantes, son los protagonistas. Cuando se trata de regenerar estas pilas, se utilizan dispositivos de carga posterior, como palas de puente-grúa, palas laterales y palas pórticas.
Los equipos basculantes permiten verter los graneles sólidos en la pila desde uno de los lados. Según los requisitos específicos, estos vehículos pueden estar equipados con una cinta basculante o una cinta transversal. Siguiendo el mismo principio, también es posible llenar directamente la pila desde el vagón situado por encima de ella. Las cintas transportadoras de descarga arrojan el material a granel sobre la pila en este proceso.
Esta pila cónica se podría vaciar por un punto central. En este caso, existe una capacidad viva o útil, que es una fracción de la capacidad total del cono. Este valor se calcula en función de los ángulos de reposo y de descarga (ver Figura 2).
Figura 2. Volumen vivo y muerto de una pila cónica con descarga en un punto central, en función de los ángulos de reposo y descarga
A continuación se ofrece un nomograma, creado en colaboración con varios profesores, entre los que destaca Pedro Martínez Pagán. Espero que os sea de utilidad.
Referencias:
LÓPEZ JIMENO, C. et al. (2021). Manual de logística de sustancias minerales. Sistemas y equipos para el transporte y almacenamiento. Grupo de Proyectos de Ingeniería, E.T.S.I. Minas y Energía, Universidad Politécnica de Madrid, 537 pp.
Tengo el placer de anunciar la conferencia a la que he sido invitado y que realizaré el jueves 5 de octubre de 2023 a las 11:00 am de Ecuador (18:00 pm, en España peninsular). El título de la ponencia es “Técnicas innovadoras para reducir costes y mejorar la sostenibilidad en la construcción”. Os paso la información que se ofrece sobre el congreso.
La Universidad Laica VICENTE ROCAFUERTE de Guayaquil (Ecuador) se complace en anunciar la apertura de la convocatoria para el VIII Congreso Científico Internacional INPIN 2023, que se llevará a cabo bajo el lema “La ciencia y la innovación tecnológica en pro del desarrollo social sostenible”. Este evento, organizado por el Departamento de Investigación Científica, Tecnológica e Innovación, extiende una cordial invitación a todos los investigadores interesados a participar y compartir sus trabajos en este relevante encuentro académico de alcance global.
El congreso se llevará a cabo en un formato híbrido durante los días 4 al 6 de octubre de 2023, y congregará a una diversidad de participantes, incluyendo investigadores, docentes, autoridades académicas, así como estudiantes de pregrado y posgrado, todos con un interés compartido en explorar y debatir diversas perspectivas en torno a la investigación para la innovación.
Este destacado evento académico proporcionará una plataforma propicia para el intercambio de experiencias y la colaboración entre especialistas, docentes, investigadores y estudiantes que participan en diversas modalidades de trabajo científico. Su principal objetivo es contribuir al desarrollo social, económico y productivo de la sociedad ecuatoriana y global mediante el fortalecimiento del conocimiento científico, la tecnología, la innovación y el espíritu emprendedor.
El congreso comprenderá la realización del VI Seminario Internacional de Ciencias Sociales y Derecho, el VI Seminario Internacional de Administración, Competitividad Global y Emprendimientos Inclusivos, el V Simposio Internacional de Ingeniería Civil, Tecnología y Arquitectura, y el V Encuentro Internacional de Educación y Atención a la Diversidad.
Los temas clave que serán abordados incluyen la formación integral, la atención a la diversidad y la educación inclusiva, la sociedad civil, los derechos humanos y la gestión de la comunicación, el territorio, el medio ambiente y los materiales innovadores para la construcción, así como el desarrollo estratégico empresarial y los emprendimientos sostenibles.
La modalidad de participación en el congreso abarca la presentación de ponencias que emanen de investigaciones, experiencias docentes, ensayos, artículos de revisión y pósteres científicos. Cada autor podrá participar con un máximo de tres trabajos.
La fecha límite para la recepción de Full Papers es el 28 de julio de 2023, y las notificaciones de aceptación se enviarán entre el 28 de agosto y el 1 de septiembre de 2023. Las inscripciones permanecerán abiertas hasta el 29 de septiembre de 2023.
Los participantes del evento serán reconocidos con un certificado de participación en un evento de reconocimiento internacional en el ámbito científico (VIII Edición del evento INPIN), con una duración de 48 horas. Además, recibirán un certificado de participación digital por 48 horas, un certificado de publicación en las memorias del evento en formato digital, y tendrán la oportunidad de participar en un curso previo al congreso de 48 horas, con su correspondiente certificado.
Los trabajos aceptados, que cumplan con las normas establecidas y sean aprobados por el Comité Científico, podrán ser publicados en su totalidad en las memorias del evento (Proceedings), que contarán con un ISBN en su versión digital.
Acaban de publicarnos en DYNA, revista indexada en el JCR, un artículo sobre la mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El artículo contribuye al campo de la evaluación de la sostenibilidad de los puentes en entornos agresivos mediante la aplicación de técnicas de toma de decisiones grupales en el ámbito de los criterios múltiples. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras.
El estudio evalúa cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero utilizando cuatro técnicas de toma de decisiones (ANP, TOPSIS, COPRAS y VIKOR). Los resultados indican que los hormigones que contienen pequeñas cantidades de humo de sílice funcionan mejor a lo largo de su ciclo de vida que otras soluciones que suelen aumentar la durabilidad.
La investigación contribuye al desarrollo de herramientas y métodos para evaluar la sostenibilidad de las infraestructuras y guiar las futuras acciones de diseño en diversas estructuras. Se alinea con el enfoque en promover las iniciativas de economía circular y el cumplimiento de los requisitos ambientales y sociales específicos en las licitaciones de proyectos públicos
Abstract:
The construction industry is increasingly recognized as critical in achieving Sustainable Development Goals. Construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design a focal point of current research investigating how best to contribute to sustainability as society demands. Although methods exist to assess infrastructures’ economic, environmental, and social life cycle, the challenge remains in combining these dimensions into a single holistic indicator to facilitate decision-making. This study applies four decision-making techniques (ANP, TOPSIS, COPRAS, and VIKOR) to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. The results indicate that concretes containing even small amounts of silica fume perform better over their life cycle than other solutions usually considered to increase durability, such as water/cement ratio reduction or concrete cover increase.
Acaban de publicarnos un artículo en el Journal of Marine Science and Engineering, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida con ayuda de métodos no destructivos de un puente de hormigón en ambiente costero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El artículo evalúa el uso de métodos no destructivos de detección de daños, específicamente la técnica de densidad espectral de potencia (PSD), para reducir el impacto ambiental durante la reparación y el mantenimiento de un puente costero de hormigón. Los resultados muestran una reducción del 23% en los impactos ambientales cuando se utiliza el enfoque PSD durante la vida útil del puente.
La investigación evalúa las capacidades no destructivas y el enfoque dinámico de la técnica PSD para predecir la cantidad y la ubicación de los daños en la evaluación del ciclo de vida (LCA) del puente. Esta evaluación ayuda a los especialistas e ingenieros en el campo de la seguridad y el mantenimiento de los puentes.
Abstract:
Recently, using economic damage identification techniques to ensure the safety of bridges has become essential. But investigating the performance of those techniques for various conditions and environments and, in addition, a life cycle assessment (LCA) through these methods depending on the situation and during the life of a structure could help specialists and engineers in this field. In these regards, analyzing the implementation of a technique for the restoration and maintenance stages of costly structures such as bridges can illustrate the effect of each damage detection method on the LCA. This research assessed non-destructive abilities and a dynamic approach to predict the amount and location of damages in the LCA. For this purpose, the power spectral density (PSD) technique’s performance by different approaches in identifying corrosion damages for a coastal bridge and the effectiveness of using this technique on reducing the environmental impact compared with a conventional method were evaluated. The results demonstrate a reduction of the environmental impacts by approximately 23% when using the PSD during the bridge’s service life. In conclusion, the PSD approach does well in anticipating the damage quantity and location on a coastal bridge, which reduces the environmental impacts during the repair and maintenance.
Keywords:
Sustainability; non-destructive damage identification technique; life cycle assessment (LCA); environmental impacts assessment; concrete coastal bridge; corrosion; power spectral density method (PSD)
Acaban de publicarnos un artículo en Journal of Civil Engineering and Management, revista indexada en el primer cuartil del JCR. El artículo propone un procedimiento para evaluar la huella de carbono en la construcción de un puente basándose en la teoría de la resiliencia. La investigación proporciona modelos teóricos y datos sobre los impactos de la resiliencia ambiental y los modelos de gestión de la resiliencia de los proyectos, lo que contribuye al control dinámico y a la evaluación del desarrollo sostenible de las estructuras de puentes a gran escala en el futuro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El artículo contribuye al campo de la construcción de puentes al abordar la evaluación del impacto ambiental durante la etapa de construcción de puentes a gran escala, utilizando un enfoque multidisciplinario. Establece un sistema modelo teórico de resiliencia al impacto ambiental, proporcionando modelos teóricos detallados y datos de experiencia analítica avanzada para los impactos de la resiliencia ambiental y modelos de gestión de la resiliencia de proyectos.
La investigación destaca los beneficios de la construcción industrializada, que puede ahorrar materiales y reducir la contaminación ambiental en comparación con los métodos de construcción tradicionales. También elimina la dificultad de evaluar con precisión los factores dinámicos discretos en la construcción de puentes.
El estudio demuestra la aplicación de la teoría de la resiliencia al análisis del impacto ambiental de la construcción de puentes, proporcionando una base científica sólida para el control dinámico y la evaluación del desarrollo sostenible de las estructuras de puentes a gran escala en el futuro.
Los resultados de esta investigación pueden servir de base para la toma de decisiones en la industria de la construcción, en particular en lo que respecta a la optimización de los métodos de construcción y la minimización de la contaminación ambiental durante la fase de construcción de puentes a gran escala.
Abstract:
The construction and management of large-scale projects have the characteristics of complexity, dynamic and offline, and how to evaluate it is a research problem accurately. This study addresses this question through multidisciplinary cross-applied research. The research analyses and optimizes the environmental impact of the construction stage of superlarge bridges by establishing a theoretical model system of environmental impact resilience. The analysis shows that industrialized construction can save 56.31% of materials compared with traditional construction but increase the consumption of machinery and personnel by 11.18%. Ultimately, environmental pollution can be significantly reduced. This study breaks through the difficulty of accurately evaluating discrete dynamic factors. It has realized the application of multidisciplinary research to solve management optimization and design problems in the elastic and dynamic changes of super-large bridges during construction. This research provides rich theoretical models and advanced analytics experience data for environmental resilience impacts and project resilience management models, laying a solid scientific foundation for dynamic control and sustainable development assessment of statically indeterminate structures in the future.
Figura 1. Lavapiés ecológicos en la Comunitat Valenciana. Fotografía: V. Yepes
¿Es sostenible desde el punto de vista ambiental tener duchas con agua potable en nuestras playas? ¿Sería mejor la opción de unos lavapiés que utilizaran el agua del mar? Este es un tema que tuvo cierto debate en la Comunidad Valenciana y en el que, en su día, participé en su solución. De hecho, el agua que se consume en las playas valencianas con duchas era equivalente al consumo diario de agua potable de una ciudad de 80.000 habitantes (Yepes, 2005).
Sin embargo, el problema no es sencillo desde el punto de vista ingenieril, pues se debe asegurar la correcta captación del agua, su desinfección y el control de un sistema que, a todas luces, debe ser desmontable al situarse en una zona del dominio público. Además, el sistema se debe monitorizar para atender cualquier avería en el mínimo tiempo posible.
Pero, así y todo. ¿Son obligatorias las duchas de agua potable en las playas que quieran certificarse con algún distintivo de calidad? ¿Qué ocurre si se quiere remodelar un paseo marítimo y se quieren aplicar los fondos Next Generation de la Unión Europea? ¿Se pueden considerar las duchas como sostenibles? ¿En qué consiste su alternativa de lavapiés ecológicos? Os lo voy a intentar explicar en un vídeo que os he preparado.
Figura 2. Pantallazo del control telemático de los lavapiés ecológicos en la Comunitat Valenciana.
Os presento aquí un vídeo que preparé para un curso sobre gestión de playas. Este curso es una ampliación respecto a algunos cursos presenciales que he tenido la oportunidad de dirigir, el último, en Oporto (Portugal). En este caso, trata de la frecuentación y capacidad de carga de las playas. Espero que sea de vuestro interés.
También os dejo una conferencia que ofrecí, hace ya algún tiempo, donde hablaba de algunos de estos temas. Espero que siga vigente su contenido.
Figura 1. Contrachapado fenólico para encofrados. https://www.ulmaconstruction.es/es-es/encofrados/vigas-madera-tableros/vigas-tableros-madera/tableros-contrachapados-fenolicos
Los tableros contrachapados son una variedad de tablero de madera compuesta por la unión de finas chapas de madera reforzada, las cuales se pegan con las fibras dispuestas transversalmente una sobre otra, utilizando resinas sintéticas y aplicando fuerte presión y calor. Esta técnica confiere al tablero una gran estabilidad dimensional y resistencia, logrando un aspecto similar al de la madera maciza. Estos tableros son conocidos con diferentes nombres según la región geográfica, como multilaminado, triplay o madera terciada, y en países de habla inglesa, se les llama plywood.
En su proceso de fabricación, se dispone un número impar de chapas, que se ensamblan alternando las direcciones de la veta. Es decir, cada chapa está dispuesta en sentido perpendicular respecto a la siguiente o la anterior. Esto les confiere muchas de sus ventajas frente a otras clases de paneles. Por lo general, se emplean chapas con espesores de 2 a 3 mm, aunque cabe mencionar que pueden existir variantes en cuanto al grosor utilizado.
Dentro de los tableros multicapas hay diferencias, así por poner un ejemplo para un acabado especial, se podría emplear un tablero abedul-abedul de 15 capas y para uno normal, otro abeto-abeto de 8 capas.
Los contrachapados se emplean en la construcción, especialmente para superficies de encofrados en contacto directo con el hormigón. En cuanto al encolado de estos encofrados, las resinas fenólicas soportan el ataque de microorganismos y tanto al agua fría como caliente.
Este tablero contrachapado de superficie lisa es altamente resistente y versátil, permitiendo una mayor cantidad de usos repetidos que los tableros convencionales, además de ofrecer un excelente acabado para el hormigón visto.
El contrachapado fenólico ha ganado una creciente popularidad en la industria de la construcción debido a sus propiedades mecánicas excepcionales y su notable resistencia a la intemperie. Ampliamente empleado en la construcción de puentes, muros y techos, este material ofrece una amplia gama de aplicaciones en encofrados.
Compuesto por múltiples capas de hojas de madera impregnada con resina fenólica, un material sintético extremadamente resistente, el contrachapado fenólico se une mediante un adhesivo robusto y es sometido a presión y calor para formar una hoja rígida y duradera. Como resultado, supera con creces tanto a la madera como al contrachapado en términos de resistencia y durabilidad, lo que lo convierte en una elección insuperable en numerosas aplicaciones de construcción.
Figura 2. Tablero contrachapado fenólico. https://www.alsina.com/es-la/productos-y-soluciones/componentes-y-fenolicos/
Entre las ventajas destacadas de estos paneles se encuentran sus dimensiones lo suficientemente grandes, sin juntas, lo que permite una colocación y retirada económicas; su variedad de espesores disponibles; sus propiedades físicas consistentes; la economía que ofrece debido a sus múltiples usos; las superficies lisas, lo que reduce el coste del acabado final de los paramentos; y su bajo coste de fabricación. Como inconvenientes se puede indicar que solamente permiten leves curvaturas.
El gran éxito del tablero contrachapado para encofrado se debe a varias razones fundamentales:
Ahorro de madera: Gracias a la reducción de medidas, se minimizan las pérdidas de material.
Rápido armado: Los operarios están familiarizados con el sistema utilizado en construcciones anteriores, lo que agiliza el montaje.
Menos personal especializado: La facilidad de uso permite que personal semiespecializado pueda ensamblar los encofrados estandarizados, reduciendo la necesidad de mano de obra especializada.
Prefabricación y estandarización: La fabricación en grandes series y el empleo de grúas ligeras para su manejo permiten un ahorro significativo de tiempo y mano de obra en la construcción.
Ventajas en entornos congestionados: La posibilidad de fabricar las unidades del encofrado en la fábrica, en lugar de hacerlo en la obra, es especialmente beneficiosa en lugares de construcción con limitaciones de espacio.
Plazos de entrega más cortos: La estandarización, prefabricación y reducción en el trabajo de acabado contribuyen a plazos de entrega más rápidos y menor gasto en intereses.
Los contrachapados presentan variaciones según su tipo, que incluyen la especie de madera utilizada, la calidad de las chapas (donde generalmente se especifica la calidad de las caras exteriores pero no siempre de las interiores), el espesor tanto de las chapas como del conjunto y el tipo de encolado utilizado. Estos parámetros influyen en las propiedades y usos específicos de cada tipo de contrachapado.
Según su uso o ambiente de utilización, se clasifican según las normas UNE-EN 335-1 y UNE-EN 314-2 para la calidad del encolado en:
Interior (Encolado 1): Fabricados empleando colas y resinas de urea-formaldehído.
Exterior Cubierto o semiexterior (Encolado 2): Se utilizan resinas de urea formaldehído melamínico.
Exterior (Encolado 3): En este tipo de ambientes, se requiere combinar maderas con buena resistencia natural a la humedad y podredumbre, junto con colas fenólicas.
Otro aspecto importante es la madera utilizada, pues diferentes tipos de madera otorgan distintas propiedades técnicas al contrachapado final. Por ejemplo, un contrachapado de abedul tendrá características diferentes al de okume. Además de la elección de la madera, es relevante considerar la calidad de la misma. Las fichas técnicas suelen hacer mención a la calidad de la cara, contracara y chapas interiores, ya que las necesidades varían según si el tablero se usará en construcción o en la fabricación de mobiliario.
En los encofrados, se utilizan dos tipos de contrachapados: uno diseñado para exteriores y otro para interiores. El contrachapado para exteriores se fabrica con una cola completamente impermeable y está destinado a lugares expuestos a condiciones climáticas adversas y humedad. Por otro lado, el contrachapado para interiores también es resistente a la humedad, aunque no es completamente impermeable. Se emplea en situaciones donde la exposición al mal tiempo y humedad no será excesiva. De esta manera, se asegura que cada tipo de contrachapado se emplea en el entorno adecuado, optimizando su rendimiento y durabilidad según las condiciones específicas de uso.
El contrachapado para exteriores se presenta con una o ambas caras revestidas por una capa dura y resistente de resinas fundidas impermeables, lo que garantiza una mayor durabilidad del pulido de las superficies y permite su reutilización en numerosas ocasiones. Los tableros de encofrado están recubiertos en ambos lados con una película fenólica, lo que les proporciona una superficie muy fina y también incrementa ligeramente su resistencia. Algunos constructores y fabricantes protegen las esquinas y los cantos usando perfiles de metal. Para prevenir la adhesión del hormigón al encofrado y asegurar un desencofrado sin dañar la superficie del hormigón o el encofrado, es completamente necesario aplicar pinturas de protección, aceitar los tableros o recubrirlos con películas fenólicas o film fenólico.
La medida más comúnmente utilizada en la industria de los tableros es el estándar de 244×122 cm, aunque también se encuentran tableros de 244×210 cm, especialmente para fines de construcción. En cuanto al espesor, varía entre 5 y 50 mm, siendo los espesores más frecuentes los mismos que para otros tableros, como 10, 12, 15, 16, 18 y 19 mm. Los espesores estándar del tablero contrachapado de encofrado son de 12 mm, que se utilizan en construcciones normales. Para construcciones más pesadas, se emplean tableros de 15-18 y 21 mm. Es importante destacar que los contrachapados con un espesor menor a 12 mm se reservan para aplicaciones en elementos especiales, como revestimientos de encofrados construidos con otros materiales o en superficies curvas, debido a que las láminas delgadas de madera contrachapada tienden a curvarse con relativa facilidad.
El contrachapado permite lograr curvas sencillas de forma fácil, obteniendo excelentes resultados cuando se cuenta con una superficie continua con la curvatura precisa para apoyar los paneles. En casos donde existan puntos críticos con curvaturas complicadas, se prefieren dos planchas delgadas superpuestas en lugar de una sola con el mismo grosor total. Además, si es necesario trabajar con radios de curvatura aún más pequeños, es posible lograrlos utilizando contrachapado para exteriores y aplicándoles previamente un tratamiento de humedecimiento y vaporización.
Para facilitar el despegado del encofrado, es necesario impregnar los tableros con una grasa especial o un agente similar. Para una mayor durabilidad, se puede aplicar una primera capa de pintura de aluminio. Este tratamiento asegura que el encofrado pueda retirarse sin dañar ni el hormigón ni la superficie del tablero. Es importante limpiar todos los residuos de hormigón y quitar los clavos antes de apilar los tableros para evitar el deterioro normal de la madera. Con un manejo adecuado, es posible emplear los mismos tableros un número elevado de veces. Incluso cuando están dañados y no son aptos para encofrar, todavía tienen un alto valor de recuperación para suelos, rampas o techos.
Los tableros fenólicos tienen una capacidad máxima de carga que puede variar dependiendo de las circunstancias. En situaciones normales, pueden soportar hasta 80 cargas, pero si se busca un acabado más cuidado, este número se reduce a 50. En condiciones especiales, la capacidad máxima puede disminuir aún más, llegando incluso a 20 o menos cargas. No obstante, la durabilidad del tablero fenólico depende no solo del espesor de la capa de revestimiento, que puede variar desde 540 hasta 120 g/m2, sino también del trato al que se le someta. Si se maneja con relativo cuidado, está bien sellado y se evita clavar en exceso, su vida útil será la adecuada.
Es crucial evitar el uso de un tablero inadecuado, pues esto podría ocasionar fallos superficiales en el hormigón. Un falso ahorro en esta partida podría generar costos adicionales mucho mayores para reparaciones o, en ocasiones extremas, incluso requerir demoliciones y nuevas construcciones.
Para prolongar la vida útil de los tableros, se deben seguir algunas recomendaciones durante su almacenamiento. En primer lugar, es fundamental evitar el contacto directo con agua y la exposición al sol. Al apilar los tableros sobre el suelo, es esencial comprobar que no haya presencia de agua ni barro en la zona de almacenamiento. Además, se debe evitar guardar los tableros en lugares excesivamente secos o con temperaturas elevadas, ya que esto podría provocar deformaciones. Al seguir estas pautas, se garantiza una mayor durabilidad y rendimiento de los tableros fenólicos.
Os dejo algunos vídeos explicativos. Espero que os sean de interés.
También os dejo un catálogo de Alsina sobre productos fenólicos y componentes.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.
PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.
RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.