Los puentes de madera: evolución, tipología y relevancia actual

Puente de madera de Cofrentes, sobre el río Cabriel, junto al puente nuevo construido en 1911 (Sanchis, 1993).

1. Definición y tipología estructural.

La madera fue el primer material estructural utilizado en la construcción de puentes, mucho antes que la piedra, el metal o el hormigón. La madera permite fabricar piezas lineales aptas para resistir esfuerzos de compresión y tracción y, por tanto, también de flexión. Su uso ha evolucionado desde los rudimentarios troncos apoyados sobre cauces hasta las complejas estructuras actuales de madera laminada y materiales compuestos. En la actualidad, este material está experimentando un notable resurgimiento, impulsado por sus virtudes técnicas: una excelente relación resistencia-peso, facilidad de mecanizado y transporte y la capacidad de crear elementos prefabricados de gran longitud.

A diferencia de la mampostería, que requiere morteros y recurre al arco para salvar grandes luces, la madera permite ensamblajes con continuidad estructural. Esto permite realizar diseños lineales, ligeros y flexibles que se adaptan a una amplia variedad de vanos. El desarrollo de la madera laminada encolada (en inglés, glulam), los adhesivos estructurales, los tratamientos de protección en autoclave y las normativas estandarizadas, como el Eurocódigo 5, han consolidado la madera como una alternativa duradera y viable frente a los materiales convencionales.

Clasificación estructural

Los puentes de placas de madera son estructuras que funcionan como placas continuas, normalmente compuestas por tableros de madera contralaminada (CLT), y tienen luces limitadas o se combinan con vigas para alcanzar dimensiones mayores. Por otro lado, los puentes de barras de madera están formados por piezas lineales que configuran vigas, arcos o cerchas (vigas reticuladas), lo que les permite cubrir luces más amplias.

Tipo estructural Descripción Luz típica
Vigas Vigas macizas o de glulam, a menudo en configuraciones triarticuladas. 3 a 24 m
Viga reticulada (cercha) Sistema triangulado (p. ej., tipo Howe o Pratt) de barras que trabajan a esfuerzo axial. 9 a 45 m
Arco triarticulado Fabricado con glulam, sometido predominantemente a compresión. 12 a 70 m
Colgante El tablero está suspendido por cables de acero anclados a mástiles. Luces variables
De apertura Tablero con piezas móviles o deslizantes. Hasta 24 m

2. Evolución histórica de los puentes de madera.

  • Orígenes antiguos e ingeniería primitiva: La madera es uno de los materiales estructurales más antiguos que la humanidad ha utilizado para salvar obstáculos naturales. Desde la prehistoria, concretamente desde la invención del hacha de piedra, alrededor del año 15 000 a. C., los seres humanos utilizaban troncos como puentes sobre ríos o arroyos. Los palafitos eran construcciones de madera levantadas sobre el agua, similares a los puentes. En algunas culturas subtropicales también empleaban lianas, que prefiguraban los puentes colgantes. No obstante, los ejemplos más sofisticados datan de épocas posteriores. Aunque en la Antigüedad clásica los puentes de piedra en arco fueron los más duraderos, la madera desempeñó un papel esencial en la ingeniería militar. Uno de los ejemplos más conocidos es el puente que Julio César construyó sobre el Rin, diseñado para montarse y desmontarse rápidamente aprovechando las corrientes del río para estabilizar sus uniones. Otro ejemplo es el legendario Ponte Sublicio (c. 642 a. C.) sobre el Tíber, concebido para ser destruido en caso necesario, lo que subraya la importancia estratégica de los puentes de madera en la Antigüedad.
Puente de Julio César en el Rin. https://www.cienciahistorica.com/2015/08/25/acojonar-enemigo/
  • Edad Media, Renacimiento y «siglo de oro» europeo: Aunque durante la Edad Media predominaban las estructuras de mampostería, la madera seguía utilizándose en puentes, especialmente en forma de sistemas cubiertos que protegían la superestructura de las inclemencias del tiempo. Ya desde el Renacimiento, ingenieros como Leonardo da Vinci idearon puentes de madera desmontables o de montaje rápido, lo que evidencia una notable anticipación técnica. En Suiza, por ejemplo, los puentes cubiertos como el Kapellbrücke y el Spreuerbrücke (siglos XIV-XVI) demuestran que la cubierta de madera prolongaba la vida útil de la estructura al protegerla de la humedad y del sol. El siglo XVIII se considera un periodo de auge para los puentes de madera en Europa. Ingenieros como Hans Ulrich Grubenmann, en Suiza, desarrollaron puentes de madera laminada empernada y arcos rebajados y lograron luces de más de 50 metros, lo que situó a la madera, en términos de vano, en niveles comparables a los de la piedra.
Puente Kapellbrücke de Lucerna (Suiza). https://worldcitytrail.com/es/2025/01/04/spreuerbrucke-en-lucerna/
  • El impulso industrial y las cerchas reticuladas: El gran salto tecnológico en la construcción de puentes de madera se produjo en el siglo XIX, como resultado de la Revolución Industrial y del desarrollo de las redes ferroviarias, sobre todo en Norteamérica. La necesidad de construir puentes de forma rápida y con luces mayores impulsó el uso de conexiones metálicas y de tipos estructurales más eficientes. Aparecieron patentes como las de Ithiel Town (cercha Town), William Howe (cercha Howe) y Thomas Pratt (cercha Pratt). Un ejemplo histórico es el puente Colossus Bridge, construido por Lewis Wernwag en 1812 sobre el río Schuylkill, en Filadelfia. Con un vano de 103,7 metros y conectores de hierro, en su época se consideró el puente de madera de vano único más largo de Estados Unidos. Estas innovaciones permitieron que la madera pudiera competir con otros materiales estructurales.
Puente Colossus Bridge, construido por Lewis Wernwag en 1812 sobre el río Schuylkill, en Filadelfia. https://www.structuremag.org/article/the-colossus-of-the-schuylkill-river/
  • Siglos XX y XXI: innovación tecnológica y sostenibilidad: Durante gran parte del siglo XX, los materiales dominantes fueron el acero y el hormigón, que relegaron en parte a la madera. No obstante, en ese periodo se sentaron las bases para su renacimiento: la invención de la madera laminada encolada (glulam), los adhesivos estructurales de alto rendimiento y los tratamientos en autoclave mejoraron sustancialmente la estabilidad dimensional, la durabilidad y la fiabilidad de la madera como material estructural. En la actualidad, la madera está experimentando un notable resurgimiento en la ingeniería de puentes, gracias también a los criterios de sostenibilidad y ecología. Normativas como el Eurocódigo 5 (EN 1995-2: Puentes de madera) han dado solidez a su uso desde el punto de vista ingenieril. Además, la aparición de la madera contralaminada (CLT) y el desarrollo de estructuras híbridas (madera-acero o madera-hormigón), junto con las herramientas de modelado digital (BIM) y la prefabricación, han devuelto a la madera su papel esencial en las infraestructuras sostenibles.
Puente de madera laminada sobre el Pisuerga. http://www.mediamadera.com/es/puentes-de-madera

3. Consideraciones técnicas y materiales

Los puentes modernos se construyen con madera de ingeniería, un material estable y de alto rendimiento.

A. Materiales estructurales clave

  • Madera laminada encolada (glulam): permite fabricar vigas curvadas o rectas de gran sección y longitud, optimizando la resistencia.
  • Madera contralaminada (CLT): paneles de gran formato y rigidez bidireccional, muy utilizados en tableros de placa por su capacidad de prefabricación modular.
  • Maderas compuestas estructurales (LVL, PSL): productos derivados de chapas o virutas que ofrecen uniformidad y alto rendimiento mecánico.

B. Durabilidad, protección y mantenimiento

La longevidad de un puente de madera depende fundamentalmente de un diseño inteligente que controle la humedad:

  1. Protección constructiva: el diseño debe evitar la acumulación de agua (drenajes, inclinaciones) y asegurar una ventilación adecuada. La cubierta protectora sigue siendo la mejor defensa a largo plazo.
  2. Tratamiento: selección de especies duraderas (según EN 350) o aplicación de tratamientos protectores en autoclave (sales de cobre, etc.) para alcanzar las clases de uso 3 y 4.
  3. Mantenimiento: revisiones periódicas y reaplicación de protectores superficiales para combatir la radiación solar UV.

El diseño estructural de los puentes de madera se basa en normativas internacionales rigurosas. En Europa, la referencia principal es el Eurocódigo 5 (EN 1995-2: Puentes), que establece los criterios esenciales de cálculo por el método de estados límite, la durabilidad de la madera y el dimensionamiento de las uniones e incorpora factores de modificación críticos. Además, el Manual de diseño de puentes AASHTO LRFD (Load and Resistance Factor Design) ofrece una metodología de diseño basada en factores de carga y resistencia que predomina en Norteamérica y otras regiones. Estas dos directrices se complementan con las guías técnicas detalladas del US Forest Service, que ofrecen buenas prácticas especializadas en la construcción y durabilidad de estas estructuras.

4. Aplicaciones y mercado

Los puentes de madera tienen una amplia gama de usos:

  • Vehiculares: carreteras secundarias y entornos rurales, donde se diseñan para soportar cargas moderadas.
  • Peatonales y para ciclistas: son los más comunes y destacan por su estética cálida y su excelente integración paisajística en parques y entornos naturales.
  • Sistemas híbridos: la combinación de glulam con losas de hormigón o acero permite construir puentes con vanos más largos y con mayor resistencia al tráfico pesado.

La sostenibilidad es el motor actual. La madera es un material renovable, reciclable y que captura carbono, y se suministra mediante sistemas de construcción industrializados (prefabricación), lo que asegura una rápida ejecución en obra. En el mercado actual se integran fabricantes de glulam, ingenierías especializadas y constructoras modulares, capaces de producir estructuras completas mediante sistemas industrializados.

5. Comparativa de materiales estructurales para puentes

Propiedad / criterio Madera estructural Acero Hormigón armado / pretensado Piedra
Resistencia específica (resistencia/peso) Muy alta (estructuras ligeras). Alta. Media. Baja.
Durabilidad natural Limitada si no se protege; mejorable con tratamientos. Alta si se protege contra la corrosión. Muy alta. Muy alta.
Mantenimiento Requiere revisiones y repintado o reaplicación de protector. Requiere control de corrosión y pintura. Bajo. Mínimo.
Coste inicial Medio o bajo (según el tipo de madera y el diseño). Alto. Medio. Alto.
Coste de mantenimiento Moderado. Alto. Bajo. Muy bajo.
Comportamiento frente al fuego Predecible (carbonización superficial). Excelente. Muy bueno. Excelente.
Comportamiento ante agentes climáticos Sensible a la humedad y a los rayos UV; requiere protección. Sensible a la corrosión. Buena durabilidad. Muy buena.
Sostenibilidad y huella de carbono Excelente. Material renovable y reciclable. Elevada huella de CO₂. Alta huella de CO₂. Alta huella energética.
Estética e integración paisajística Muy alta. Calidez y naturalidad. Industrial. Neutra. Tradicional.
Rapidez de construcción Muy alta (prefabricación). Alta. Media. Muy baja.
Aplicaciones recomendadas Pasarelas, carreteras secundarias, entornos naturales. Grandes luces, tráfico intenso. Infraestructura masiva. Monumentos y obras históricas.

Conclusión

Lejos de ser obras provisionales, los puentes de madera son una síntesis entre tradición e innovación tecnológica. Desde los primeros troncos prehistóricos hasta los actuales diseños con madera laminada encolada, contralaminada y estructuras híbridas, la madera ha demostrado su versatilidad, sostenibilidad y competitividad técnica. Gracias a la ingeniería moderna y a las normativas internacionales, la madera se consolida como un material estructural de referencia en el ámbito de las infraestructuras sostenibles.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Montaje por movimientos horizontales de puentes atirantados

Los procedimientos de montaje por movimientos horizontales de puentes atirantados se aplican cuando el puente —total o parcialmente— se construye fuera de su posición definitiva y se traslada hasta ella posteriormente. Este enfoque permite reducir la interferencia con el cauce, el tráfico o las infraestructuras existentes, además de mejorar la seguridad y el control de calidad, ya que la mayor parte de los trabajos se realizan en condiciones estables sobre tierra firme.

En todos los casos, las torres y el tablero deben comportarse de forma solidaria durante el desplazamiento, apoyándose el conjunto sobre pilas o apoyos provisionales que garanticen la estabilidad global. La elección del método depende de las condiciones geométricas del emplazamiento, las luces principales, la rigidez del sistema atirantado y la disponibilidad de medios auxiliares.

Se distinguen tres métodos fundamentales de ejecución:

a) Puentes empujados longitudinalmente

Este procedimiento es similar al empleado en los puentes de vigas lanzadas incrementalmente, pero adaptado a la configuración atirantada. El tablero se construye por tramos en una orilla y se empuja progresivamente hacia el vano principal con gatos hidráulicos. Para compensar los momentos negativos en el frente de avance, se coloca una nariz de lanzamiento o una estructura auxiliar ligera.

Durante el empuje, los apoyos provisionales y las torres soportan cargas variables, por lo que es necesario controlar continuamente la tensión de los tirantes y realizar ajustes secuenciales para evitar sobreesfuerzos o deformaciones excesivas. Para ello, se utilizan dispositivos deslizantes de baja fricción, como placas de neopreno-PTFE sobre acero inoxidable o carros rodantes en combinación con gatos sincronizados. Además, se realiza una instrumentación topográfica y extensométrica en tiempo real para controlar la geometría de avance.

Un ejemplo representativo es el puente de la calle Jülicher, en Düsseldorf, donde este sistema se aplicó con éxito combinando el control hidráulico de las tensiones en los tirantes y el uso de apoyos provisionales sobre las pilas intermedias durante el avance del tablero. El mismo procedimiento se empleó en el puente de la calle Franklin, también en Düsseldorf, siguiendo una metodología constructiva similar.

Puente de la calle Jülicher en Düsseldorf, Alemania. https://de.wikipedia.org/wiki/Br%C3%BCcke_J%C3%BClicher_Stra%C3%9Fe

b) Puentes girados

Cuando las condiciones del terreno o del cauce hacen inviable el empuje longitudinal, se puede recurrir al giro del puente completo o de sus semitableros desde una posición lateral de montaje. El conjunto se apoya temporalmente sobre una articulación o pivote reforzado bajo la torre principal, mientras el extremo libre describe un sector circular hasta alcanzar su posición definitiva.

Durante la maniobra, es fundamental mantener el equilibrio del centro de gravedad y la estabilidad frente al vuelco o la torsión, por lo que suelen utilizarse lastres temporales y gatos hidráulicos sincronizados. La precisión se garantiza mediante un control topográfico y de tensiones en los tirantes antes y después del giro.

El puente sobre el canal del Danubio, en Viena, es un ejemplo clásico de dos semipuentes girados hasta su posición final. Otro caso notable es el puente de Ben-Ahin (Père Pire) sobre el río Mosa, en Bélgica, que se construyó completamente en una orilla y se giró alrededor de su pila principal en 1987. La maniobra, que desplazó decenas de miles de toneladas, supuso en su momento un récord europeo por el peso movilizado mediante rotación controlada. Este puente, construido en 1988, fue en su momento el puente de mayor masa girada del mundo. La pila tiene 84 metros de altura; el tablero mide 341 metros de largo y pesa 16 000 toneladas. Lo soportan 40 cables en abanico situados en un plano.

Puente de Ben-Ahin, Bélgica. Imagen: C. Pujos. Fuente: http://www.puentemania.com/3502

c) Puentes ripados transversalmente

El ripado o traslación transversal consiste en construir el puente junto a su ubicación final y trasladarlo lateralmente mediante sistemas de deslizamiento controlado. Este método requiere alineamientos precisos entre la posición inicial y la definitiva, así como patines o cojinetes de deslizamiento lubricados, que a menudo se combinan con transportadores modulares autopropulsados (SPMT, por sus siglas en inglés) o gatos de empuje y freno.

El puente de Oberkassel, en Düsseldorf, es un ejemplo representativo de este tipo de maniobra. La estructura principal se desplazó lateralmente desde su zona de ensamblaje hasta el eje del río mediante carros rodantes y guías transversales, bajo una monitorización topográfica en tiempo real que garantizó la precisión del posicionamiento final. El puente tiene una luz principal de 257,75 m y una torre central de 100 m de altura sobre el tablero. Su superestructura metálica, de 35 m de ancho, está formada por una viga cajón de tres células con losa ortótropa.

Puente sobre el Rin Düsseldorf-Oberkassel. Fuente: https://www.visitduesseldorf.de/en/attractions/oberkasseler-bruecke-bridge-b2338616ec

El ripado presenta ventajas en emplazamientos con suficiente espacio lateral, ya que reduce los trabajos en el cauce y minimiza las afecciones medioambientales o de tráfico. No obstante, exige un estudio detallado del coeficiente de fricción, de las reacciones en los apoyos provisionales y de los esfuerzos transitorios en los tirantes y las pilas durante el movimiento.

Consideraciones generales

En los puentes atirantados, los movimientos horizontales requieren una planificación constructiva precisa y un análisis estructural temporal que contemple la evolución de las tensiones, las deformaciones y la estabilidad global en cada fase. Es fundamental modelar los estados transitorios y definir procedimientos de tensado, destensado y control geométrico con el apoyo de instrumentación avanzada (celdas de carga, inclinómetros y estaciones totales automatizadas).

En la práctica, estos métodos ofrecen varias ventajas: permiten trabajar en seco y en condiciones controladas, reducen los riesgos laborales y minimizan la interferencia con el entorno. Entre sus principales limitaciones se encuentran el coste de los equipos especializados, la complejidad de las maniobras y la necesidad de personal altamente cualificado.

En resumen, el montaje por movimientos horizontales es una técnica versátil y segura, plenamente consolidada en la ingeniería de puentes moderna, que combina la precisión geométrica con la eficiencia constructiva. Ha demostrado su viabilidad en numerosos puentes atirantados europeos, como los de Düsseldorf, Viena y Ben-Ahin.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Harold M. Westergaard: el ingeniero que cimentó la teoría moderna de estructuras

Harold Malcolm Westergaard (1888 – 1950). https://sv.wikipedia.org/wiki/Harald_Westergaard

Harold Malcolm Westergaard (Copenhague, Dinamarca, 9 de octubre de 1888 – Cambridge, Massachusetts, Estados Unidos, 22 de junio de 1950) fue un ingeniero estructural danés cuya influencia en la teoría de estructuras y en el análisis del hormigón armado ha perdurado durante todo el siglo XX. Fue profesor de Mecánica Teórica y Aplicada en la Universidad de Illinois en Urbana y, posteriormente, de Ingeniería Civil en la Universidad de Harvard, donde llegó a ocupar el decanato de la Escuela de Posgrado de Ingeniería.

Westergaard nació en el seno de una familia profundamente vinculada al mundo académico. Su abuelo fue profesor de lenguas orientales en la Universidad de Copenhague y su padre, catedrático de economía y estadística en la misma institución. Esta herencia intelectual marcó su vocación científica desde joven. Estudió ingeniería en el Instituto Técnico de Copenhague (Danmarks Tekniske Højskole), donde trabajó bajo la dirección del destacado ingeniero civil Asger Ostenfeld, graduándose en 1911. Mantuvo contacto con su maestro hasta la muerte de este en 1931, conservando siempre una profunda admiración por su figura.

Tras finalizar sus estudios, Westergaard adquirió experiencia práctica en la construcción de estructuras de hormigón armado en Copenhague, Hamburgo y Londres. Después se mudó a Alemania, donde se impregnó del ambiente científico de la escuela de Göttingen, en torno a figuras como Felix Klein. Allí estudió bajo la dirección de Ludwig Prandtl, uno de los padres de la mecánica de fluidos moderna. En 1915, con la ayuda de August Föppl, preparó la edición escrita de su disertación doctoral en la Königlich Bayerische Technische Hochschule München (actual Universidad Técnica de Múnich). Sin embargo, la Primera Guerra Mundial interrumpió su proceso académico y no pudo defender su tesis hasta septiembre de 1921, ante Sebastian Finsterwalder y Ludwig Föppl. El reconocimiento oficial de su título de doctor ingeniero no llegaría hasta 1925, cuando su tesis doctoral fue finalmente publicada.

Durante esos años, Westergaard se trasladó a Estados Unidos con una beca de la American Scandinavian Foundation. En 1916 obtuvo el doctorado en la Universidad de Illinois en Urbana y, por recomendación de su mentor, Ostenfeld, fue nombrado profesor de mecánica teórica y aplicada en esa misma universidad. Su carrera académica fue ascendente: en 1921 fue ascendido a assistant professor, en 1924 a associate professor y en 1927 alcanzó la categoría de full professor.

La producción científica de Westergaard fue tan precoz como influyente. En 1920, publicó un estudio sobre la resistencia de materiales dúctiles sometidos a esfuerzos combinados en dos o tres direcciones perpendiculares. Al año siguiente, presentó un artículo sobre momentos y tensiones en losas de hormigón armado junto con William. A. Slater. Este trabajo pionero en su campo le valió la prestigiosa Medalla Wason del American Concrete Institute (ACI) en 1922. Ese mismo año, también publicó un estudio sobre el pandeo de estructuras elásticas que ampliaría más tarde con nuevos resultados teóricos.

A partir de 1923, comenzó a investigar la interacción entre los pavimentos de hormigón y el terreno de apoyo para la construcción de carreteras, campo en el que sus aportaciones se convirtieron en una referencia obligada. Entre 1925 y 1926, publicó varios artículos fundamentales sobre el cálculo de tensiones en pavimentos de hormigón, como Stress in concrete pavements, computed by theoretical analysis y Computation of stresses in concrete roads, que sentaron las bases de la normativa moderna para el diseño de firmes rígidos. En sus modelos, Westergaard representaba los pavimentos como losas delgadas elásticas sobre un lecho tipo Winkler, siguiendo la teoría de placas de Kirchhoff. Aunque años más tarde otros autores, como Losberg (1960) o Ioannides (1985), señalaron inconsistencias teóricas en sus ecuaciones, su modelo se mantuvo como el estándar de referencia durante décadas, incluso más allá de la «fase de innovación» de la teoría de estructuras (1950-1975).

Westergaard también se interesó por la aplicación del análisis estructural a problemas reales de ingeniería civil. En 1930, publicó One Hundred Years Advance in Structural Analysis, una obra histórica que se considera el primer estudio sistemático sobre la evolución de la teoría de estructuras en Estados Unidos. Ese mismo año elaboró un trabajo sobre losas de puentes sometidas a cargas móviles (Computation of stresses in bridge slabs due to wheel loads). En 1933 publicó su influyente estudio Water Pressures on Dams During Earthquakes, fruto de su labor como asesor técnico del Bureau of Reclamation de los Estados Unidos durante el diseño de la presa Hoover, una de las obras más emblemáticas de la ingeniería moderna.

En 1935, presentó una contribución teórica de gran profundidad: la General Solution of the Problem of Elastostatics in an n-Dimensional Homogeneous Isotropic Solid in an n-Dimensional Space, en la que ofreció una formulación general del problema de la elastostática en espacios de dimensión arbitraria. Poco después, en 1939, publicó dos trabajos clave: Bearing Pressures and Cracks, sobre las presiones de apoyo y la aparición de fisuras, y Stresses in Concrete Runways of Airports, en el que extendió sus investigaciones sobre pavimentos al ámbito aeroportuario.

En 1936 fue nombrado profesor Gordon McKay de Ingeniería Estructural en la Universidad de Harvard y entre 1937 y 1946 ejerció como decano de la Escuela de Posgrado de Ingeniería. Durante este periodo, se centró en los fundamentos teóricos de la mecánica, abordando cuestiones relacionadas con la mecánica de fractura, campo en el que sus estudios supusieron un hito. En 1942 publicó Stresses Concentration in Plates Loaded Over Small Areas y, en 1948, New Formulas for Stresses in Concrete Pavements of Airfields, obras que consolidaron su autoridad en el análisis estructural del hormigón.

Durante la Segunda Guerra Mundial, Westergaard sirvió como comandante del Cuerpo de Ingenieros Civiles de la Marina de Estados Unidos. También participó en la comisión encargada de evaluar los efectos estructurales de las bombas atómicas de Hiroshima y Nagasaki y contribuyó con su experiencia a la comprensión del comportamiento de las estructuras sometidas a cargas extremas.

En la primavera de 1949, comenzó a recopilar su extensa producción científica, que constaba de casi cuarenta artículos. A pesar de su grave enfermedad, logró completar la primera parte de su manuscrito sobre teoría de la elasticidad, que se publicó póstumamente en 1952 con el título Theory of Elasticity and Plasticity. Falleció el 22 de junio de 1950 en Cambridge, Massachusetts.

La muerte de Harold M. Westergaard supuso la pérdida de una de las figuras más brillantes e influyentes de la ingeniería estructural estadounidense en su etapa de gestación (1925-1950). Su colega Nathan Newmark lo describió como «una figura impresionante, intelectualmente brillante y físicamente fuerte. Amaba el arte y la música, y aunque era algo tímido, era cálido y atento con los demás».

Su legado científico es extenso y trascendente. Entre sus principales contribuciones destacan:

  • On the Resistance of Ductile Materials to Combined Stresses in Two or Three Directions Perpendicular to One Another (1920)
  • Moments and Stresses in Slabs (1921)
  • Buckling of Elastic Structures (1922)
  • Anwendung der Statik auf die Ausgleichsrechnung (1925)
  • Stress in Concrete Pavements Computed by Theoretical Analysis (1926/1)
  • Computation of Stresses in Concrete Roads (1926/2)
  • One Hundred Years Advance in Structural Analysis (1930/1)
  • Computation of Stresses in Bridge Slabs Due to Wheel Loads (1930/2)
  • Water Pressures on Dams During Earthquakes (1933)
  • General Solution of the Problem of Elastostatics in an n-dimensional Homogeneous Isotropic Solid in an n-dimensional Space (1935)
  • Bearing Pressures and Cracks (1939)
  • Theory of Elasticity and Plasticity (1952)

Harold Malcolm Westergaard fue, sin duda, un ingeniero con una amplitud intelectual poco común: un científico riguroso, un profesor inspirador y un hombre comprometido con su tiempo. Sus teorías, obras y visión interdisciplinar siguen siendo una referencia fundamental en la historia de la ingeniería estructural moderna.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Reconocimiento especial por la divulgación científica de la DANA de 2024

Figura 1. De izquierda a derecha: Julián Alcalá, José Capilla (rector de la UPV), Víctor Yepes y Eugenio Pellicer

Quisiera expresar mi más sincero agradecimiento a la Universitat Politècnica de València (UPV) por el reconocimiento especial recibido por

«el firme compromiso con la divulgación científica y la exquisita atención a los medios de comunicación en la cobertura periodística vinculada a la DANA que asoló la provincia de Valencia en octubre de 2024».

Este reconocimiento ha sido otorgado a varios profesores de la UPV que, desde el primer momento, han intentado aportar explicaciones rigurosas y fundamentadas desde el punto de vista técnico y científico sobre este trágico fenómeno meteorológico. En la Figura 1 se pueden ver a los profesores Julián Alcalá, Víctor Yepes y Eugenio Pellicer, junto con el rector de la Universitat Politècnica de València, José Capilla. En la imagen aparecemos quienes hemos centrado nuestra labor divulgativa en los aspectos relacionados con las infraestructuras, como los puentes, las vías de comunicación, los procesos de reconstrucción y la resiliencia estructural ante eventos extremos.

Otros compañeros del Instituto de Ingeniería del Agua y Medio Ambiente (IIAMA), como Félix Francés, Francisco Vallés, Manuel Pulido, Miguel Ángel Eguibar y Juan Marco, también han contribuido de forma ejemplar desde la perspectiva del fenómeno hidrológico e hidráulico, aportando información valiosa para entender las causas y consecuencias de la DANA.

De izquierda a derecha: Francisco Vallés, Manuel Pulido, Juan Marco, José Capilla (rector de la UPV), Miguel Ángel Eguibar y Félix Francés.

En el ámbito del urbanismo y la ordenación del territorio, fueron reconocidos los profesores Sergio Palencia y María Jesús Romero. Y otros tantos de otras áreas de conocimiento de nuestra universidad. Tampoco quisiera olvidarme de algunos profesores, ya jubilados de la UPV y que no estuvieron en el acto de ayer, que también han contribuido a la divulgación científica de la DANA, como Federico Bonet y Vicent Esteban Chapapría.

De izquierda a derecha: Sergio Palencia, José Capilla (rector de la UPV) y María Jesús Romero.

En mi caso, recibo con gratitud este reconocimiento, pero considero que es una obligación profesional y ética tratar de ofrecer a la opinión pública explicaciones claras basadas en la ciencia y la ingeniería sobre un tema tan complejo y delicado. La divulgación técnica rigurosa es esencial para construir una sociedad más informada, capaz de afrontar los desafíos que nos plantea el cambio climático y sus efectos sobre nuestras infraestructuras.

Por tanto, mi agradecimiento es doble: a la institución, por valorar este trabajo, y a todos los compañeros que comparten la convicción de que la ciencia debe estar al servicio de la sociedad, especialmente en los momentos más difíciles.

Algunas de las intervenciones en prensa del mismo día del primer aniversario de la DANA la podéis ver en este enlace: https://victoryepes.blogs.upv.es/2025/10/29/primer-aniversario-de-la-dana-de-valencia-anatomia-de-un-desastre/

 

5 lecciones sorprendentes de ingeniería avanzada para construir puentes más sostenibles y económicos

Cuando pensamos en la construcción de grandes infraestructuras, como los puentes, a menudo nos viene a la mente una imagen de fuerza bruta: toneladas de hormigón y acero ensambladas con una precisión monumental. Se trata de una proeza de la ingeniería física, un testimonio de la capacidad humana para dominar los materiales y la geografía.

Sin embargo, detrás de esta fachada de poderío industrial se está produciendo una revolución silenciosa. La inteligencia artificial y los modelos computacionales avanzados, que pueden ejecutar el equivalente a décadas de diseño y pruebas de ingeniería en cuestión de horas, están redefiniendo las reglas del juego. Lejos de ser un mero ejercicio teórico, estas herramientas permiten a los ingenieros diseñar puentes que son no solo más resistentes, sino también sorprendentemente más económicos y respetuosos con el medio ambiente.

Las lecciones que siguen se basan en los hallazgos de una tesis doctoral, defendida por la profesora Lorena Yepes Bellver, innovadora en la optimización de puentes. La tesis obtuvo la máxima calificación de sobresaliente «cum laude». Las lecciones demuestran que el futuro de la construcción no radica únicamente en nuevos materiales milagrosos, sino en la aplicación de una inteligencia que permita usar los ya existentes de una forma mucho más eficiente.

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

1. El pequeño coste de un gran impacto ecológico: pagar un 1 % más para emitir un 2 % menos de CO₂.

Uno de los principales obstáculos para la adopción de prácticas sostenibles ha sido siempre la creencia de que «ser verde» es significativamente más caro. Sin embargo, la investigación en optimización de puentes revela una realidad mucho más alentadora. Gracias a los diseños perfeccionados mediante metamodelos, es posible conseguir reducciones considerables de la huella de carbono con un impacto económico mínimo.

El dato clave del estudio es contundente: «Un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %)». Este hallazgo demuestra que la sostenibilidad no tiene por qué ser un lujo, sino el resultado de una ingeniería más inteligente.

 

«Esto demuestra que el diseño de puentes sostenibles puede ser económicamente viable».

Esta lección es fundamental, ya que pone fin a una falsa dicotomía entre economía y ecología. Demuestra que no es necesario elegir entre un puente asequible y uno respetuoso con el medio ambiente. Gracias a las decisiones de diseño inteligentes, guiadas por la optimización avanzada, es posible alcanzar ambos objetivos de forma simultánea, de modo que la sostenibilidad se convierte en una ventaja competitiva y no en una carga.

2. La paradoja de los materiales: añadir más componentes para reducir el consumo global.

La lógica convencional nos diría que, para construir de forma más sostenible, el objetivo debería ser reducir la cantidad total de materiales utilizados. Menos hormigón, menos acero, menos de todo. Sin embargo, uno de los hallazgos más sorprendentes de la tesis es una paradoja que desafía esta idea tan simple.

El diseño óptimo y más sostenible aumenta, de hecho, la cantidad de uno de sus componentes: la armadura pasiva (el acero de refuerzo convencional). A primera vista, esto parece contradictorio: ¿cómo puede ser más ecológico añadir más material?

La explicación reside en un enfoque sistémico. Este aumento estratégico y calculado del refuerzo pasivo permite reducir considerablemente el consumo de otros dos materiales clave: el hormigón y la armadura activa (el acero de pretensado). La producción de estos materiales, especialmente la del cemento y el acero de alta resistencia, es intensiva en energía y, por tanto, genera muchas emisiones de CO₂. En esencia, se sacrifica una pequeña cantidad de un material de menor impacto para ahorrar una cantidad mucho mayor de materiales de alto impacto.

Este enfoque, que podría describirse como «sacrificar una pieza para ganar el juego», es un ejemplo perfecto de cómo la optimización avanzada supera las reglas simplistas de reducción. En lugar de aplicar un recorte general, se analiza el sistema en su conjunto y se encuentra el equilibrio más eficiente. Este equilibrio inteligente de materiales solo es posible si se afina otro factor clave: la geometría misma de la estructura.

Retos en la optimización de puentes con metamodelos

3. Más esbelto es mejor: el secreto de la «delgadez» estructural para la sostenibilidad.

En el mundo de la ingeniería de puentes, el concepto de «esbeltez» es fundamental. En términos sencillos, se refiere a la relación entre el canto de la losa y la luz que debe cubrir. Una mayor esbeltez implica un diseño estructural, en palabras comunes, más «delgado» o «fino».

La investigación revela un hallazgo crucial: los diseños que son óptimos tanto en términos de emisiones de CO₂ como de energía incorporada se logran con relaciones de esbeltez altas, concretamente de entre 1/30 y 1/28. En otras palabras, los puentes más sostenibles son también los más delgados y se complementan con hormigones óptimos situados entre 35 y 40 MPa de resistencia característica.

¿Por qué es esto tan beneficioso? Un diseño más esbelto requiere inherentemente una menor cantidad de materiales, principalmente hormigón. Lo realmente notable es cómo se consigue. Los métodos tradicionales suelen basarse en reglas generales y márgenes de seguridad amplios, mientras que la optimización computacional permite a los ingenieros explorar miles, e incluso millones, de variaciones para acercarse al límite físico de la eficiencia sin sacrificar la seguridad. El resultado es una elegancia estructural casi contraintuitiva: puentes que alcanzan su fuerza no a través de la masa bruta, sino de una delgadez inteligentemente calculada, donde la sostenibilidad es una consecuencia natural de la eficiencia.

4. La optimización inteligente genera ahorros reales: reducción de costes de hasta un 6,5 %.

Más allá de los beneficios medioambientales, la aplicación de estas técnicas de optimización tiene un impacto económico directo y medible. El diseño de infraestructuras deja de ser un arte basado únicamente en la experiencia para convertirse en una ciencia precisa que busca la máxima eficiencia económica.

El resultado principal del estudio sobre la optimización de costes es claro: el uso de modelos sustitutos (metamodelos Kriging) guiados por algoritmos heurísticos, como el recocido simulado, logró una reducción de costes del 6,54 % en comparación con un diseño de referencia.

Estos ahorros no son teóricos, sino que provienen directamente de la reducción de materiales. En concreto, se consiguió una disminución del 14,8 % en el uso de hormigón y del 11,25 % en el acero activo (pretensado). Es crucial destacar que estas reducciones se consiguieron sin afectar a la integridad estructural ni a la capacidad de servicio del puente. No se trata de sacrificar calidad por precio, sino de diseñar de manera más inteligente. Esta metodología convierte la optimización del diseño de una tarea académica en una herramienta práctica y altamente eficaz para la gestión económica de grandes proyectos de ingeniería civil.

5. No todos los cerebros artificiales piensan igual; la clave está en elegir el modelo computacional adecuado.

Una de las lecciones más importantes de esta investigación es que no basta con aplicar «inteligencia artificial» de forma genérica. El éxito de la optimización depende de elegir la herramienta computacional correcta para cada tarea específica.

La tesis comparó dos potentes metamodelos: las redes neuronales artificiales (RNA) y los modelos Kriging. Se descubrió una diferencia crucial en su rendimiento: si bien las RNA ofrecían predicciones absolutas más precisas sobre el comportamiento de un diseño concreto, el modelo Kriging demostró ser mucho más eficaz a la hora de identificar los «óptimos locales», es decir, las zonas del mapa de diseño donde se encontraban las mejores soluciones.

Esto revela una capa más profunda de la optimización inteligente. Un modelo puede ser excelente para predecir un resultado (RNA), mientras que otro es más eficaz para guiar la búsqueda del mejor resultado posible (Kriging). No se trata solo de utilizar IA, sino de comprender qué «tipo de pensamiento» artificial es el más adecuado para cada fase del problema: predecir frente a optimizar. La verdadera maestría de la ingeniería moderna consiste en saber elegir las herramientas adecuadas para cada fase del problema.

Conclusión: la nueva frontera del diseño de infraestructuras.

La construcción de nuestras infraestructuras entra en una nueva era. La combinación de la ingeniería estructural clásica con el poder de los modelos computacionales avanzados, como el metamodelado Kriging y las redes neuronales artificiales, está abriendo una nueva frontera en la que la eficiencia y la sostenibilidad no son objetivos opcionales, sino resultados intrínsecos de un buen diseño.

Como hemos visto, los grandes avances no siempre provienen de materiales revolucionarios. A menudo, los «secretos» mejor guardados residen en la optimización inteligente de los diseños y materiales que ya conocemos. Obtener un mayor beneficio ecológico pagando menos, utilizar estratégicamente más de un material para reducir el consumo global o diseñar estructuras más esbeltas y elegantes son lecciones que van más allá de la construcción de puentes.

Nos dejan con una pregunta final que invita a la reflexión: si podemos lograr esto con los puentes, ¿qué otras áreas de la construcción y la industria están esperando a ser reinventadas por el poder de la optimización inteligente?

Os dejo un audio donde se discuten las ideas de la tesis doctoral. Espero que os guste.

Y en este vídeo, tenemos resumidas las ideas principales de esta tesis.

Referencias:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Predictive modeling for carbon footprint optimization of prestressed road flyovers. Applied Sciences15(17), 9591. DOI:10.3390/app15179591

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; YEPES, V. (2025). A Hybrid Fuzzy DEMATEL–DANP–TOPSIS Framework for Life Cycle-Based Sustainable Retrofit Decision-Making in Seismic RC Structures. Mathematics, 13(16), 2649. DOI:10.3390/math13162649

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure AlternativesJ. Clean. Prod. 2024450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

José Torán Peláez, un visionario de las grandes presas españolas

José Torán Peláez (1916 – 1981). https://www.iagua.es/blogs/eduardo-echeverria/2016-ano-jose-toran

Nació el 10 de agosto de 1916 en Teruel, hijo de José Torán de la Riva (1916-1981) y Consuelo Peláez, pertenecientes a una familia turolense vinculada a la política, la ingeniería y los negocios. Provenía de una estirpe de ingenieros y empresarios: su bisabuelo, José Torán Herreras (1828-1899), y su abuelo, José Torán Garzarán (1853-1902), habían sentado el precedente familiar. En 1924, la familia se trasladó a Madrid, donde José y su hermano Carlos ingresaron en el Instituto-Escuela de la Junta para Ampliación de Estudios, institución que combinaba la formación científica, humanística y artística. Allí se sembró en José Torán un gusto especial por la pulcritud y la estética que marcaría su vida profesional. En 1933 concluyó el bachillerato e inició la preparación para ingresar en la Escuela de Ingenieros de Caminos en la academia de Augusto Krahe. Consiguió la admisión en junio de 1936, justo al inicio de la Guerra Civil.

Durante el conflicto, fue destinado a un campo de trabajo y participó en la construcción del llamado «ferrocarril de los cien días», un proyecto del Gobierno republicano para comunicar Madrid con Valencia. En esta etapa se comenzó la práctica profesional del cuerpo de Ingenieros de Caminos del Ejército republicano. Tras la guerra, entre octubre de 1939 y 1943, completó su formación en la Escuela de Ingenieros de Caminos, con profesores de la talla de José María Aguirre, José Entrecanales, Clemente Sáenz y José María Torroja. De todos ellos, guardó un afecto especial por Clemente Sáenz, a quien dedicó un artículo in memoriam en la Revista de Obras Públicas. Su hermano, Juan Jesús, también cursó Ingeniería de Caminos y llegó a ser ingeniero jefe en la Dirección General de Obras Hidráulicas.

El 22 de julio de 1943, Torán ingresó como ingeniero tercero en el Cuerpo de Ingenieros de Caminos, Canales y Puertos, destinado a los Servicios Hidráulicos del Sur de España. Aunque cesó en agosto de 1947 para dedicarse al ejercicio libre de la profesión, continuó ascendiendo hasta alcanzar el rango de ingeniero primero en 1956 y volvió a ingresar en el cuerpo en 1975.

En 1944, se incorporó a la Empresa Madrileña de Tranvías, gestionada por Augusto Krahe y Ángel Balbás, donde diseñó y construyó el «viaducto Torán», que conectaba Moncloa con la Ciudad Universitaria. Ese mismo año, asistió en Lisboa al Congreso de la Unión Iberoamericana de Urbanismo, donde se reencontró con José Ortega y Gasset, a quien trajo de regreso a España en su coche en 1945. Posteriormente, comenzó a trabajar en Estudios y Ejecución de Obras, S. L., donde gestionó la conclusión de la presa de El Vado (río Jarama), interrumpida durante la guerra, y resolvió problemas de materiales y costes mediante destajos por administración.

Embalse de El Vado. https://es.wikipedia.org/wiki/Embalse_de_El_Vado

En 1946, promovió la creación de su propia empresa, Construcciones Civiles, S. A. (COVILES), con el lema «Grandes presas, grandes obras», e incorporó los contratos y el patrimonio de su anterior empresa. Ese mismo año, inició el recrecimiento de El Vado y entró en contacto con el ingeniero Juan de Arespacochaga, con quien entabló una sólida amistad. En 1950 se casó con Amparo Junquera y tuvieron siete hijos: Leonor, Lucas, Lilia, Lope, Loyola, León y Loreto. Así continuaba la tradición familiar de ingenieros.

En 1955, obtuvo el contrato para construir la base naval de Rota en asociación con Corbetta Construction Company. En esta obra concibió los rompeolas de tetrápodos de hormigón, empleados posteriormente en puertos de todo el mundo. Sin embargo, su salida de Coviles se produjo en 1958 debido a diferencias en la gestión económica. Ese mismo año participó activamente en congresos internacionales de presas y energía, representando a España en la ICOLD y promoviendo la publicación de ponencias sobre recrecimientos de presas existentes.

En 1960, fundó Torán y Compañía, Ingeniería y Fomento, dedicada a la consultoría hidráulica y de grandes obras, un concepto aún incipiente en España. La empresa se integró en Tecniberia. Apoyó como mecenas a literatos, como Jaime Valle-Inclán, Rafael Sánchez Ferlosio, Carmen Martín Gaite, Luis Delgado Benavente y estrecha su amistad con Juan Benet. Torán mantuvo una activa presencia internacional: asistió a congresos en Roma (1961), Moscú (1962) y Estados Unidos, lo que impulsó la proyección española en el ámbito de la hidráulica y los riegos.

Entre 1966 y 1981, presidió el Comité Español de Grandes Presas y fue vicepresidente (1965-1968) y presidente (1970-1973) del Comité Internacional. Bajo su liderazgo, se promovieron normas de diseño y gestión de presas, entre las que destaca la Orden de 31 de marzo de 1967, por la que se aprobó la Instrucción para el proyecto, la construcción y la explotación de grandes presas. Entre sus proyectos internacionales, destaca la regulación de la cuenca del Tigris en Irak (1966-1969), que incluyó el recrecimiento de la presa de Razzaza para crear un embalse de 31 000 hectómetros cúbicos. También fue invitado por el gobierno chino para realizar estudios de planificación hidrológica en 1973 y 1979.

En los años setenta, su oficina de Madrid, ubicada en la calle Pedro de Valdivia, llegó a tener hasta siete sedes, con presencia en Canarias y filiales internacionales. Torán promovió el intercambio cultural y científico y apoyó a escritores y artistas en sus proyectos. Además, en 1979 fundó los foros de debate «Aulas Libres» en el Colegio de Ingenieros de Caminos. A lo largo de su vida, combinó la rigurosidad de la ingeniería con la sensibilidad artística y humanista y siempre proyectó la técnica como un medio para mejorar la sociedad.

Tras el fallecimiento de su esposa, Amparo, en 1976, continuó con su actividad profesional y cultural hasta su fallecimiento el 14 de diciembre de 1981 en Madrid, mientras trabajaba en proyectos para China. Diez años después, se le rindió homenaje denominando el embalse de José Torán en Sevilla en su honor, perpetuando el legado de un ingeniero cuya vida fue una apasionante combinación de ciencia, arte y compromiso internacional.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.;

Prohibieron la IA en sus clases de ingeniería. Ahora es su mejor herramienta para enseñar a pensar.

Introducción: El dilema de la IA en las aulas.

En los pasillos de la educación superior, un debate resuena con fuerza: ¿qué hacemos con la inteligencia artificial generativa (IAG)? Para muchos, herramientas como ChatGPT suponen una amenaza directa para el pensamiento crítico, ya que facilitan el plagio y fomentan la superficialidad académica. El temor es comprensible y está muy extendido.

Sin embargo, ¿y si el problema no fuera la herramienta, sino nuestra forma de reaccionar ante ella? El proyecto PROFUNDIA (acrónimo de PROFUNDo y autonomÍA) surge de esta cuestión, pero con un enfoque inesperado. Esta iniciativa de innovación educativa en ingeniería estructural no surgió de una prohibición teórica, sino de un problema práctico y urgente: el uso no regulado de la IA por parte de los estudiantes estaba deteriorando la calidad de su aprendizaje.

En lugar de intensificar la prohibición, este proyecto propone una solución radicalmente diferente. Este artículo explora los cuatro descubrimientos clave de un enfoque que busca transformar la IA de una amenaza en una de las herramientas pedagógicas más potentes.

Los 4 descubrimientos clave del proyecto PROFUNDIA

1. La cruda realidad es que el uso no supervisado de la IA estaba deteriorando el aprendizaje.

El proyecto PROFUNDIA no se basó en una hipótesis abstracta, sino que surgió de una necesidad urgente detectada en las aulas a partir del curso 2023-2024. El profesorado comenzó a observar un patrón preocupante en los trabajos de los estudiantes.

Las estadísticas internas confirmaron la sospecha: las encuestas revelaron que más del 60 % del alumnado ya utilizaba la IA para hacer sus trabajos. Sin embargo, el dato más alarmante era otro: solo el 25 % de ellos revisaba críticamente los resultados que la herramienta generaba.

La consecuencia fue una «notable disminución de la calidad técnica y argumentativa» de los proyectos. El problema era específico y grave: aunque la herramienta ofrecía soluciones funcionales, no podía verificar las hipótesis iniciales ni razonar la adecuación del modelo al contexto técnico. Los estudiantes dependían de la IA de forma acrítica, entregando trabajos con «errores conceptuales importantes» y debilitando su capacidad de razonamiento. Esto demostró que mirar hacia otro lado no era una opción, sino que era necesaria una intervención educativa guiada.

2. El cambio de paradigma: de la prohibición a la integración crítica.

Hasta entonces, la política en las asignaturas implicadas era clara: el uso de la IA «estaba explícitamente prohibido». Sin embargo, la realidad demostró que esta medida era ineficaz y contraproducente.

En lugar de librar una batalla perdida contra una tecnología omnipresente, el proyecto PROFUNDIA optó por un cambio de 180 grados: integrarla de forma «explícita, guiada y crítica». La nueva filosofía consistía en enseñar a los estudiantes a utilizar la herramienta de manera inteligente en lugar de ignorarla.

La esencia de este nuevo paradigma se resume en su declaración de intenciones:

Frente a enfoques que restringen o penalizan el uso de la IA, PROFUNDIA propone su integración crítica y formativa como herramienta cognitiva para potenciar el aprendizaje profundo, la interpretación técnica, la argumentación fundamentada y el desarrollo de la autonomía del estudiante.

3. El método: aprender a pensar «enseñando» a la IA.

La propuesta metodológica supone un cambio estructural en el aprendizaje, ya que se pasa de un proceso lineal (profesor-estudiante) a otro triangular (profesor-estudiante-IA). En primer lugar, los estudiantes resuelven un problema por sus propios medios. Después, piden a la IA que resuelva el mismo problema. La fase clave llega a continuación: deben comparar críticamente su solución con la de la IA.

En este punto radica la innovación más profunda del método. La IA se incorpora «como un agente más en el proceso, con un papel activo y con un sesgo deliberado hacia el error». El papel del estudiante cambia radicalmente: deja de ser un usuario pasivo para convertirse en entrenador activo de la IA. Su tarea ya no consiste en obtener una respuesta, sino en identificar, cuestionar y corregir los errores de la herramienta, lo que les lleva a «enseñar» a la IA a resolver problemas complejos y, en el proceso, a dominar el tema a un nivel mucho más profundo.

El objetivo final de este proceso es la «reflexión metacognitiva». Se pretende que el estudiante «reflexione sobre cómo piensa y aprende» al contrastar su razonamiento con el de la IA, sus compañeros y el profesor.

4. La meta final: la IA como una «mindtool» para crear mejores ingenieros.

Este enfoque no es solo una técnica ingeniosa, sino que se fundamenta en un concepto pedagógico sólido: el de las mindtools o «herramientas para la mente». Esta idea defiende el uso de la tecnología no como un sustituto del esfuerzo intelectual, sino como un andamio para potenciar el pensamiento crítico y la construcción activa del conocimiento, es decir, tratar la tecnología no como una muleta, sino como un gimnasio para la mente.

Este planteamiento conecta directamente con las demandas del mercado laboral actual. Como señalan estudios previos (Pellicer et al., 2017), las empresas no solo buscan egresados con conocimientos técnicos, sino también con habilidades transversales como la resolución de problemas, la autonomía y el juicio crítico.

Por tanto, los resultados de aprendizaje que se persiguen son extremadamente precisos y potentes. El objetivo es formar ingenieros que puedan:

  1. Formular problemas técnicos complejos con la precisión necesaria para que la IAG pueda analizarlos.
  2. Evaluar y validar críticamente las soluciones generadas por la IAG, justificando sus decisiones.
  3. Gestionar de forma autónoma el uso de la IAG dentro de estrategias complejas de resolución de problemas.

En definitiva, se les prepara para un entorno profesional «complejo, colaborativo y en constante evolución».

Conclusión: ¿Y si dejamos de temer a la tecnología y empezamos a usarla para pensar mejor?

El proyecto PROFUNDIA demuestra que es posible cambiar la perspectiva sobre la IA en la educación. Transforma lo que muchos consideran una amenaza para el aprendizaje en una oportunidad única para fomentar un pensamiento más profundo, crítico y autónomo.

Su reflexión trasciende las aulas de ingeniería. ¿Qué otras tecnologías emergentes podríamos empezar a integrar en nuestras profesiones, no como un atajo, sino como un catalizador para desarrollar un pensamiento más crítico y sofisticado?

Os dejo un audio en el que dos personas hablan y discuten sobre este tema.

También os dejo un vídeo que resume muy bien el contenido del proyecto.

Referencias:

Blight, T., Martínez-Pagán, P., Roschier, L., Boulet, D., Yepes-Bellver, L., & Yepes, V. (2025). Innovative approach of nomography application into an engineering educational context. PloS one, 20(2), e0315426.

Castro-Aristizabal, G., Acosta-Ortega, F., & Moreno-Charris, A. V. (2024). Los entornos de aprendizaje y el éxito escolar en Latinoamérica. Lecturas de Economía, (101), 7-46.

Hadgraft, R. G., & Kolmos, A. (2020). Emerging learning environments in engineering education. Australasian Journal of Engineering Education, 25(1), 3-16.

Jiang, N., Zhou, W., Hasanzadeh, S., & Duffy Ph D, V. G. (2025). Application of Generative AI in Civil Engineering Education: A Systematic Review of Current Research and Future Directions. In CIB Conferences (Vol. 1, No. 1, p. 306).

Jonassen, D. H., Peck, K. L., & Wilson, B. G. (1999). Learning with technology: A constructivist perspective. Columbus, OH: Merrill/Prentice-Hall.

Liao, W., Lu, X., Fei, Y., Gu, Y., & Huang, Y. (2024). Generative AI design for building structures. Automation in Construction157, 105187.

Navarro, I. J., Marti, J. V., & Yepes, V. (2023). Evaluation of Higher Education Students’ Critical Thinking Skills on Sustainability. International Journal of Engineering Education, 39(3), 592-603.

Onatayo, D., Onososen, A., Oyediran, A. O., Oyediran, H., Arowoiya, V., & Onatayo, E. (2024). Generative AI applications in architecture, engineering, and construction: Trends, implications for practice, education & imperatives for upskilling—a review. Architecture4(4), 877-902.

Pellicer, E., Yepes, V., Ortega, A. J., & Carrión, A. (2017). Market demands on construction management: View from graduate students. Journal of Professional Issues in Engineering Education and Practice143(4), 04017005.

Perkins, D., & Unger, C. (1999). La enseñanza para la comprensión. Argentina: Paidós.

Torres-Machí, C., Carrión, A., Yepes, V., & Pellicer, E. (2013). Employability of graduate students in construction management. Journal of Professional Issues in Engineering Education and Practice139(2), 163-170.

Xu, G., & Guo, T. (2025). Advances in AI-powered civil engineering throughout the entire lifecycle. Advances in Structural Engineering, 13694332241307721.

Zhou, Z., Tian, Q., Alcalá, J., & Yepes, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 100268.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Primer aniversario de la DANA de Valencia: Anatomía de un desastre

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

Hoy, 29 de octubre de 2025, se cumple el primer aniversario de la DANA de Valencia de 2024, un evento que ha sido catalogado como una de las mayores catástrofes naturales ocurridas en España en décadas. La tragedia se produjo por unas precipitaciones históricas que pulverizaron récords nacionales, con máximos de más de 770 l/m² acumulados en 24 horas en Turís, lo que demuestra que el riesgo cero no existe en un contexto de cambio climático. El desastre no se explica únicamente por la cantidad de lluvia caída, sino por la trágica multiplicación entre el evento extremo, sobrealimentado por el calentamiento global, y el fallo estructural de un urbanismo que, durante décadas, ha ignorado las zonas de riesgo. Aunque la respuesta inmediata y los esfuerzos por restablecer las infraestructuras críticas han sido notables, la ingeniería de la reconstrucción no puede limitarse a reponer lo perdido, ya que replicar el estado previo implica aceptar que los efectos se repetirán. En este contexto, un medio de comunicación me ha solicitado una entrevista para abordar si, un año después, hemos avanzado hacia las soluciones de resiliencia y prevención que el conocimiento técnico lleva tiempo demandando. Os dejo la entrevista completa, por si os resulta de interés.

¿Cómo describiría desde un punto de vista técnico lo que ocurrió el 29 de octubre en Valencia? ¿Qué falló?

Desde el punto de vista técnico e ingenieril, el suceso del 29 de octubre en Valencia fue un evento de inundación extremo provocado por una DANA con un carácter pluviométrico extraordinario, ya que se registraron cifras extremas, como los 771,8 l/m² en 24 horas en Turís, y caudales en la Rambla del Poyo de hasta 2.283 m³/s antes de que los sensores fueran arrastrados, superando con creces cualquier expectativa de diseño y demostrando que el riesgo cero no existe. La magnitud del impacto fue consecuencia de una serie de factores concurrentes. El factor principal se produjo en la cuenca de la Rambla del Poyo, donde la virulencia del agua (con caudales medidos superiores a 2.200 m³/s y estimaciones simuladas que superan los 3.500 m³/s) se encontró con la ausencia de infraestructuras hidráulicas suficientes para la laminación de avenidas y otras medidas complementarias. Los proyectos de defensa contra inundaciones, que llevaban años planificados y con estudios previos, no se ejecutaron a tiempo. En contraste, el Nuevo Cauce del Turia y las presas de Forata y Buseo funcionaron eficazmente, protegiendo la ciudad de Valencia y otras poblaciones. Además de estas vulnerabilidades latentes, el impacto humano y material se vio agravado por desafíos en la respuesta, incluyendo la efectividad en los sistemas de alerta temprana (SAIH) bajo condiciones tan extremas y en la implantación de los planes de emergencia municipales, así como en la emisión de avisos con suficiente antelación a la población, impidiendo que esta pudiera reaccionar a tiempo.

¿Qué papel jugaron las infraestructuras y la planificación urbana en la magnitud de los daños? ¿Hubo zonas especialmente vulnerables o mal planificadas?

Las infraestructuras y la planificación urbana jugaron un papel determinante en la magnitud de los daños. Por un lado, las obras estructurales, como el Nuevo Cauce del Turia y las presas de Forata y Buseo, resultaron fundamentales, mitigando las inundaciones y protegiendo la ciudad de Valencia y otras poblaciones. Sin embargo, la magnitud de los daños se vio agravada por la ausencia de medidas integrales de defensa diseñadas para la laminación de avenidas, especialmente en la cuenca de la Rambla del Poyo, donde los proyectos planificados no se ejecutaron a tiempo. Los caudales extraordinarios superaron con creces la capacidad existente. Además, las infraestructuras lineales (carreteras, ferrocarriles y puentes) actuaron como puntos de estrangulamiento, reteniendo arrastres y aumentando el nivel de destrucción. Las zonas más vulnerables se concentraron en el cono aluvial de L’Horta Sud, una zona de alto riesgo urbanizada principalmente entre la riada de 1957 y la década de 1970, sin planificación adecuada ni infraestructuras de saneamiento suficientes. La falta de unidad de criterio en la ordenación territorial municipal y la prevalencia de intereses de desarrollo sobre las directrices de restricción de usos en zonas inundables (a pesar de instrumentos como el PATRICOVA) aumentaron la vulnerabilidad social y material del territorio. Aunque algunos hablan de emergencia hidrológica, probablemente sea más adecuado hablar de un profundo desafío urbanístico y de ordenación territorial.

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

Desde entonces, ¿qué medidas reales se han tomado —si las hay— para reducir el riesgo de que vuelva a suceder algo similar?

Desde la DANA de octubre de 2024, las medidas adoptadas se han enfocado en la reconstrucción con criterios de resiliencia y atención a urgencias, aunque las soluciones estructurales de gran calado, que requieren plazos de ejecución más largos, siguen mayormente pendientes. En la fase inmediata, se activaron obras de emergencia, destacando la reparación y refuerzo de infraestructuras críticas como las presas de Forata y Buseo, y la recuperación de cauces y del canal Júcar-Turia. Un ejemplo de reconstrucción en curso es la mejora de la red de drenaje de Paiporta, que forma parte de las primeras actuaciones tras la catástrofe. En el ámbito normativo, el Consell aprobó el Decreto-ley 20/2024 de medidas urbanísticas urgentes y se ha puesto sobre la mesa la revisión de normativas como el Código Técnico de la Edificación (CTE) para incluir requisitos para edificaciones en zonas inundables. También se prevé que los sistemas de comunicación y alerta estén coordinados en todas las cuencas mediterráneas, lo que podría evitar muertes en caso de repetirse el fenómeno. Sin embargo, es un hecho que, meses después, la legislación urbanística de fondo sigue sin cambios estructurales y que, en cuanto a las obras hidráulicas estructurales de prevención, como las presas de laminación, sus plazos de tramitación y ejecución impiden que se hayan materializado avances significativos todavía, dificultando el avance de proyectos críticos. Por tanto, existe una etapa de reconstrucción que debería ser inteligente y no dejar las infraestructuras como estaban antes de la DANA, pues eso implicaría asumir los mismos riesgos, y otra a medio y largo plazo que permita defender a la población, minimizando los riesgos.

¿Qué actuaciones considera urgentes o prioritarias para evitar repetir los errores del pasado?

Para evitar repetir los errores del pasado, es necesario un cambio de modelo que combine inversión estructural urgente con planificación territorial resiliente. En ingeniería hidráulica, la acción prioritaria es acelerar e implementar las obras de laminación contempladas en la planificación hidrológica, como la construcción de presas en las cuencas de la Rambla del Poyo y el río Magro, y destinar recursos extraordinarios para construir las estructuras de prevención necesarias y corregir el déficit de infraestructuras de prevención. También es prioritario eliminar obstáculos urbanísticos, como puentes y terraplenes insuficientes, y reconstruir infraestructuras lineales con criterios resilientes, permitiendo el paso seguro del agua. En urbanismo, la enseñanza principal es devolverle el espacio al agua, retirando estratégicamente infraestructuras de las zonas de flujo preferente para reducir la exposición al riesgo más elevado e iniciando un plan a largo plazo para reubicar infraestructuras críticas y viviendas vulnerables. Se recomienda revisar la normativa sobre garajes subterráneos en llanuras de inundación. Asimismo, es esencial invertir en sistemas de alerta hidrológica robustos, con más sensores y modelos predictivos que traduzcan la predicción en avisos concretos y accionables. Por último, es fundamental que la gobernanza supere la inercia burocrática mediante un modelo de ejecución de urgencia que priorice el conocimiento técnico y garantice que el riesgo no se convierta de nuevo en catástrofe humana.

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

¿Hasta qué punto Valencia está preparada para afrontar lluvias torrenciales o fenómenos extremos de este tipo en el futuro?

Desde una perspectiva técnica e ingenieril, a día de hoy, la vulnerabilidad de fondo persiste y no estamos preparados para afrontar una nueva DANA de la magnitud de la ocurrida en 2024. La situación es similar a la de una familia que circula en coche por la autopista a 120 km/h sin cinturones de seguridad: bastaría un obstáculo inesperado (una DANA) para que el accidente fuera mortal. Aceptar la reposición de lo perdido sin añadir nuevas medidas de protección estructural implicaría aceptar que los efectos del desastre se repetirán, algo inasumible. El problema principal es que prácticamente no se han ejecutado las grandes obras de laminación planificadas, especialmente en las cuencas de la Rambla del Poyo y del Magro, que constituyen la medida más eficaz para proteger zonas densamente pobladas mediante contención en cabecera. La DANA expuso un problema urbanístico severo. Meses después, mientras no se modifique la legislación territorial de fondo y se actúe sobre el territorio, el riesgo latente de la mala planificación persiste ante el próximo fenómeno extremo. La única forma de eliminar esta vulnerabilidad es mediante una acción integral que combine inversión urgente en obras estructurales con retirada estratégica de zonas de flujo preferente.

Os dejo un pequeño vídeo didáctico donde se resume lo acontecido en la DANA del 29 de octubre de 2024.

En las noticias de hoy, aparezco en varios reportajes:

En el Telediario de TVE, en horario de máxima audiencia, a las 21:00 h, se hizo un programa especial sobre la DANA donde tuve la ocasión de participar. Os dejo un trozo del vídeo.

 

Reconstruir Valencia un año después: “cirugía urbana” y zonas verdes para protegerse de futuras danas

Un año después de la DANA del 29-O, los expertos advierten: “Podría volver a pasar”

Valencia: expertos advierten que la región aún no está preparada para afrontar otro episodio climático extremo

Valencia se blinda frente al agua: garajes elevados e ingeniería verde tras la DANA

One year after Valencia’s deadly flooding experts warn ‘it could happen again’

Një vit pas përmbytjeve vdekjeprurëse në Valencia, ekspertët paralajmërojnë se ‘mund të ndodhë përsëri’

Egy évvel a valenciai árvíz után a szakértők figyelmeztetnek: “Ez újra megtörténhet”

Egy évvel a spanyol árvizek után: Tanulságok és kihívások a Valenciai Közösség számára

 

También os dejo los artículos que he ido escribiendo sobre este tema en este blog. Espero que os resulten de interés.

Lo que la catástrofe de Valencia nos obliga a repensar: cuatro lecciones. 30 de septiembre de 2025.

Resiliencia en las infraestructuras: cómo prepararnos para un futuro de incertidumbre. 26 de septiembre de 2025.

Iniciativa Legislativa Popular para la Modificación de la Ley de Aguas. 17 de julio de 2025.

Posibles consecuencias de una nueva DANA en el otoño de 2025. 16 de julio de 2025.

Discurso de apertura en el evento Innotransfer “Infraestructuras resilientes frente a eventos climáticos extremos”. 26 de mayo de 2025.

Ya son 6 meses desde el desastre de la DANA en Valencia. 29 de abril de 2025.

Jornada sobre infraestructuras resilientes al clima. 8 de abril de 2025.

Entrevista en Levante-EMV sobre la reconstrucción tras la DANA. 17 de marzo de 2025.

La ingeniería de la reconstrucción. 6 de marzo de 2025.

Lecciones aprendidas: proteger a la población es la prioridad. 25 de diciembre de 2024.

DANA 2024. Causas, consecuencias y soluciones. 3 de diciembre de 2024.

Qué es una presa. “La via verda”, À Punt. 28 de noviembre de 2024.

Aplicación del modelo del queso suizo en la gestión de desastres. 10 de noviembre de 2024.

Gestión del riesgo de inundación en infraestructuras críticas: estrategias y medidas de resiliencia. 8 de noviembre de 2024.

Presas y control de inundaciones: estrategias integradas para la reducción de riesgos hídricos. 7 de noviembre de 2024.

Defensa integral contra inundaciones: un esbozo de las estrategias para la gestión de riesgos. 6 de noviembre de 2024.

Introducción a las crecidas en ingeniería hidráulica. 5 de noviembre de 2024.

Precipitación en ingeniería hidráulica: conceptos, medición y análisis. 4 de noviembre de 2024.

Efectos de las inundaciones en las estructuras de las edificaciones. 2 de noviembre de 2024.

Valencia frente a la amenaza de una nueva inundación: análisis, antecedentes y estrategias para mitigar el riesgo. 1 de noviembre de 2024.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La herramienta de cálculo del siglo XVII que vuelve a la vida gracias a Python.

Introducción: El arte perdido del cálculo visual.

Vivimos en un mundo donde cualquier cálculo, por complejo que sea, está a un clic de distancia. Dependemos totalmente de las calculadoras digitales y las computadoras, hasta el punto de que resulta difícil imaginar cómo se resolvían problemas de ingeniería complejos antes de la era digital. Sin embargo, hubo una herramienta ingeniosa y puramente visual que dominó el mundo técnico durante décadas: el nomograma.

¿Cómo es posible que una tecnología del siglo XVII, considerada obsoleta durante más de cuarenta años, esté resurgiendo en campos de alta tecnología como la ingeniería minera? La respuesta se halla en una sorprendente sinergia entre la sabiduría analógica del pasado y el poder del código abierto actual.

1. Más allá de la nostalgia: una herramienta antigua para problemas modernos.

Un nomograma es una representación gráfica de una ecuación matemática. Está compuesto por una serie de ejes graduados, rectos o curvos, que representan las variables de la fórmula. Para resolver la ecuación, basta con trazar una línea recta (llamada isopleta) que conecte los valores conocidos en sus respectivos ejes; el punto en el que esta línea corta el eje de la variable desconocida proporciona la solución al instante.

Aunque sus orígenes se remontan al siglo XVII, los nomogramas se convirtieron en herramientas indispensables en el siglo XIX para la navegación astronómica y, más tarde, en la década de 1920, para resolver complejos cálculos de ingeniería relacionados con la presión, el volumen y la temperatura. Durante el resto del siglo XX, vivieron su época dorada en campos como la medicina, la aeronáutica y la química, pero la llegada de los ordenadores en la década de 1980 los dejó relegados al olvido. Hoy, contra todo pronóstico, están volviendo a ser útiles, no como una curiosidad histórica, sino como una herramienta práctica y potente, especialmente en entornos de campo o talleres donde la tecnología digital no siempre es la mejor opción.

2. Ingeniería para todos: resuelve fórmulas complejas solo con una regla.

El beneficio más destacado de los nomogramas es su capacidad para democratizar el cálculo. Permiten que cualquier persona, independientemente de su formación matemática, pueda resolver ecuaciones complejas con gran precisión. Como señala un estudio reciente sobre su aplicación en ingeniería minera:

“Además, los nomogramas permiten que personas sin conocimientos previos resuelvan fórmulas complejas con una precisión adecuada”.

Este enfoque es increíblemente poderoso. Elimina la barrera del conocimiento matemático avanzado y reduce drásticamente el riesgo de cometer errores al realizar cálculos manuales en tareas repetitivas. En la práctica, son más rápidos y fáciles de entender que los procedimientos analíticos tradicionales, ya que convierten un problema abstracto en una tarea visual sencilla.

3. A prueba de fallos: la robustez del papel frente a las pantallas.

En un mundo digital, la simplicidad del papel es una ventaja formidable. Los nomogramas destacan en entornos en los que los dispositivos electrónicos no son prácticos, como en operaciones de campo en minería, talleres mecánicos u obras. Sus ventajas son evidentes: son portátiles, resistentes y no necesitan electricidad ni conexión a internet.

Esta robustez los convierte en la herramienta ideal para realizar cálculos repetitivos sobre el terreno. Por ejemplo, un ingeniero de minas podría usar un nomograma impreso para determinar al instante el diseño correcto de una voladura, simplemente conectando líneas entre la densidad de la roca, la velocidad del explosivo y el diámetro de la perforación, y así reducir un cálculo complejo a una tarea visual simple y robusta sobre el papel.

4. El Renacimiento digital: cómo el código abierto revivió el nomograma.

Si los nomogramas son tan útiles, ¿por qué desaparecieron? Su principal inconveniente histórico no radicaba en su uso, sino en su creación. La parte más engorrosa era el dibujo matemático de las escalas graduadas, un proceso laborioso y especializado que probablemente fue una de las principales causas de su declive.

Aquí es donde entra en juego el software moderno. El resurgimiento de esta técnica se debe en gran parte a PyNomo y Nomogen, dos herramientas de código abierto basadas en Python. Fueron creadas por Leif Roschier y Trevor Blight, dos de los autores del estudio que ha inspirado este resurgimiento, que han unido así la experiencia académica con la programación moderna. Estas soluciones permiten a cualquier ingeniero o científico generar nomogramas complejos y precisos en cuestión de segundos, eliminando el obstáculo que los había hecho obsoletos.

5. Intuición visual: comprendiendo la relación entre las variables.

Además de su utilidad práctica, los nomogramas ofrecen una ventaja más sutil, pero profunda: fomentan la comprensión conceptual del problema. Mientras que una calculadora o un programa informático suelen funcionar como una «caja negra» que simplemente proporciona un resultado, un nomograma permite ver la relación entre las variables.

Esta visualización intrínseca de los datos permite una comprensión mucho más profunda. Al mover la isopleta (la regla) sobre el gráfico, un ingeniero puede desarrollar una intuición sobre cómo afecta un pequeño cambio en una variable a las demás, algo que se pierde al introducir simplemente números en un software. Por ello, se convierten en una poderosa herramienta didáctica.

Conclusión: lecciones de una sabiduría olvidada.

La historia del nomograma es un ejemplo fascinante de cómo las ideas del pasado pueden recuperar su relevancia gracias a la tecnología moderna. La combinación de una técnica de cálculo del siglo XVII con un software de código abierto del siglo XXI demuestra que no se trata solo de una reliquia, sino de una prueba de que las soluciones más simples y visuales pueden seguir siendo increíblemente valiosas.

Su regreso nos obliga a plantearnos una pregunta importante: en nuestra carrera constante hacia la digitalización, ¿qué otras herramientas analógicas e ingeniosas hemos olvidado que podrían ayudarnos a resolver los problemas del mañana?

Os dejo aquí una conversación en la que se tratan estos conceptos.

En este vídeo se resumen los conceptos más relevantes sobre los nomogramas.

Os dejo la comunicación que presentamos recientemente en el VII Congreso Nacional de Áridos. En ella se ilustran, proporcionan y explican detalladamente siete ejemplos originales de nomogramas que se utilizan para resolver ecuaciones comunes en la industria de la explotación de áridos, como el diseño de voladuras y la estimación de ratios de perforación.

Descargar (PDF, 5.07MB)

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BLIGHT, T.; BOULET, D.; PERALES, A. (2025). Elaboración y uso de nomogramas para el ámbito de las explotaciones de áridos. Introducción de los códigos abiertos Pynomo y Nomogen. Actas del VII Congreso Nacional de Áridos, Córdoba, pp. 1085-1100. ISBN 978-84-125559-2-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá de la resistencia: cinco claves sorprendentes sobre la infraestructura del futuro.

En el mundo de la ingeniería y la construcción, hay una pregunta fundamental que guía todo el proceso de diseño: «¿Qué tan seguro es “bastante seguro”?». Durante décadas, la respuesta parecía sencilla: construir estructuras lo bastante fuertes para soportar las fuerzas esperadas. El objetivo principal era la resistencia, es decir, la capacidad de mantenerse sin romperse.

Sin embargo, en un mundo cada vez más marcado por eventos extremos e impredecibles, desde huracanes más intensos hasta fallos en cadena en redes complejas, esta filosofía ya no es suficiente. La simple resistencia no tiene en cuenta lo que sucede después de un desastre. Es aquí donde surge un concepto mucho más relevante para nuestro tiempo: la resiliencia.

La resiliencia no se limita a soportar un golpe, sino que se centra en la capacidad de recuperación de un sistema tras recibirlo. Supone una nueva frontera en el diseño de ingeniería que va más allá de la fuerza bruta, ya que incorpora la rapidez, la creatividad y la capacidad de recuperación como características de diseño medibles.

Este artículo explorará cinco de los descubrimientos más sorprendentes e impactantes que nos ofrece esta filosofía emergente sobre cómo construir la infraestructura del mañana.

Los cinco descubrimientos clave sobre la resiliencia en ingeniería

1 .La noción de «seguridad» ha evolucionado drásticamente. Ya no se trata solo de resistir.

La forma en que los ingenieros definen la «seguridad» ha cambiado profundamente. Los métodos tradicionales, como el diseño por esfuerzos admisibles (ASD) o el diseño por factores de carga y resistencia (LRFD), se basaban en un principio sencillo: garantizar que la capacidad del sistema superara la demanda esperada. Aunque eran eficaces, estos enfoques no evaluaban la seguridad a nivel del sistema completo y no siempre producían los diseños más eficientes desde el punto de vista económico.

El primer gran avance fue el diseño basado en el desempeño (PBD). Esta filosofía cambió el enfoque de simplemente «no fallar» a evaluar el comportamiento de una estructura durante un evento extremo. El PBD introdujo métricas críticas de rendimiento, como las pérdidas económicas, el tiempo de inactividad y el número de víctimas. Aunque supuso un gran avance, aún dejaba fuera una parte esencial: la capacidad de recuperación del sistema.

El paso más reciente y transformador es el diseño basado en la resiliencia (RBD). La diferencia clave es que el RBD incorpora formalmente el proceso de recuperación del sistema tras un evento. Ya no solo importa cómo resiste el impacto, sino también cuán rápido y eficientemente puede volver a funcionar. Esto supone un cambio de paradigma fundamental en ingeniería, donde la resiliencia se convierte en una métrica tan importante como la resistencia.

La clave del cambio es que un análisis de resiliencia no solo considera los riesgos, sino también la capacidad de recuperación, integrando así la prevención, el impacto y la rehabilitación en una visión holística del diseño.

2. No se trata de ser irrompible. Recuperarse rápido es el nuevo superpoder.

Una de las ideas más contraintuitivas del diseño basado en la resiliencia es que la invulnerabilidad no es el objetivo final. En lugar de buscar estructuras que nunca fallen, la verdadera prioridad es la capacidad de un sistema para recuperarse rápidamente de un fallo, un atributo de diseño tan importante como su resistencia inicial.

Imaginemos dos estructuras, la «Estructura A» y la «Estructura B», ambas sometidas a un evento severo que supera sus límites de diseño. Como resultado, el rendimiento de ambas cae drásticamente. A primera vista, podrían parecer igualmente fallidas. Sin embargo, la resiliencia marca la diferencia.

La «Estructura A» ha sido diseñada de manera que, en caso de fallo, sus componentes puedan ser reparados o reemplazados de forma rápida y eficiente, lo que le permite recuperar su funcionalidad original en mucho menos tiempo. Por el contrario, la «Estructura B» tarda considerablemente más en volver a operar. Según la filosofía de la resiliencia, el diseño de la Estructura A es superior, ya que minimiza el tiempo total de interrupción del servicio.

La lección es clara: el diseño moderno ya no solo se pregunta «¿Qué tan fuerte es?», sino también «¿Qué tan rápido se recupera después de caer?». La rapidez de recuperación no es un extra, sino una característica de diseño fundamental.

3. La resiliencia no es una cualidad única, sino una combinación de cuatro «ingredientes» medibles.

Aunque la resiliencia puede parecer un concepto abstracto, los ingenieros la han desglosado en cuatro propiedades distintas y medibles. Comprender estos cuatro «ingredientes» es clave para diseñar sistemas verdaderamente resilientes.

  • La robustez es la capacidad de un sistema para soportar un cierto nivel de interrupción sin perder eficiencia. Representa la resistencia inherente para absorber el impacto inicial. Cuanto más robusto es un sistema, menos daño sufre desde el comienzo del evento.
  • La rapidez es la capacidad de un sistema para recuperar rápidamente su funcionamiento normal después de una interrupción. Este componente se centra en minimizar las pérdidas y evitar futuras interrupciones, de modo que el sistema vuelva a operar en el menor tiempo posible.
  • El ingenio es la capacidad de identificar problemas, establecer prioridades y movilizar recursos de manera eficaz. Un sistema con ingenio puede reducir el tiempo necesario para evaluar daños y organizar una respuesta eficaz, lo que facilita una recuperación más rápida. Es como un equipo de urgencias experto que sabe exactamente qué especialistas llamar y qué equipo utilizar, minimizando el tiempo entre la detección del problema y la solución eficaz.
  • La redundancia es la capacidad de los elementos dañados del sistema para ser sustituidos por otros. La redundancia permite que el sistema siga funcionando, aunque sea con capacidad reducida, redirigiendo la carga de los componentes fallidos a elementos auxiliares. Piénselo como la rueda de repuesto de un coche o los servidores de respaldo de un sitio web: recursos listos para asumir la función de un componente principal en caso de fallo.

4. La recuperación no es instantánea. Existe una «fase de evaluación» crítica tras el desastre.

Cuando un sistema se ve interrumpido, su rendimiento no mejora de forma inmediata una vez que el evento ha terminado. El análisis de resiliencia muestra que la recuperación sigue una curva con distintas fases críticas. Inicialmente, el rendimiento del sistema empeora durante el evento (de t1 a t2).

A continuación, aparece un período a menudo pasado por alto, pero crucial: la fase de evaluación (de t2 a t3). Durante esta etapa, la funcionalidad del sistema permanece baja y casi plana. No se observa una mejora significativa, ya que en este tiempo se evalúan los daños, se reúnen los recursos, se organizan los equipos de respuesta y se establece un plan de acción efectivo.

Un objetivo clave del diseño resiliente es acortar la duración de esta fase de «línea plana». Mediante una planificación previa más sólida, planes de respuesta a emergencias claros y una movilización eficiente de recursos, es posible reducir significativamente este período de inactividad.

Solo después de esta fase de evaluación comienza la fase de recuperación (de t3 a t4), durante la cual la funcionalidad del sistema empieza a restaurarse hasta alcanzar un nivel aceptable y recuperar gradualmente su capacidad total de operación.

Figura 2. Rendimiento del sistema bajo interrupción

5. La resiliencia no es solo un concepto, sino una cifra que se puede calcular.

Uno de los descubrimientos más importantes del diseño basado en la resiliencia es que esta no solo es un concepto cualitativo, sino también una métrica cuantificable. Los ingenieros pueden calcular un «índice de resiliencia», que a menudo se define como el área bajo la curva de rendimiento del sistema a lo largo del tiempo. Cuanto mayor sea esta área, mayor será la resiliencia del sistema.

Un ejemplo concreto proviene de un estudio realizado en el túnel del metro de Shanghái. Tras ser sometido a una sobrecarga extrema, el túnel perdió entre un 70 % y un 80 % de su rendimiento. Lo revelador del estudio fue que la simple eliminación de la sobrecarga, es decir, una recuperación pasiva, solo restauró el 1 % del rendimiento. Esto demuestra que esperar a que el problema desaparezca no es una estrategia de recuperación viable.

Para recuperar la funcionalidad, fue necesaria una intervención activa: la inyección de lechada de cemento en el suelo alrededor del túnel. No obstante, esta solución no fue inmediata, ya que se necesitaron cuatro años para recuperar un 12,4 % adicional del rendimiento. El estudio concluyó que, al mejorar y acelerar este proceso, el índice de resiliencia del túnel podría aumentar hasta un 73 %.

La capacidad de cuantificar la resiliencia transforma el enfoque de la ingeniería. Permite comparar objetivamente distintas opciones de diseño, justificar inversiones en estrategias de recuperación más rápidas y, en última instancia, tomar decisiones basadas en datos para construir infraestructuras más eficaces y seguras.

Conclusión: Diseñando para el mañana

El debate sobre la infraestructura del futuro está experimentando un profundo cambio. Hemos pasado de una obsesión por la fuerza y la resistencia a un enfoque más inteligente y holístico centrado en la recuperación. La resiliencia nos enseña que la forma en que un sistema se recupera de una avería es tan importante, si no más, que su capacidad para resistir el impacto inicial.

Al entender la resiliencia como una combinación medible de robustez, rapidez, ingenio y redundancia, podemos diseñar sistemas que no solo sobrevivan a los desafíos del siglo XXI, sino que también se recuperen de ellos de manera rápida, eficiente y predecible.

Ahora que la recuperación se considera un factor de diseño, surge una pregunta crítica: ¿qué infraestructura esencial de tu comunidad —eléctrica, de agua o de transporte— necesita ser rediseñada para ser no solo más fuerte, sino también más rápidamente recuperable?

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.