Ralph B. Peck: Una vida dedicada a la ingeniería geotécnica

Ralph B. Peck (1912 – 2008). https://www.ngi.no/en/about-ngi/ngis-historical-libraries/peck/

Ralph Brazelton Peck (23 de junio de 1912 – 18 de febrero de 2008) fue uno de los ingenieros civiles más influyentes del siglo XX. Su legado en el campo de la geotecnia se forjó a lo largo de décadas de investigación, enseñanza y práctica profesional. Nacido en Winnipeg (Canadá), creció en un ambiente técnico, ya que su padre, Orwin K. Peck, era ingeniero estructural especializado en obras ferroviarias. Esa influencia temprana marcó su destino profesional.

Aunque de niño soñaba con ser operador de tranvías, su padre lo persuadió para que estudiara ingeniería. A los 18 años rechazó becas de la Universidad de Colorado y de la Escuela de Minas de Colorado y se matriculó en el Instituto Tecnológico de Rensselaer (RPI) de Nueva York en 1930. Ese verano trabajó en la Denver & Rio Grande Railroad, donde comenzó su experiencia práctica en el mundo ferroviario. Durante sus estudios en RPI, diseñó su primer puente ferroviario, un puente con vigas de 20 m sobre el río Ánimas en Nuevo México, construido durante sus vacaciones de invierno de 1930, aunque más tarde fue destruido por una crecida del río.

En 1934, se graduó en Ingeniería Civil, pero como no encontró trabajo a causa de la Gran Depresión, aceptó una beca para cursar estudios de posgrado en estructuras, geología y matemáticas. En 1937 se doctoró en ingeniería civil con una tesis sobre rigidez en puentes colgantes, revisada por el reconocido ingeniero David Barnard Steinman.

Ese verano trabajó en la American Bridge Company, pero perdió su empleo al cabo de unos meses debido a la falta de proyectos. En marzo de 1938, cuando aún no había recibido ofertas de trabajo, tomó una decisión trascendental: pidió un préstamo de 5000 dólares a su suegro para estudiar mecánica de suelos en la Universidad de Harvard, bajo la tutela de Arthur Casagrande. Esta formación definiría el rumbo de su carrera profesional. Pocos días después, rechazó una oferta de trabajo como diseñador de puentes en la empresa Waddell & Hardesty, en Nueva York, para dedicarse a la geotecnia.

Casagrande lo aceptó en sus clases, primero como oyente y luego como ayudante de laboratorio. También colaboró con Ralph E. Fadum en el campo. Pronto, Peck comenzó a relacionarse con algunas de las figuras más destacadas del ámbito geotécnico: además de Casagrande, conoció y trabajó con Albert E. Cummings —pionero en cimentaciones con pilotes, quien más tarde le legó su biblioteca técnica—, Laurits Bjerrum, Alec W. Skempton y, especialmente, Karl Terzaghi, con quien forjaría una profunda amistad y colaboración profesional.

En enero de 1939, Terzaghi lo eligió como su representante en la obra del metro de Chicago, proyecto en el que había sido contratado como consultor. Peck asumió un papel central, manteniendo correspondencia constante con Terzaghi, a quien entregaba datos, informes y observaciones. También recibió la guía de Ray Knapp, jefe de inspección de obras del metro, a quien Peck consideró una influencia igual de formativa que Terzaghi por enseñarle a desenvolverse con eficacia en organizaciones complejas. Otra figura relevante en esta etapa fue Ralph Burke, ingeniero jefe de varios grandes proyectos en Chicago, con quien colaboró más adelante como consultor.

Su trabajo en el metro de Chicago fue clave en su desarrollo profesional. Allí aplicó, junto a Terzaghi, métodos avanzados de muestreo, medición de deformaciones e interpretación de suelos. Esta experiencia se materializó en el libro Soil Mechanics in Engineering Practice, publicado en 1948, escrito conjuntamente con Terzaghi y basado en gran medida en su experiencia conjunta. En esta obra se introdujo por primera vez el término «prueba de penetración estándar» (SPT), un concepto desarrollado a partir de un instrumento creado por Charley Gow en Boston. Terzaghi elogió públicamente la ética, el carácter y la rigurosidad de Peck durante el proceso de redacción.

En 1942, Peck se incorporó como profesor asistente de investigación en la Universidad de Illinois, donde impartió clases durante 32 años, hasta 1974. Aunque inicialmente dictaba cursos de estructuras, pronto se dedicó por completo a la geotecnia. En 1945, Terzaghi se unió como profesor visitante y su colaboración continuó en los años siguientes.

En 1953, Peck publicó junto con Thomas H. Thornburn y Walter E. Hanson el libro Foundation Engineering, que fue adoptado como texto en más de 50 universidades, consolidando aún más su influencia educativa. Su dedicación a la formación de ingenieros fue incuestionable y muchos de sus alumnos se convirtieron en figuras destacadas en el campo de la geotecnia.

Tras jubilarse, Peck mantuvo una intensa actividad como consultor, participando en más de mil proyectos en cuarenta y cuatro estados de EE. UU. y veintiocho países de cinco continentes. Su experiencia fue requerida en presas como la de Itezhi-Tezhi, en Zambia, y la de Saluda, en Carolina del Sur; en proyectos de transporte como el BART de San Francisco y los metros de Washington, Los Ángeles y Baltimore; así como en la cimentación del puente Rion-Antirion, en Grecia, y el oleoducto Trans-Alaska.

Entre 1969 y 1973, fue presidente de la Sociedad Internacional de Mecánica de Suelos e Ingeniería de Cimentaciones. A lo largo de su carrera publicó más de 200 artículos y fue ampliamente galardonado:

  • 1944: Medalla Norman de la ASCE

  • 1965: Premio Wellington de la ASCE

  • 1969: Premio Karl Terzaghi

  • 1975: Medalla Nacional de Ciencia, otorgada por el presidente Gerald Ford

  • 1988: Medalla John Fritz

  • 1999: La ASCE estableció el Ralph B. Peck Award, que premia contribuciones destacadas al desarrollo profesional de la ingeniería geotécnica mediante estudios de caso e innovaciones en metodología de diseño.

En 2009, el Instituto Geotécnico Noruego inauguró la Biblioteca Ralph B. Peck, junto a la Biblioteca Karl Terzaghi, en Oslo. En ella se conserva correspondencia entre ambos ingenieros, documentos históricos, diarios técnicos y informes que dan fe de su legado compartido.

Ralph Peck también influyó en figuras como Karl Terzaghi, quien lo consideró no solo un colega brillante, sino también un ejemplo de integridad profesional. Su enfoque metódico, su respeto por la observación cuidadosa y su compromiso con la excelencia lo convierten en una figura clave en la historia de la geotecnia.

Se casó con Marjorie E. Truby en 1937 y tuvo dos hijos. Falleció el 18 de febrero de 2008 a los 95 años, víctima de una insuficiencia cardíaca. Su vida representa una combinación única de rigor científico, habilidad práctica y vocación docente. Hoy, su legado perdura en cada estructura que ayudó a construir y en cada ingeniero al que inspiró.

Una de las frases que más me impactaron a nivel profesional es la que figura en mi blog. Dice lo siguiente:

En mi opinión, nadie puede ser un buen proyectista, un buen investigador, un buen líder en la profesión de la ingeniería civil, a menos que entienda los métodos y los problemas de los constructores

(Ralph B. Peck, 1912-2008)

Os dejo algunos vídeos de este insigne ingeniero.

Comunicaciones presentadas al IX Congreso Internacional de Estructuras de ACHE

Durante los días 25-27 de junio de 2025 tendrá lugar el IX Congreso Internacional de Estructuras (ACHE), que servirá una vez más para fortalecer los lazos nacionales e internacionales de profesionales y especialistas en el campo de las estructuras. Como en ocasiones anteriores, los objetivos fundamentales de este congreso son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en edificación y en ingeniería civil e industrial) y, por otro, exponer a sus miembros, amigos y a toda la sociedad las actividades de nuestra asociación, que realiza una labor de difusión técnica sin ánimo de lucro. La situación actual, marcada por la internacionalización y la competitividad, hace imprescindible la innovación tecnológica y el intercambio de experiencias y puntos de vista entre profesionales e investigadores de la edificación y la ingeniería civil, que el Congreso facilitará mediante coloquios y debates paralelos a las sesiones de ponencias.

La ciudad elegida en esta ocasión es Granada, que cuenta con una de las universidades más antiguas de Europa y una rica historia que ha dejado numerosos hitos en su paisaje urbano y cultural. Se trata de una ciudad cosmopolita, donde a lo largo de su historia se han dado cita varias culturas, y es un ejemplo de los valores e intereses compartidos de la Unión Europea. Cuenta, además, con lugares como la Alhambra, el Generalife o el Albaycín, declarados Patrimonio de la Humanidad por la Unesco. La ciudad ofrece, además, interesantes ofertas culturales. La ciudad ofrece, además, interesantes ofertas culturales en las fechas de celebración del Congreso, como el Festival Internacional de Música y Danza. El Congreso tendrá su sede en la Escuela de Ingeniería de Caminos, Canales y Puertos, que fue fundada como quinta escuela española en 1988. Una escuela situada en pleno centro de la ciudad, moderna, magníficamente comunicada a través de transporte público (metro y autobús) y con numerosos hoteles cercanos.

La Asociación Española de Ingeniería Estructural (ACHE), entidad de carácter no lucrativo y declarada de utilidad pública, tiene como fines fomentar el progreso en los ámbitos del hormigón estructural y de las estructuras de obra civil y edificación en general, y canalizar la participación española en asociaciones análogas de carácter internacional. Para ello, desarrolla líneas de investigación, docencia, divulgación, formación continua y prenormalización. Entre otras actividades, ACHE publica monografías técnicas, edita la revista cuatrimestral Hormigón y Acero y administra una página web con amplio contenido técnico. Entre los eventos que organiza, destacan el Congreso Trienal de Estructuras y numerosas jornadas técnicas. ACHE cuenta con centenares de miembros (ingenieros, arquitectos, químicos y otros profesionales vinculados al sector), muchos de los cuales participan generosamente en comisiones técnicas y en los más de 25 grupos de trabajo activos que elaboran documentos científicos sobre aspectos relevantes de las estructuras y que se difunden entre todos los asociados.

Nuestro grupo de investigación, dentro del proyecto de investigación RESILIFE, presenta varias comunicaciones. Además, tengo el honor de participar en Comité Científico del Congreso. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; NAVARRO, I.J.; YEPES, V. (2025). Resiliencia para la sostenibilidad de las estructuras de edificación mediante forjados con losas aligeradas biaxiales. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los Métodos Modernos de Construcción (MMC) están revolucionando la industria al ofrecer soluciones sostenibles que reducen el impacto ambiental en el ciclo de vida de los edificios. Un ejemplo son las losas aligeradas biaxiales de hormigón, que optimizan el uso de materiales. Sin embargo, la corrosión en entornos agresivos supone un desafío importante para la resiliencia de estas estructuras. Este estudio propone una metodología para evaluar estrategias de mantenimiento reactivo en MMC expuestas a cloruros, analizando seis alternativas de diseño y utilizando un modelo FUCOM-TOPSIS para integrar criterios de sostenibilidad económica y medioambiental.

YEPES, V.; ALCALÁ, J.; GARCÍA, J.A.; KRIPKA, J. (2025). Optimización resiliente del ciclo de vida de estructuras híbridas y modulares de alta eficiencia social y medioambiental bajo condiciones extremas. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

Los desastres naturales y humanos causan grandes pérdidas humanas y económicas. RESILIFE optimiza el diseño y construcción de estructuras híbridas modulares, sostenibles y resilientes a eventos extremos, equiparables en seguridad a las tradicionales. Utiliza inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos para evaluar y mejorar la resiliencia. Con técnicas multicriterio como lógica neutrosófica y redes bayesianas, optimiza diseño, mantenimiento y reparación, reduciendo costes y mejorando la recuperación social y ambiental.

YEPES-BELLVER, L.; NAVARRO, I.J.; ALCALÁ, J.; YEPES, V. (2025). Redes neuronales y Kriging para la optimización de la huella de carbono de puentes losa pretensados. IX Congreso Internacional de Estructuras, 25-27 de junio, Granada (Spain).

El artículo compara el rendimiento de los modelos Kriging y de redes neuronales para optimizar las emisiones de CO₂ en puentes de losa pretensada. Las redes neuronales presentan un menor error medio, pero ambos modelos destacan por conducir hacia áreas prometedoras en el espacio de soluciones. Las recomendaciones incluyen maximizar la esbeltez y reducir el uso de hormigón y armaduras, compensando con un incremento controlado de estas. Aunque los modelos proporcionan superficies de respuesta precisas, es esencial realizar una optimización heurística para obtener mínimos locales más exactos, lo que contribuye a diseños más sostenibles y eficientes.

 

El prisma mecánico: modelo teórico en Resistencia de Materiales

Figura 1. Prisma mecánico

En el campo de la Resistencia de Materiales, uno de los objetivos fundamentales es analizar el comportamiento de los sólidos elásticos sometidos a cargas. Para ello, se emplea un modelo teórico que idealiza el sólido real y le otorga ciertas propiedades físicas y geométricas que simplifican su estudio. Este modelo se conoce como prisma mecánico.

A continuación se examina en profundidad el prisma mecánico, un modelo teórico fundamental en la Resistencia de Materiales para simplificar el estudio de sólidos elásticos bajo carga. Se detallan sus propiedades físicas (isotropía, homogeneidad, continuidad) y geométricas (definidas por una sección transversal y una línea media), junto con el sistema de referencia utilizado para su análisis. Además, se explica cómo este modelo permite descomponer estructuras complejas y se clasifican los tipos principales de prismas mecánicos, incluyendo barras, placas y cáscaras, destacando su aplicación en diversos elementos estructurales. En definitiva, el prisma mecánico es una herramienta esencial en la ingeniería para el análisis estructural.

1. Propiedades físicas del modelo

Desde el punto de vista físico, el prisma mecánico se define como un sólido que cumple con tres propiedades esenciales:

  • Isotropía: el material responde de igual manera en todas las direcciones.
  • Homogeneidad: las propiedades del material son constantes en todos sus puntos.
  • Continuidad: el sólido no presenta huecos ni discontinuidades internas.

Estas condiciones permiten aplicar con validez los principios de la mecánica del continuo, base del análisis estructural en ingeniería.

2. Definición geométrica del prisma mecánico

El prisma mecánico (Figura 1) se construye a partir de una sección plana Σ de área Ω, cuyo centro de gravedad G describe una curva espacial c, denominada línea media o directriz. En cada punto, el plano de la sección es normal (perpendicular) a esta curva.

Según la forma de la línea media, el prisma puede ser:

  • Recto: si la línea media es una recta.
  • Plano: si la línea media está contenida en un plano.
  • Alabeado: si la línea media tiene una forma tridimensional más compleja.

Para que el modelo sea aplicable, la línea media no debe presentar curvaturas bruscas ni cambios abruptos de sección de un punto a otro. Si el área de la sección transversal es constante, se trata de un prisma de sección constante. Si no es así, se denomina prisma de sección variable.

3. Sistema de referencia

Para analizar las acciones internas y externas en el prisma, se utiliza un sistema de ejes con origen en el centro de gravedad de cada sección:

  • El eje Gx es tangente a la línea media en el punto considerado.
  • Los ejes Gy y Gz están contenidos en el plano de la sección y son los ejes principales de inercia de la misma.

Este conjunto de ejes conforma un sistema trirrectángulo (los tres ejes son mutuamente perpendiculares). El eje Gx es normal a la sección, mientras que Gy y Gz están en el plano de la sección y son perpendiculares entre sí.

La posición de un punto G sobre la curva c se describe mediante su abscisa curvilínea s, que representa la longitud de arco desde un punto de origen arbitrario (por ejemplo, el centro de gravedad de la sección extrema izquierda del prisma). El sentido positivo de Gx corresponde a valores crecientes de s, y los sentidos de Gy y Gz se eligen de forma que el sistema de referencia sea directo (siguiendo la regla de la mano derecha).

4. Aplicación del prisma mecánico al análisis estructural

Una de las ventajas del prisma mecánico es su capacidad para simplificar el estudio de estructuras complejas. Mediante el método de las secciones, es posible realizar cortes ideales en la estructura que permiten dividirla en un número finito de prismas mecánicos.

Cada una de estas piezas está sometida a:

  • Las cargas externas que actúan directamente sobre ella.
  • Las fuerzas y momentos transmitidos por las piezas contiguas a través de las secciones extremas.

En las secciones comunes entre dos prismas, estas acciones internas son iguales y opuestas, en cumplimiento del principio de acción y reacción.

5. Tipos fundamentales de prismas mecánicos

Según su geometría, los prismas mecánicos pueden clasificarse en tres grandes categorías:

a) Barra

Se trata del prisma cuya sección transversal tiene dimensiones mucho menores que la longitud de su línea media. Es el tipo más habitual en estructuras, tanto en edificación como en maquinaria.

Dentro de las barras, predominan los prismas planos, en los que la línea media se encuentra contenida en un plano, que normalmente coincide con un plano de simetría de la pieza.

La elección de la forma de la sección depende del material y del tipo de esfuerzo que soportará:

  • En estructuras de hormigón armado, son frecuentes las secciones rectangulares (vigas) o cuadradas (pilares).
  • En estructuras metálicas, se emplean perfiles laminados en doble T para vigas, o perfiles en U soldados para pilares (Figura 2).
Figura 2. Perfil laminado en doble T y dos secciones en U soldadas.

b) Placa

Es un cuerpo limitado por dos planos paralelos, cuya separación, es decir, el espesor, es pequeña en comparación con las otras dos dimensiones. Ejemplos de placas son las losas y los forjados que se utilizan en edificación o en cubiertas prefabricadas.

Figura 3. Placa circular y placa rectangular

c) Cáscara

A diferencia de la placa, está limitada por dos superficies curvas separadas por una pequeña distancia. Un ejemplo de cáscara es un tanque, un silo o una tubería de gran diámetro, y, en general, cualquier estructura laminar curva.

Figura 4. Cáscara

En el análisis de placas y cáscaras, en lugar de una línea media se emplea el concepto de superficie media, definida como el conjunto de puntos que dividen el espesor en dos partes iguales.

Figura 5. Estructura tipo cascarón: L’Oceanogràfic, Valencia. https://es.wikipedia.org/wiki/Cascarones_de_hormig%C3%B3n

Conclusión

El prisma mecánico es un modelo teórico fundamental para el estudio de sólidos en ingeniería. Al reunir condiciones ideales de isotropía, homogeneidad y continuidad, y al estar definido por una geometría clara basada en una sección y una línea media, permite analizar el comportamiento de elementos estructurales sometidos a carga.

Gracias a su versatilidad, este modelo permite descomponer estructuras complejas en elementos más simples, lo que facilita su análisis mecánico. La clasificación en barras, placas y cáscaras abarca prácticamente todas las formas estructurales comunes, lo que convierte al prisma mecánico en una herramienta imprescindible en la enseñanza y práctica de la ingeniería civil.

Referencia:

Berrocal, L. O. (2007). Resistencia de materiales. McGraw-Hill.

Glosario de términos clave

  • Abscisa curvilínea (s): Medida de la posición de un punto a lo largo de una curva, representando la longitud de arco desde un origen arbitrario.
  • Análisis estructural: Rama de la ingeniería que estudia el comportamiento de los sólidos elásticos sometidos a cargas para determinar sus esfuerzos internos, deformaciones y estabilidad.
  • Barra: Tipo de prisma mecánico cuya sección transversal tiene dimensiones mucho menores que la longitud de su línea media; es el elemento más común en estructuras.
  • Cáscara: Tipo de prisma mecánico limitado por dos superficies curvas separadas por una pequeña distancia (espesor); ejemplos incluyen tanques o tuberías de gran diámetro.
  • Continuidad: Propiedad física del prisma mecánico que establece que el sólido no presenta huecos ni discontinuidades internas, permitiendo la aplicación de la mecánica del continuo.
  • Centro de gravedad (G): Punto en una sección plana donde se considera concentrada toda su masa o peso; la línea media del prisma se define por la trayectoria de este punto.
  • Ejes principales de inercia: Ejes de un plano de una sección para los cuales los momentos de inercia de la sección son máximos o mínimos, y el producto de inercia es cero. Son fundamentales para el sistema de referencia del prisma.
  • Homogeneidad: Propiedad física del prisma mecánico que indica que las propiedades del material son constantes en todos sus puntos.
  • Isotropía: Propiedad física del prisma mecánico que describe que el material responde de igual manera en todas las direcciones.
  • Línea media (o directriz): Curva espacial que describe el centro de gravedad de las secciones transversales de un prisma mecánico. Es fundamental para su definición geométrica.
  • Mecánica del continuo: Rama de la mecánica que estudia el comportamiento de los materiales como una masa continua, sin considerar su estructura atómica o molecular, aplicable a sólidos y fluidos.
  • Método de las secciones: Técnica utilizada en el análisis estructural para dividir una estructura en partes ideales mediante “cortes”, permitiendo analizar las fuerzas y momentos internos en esas secciones.
  • Placa: Tipo de prisma mecánico limitado por dos planos paralulares cuya separación (espesor) es pequeña en comparación con sus otras dos dimensiones; ejemplos incluyen losas y forjados.
  • Prisma alabeado: Prisma mecánico cuya línea media tiene una forma tridimensional compleja, no contenida en un solo plano.
  • Prisma de sección constante: Prisma mecánico en el que el área de la sección transversal no varía a lo largo de su línea media.
  • Prisma de sección variable: Prisma mecánico en el que el área de la sección transversal cambia a lo largo de su línea media.
  • Prisma mecánico: Modelo teórico idealizado de un sólido elástico, utilizado en Resistencia de Materiales y análisis estructural, definido por propiedades físicas y una geometría específica (sección y línea media).
  • Prisma plano: Prisma mecánico cuya línea media está contenida en un plano.
  • Prisma recto: Prisma mecánico cuya línea media es una recta.
  • Resistencia de materiales: Campo de la ingeniería que estudia el comportamiento de los materiales sólidos bajo la aplicación de cargas, centrándose en conceptos como esfuerzo, deformación y resistencia.
  • Sección plana (Σ): Superficie transversal bidimensional que, al desplazarse a lo largo de la línea media, forma el volumen del prisma mecánico.
  • Sistema trirrectángulo: Sistema de tres ejes mutuamente perpendiculares (como Gx, Gy, Gz) que sirve como marco de referencia para el análisis de las acciones internas y externas en el prisma.
  • Superficie media: Concepto utilizado en el análisis de placas y cáscaras, definido como el conjunto de puntos que dividen el espesor en dos partes iguales, análogo a la línea media para barras.

Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2025, Edimburgo (Reino Unido)

Los días 10 a 12 de junio de 2025 se celebró en Edimburgo (Reino Unido) uno de los congresos más importantes sobre optimización de estructuras: “12th International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025“. He participado en dicho congreso tanto en su Comité Científico como Invited Speaker.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València. Además, es uno de los resultados de la tesis doctoral de Lorena Yepes.

En cuanto la comunicación esté publicada en el libro de ponencias, os pasaré el enlace para su descarga gratuita. A continuación os paso el resumen de la comunicación presentada.

El artículo «Multi-Attribute Decision-Making in Prestressed Concrete Road Flyover Design», propone una innovadora metodología para optimizar el diseño de puentes de hormigón pretensado teniendo en cuenta simultáneamente tres criterios clave: el coste económico, las emisiones de CO₂ y la energía incorporada en los materiales. Su objetivo es encontrar soluciones de compromiso que equilibren sostenibilidad y eficiencia estructural.

Aportaciones principales del estudio

Este trabajo aporta un enfoque sistemático y práctico para integrar criterios medioambientales y económicos en el diseño de pasos elevados. Frente a las metodologías tradicionales que suelen priorizar únicamente el coste, los autores aplican técnicas de toma de decisiones multicriterio para considerar también el impacto ambiental desde el inicio del proceso proyectual. Además, ofrecen pautas concretas para diseños preliminares que buscan un equilibrio entre coste, emisiones y consumo energético.

Metodología empleada

La investigación se basa en técnicas avanzadas de optimización y modelado. En primer lugar, se utilizaron 50 soluciones iniciales de diseño generadas mediante un muestreo estadístico conocido como Latin Hypercube Sampling, que explora diferentes combinaciones de parámetros como la resistencia del hormigón, la anchura de la base y la profundidad del tablero.

A continuación, se aplicó un modelo de sustitución de tipo Kriging, capaz de estimar con gran precisión los resultados estructurales sin necesidad de cálculos exhaustivos para cada diseño. Esto permitió ampliar el análisis a 1.000 soluciones adicionales simuladas.

Con todas las alternativas sobre la mesa, se extrajo la “frontera de Pareto”, un conjunto de soluciones no dominadas que representan los mejores compromisos posibles entre los tres objetivos. Finalmente, se aplicaron distintos escenarios de toma de decisiones multiatributo, asignando diferentes pesos a cada criterio, para seleccionar los diseños más equilibrados.

Resultados más relevantes

El análisis reveló que los diseños más sostenibles tienen características comunes: una relación entre canto del tablero y luz principal cercana a 1/30 y una resistencia del hormigón de 40 MPa. Estas configuraciones permiten reducir tanto el consumo de materiales como las emisiones sin comprometer la viabilidad estructural.

Dependiendo del peso asignado a cada criterio (coste, emisiones, energía), se identificaron varias soluciones óptimas, destacando especialmente dos (denominadas #6 y #13) por su buen rendimiento integral. Curiosamente, priorizar solo el coste lleva a soluciones con mayor canto, mientras que priorizar el medio ambiente genera estructuras más esbeltas y materialmente eficientes.

Conclusiones y recomendaciones

El estudio concluye que aplicar técnicas de decisión multicriterio en la ingeniería civil permite diseñar infraestructuras más sostenibles y racionales, sin sacrificar funcionalidad ni economía. Se recomienda considerar desde fases tempranas del diseño variables ambientales clave como las emisiones o la energía embebida, además de los costes.

Asimismo, los autores sugieren incorporar la participación de los diferentes agentes implicados (ingenieros, administraciones, ciudadanía) para lograr soluciones más equilibradas y duraderas.

Este trabajo representa un avance hacia una práctica de la ingeniería más alineada con los Objetivos de Desarrollo Sostenible, y especialmente con el ODS 9, que promueve infraestructuras resilientes, sostenibles e innovadoras.

Referencia:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.

De cantero a leyenda: la historia del gran Thomas Telford

Thomas Telford (1757-1834). https://es.wikipedia.org/wiki/Thomas_Telford

Thomas Telford (9 de agosto de 1757 – 2 de septiembre de 1834) fue un destacado ingeniero civil, arquitecto y cantero escocés, reconocido por sus contribuciones a la infraestructura británica mediante la construcción de caminos, puentes y canales. Nació cerca de Westerkirk, en Dumfries, en el seno de una familia humilde. Su padre, un pastor, murió poco después de su nacimiento, por lo que Thomas fue criado en condiciones de pobreza por su madre, Janet Jackson.

Comenzó su vida laboral como aprendiz de cantero a los 14 años y, de forma autodidacta, se formó en arquitectura y construcción. Todavía se conservan algunas de sus primeras obras, como un puente sobre el río Esk en Langholm. Tras pasar por Edimburgo, se trasladó a Londres en 1782, donde participó en la ampliación de Somerset House, uno de los grandes proyectos de la época, bajo la influencia de arquitectos como Robert Adam y William Chambers. En 1784 trabajó en el astillero naval de Portsmouth, donde consolidó su experiencia en grandes obras.

En 1786 fue nombrado inspector de obras públicas para el condado de Shropshire, cargo que implicaba la construcción de edificios y puentes. Durante este periodo, diseñó y construyó tres puentes sobre el río Severn: en Montford, Buildwas (de hierro fundido) y Bewdley. En esta misma época, restauró el castillo de Shrewsbury, trabajó en iglesias y prisiones y advirtió del inminente colapso de la iglesia de St Chad’s, lo que le ganó el respeto de la población local.

En 1787 se afilió a la logia masónica Salopian Lodge y, gracias al apoyo de William Pulteney, su carrera despegó. En 1788, la Sociedad Pesquera Británica lo envió a Escocia, donde diseñó el puerto de Ullapool. En 1790 fue nombrado inspector de puentes en Shropshire y, en 1793, se convirtió en agente e ingeniero de la compañía del canal Ellesmere. Su fama nacional le llegó con la construcción de los acueductos de Chirk y Pontcysyllte, en Gales, que cruzan los valles del Ceiriog y del Dee. En estas estructuras empleó por primera vez canales de planchas de hierro fundido ensambladas sobre mampostería, una innovación que revolucionó la ingeniería civil de su tiempo.

Ese mismo año, tras la muerte de Josiah Clowes, asumió el proyecto del canal de Shrewsbury, en el que destacó el acueducto de Longdon-on-Tern, uno de los primeros acueductos de hierro fundido del mundo. En 1795, reconstruyó el puente de Bewdley tras las inundaciones y reparó el de Tenbury. También participó en la mejora del abastecimiento de agua y en la reforma de los muelles de Londres.

En 1801, el Gobierno británico lo contrató para dirigir una gigantesca operación de mejora de las infraestructuras de las Tierras Altas de Escocia. Bajo su dirección se construyeron más de 1450 km de caminos, más de 1200 puentes, numerosos puertos, iglesias y servicios públicos. En este contexto, llevó a cabo el canal de Caledonia, inaugurado en 1822, y realizó importantes obras portuarias en Aberdeen, Dundee y otras localidades. Entre las obras viales más destacadas se encuentran el puente de Tongueland (34 m) y el de Cartland Crags (39 m), así como 296 km de nuevas carreteras en las Tierras Bajas.

En 1803, también inició obras de mejora en las rutas desde Chester y Shrewsbury hacia Holyhead, con el objetivo de agilizar las comunicaciones con Irlanda. Como parte de este proyecto, diseñó e inauguró dos puentes colgantes emblemáticos en Gales: el puente colgante sobre el río Conwy y su obra maestra, el puente de Menai (1819–1826), que con sus 176 m de longitud fue el más largo de su tipo en su tiempo y es considerado su logro más sobresaliente.

Puente de Menai. https://es.wikipedia.org/wiki/Puente_colgante_de_Menai

Durante este periodo también actuó como comisionado de préstamos del gobierno para obras públicas bajo la Public Works Loans Act de 1817, financiando proyectos de infraestructura y promoviendo el empleo. En paralelo, trabajó como consultor internacional y, en 1806, fue invitado por el rey de Suecia a colaborar en el canal Göta, al que viajó en 1810 para supervisar las primeras excavaciones.

Desde 1809, lideró obras en Irlanda, como la carretera de Howth a Dublín, el canal del Úlster y la formación de ingenieros como William Dargan. En las décadas siguientes, su enfoque se dirigió también a modernizar los canales para hacerles frente a los ferrocarriles, cada vez más competitivos. Entre estos proyectos destacan la construcción de un nuevo canal entre Wolverhampton y Nantwich y la construcción de un nuevo túnel en Harecastle, Staffordshire, sobre el canal Trent y Mersey.

A partir de 1815, diseñó y ejecutó mejoras en la ruta entre Glasgow y Carlisle (conocida posteriormente como A74), considerada un modelo de ingeniería vial. Entre sus trabajos más importantes en Londres se encuentra el desarrollo de los muelles de St Katharine, un proyecto fundamental para la expansión portuaria de la ciudad. También construyó puentes sobre el río Severn en Tewkesbury y Gloucester, y ejecutó diversas carreteras en las Tierras Bajas de Escocia.

En 1820 fue nombrado primer presidente de la Institución de Ingenieros Civiles, fundada en 1818, cargo que ocupó hasta su muerte. Ese mismo año fue elegido también miembro extranjero de la Real Academia de Ciencias de Suecia.

En 1823, a petición del Parlamento británico, diseñó un conjunto de iglesias y casas parroquiales para zonas rurales de Escocia. Se construyeron 32 de las 43 proyectadas, muchas de las cuales aún existen. En la década de 1830 finalizó proyectos como el puente Galton, el segundo túnel Harecastle, el canal de Gloucester y Berkeley y el canal Birmingham y Liverpool Junction, este último completado tras su fallecimiento.

Thomas Telford murió el 2 de septiembre de 1834 en su casa de Abingdon Street, Londres. Fue enterrado con honores en la abadía de Westminster, donde también hay una estatua en su memoria en la capilla de San Andrés. Nunca se casó, pero dejó una profunda huella en sus colegas y contemporáneos. Su amigo, el poeta Robert Southey, lo llamó «el coloso de las carreteras», y además de su carrera como ingeniero, también publicó poesía entre 1779 y 1784.

En su testamento dejó donaciones para bibliotecas de su región natal y para escritores como Southey y Thomas Campbell. Su legado perdura no solo en obras materiales, sino también en la educación: el Telford College de Edimburgo y la ciudad de Telford, en Shropshire, creada en el siglo XX, llevan su nombre. En 2009, su acueducto de Pontcysyllte fue declarado Patrimonio de la Humanidad por la Unesco, en reconocimiento a su ingenio técnico e innovación.

Os dejo algunos vídeos de este gran ingeniero escocés.

El Puente entre la Guerra y la Ingeniería: James B. Eads

James Buchanan Eads (1820-1887). https://es.wikipedia.org/wiki/James_Buchanan_Eads

James Buchanan Eads (23 de mayo de 1820 – 8 de marzo de 1887) fue un ingeniero e inventor estadounidense de renombre mundial, cuya vida estuvo marcada por la autodisciplina, la innovación técnica y una profunda comprensión del río Misisipi. Obtuvo más de 50 patentes y fue reconocido a nivel internacional. Diseñó y construyó el Puente Eads sobre el río Misisipi en San Luis, el cual fue declarado Monumento Histórico Nacional.

Primeros años y formación autodidacta

Eads nació en Lawrenceburg, Indiana, en 1820. Su segundo nombre, Buchanan, se lo pusieron en honor a James Buchanan, primo de su madre y congresista por Pensilvania y futuro presidente de Estados Unidos. La infancia de Eads fue nómada y difícil. La inestabilidad económica de su padre, involucrado en negocios poco exitosos, obligó a la familia a trasladarse repetidamente: primero a Cincinnati (Ohio), luego a Louisville (Kentucky) y, por último, a St. Louis (Misuri).

A los 13 años, Eads tuvo que dejar la escuela para ayudar a la familia. Uno de sus primeros empleos fue en Williams & Dühring, una tienda de comestibles en St. Louis. Su jefe, Barrett Williams, notó su inquietud intelectual y le permitió acceder libremente a su biblioteca personal, ubicada sobre la tienda. En su tiempo libre, el joven James devoraba libros de física, mecánica, maquinaria e ingeniería, convirtiéndose así en un ingeniero autodidacta.

Inicios en el río y éxito empresarial

A los 18 años, Eads se embarcó como sobrecargo en un barco de vapor que recorría el Misisipi, donde se familiarizó con los riesgos y desafíos de la navegación fluvial. Al observar la gran cantidad de naufragios y la pérdida de mercancías valiosas, comenzó a imaginar métodos para recuperar cargamentos hundidos.

A los 22 años, inventó un barco de salvamento revolucionario al que denominó «submarino». Aunque no era una nave sumergible en sí, permitía que Eads descendiera al fondo del río mediante una campana de buceo construida con un barril de whisky de cuarenta galones, adaptado con una manguera para el suministro de aire desde la superficie. Gracias a este invento, podía caminar por el fondo del río y recuperar objetos de valor, como lingotes de plomo y hierro. En una ocasión, incluso extrajo un tarro de mantequilla en buen estado de conservación.

Durante los doce años que estuvo al frente de su empresa de salvamento en el río Misisipi, esta prosperó tanto que, en 1857, Eads se retiró temporalmente con una considerable fortuna. Incursionó brevemente en la industria del vidrio, fundando la primera fábrica de vidrio en el oeste de EE. UU., pero este proyecto se vio interrumpido por la Guerra con México, por lo que volvió al negocio de salvamento en 1848. Con el tiempo, su flota alcanzó las diez embarcaciones y uno de sus barcos más avanzados logró bombear el agua y reflotar cascos hundidos desde el lecho del río.

Guerra Civil: la revolución de los ironclads

Con el estallido de la Guerra Civil en 1861, Eads fue convocado a Washington por el fiscal general Edward Bates, quien le había recomendado a causa de su amistad, para ofrecer su experiencia en la defensa fluvial del Misisipi. El gobierno federal aceptó finalmente su propuesta de construir una flotilla de buques acorazados con poco calado, propulsados por vapor y adecuados para los ríos del interior.

Eads fue contratado para construir una serie de ironclads y, en tan solo cinco meses, entregó siete embarcaciones. Además, transformó el vapor fluvial New Era en el acorazado Essex, que se convirtió en una pieza clave de la flota de la Unión. Atendió a las observaciones de los oficiales de la Flotilla Occidental e incorporó mejoras en cada iteración. A lo largo de la guerra, construyó más de 30 acorazados fluviales que participaron en batallas clave como las de Forts Henry y Donelson, Memphis, Vicksburg, Isla n.º 10 y Mobile Bay. Estas embarcaciones fueron los primeros acorazados en combatir en América y, junto con el famoso duelo del Monitor y el Merrimack, marcaron un hito en la historia naval.

El Puente Eads: obra maestra de la ingeniería

Tras la guerra, Eads fue seleccionado para liderar uno de los proyectos de ingeniería más ambiciosos de su tiempo: el primer puente ferroviario y de carretera que cruzaría el río Misisipi en San Luis. Las obras comenzaron el 20 de agosto de 1867 y se enfrentaron a numerosos desafíos técnicos y políticos.

El Puente Eads, concluido en 1874, fue el primero de gran tamaño construido con acero estructural y el más largo del mundo en su momento. Eads fue también pionero en emplear el sistema de vigas en voladizo (cantilever), lo que permitió mantener la navegación fluvial durante su construcción. Para cimentar sus tres arcos de acero de más de 500 pies cada uno, se excavó hasta el lecho rocoso a más de 30 metros bajo el río. Esto obligó a trabajar con cámaras de aire comprimido, lo que provocó casos de enfermedad por descompresión. Eads respondió instalando una clínica flotante, mejorando la alimentación del personal, aplicando una descompresión gradual y construyendo un elevador de acceso.

La calidad del acero también fue objeto de una supervisión estricta. Su proveedor, Andrew Carnegie, tuvo que volver a laminar algunas partidas hasta en tres ocasiones por no cumplir con la resistencia mínima exigida de 60 000 psi (414 MPa). Durante la construcción del arco central, una ola de calor deformó temporalmente la estructura, por lo que Eads tuvo que implementar su solución alternativa: un tapón roscado de hierro forjado que permitió ajustar y cerrar con precisión el último tramo del arco, tarea que se completó el 17 de septiembre de 1873. El puente se inauguró oficialmente el 4 de julio de 1874 y sigue en funcionamiento hasta hoy.

Puente Eads. https://es.wikipedia.org/wiki/James_Buchanan_Eads

El Puente Eads fue designado Monumento Histórico Nacional por el Departamento del Interior en 1964 y el 21 de octubre de 1974 fue inscrito como Monumento Histórico Nacional de Ingeniería Civil por la Sociedad Americana de Ingenieros Civiles. También recibió un Premio Especial de Reconocimiento del Instituto Americano de Construcción en Acero en 1974, en el centenario de su puesta en servicio. Eads también diseñó los diques del paso sur del río Misisipi, que fueron declarados Monumentos Históricos Nacionales de Ingeniería Civil en 1982.

Espigones en Nueva Orleans y nuevos proyectos

Posteriormente, el Gobierno le solicitó ayuda para resolver otro problema crítico: garantizar un canal navegable permanente en Nueva Orleans. Eads propuso construir una serie de espigones para alterar el comportamiento sedimentario del río. El proyecto fue financiado inicialmente por Eads, bajo la condición de recibir el pago solo si tenía éxito. En menos de cinco años, en 1879, había creado un canal estable y profundo que facilitaba el comercio marítimo durante todo el año.

Inspirado por este logro, Eads presentó una alternativa al canal de Panamá: un ferrocarril interoceánico en Tehuantepec (México) que transportaría barcos sobre plataformas móviles. Sin embargo, pese a sus esfuerzos, el Congreso de EE. UU. rechazó dos proyectos de ley para financiar la obra.

Reconocimientos y últimos años

James B. Eads fue el primer ingeniero estadounidense en recibir la Medalla Albert de la Royal Society of Arts de Londres. También trabajó como consultor en obras de infraestructura en Liverpool (Inglaterra), Toronto (Canadá), Veracruz y Tampico (México). Se casó en dos ocasiones y tuvo dos hijas biológicas y tres hijastras.

Eads falleció el 8 de marzo de 1887 en Nassau (Bahamas), dejando tras de sí un legado que combinaba genialidad técnica, profundo conocimiento práctico e incansable espíritu innovador. Su vida y su obra continúan siendo referentes en la historia de la ingeniería civil y naval.

En 1920, Eads fue incluido en el Pabellón de la Fama de los Grandes Americanos, ubicado en los terrenos del Bronx Community College en Nueva York. Cada año, la Academia de Ciencias de St. Louis otorga el Premio James B. Eads para reconocer a una persona distinguida por sus logros sobresalientes en ciencia y tecnología. En 1927, los decanos de las facultades de ingeniería de Estados Unidos votaron a Eads como uno de los cinco mejores ingenieros de todos los tiempos, un honor que compartió con Leonardo da Vinci, James Watt, Ferdinand de Lesseps y Thomas A. Edison.

Os dejo unos vídeos de su figura.

Del sólido rígido al sólido verdadero: evolución del concepto de material en mecánica aplicada

Este artículo explora la evolución del concepto de material en mecánica aplicada, comenzando por el modelo idealizado de sólido rígido, que simplifica los cuerpos indeformables para análisis iniciales. Sin embargo, al abordar la mecánica aplicada, esta abstracción se rompe y es necesario introducir el sólido elástico, que permite la deformación reversible y el análisis de tensiones internas. Aunque este modelo asume isotropía, homogeneidad y continuidad, se reconoce que ningún material real cumple estas condiciones. Finalmente, se introduce el concepto de sólido verdadero, que reconoce la complejidad de los materiales reales y sus propiedades variables, aunque se puede simplificar para su estudio mediante la división en zonas homogéneas, cada una de las cuales se modela como un sólido elástico. Este tránsito conceptual es crucial para la ingeniería y la resistencia de materiales, ya que permite el diseño de estructuras seguras y funcionales que consideran la deformación y los límites de carga de los materiales reales.

En los primeros planteamientos de la mecánica teórica, los cuerpos materiales se consideran como sólidos indeformables, con independencia de si se encuentran en reposo o en movimiento. Esta hipótesis, evidentemente ideal, no se corresponde con ningún material real, pero resulta extraordinariamente útil por la simplificación conceptual y matemática que introduce en el análisis.

Pese a tratarse de una abstracción, sus resultados son, en muchos casos, aproximaciones aceptables del comportamiento físico real, especialmente cuando las cargas implicadas son pequeñas y las deformaciones son pequeñas. No obstante, cuando el estudio se adentra en el terreno de la mecánica aplicada, esta simplificación empieza a mostrar sus límites.

La ruptura del modelo ideal: la necesidad de una nueva definición de sólido

La observación experimental revela que no se pueden aplicar fuerzas indefinidamente a un cuerpo sin que se deforme o incluso se rompa. Esta evidencia obliga a revisar el concepto de sólido aceptado en la teoría mecánica.

Este proceso de revisión y refinamiento lleva a una evolución del modelo de sólido, especialmente a partir del estudio más profundo de los problemas de estática aplicada. En este contexto, es necesario distinguir entre tres concepciones del sólido:

  • Sólido rígido
  • Sólido elástico
  • Sólido verdadero

1. Sólido rígido: el modelo idealizado

Se denomina sólido rígido al que no altera su estructura interna por acción exterior, manteniendo constantes las distancias entre sus moléculas, independientemente de la magnitud o naturaleza del esfuerzo aplicado. Esta suposición permite abordar problemas mecánicos aplicando exclusivamente las condiciones de equilibrio:

donde las Ri son las componentes de la resultante de las fuerzas, y los M0i los momentos respecto de un punto cualquiera O, en un sistema cartesiano trirrectangular.

Sin embargo, este modelo resulta incompatible con la realidad física. Supongamos una viga AB, apoyada sobre dos pilares, que recibe una carga vertical P en un punto intermedio C. Si se asume que la viga es un sólido rígido, el problema se resuelve calculando las reacciones de los apoyos, sin que exista posibilidad de rotura, con independencia del valor de P. No obstante, la experiencia demuestra que, a partir de un cierto valor de P, la viga se rompe, incluso si las reacciones están equilibradas.

Esto pone de manifiesto una limitación estructural del modelo de sólido rígido, y evidencia la necesidad de estudiar no solo el equilibrio exterior, sino también la resistencia interna del material frente a esfuerzos aplicados.

2. Sólido elástico: deformabilidad reversible

La respuesta a esta necesidad se encuentra en el concepto de sólido elástico, entendido como aquel cuerpo que, al ser sometido a una fuerza exterior, se deforma, pero recupera su forma original cuando dicha acción cesa. Este modelo admite una deformación interna y, por tanto, un reparto espacial de los esfuerzos, lo que permite analizar no solo si el sistema está en equilibrio, sino también cómo se manifiestan las tensiones en su interior.

Para que el modelo elástico sea tratable matemáticamente, se hacen ciertas hipótesis simplificadoras que, si bien no se cumplen con exactitud en la práctica, ofrecen una base coherente para el cálculo:

  • Isotropía: el material presenta las mismas propiedades mecánicas en todas las direcciones.
  • Homogeneidad: cualquier porción del sólido tiene idéntica composición y comportamiento que otra cualquiera.
  • Continuidad: no existen huecos ni discontinuidades internas; la materia se distribuye de forma continua en el espacio.

Estas hipótesis están estrechamente relacionadas. Si se admite que un material es elástico en todas las direcciones, parece lógico suponer que su estructura es homogénea, y viceversa.

3. La realidad material: límites del modelo elástico

Ningún material real satisface de forma rigurosa estas condiciones.

  • La isotropía perfecta no existe, debido a que la estructura atómica o molecular del material presenta orientaciones privilegiadas.
  • La homogeneidad absoluta tampoco se cumple, pues siempre existen variaciones locales en la composición.
  • Finalmente, la materia no es continua: existen espacios vacíos entre moléculas, e incluso en el interior de los átomos, como muestran las teorías físicas actuales.

A pesar de ello, el hecho de considerar el sólido como continuo y elástico sigue siendo útil y válido a efectos prácticos. Permite suponer que las fuerzas aplicadas a una porción del material se transmiten de forma progresiva a sus regiones vecinas, generando un campo de tensiones continuo y calculable. Aunque la elasticidad no sea exacta a escala microscópica, funciona a escala macroscópica, como demuestra la experiencia acumulada en el diseño y comprobación de estructuras.

4. Sólido verdadero: el material tal como es

El último nivel de descripción lo proporciona el concepto de sólido verdadero, que reconoce explícitamente que los materiales reales no son ni rígidos ni elásticos ideales. Carecen de isotropía, homogeneidad y continuidad, por lo que requieren un tratamiento más refinado. En este caso, el material se considera un sólido deformable, con una estructura interna compleja y propiedades variables.

Aunque este enfoque representa la forma más fiel de representar un material real, su complejidad puede superarse dividiendo el material en zonas homogéneas. Entonces, cada una de estas zonas puede modelarse como un sólido elástico, lo que permite aplicar la teoría correspondiente de forma localizada.

Consideración final

En el estudio de la resistencia de materiales, nos ocupamos precisamente de determinar los límites de carga admisibles o las dimensiones necesarias de un elemento estructural para garantizar que, bajo los esfuerzos previsibles, no se produzca la rotura. Si existieran verdaderos sólidos rígidos, tales cálculos serían innecesarios, ya que bastaría con verificar el equilibrio de fuerzas y momentos. Sin embargo, dado que todos los materiales reales se deforman incluso antes del fallo, la teoría de la elasticidad y la resistencia de materiales resultan indispensables para la ingeniería civil.

Así, el tránsito desde el modelo de sólido rígido hasta el de sólido verdadero no solo es un refinamiento teórico, sino una adaptación necesaria a la realidad física de los materiales que permite a los ingenieros diseñar estructuras seguras, funcionales y duraderas.

Glosario de términos clave

  • Sólido rígido: Modelo idealizado de cuerpo material que se considera indeformable; mantiene constantes las distancias entre sus moléculas independientemente de las fuerzas aplicadas. Útil para análisis de equilibrio, pero no para predicción de resistencia o rotura.
  • Sólido elástico: Modelo de cuerpo que se deforma bajo la acción de una fuerza exterior, pero recupera su forma original cuando dicha acción cesa. Admite deformación interna y reparto de esfuerzos, permitiendo el análisis de tensiones.
  • Sólido verdadero: Concepto que reconoce la realidad física de los materiales, que no son ni rígidos ni elásticos ideales. Carecen de isotropía, homogeneidad y continuidad perfectas, y poseen una estructura interna compleja y propiedades variables.
  • Mecánica teórica: Campo de la mecánica que en sus primeros planteamientos consideraba los cuerpos materiales como sólidos indeformables, buscando simplificación conceptual y matemática.
  • Mecánica aplicada: Campo de la mecánica que se adentra en el estudio de problemas reales donde la simplificación del sólido rígido es insuficiente, requiriendo considerar la deformación y resistencia de los materiales.
  • Equilibrio (condiciones de): Principios que rigen la estática y dinámica de cuerpos, asegurando que la resultante de fuerzas y momentos sea cero. En el sólido rígido, son suficientes para la resolución de problemas.
  • Resistencia interna del material: Capacidad de un material para soportar esfuerzos aplicados sin romperse o deformarse permanentemente. Es un concepto clave en la mecánica aplicada y la teoría de la elasticidad.
  • Deformación: Cambio en la forma o dimensiones de un cuerpo bajo la acción de fuerzas externas.
  • Tensiones (campo de): Distribución interna de fuerzas por unidad de área dentro de un material deformado. El modelo elástico permite su cálculo.
  • Isotropía: Propiedad de un material que presenta las mismas propiedades mecánicas en todas las direcciones. Es una hipótesis simplificadora del modelo elástico.
  • Homogeneidad: Propiedad de un material que tiene idéntica composición y comportamiento en cualquier porción de su volumen. Es una hipótesis simplificadora del modelo elástico.
  • Continuidad: Hipótesis que asume que la materia se distribuye de forma continua en el espacio, sin huecos ni discontinuidades internas. Es una idealización del modelo elástico.
  • Resistencia de materiales: Rama de la ingeniería y la mecánica aplicada que estudia el comportamiento de los cuerpos sólidos deformables bajo diferentes tipos de carga, con el objetivo de determinar sus límites de carga admisibles y dimensiones necesarias para evitar la rotura.

Puentes ferroviarios de acero a finales del siglo XIX

En las últimas décadas del siglo XIX, el desarrollo de los puentes ferroviarios de acero se convirtió en uno de los pilares fundamentales de la ingeniería civil moderna. Esta evolución estuvo estrechamente relacionada con la necesidad de estructuras capaces de soportar trenes más pesados y mayores luces, y a la vez fue catalizadora de avances decisivos en la producción y uso estructural del acero. Desde los primeros arcos hasta las grandes estructuras continuas en voladizo, los puentes de acero no solo respondieron a una necesidad funcional, sino que impulsaron la transformación de la tecnología de construcción a escala global.

El puente Eads: origen del acero en la ingeniería ferroviaria

Puente Eads. https://es.wikipedia.org/wiki/Puente_Eads

El primer uso del acero en un puente se produjo en 1828, durante la construcción de un puente colgante en Viena (Austria), en el que se incorporaron cadenas de suspensión de acero fabricadas mediante el proceso de horno de solera abierta. El primer empleo del acero en un puente ferroviario se produjo en la construcción del puente de St. Louis, posteriormente conocido como puente Eads, entre 1869 y 1874. Este puente, que cruza el río Misisipi en Misuri, constaba de dos vanos laterales de 152 m y un vano central de 158,5 m, y supuso un hito técnico sin precedentes. Diseñado por James B. Eads, incorporó por primera vez miembros tubulares huecos en los cordones de las armaduras y empleó el método de cajones neumáticos para cimentaciones profundas, algo revolucionario para la época. Este método de construcción de pilas también fue utilizado por Brunel en la construcción del puente Royal Albert en Saltash (Reino Unido) en 1859. Thomas Telford había propuesto este método en 1800 para un puente de hierro fundido que cruzaría el río Támesis en Londres, y Robert Stephenson lo utilizó en 1846 para construir un puente ferroviario de arco de hierro para evitar el uso de cimbra en el concurrido canal del estrecho de Menai. Eads utilizó principios desarrollados por Galileo en el siglo XVII para explicar a los escépticos los fundamentos de la construcción en voladizo de arcos. Eads no tenía una formación académica en ingeniería, pero contó con la ayuda de Charles Pfeiffer para el diseño y de Theodore Cooper para la construcción.

Eads rechazó el uso del puente colgante —considerado demasiado flexible para cargas ferroviarias— y propuso en su lugar un puente de arcos de hierro fundido, sobre los cuales se dispuso una armadura adicional que aumentaba la rigidez del tablero ferroviario. En 1864, John Roebling propuso un puente colgante para este emplazamiento. La estructura generó tanto escepticismo público y mediático que, antes de su apertura, Eads realizó pruebas de carga con catorce de las locomotoras más pesadas disponibles en el país. La magnitud del proyecto fue tan grande que prácticamente agotó los recursos de la incipiente industria siderúrgica estadounidense.

Expansión de la industria del acero y el papel del ferrocarril

La demanda de puentes con mayores luces por parte de los ferrocarriles norteamericanos, junto con el aumento constante del peso de locomotoras y vagones, impulsó el crecimiento de la industria del acero. Figuras como Andrew Carnegie invirtieron decididamente en mejorar los procesos de producción del acero para conseguir materiales con mayor resistencia y ductilidad. Este impulso dio lugar, en 1879, a la construcción del primer puente ferroviario íntegramente de acero, con celosías tipo Whipple, por parte de la Chicago and Alton Railway en Glasgow, Misuri.

La transición del puente colgante al sistema en voladizos

Aunque algunos ingenieros estadounidenses siguieron diseñando puentes ferroviarios colgantes, la preocupación por su flexibilidad frente a cargas dinámicas y viento persistía. Aun así, el famoso puente de Brooklyn, finalizado en 1883, incluía dos líneas ferroviarias. Sin embargo, el aumento de la masa de las locomotoras y la necesidad de una mayor rigidez estructural provocaron el declive de los puentes colgantes como solución ferroviaria.

La solución técnica más eficaz se encontró en el diseño cantilever, o de avance en voladizo, que permitía construir grandes luces sin cimbra y con suficiente rigidez para cargas dinámicas. El primer puente ferroviario cantilever (también llamado tipo Gerber) construido en Estados Unidos fue el de la Cincinnati Southern Railway sobre el río Kentucky en 1877. En 1883, la Michigan Central and Canada South Railway completó un puente cantiléver de viga de tablero superior sobre el desfiladero del Niágara, paralelo al puente colgante ferroviario de Roebling de 1854. Poco después, en 1884, la Canadian Pacific Railway cruzó el río Fraser, en Columbia Británica, con el primer puente cantilever de acero completamente equilibrado de tablero superior.

Estas estructuras, con brazos en voladizo y tramos suspendidos, se convirtieron en la solución habitual para grandes luces, ya que permitían un diseño estáticamente determinado, rigidez adecuada frente a cargas móviles y la eliminación de la cimbra en el vano principal.

El impulso de Theodore Cooper y la estandarización del acero

En 1880, el ingeniero Theodore Cooper publicó un influyente artículo titulado The Use of Steel for Railway Bridges ante la Sociedad Americana de Ingenieros Civiles (ASCE), en el que promovía el uso exclusivo del acero para puentes ferroviarios. A raíz de ello, casi todos los puentes ferroviarios estadounidenses posteriores se construyeron con acero, y hacia 1895 este material también se utilizaba en otras tipologías de puentes. Para entonces, la producción de perfiles estructurales de acero para puentes ya estaba plenamente desarrollada en el país. Para 1895, las formas estructurales ya no se fabricaban en hierro, sino que se utilizaba acero de manera exclusiva.

El puente de Forth: el cantiléver monumental europeo

Puente de Forth. https://es.wikipedia.org/wiki/Puente_de_Forth

En el Reino Unido, el gobierno levantó la prohibición del uso del acero en puentes ferroviarios en 1877. Una década más tarde, el ingeniero Benjamin Baker, tras estudiar numerosos puentes cantiléver estadounidenses —especialmente los de la Canadian Pacific Railway—, propuso un diseño para el puente sobre el estuario del Forth, en Escocia. Antes de esto, Baker quizá no conocía el trabajo de los ingenieros C. Shaler Smith o C. C. Schneider, quienes ya habían diseñado y construido puentes ferroviarios en voladizo en Estados Unidos. El puente de Forth, completado en 1890, se convirtió en un hito de la ingeniería europea: un gigantesco puente cantiléver de acero con brazos de 207 m y un vano suspendido de 107 m.

Pese a las dudas de algunos ingenieros respecto a la fiabilidad del acero Bessemer por su posible fragilidad, Baker lo empleó en el proyecto. La estructura demostró una rigidez excepcional: la deflexión máxima medida con locomotoras pesadas fue de solo 90 mm, muy cerca del valor teórico previsto de 100 mm. También se sometió a pruebas con dos trenes de carbón largos y pesados en condiciones de viento extremas, con una deflexión inferior a 180 mm.

El puente de Quebec: tragedia, rediseño y récord mundial

Puente de Quebec. https://es.wikipedia.org/wiki/Puente_de_Quebec

La siguiente gran estructura cantiléver fue el puente de Quebec, sobre el río San Lorenzo. Con un vano central de 549 m, aún es en la actualidad el puente cantiléver de mayor luz del mundo. Sin embargo, su construcción estuvo marcada por dos catastróficos fallos: en 1907, un error en el cálculo de las tensiones de compresión durante la fase de voladizo provocó el colapso de la estructura. En la reconstrucción se utilizó acero con níquel como nuevo material. No obstante, en 1916, el vano suspendido cayó al ser izado. Finalmente, el puente se terminó y se abrió al tráfico ferroviario en 1917. Los proyectistas originales fueron Theodore Cooper y Peter Szlapka, de la empresa Phoenixville Bridge Company. Tras el colapso, H. E. Vautelet presentó un nuevo diseño, pero la remodelación del puente se licitó entre varias empresas constructoras y fue ejecutada por G. H. Duggan (St. Lawrence Bridge Company) bajo la dirección de C. C. Schneider, R. Modjeski y C. N. Monsarrat. El acero aleado con níquel se utilizó por primera vez en 1909 en el puente de Blackwell’s Island (hoy Queensboro), en Nueva York. El acero con níquel también fue empleado extensamente por J. A. L. Waddell en diseños de puentes ferroviarios de grandes luces. A. N. Talbot realizó ensayos de conexiones de acero con níquel para la reconstrucción del puente de Quebec.

Puentes de tramo continuo: una opción limitada en América

Mientras que en Europa los puentes de tramo continuo se hicieron más frecuentes, en América del Norte se evitaban por su carácter estáticamente indeterminado. Una excepción fue el puente ferroviario de la Canadian Pacific Railway en Montreal, construido en 1886 con tramos principales de 124,5 m. Se utilizó un método cantiléver para su construcción, controlando cuidadosamente las deformaciones en los cordones inferiores mediante tensores y tornillos ajustables. Estos vanos fueron reemplazados en 1912 debido a las preocupaciones sobre su comportamiento bajo cargas ferroviarias más pesadas. El extremo principal de las cerchas de reemplazo del vano simple se apoyó mediante cimbras sobre una barcaza móvil durante su instalación en un trazado adyacente.

El primer gran puente ferroviario de acero de Francia fue el Viaducto del Viaur, que se construyó en 1898. Este puente de arco en celosía tipo cantilever es inusual, ya que no tiene un vano suspendido, por lo que la estructura es estáticamente indeterminada. Muchos ingenieros consideran que el diseño no era apropiado para cargas ferroviarias.

Viaducto del Viaur. https://es.wikipedia.org/wiki/Viaducto_del_Viaur

La consolidación de nuevas técnicas: roblonado y acero de alto carbono

A principios del siglo XX, muchas estructuras de hierro y acero fueron sustituidas debido al aumento de peso de las locomotoras. El peso típico de las locomotoras era de aproximadamente 40 t en 1860, 70 t en 1880, 100 t en 1890, 125 t en 1900 y 150 t en 1910. Aunque el roblonado era común en Europa, en Estados Unidos no se estandarizó en puentes de gran luz hasta alrededor de 1915. El roblonado se utilizaba en vanos de menor luz a principios del siglo XX.

Uno de los primeros ejemplos destacados fue el Hell Gate Bridge en Nueva York, una estructura de arco de acero de 298 m completada en 1916 para soportar cuatro vías ferroviarias. Fue erigido sin cimbra y empleó por primera vez acero con alto contenido en carbono, principalmente, debido al alto coste del acero aleado.

Ese mismo año, la Chesapeake & Ohio Railroad terminó el puente de Sciotoville, en Ohio, con dos tramos continuos de 236,5 m, el más largo de su tipo hasta hoy.

Puente de Sciotoville. https://en.wikipedia.org/wiki/Sciotoville_Bridge

Un legado de 80.000 puentes

En 1910 se estimaba que había unos 80 000 puentes de hierro y acero en Estados Unidos, que sumaban un total de 2250 kilómetros sobre una red de 300 000 km de vías. La mayoría de los puentes eran de construcción de acero a principios del siglo XX. El ferrocarril, en su rápida expansión tras la Guerra Civil, se convirtió en el principal motor de innovación estructural, propiciando el paso de la madera y la mampostería al hierro y, finalmente, al acero.

El desarrollo de procesos como el Bessemer (1856) y el horno Siemens-Martin (1867) permitió la producción económica del acero. Así, los puentes ferroviarios de acero se convirtieron en una respuesta ingenieril al desafío logístico de la era industrial, marcando el inicio de la ingeniería estructural moderna.

 

Tesis doctoral: Optimización multicriterio para el diseño sostenible de puentes postesados mediante metamodelos

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

Hoy, 6 de junio de 2025, ha tenido lugar la defensa de la tesis doctoral de Dª. Lorena Yepes Bellver, titulada “Multi-criteria optimization for sustainable design of post-tensioned concrete slab bridges using metamodels”, dirigida por el profesor Julián Alcalá González. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Esta tesis utiliza técnicas de modelización sustitutiva para optimizar los costes económicos y medioambientales en puentes losa de hormigón postesado hormigonado in situ. El objetivo principal de esta investigación es desarrollar una metodología sistemática que permita optimizar el diseño de puentes, reduciendo los costes, las emisiones de CO₂ y la energía necesaria para construir este tipo de puentes sin comprometer la viabilidad estructural o económica. El marco de optimización propuesto consta de dos fases secuenciales: la primera se centra en ampliar el espacio de búsqueda y la segunda intensifica la búsqueda de soluciones óptimas. El metamodelo basado en Kriging realiza una optimización heurística que da como resultado un diseño con emisiones de CO₂ significativamente menores que los diseños convencionales. El estudio revela que una relación de esbeltez de aproximadamente 1/30 arroja resultados óptimos, ya que se reduce el consumo de material y se mantiene la integridad estructural. Además, el aumento de la armadura pasiva compensa la reducción de hormigón y armadura activa, lo que da como resultado un diseño más sostenible. Por otra parte, se identifica una compensación entre costes y emisiones que muestra que un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %), lo que demuestra que el diseño de puentes sostenibles puede ser económicamente viable.

La investigación explora más a fondo la optimización de la energía incorporada en la construcción de pasos elevados de carreteras anuladas mediante el uso de muestreo por hipercubo latino y optimización basada en Kriging. La metodología permite identificar los parámetros críticos de diseño, como los altos coeficientes de esbeltez (en torno a 1/28), el uso mínimo de hormigón y armadura activa, y el aumento de la armadura pasiva para mejorar la eficiencia energética. Aunque en el estudio se emplearon Kriging y redes neuronales artificiales (RNA), Kriging demostró ser más eficaz a la hora de identificar óptimos locales, a pesar de que las redes neuronales ofrecen predicciones absolutas más precisas. Esto pone de manifiesto la eficacia de los modelos sustitutos a la hora de orientar las decisiones de diseño sostenible, incluso cuando los modelos no ofrecen predicciones absolutas perfectamente exactas.

En el contexto de la optimización de costes para puentes de losa postesada, el estudio demuestra el potencial del modelado sustitutivo combinado con la simulación del recocido. Los resultados muestran que el método de optimización basado en Kriging conduce a una reducción de costes del 6,54 %, principalmente mediante la minimización del uso de materiales, concretamente de hormigón en un 14,8 % y de acero activo en un 11,25 %. Estas reducciones en el consumo de material se consiguen manteniendo la integridad estructural y la capacidad de servicio del puente, lo que convierte al modelado sustitutivo en una herramienta práctica y eficaz para la optimización económica en el diseño de puentes.

El estudio también evalúa la forma de optimizar las emisiones de CO₂ en pasos elevados de carreteras pretensadas. Se identifican los parámetros óptimos de diseño, como grados de hormigón entre C-35 y C-40 MPa, profundidades del tablero entre 1,10 y 1,30 m, y anchuras de base entre 3,20 y 3,80 m. La red neuronal mostró las predicciones más precisas entre los modelos predictivos analizados, con los errores medios absolutos (MAE) y cuadrados medios (RMSE) más bajos. Estos resultados subrayan la importancia de seleccionar el modelo predictivo adecuado para optimizar las emisiones de CO₂ en el diseño de puentes y destacan el valor de utilizar modelos sustitutivos para mejorar la sostenibilidad en los proyectos de ingeniería civil.

Por último, la investigación integra la toma de decisiones multicriterio (MCDM) con la optimización basada en Kriging para evaluar y optimizar los diseños de puentes en relación con objetivos económicos, medioambientales y estructurales. El enfoque MCDM permite evaluar de manera más exhaustiva las alternativas de diseño al tener en cuenta las compensaciones entre coste, impacto ambiental y rendimiento estructural. Esta integración contribuye al desarrollo sostenible de las infraestructuras, ya que facilita la selección de diseños óptimos que se ajusten a los objetivos de sostenibilidad.

En conclusión, esta tesis demuestra que el modelado sustitutivo, que utiliza explícitamente el Kriging y redes neuronales artificiales, es un enfoque práctico para optimizar las dimensiones medioambiental y económica del diseño de puentes. El marco de optimización en dos fases que aquí se presenta proporciona una metodología eficiente desde el punto de vista computacional que permite identificar soluciones de diseño óptimas y sostenibles que cumplen las restricciones estructurales y económicas. Los resultados sugieren que la metodología es aplicable a proyectos de infraestructuras a gran escala y sentarán las bases para futuras investigaciones. Futuros estudios podrían investigar el uso de algoritmos y modelos de optimización adicionales para perfeccionar aún más el proceso de optimización y mejorar la aplicabilidad de estas metodologías en proyectos reales.

Referencias:

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure Alternatives. J. Clean. Prod. 2024, 450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Seguimiento inteligente de deslizamientos en suelos de loess: aplicaciones prácticas y lecciones para el ingeniero civil

Acaban de publicar un artículo en la revista, Geomechanics for Energy and the Environment, de la editorial Elsevier, indexada en el JCR. El presente artículo examina un estudio que combina medición en pilotes de hormigón armado, tecnologías GNSS e InSAR y simulaciones de elementos finitos para entender cómo interactúan factores como la presión, la temperatura y la humedad en la evolución de taludes colapsables.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València, y es fruto de la colaboración internacional con investigadores de la Hunan University of Science and Engineering (China).

Podéis descargar el artículo de forma gratuita, hasta el 22 de julio de 2025, en la siguiente dirección: https://authors.elsevier.com/c/1lCKs8MtfNSrg1

En entornos donde los suelos de loess presentan alta susceptibilidad a deslizamientos, disponer de información precisa y temprana resulta determinante para garantizar la estabilidad de las infraestructuras y la seguridad de las comunidades.  A partir de los datos de campo y de la validación numérica, se extraen conclusiones clave sobre cómo dimensionar sistemas de refuerzo, configurar umbrales de alerta temprana y optimizar el diseño de pilotes en proyectos reales. A lo largo del texto se detallan tanto la metodología empleada como las aportaciones más relevantes, la interpretación de los resultados y las líneas futuras de investigación, de modo que el profesional del sector disponga de criterios sólidos para aplicar en obra o en la elaboración de proyectos de contención y estabilización en loess.

Metodología

El estudio combina la vigilancia de campo y simulación numérica para caracterizar el comportamiento de deslizamientos en suelos de loess. Se diseñó una red de instrumentación que incluye:

  • Pilotes de hormigón armado con sensores de presión y temperatura instalados a distintas profundidades (entre 2 m y 16 m). Estos sensores registran continuamente variaciones de tensión y temperatura, permitiendo asociar cambios térmicos con redistribuciones de fricción lateral entre pilote y suelo.
  • Receptores GNSS de alta precisión para medir desplazamientos superficiales con cadencia diaria.
  • Técnicas InSAR destinadas a generar mapas de deformación de superficie con resolución milimétrica.
  • Sensores de alambre vibrante para detectar cambios en humedad y densidad del terreno, claves para evaluar la resistencia interna del suelo y su evolución ante variaciones de carga y humedad.

En paralelo, en laboratorio se realizaron ensayos geomecánicos sobre muestras de loess. Se determinaron parámetros fundamentales: cohesión, ángulo de fricción, módulo de deformación y relación de vacíos. Estos datos alimentaron un modelo tridimensional de elementos finitos de tipo termomecánico, que incorpora:

  1. Parámetros de resistencia al corte y rigidez del suelo, calibrados mediante comparación con los desplazamientos y tensiones reales observados en campo.
  2. Condiciones de contorno tomadas de las lecturas de GNSS, InSAR y sensores en pilotes, para reproducir las condiciones de carga estática y los ciclos térmicos naturales.
  3. Proceso de optimización iterativa, ajustando el modelo hasta que las predicciones de deformación coincidieran con los datos de monitorización (diferencia inferior al 5 % entre desplazamientos numéricos y medidos) .

Este enfoque dual—campo y simulación—garantiza que las conclusiones numéricas se basen en datos reales y que los sistemas de seguimiento puedan ser validados frente a un modelo predictivo confiable.

Aportaciones relevantes

El artículo introduce un método integral de monitorización inteligente que va más allá del registro de desplazamientos superficiales. Los aspectos más destacados, con aplicación directa para el ingeniero civil, son:

  • Medición de tensiones internas en profundidad: La instalación de sensores de presión en pilotes permite identificar aumentos de carga a diferentes niveles. Los resultados mostraron que la presión tiende a incrementarse de forma monótona con la profundidad, lo que indica que los estratos inferiores soportan una mayor carga estática. Este comportamiento aporta información valiosa para dimensionar pilotes y elementos de refuerzo, pues revela en qué zonas del talud se concentran esfuerzos críticos antes de que se trasladen a la superficie.
  • Indicadores térmicos de fricción lateral: Las variaciones de temperatura registradas en los pilotes resultan ser un indicador temprano de cambios en la interacción entre el hormigón y el terreno. Aumentos de temperatura intermedios de hasta 3 °C por ciclos diurnos se correlacionaron con un incremento momentáneo de fricción lateral, lo que puede retrasar o anticipar movimientos dependientes de la descompresión del terreno. Para el ingeniero, esto significa que el seguimiento térmico aporta información adicional sobre el estado crítico del pilote antes de observar movimientos visibles.
  • Integración de GNSS e InSAR: Al combinar medidas GNSS (desplazamientos puntuales diarios) con mapas InSAR (cobertura continua de la superficie), se obtiene una visión conjunta de movimientos tanto profundos como superficiales. En el estudio, los desplazamientos de superficie máximos alcanzaron 26,2 mm, con velocidades de 0,11 mm/día, mientras que en profundidad se observaron desplazamientos de hasta 5,64 mm. Estos resultados permiten calibrar sistemas de alerta temprana sobre umbrales de desplazamiento en superficie que reflejen con mayor fiabilidad la evolución interna del talud.
  • Validación del modelo numérico: La comparación entre las simulaciones de elementos finitos y los datos de campo mostró concordancia en las tendencias de deformación. El modelo predijo con precisión que los bloques con geometría más inclinada y menor cohesión interna sufrirían desplazamientos sustanciales (hasta 6,48 m en algunos tramos simulados), mientras que bloques de forma más estable presentaron desplazamientos medios inferiores a 0,20 m. Esta validación otorga credibilidad al modelo para anticipar magnitudes de deformación en función de propiedades geomecánicas y geometría del talud.

En conjunto, estas aportaciones proveen al ingeniero civil una base sólida para diseñar sistemas de protección y refuerzo, establecer niveles de alerta basados en parámetros internos (presión y temperatura) y optimizar diseños de pilotes según las condiciones específicas del terreno de loess.

Discusión de resultados

Los registros de presión en pilotes revelaron que a profundidades superiores a 10 m los valores oscilan entre 50 kPa y 65 kPa, mientras que en los primeros metros (2 m–5 m) se sitúan entre 5 kPa y 20 kPa. Estos gradientes de presión confirman que la mayor parte de la carga estática recae en los estratos inferiores, algo habitual en suelos colapsables. Para el ingeniero, esta información práctica implica que, al diseñar pilotes de refuerzo, debe dimensionarse la sección y longitud considerando un incremento significativo de esfuerzos por debajo de 10 m de profundidad.

Asimismo, las variaciones térmicas registradas mostraron que, durante días con escasa precipitación, las temperaturas del hormigón en pilotes oscilan en un rango de 2 °C a 3 °C en zonas intermedias. Este efecto térmico se traduce en un aumento temporal de la fricción entre el pilote y el suelo, lo que actúa como un freno temporal al movimiento. Sin embargo, tras eventos de lluvia intensa, la entrada de agua reduce la temperatura y, simultáneamente, se observa una disminución de la fricción lateral, provocando repentinamente un aumento de desplazamientos en la superficie. Para el diseño práctico, esto sugiere que los sistemas de alerta temprana deben incorporar sensores de temperatura en pilotes para correlacionar descensos térmicos con posibles incrementos de desplazamiento.

Los desplazamientos superficiales medidos mediante GNSS e InSAR confirman que los movimientos más significativos (hasta 26,2 mm) se producen después de periodos de lluvia intensa, cuando la capacidad de drenaje del loess se ve limitada y presta a la saturación parcial del estrato superior. En estos momentos, los desplazamientos profundos (hasta 5,64 mm) preceden a los superficiales, lo que indica que la evolución interna puede anticipar la inestabilidad. En la práctica, esto recomienda que el seguimiento continuo de movimientos profundos—detectables por un ligero desplazamiento en pilotes o por un ligero aumento de presión de poros—sea prioridad para emitir avisos antes de observar grandes desplazamientos en la superficie.

Desde el punto de vista de la simulación numérica, el modelo de elementos finitos calibrado con los parámetros geomecánicos del loess mostró que los desplazamientos máximos simulados en bloques con ángulos de inclinación superiores a 30° podrían alcanzar valores de hasta 6,48 m en escenarios extremos de carga gradual. En contraste, bloques con inclinación por debajo de 20° presentaron apenas 0,20 m de deformación promedio. Estos resultados empíricos permiten al ingeniero estimar rangos de deformación potenciales según la geometría del talud y decidir si es necesario instalar medidas de contención adicionales (muros de mampostería, gaviones o anclajes). Asimismo, la validación numérica asegura que, en proyectos futuros, el ingeniero pueda confiar en simulaciones previamente calibradas para evaluar la viabilidad de distintas intervenciones.

Futuras líneas de investigación

Con el objetivo de mejorar la práctica profesional, se proponen las siguientes líneas de estudio:

  1. Escenarios sísmicos y precipitaciones extremas: Ampliar la investigación hacia eventos sísmicos de magnitud superior a 5,0 Ritcher y lluvias prolongadas con más de 50 mm/día. Es preciso analizar la respuesta dinámica del suelo y del hormigón en pilotes, incorporando modelos viscoelásticos que reflejen el comportamiento frente a aceleraciones y ciclos de carga rápidos. Esto permitirá definir nuevos criterios de seguridad para zonas de riesgo sísmico y diseñar pilotes con mayor ductilidad o sistemas de disipación de energía.
  2. Control de humedad y nivel freático: Incluir sensores de humedad de alta frecuencia y piezómetros para registrar en tiempo real la evolución del nivel de agua en el subsuelo. Vincular estos datos con la variación de presión de poros y temperatura en pilotes facilitará una lectura más precisa de la dinámica agua-suelo, identificando umbrales de saturación que reduzcan drásticamente la cohesión del loess. Para la práctica, esto significa instar a la instalación de estaciones meteorológicas locales y piezómetros en proyectos en zonas colapsables.
  3. Algoritmos de aprendizaje automático: Desarrollar modelos que integren todos los datos multi-sensoriales (GNSS, InSAR, presión, temperatura, vibración y humedad) para detectar patrones tempranos de reactivación. Las redes neuronales profundas o las máquinas de soporte vectorial pueden clasificar con mayor antelación estados de riesgo, automatizando alertas y permitiendo intervenciones más eficientes. El ingeniero podría disponer de una herramienta que genere notificaciones automáticas al superar umbrales críticos combinados.
  4. Durabilidad de pilotes y fatiga térmica: Investigar la resistencia a largo plazo de los pilotes de hormigón sometidos a ciclos térmicos y mecánicos. Ensayos acelerados de fatiga térmica, por ejemplo, podrían simular 10 años de degradación en semanas de laboratorio, determinando la resistencia residual del hormigón y sus revestimientos. Estos estudios serían útiles para seleccionar aditivos o recubrimientos que impidan la aparición de fisuras por dilataciones y contracciones repetidas.
  5. Interacción entre tráfico e inestabilidades de talud: Analizar cómo las vibraciones generadas por tráfico rodado intenso afectan el desarrollo de grietas y concentraciones de tensión en suelos de loess. Mediante modelos acoplados vehículo-terreno, se podría determinar si reemplazar capas de refuerzo rígido por materiales con mayor capacidad disipadora de energía reduce los efectos adversos en taludes cercanos a carreteras. Esta línea resultará de utilidad para ingenieros de firmes y geotecnia que trabajen en infraestructuras viales cercanas a zonas inestables.

Conclusión

El estudio presenta una estrategia de seguimiento inteligente que combina mediciones de presión y temperatura en profundidad, datos GNSS e InSAR, y simulaciones numéricas termomecánicas para describir con detalle el comportamiento de deslizamientos en loess. Para el ingeniero civil, los hallazgos prácticos son:

  • La presión en pilotes crece significativamente con la profundidad, por lo que el dimensionado debe contemplar refuerzos más robustos bajo los 10 m.
  • Las variaciones térmicas en pilotes anticipan cambios de fricción lateral, recomendando el uso de sensores de temperatura para mejorar sistemas de alerta.
  • Los desplazamientos profundos preceden a los superficiales tras lluvias intensas, por lo que priorizar la monitorización interna puede prevenir movimientos de gran magnitud en superficie.
  • Los bloques con ángulos de inclinación superiores a 30° son más vulnerables y requieren medidas de contención adicionales, hecho que valida la simulación numérica como herramienta predictiva.

En definitiva, la combinación de datos de campo y modelización proporciona una base sólida para diseñar soluciones de refuerzo y sistemas de alerta temprana más ajustados a la realidad del terreno. Herramientas adicionales—como el seguimiento continuo de humedad, algoritmos de inteligencia artificial y estudios de fatiga térmica—podrían perfeccionar las estrategias de diseño y mantenimiento de infraestructuras en zonas de loess, favoreciendo la seguridad y la eficiencia de las intervenciones.

Referencia:

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, DOI:10.1016/j.gete.2025.100692