Compactación por impulso eléctrico

Figura 1. Operación de la compactación por impulso eléctrico (Chu et al., 2009)

La compactación por impulso eléctrico (electric spark compaction) es una técnica de mejora del terreno que se empezó a aplicar en Rusia para la mejora de arena y suelos tipo loess. Se introduce una sonda en una perforación rellena de hormigón con áridos finos y se aplican descargas eléctricas de unos 10 a 20 kJ con intervalos de 5 a 10 segundos, en escalones de 0,5 a 1,0 m. No obstante, los resultados de este método no son concluyentes, pues se ve afectado por las condiciones del terreno. Además, el uso de voltajes tan altos a veces puede suponer una complicación añadida. No obstante, es un método que puede resultar útil en arenas saturadas.

La chispa eléctrica generada produce una onda de choque de vapor y gas. Estas ondas provocan una presión hidrodinámica en las paredes de la perforación. El equipo genera trenes de pulsos con varios segundos de intervalo entre ellos, lo que provoca una acción dinámica.

Figura 2. Compactación por impulso eléctrico. Adaptado de Lomize et al. (1973)

En la Figura 3 se pueden ver las fases de ejecución del método. En primer lugar (I) se realiza la perforación, posteriormente se rellena el hueco con una lechada de hormigón (II), se realiza el proceso de descargas eléctricas (III), y se introduce la armadura (IV-V). El aspecto final que queda en el pilote generado es similar al de los pilotes Franki.

Figura 3. Fases de ejecución de la mejora de suelos por impulso eléctrico (Dzhantimirov et al.,2010)

References:

CHU, J.; VARAKSIN, S.; KLOTZ, U.; MENGÉ, P. (2009). Construction Processes. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 3006-3135. IOS Press, doi:10.3233/978-1-60750-031-5-3006

DZHANTIMIROV, Kh. A.; RYTOV, S. A.; KRYCHKOV, S. A. (2010). Application of High-Power Electrical Sparks for Dynamic Compaction of Soil.  International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. 1.

LOMIZE, G.M., KIRILLOV, A.A., SEMUSHKINA, L.A., KIRILLOV, Y.A., ABRAMKIN, A.V. (1973). Tests of application of the electric spark method for compaction of the subsiding loess soils. Gidrotekhnicheskoe Stroitel’stvo (6): 22-25.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora de terreno mediante Terra-Probe

El método Terra-Probe consiste en hundir y extraer un tubo de acero de unos 80 cm de diámetro de extremo abierto con vibraciones verticales inducidas por un vibrohincador externo (Figura 1). Este tubo es de 10 mm de espesor de chapa y su longitud debe superar entre 3 y 5 m la profundidad requerida de tratamiento.

Figura 1. Esquema del acoplamiento del vibrohincador al tubo de acero.

Las vibraciones verticales (de unos 15 Hz) permiten la hinca del tubo que, al llegar a la profundidad prevista, se eleva gradualmente, continuando la vibración y compactando el suelo tanto en el interior como alrededor del tubo. Se mantiene de 30 a 60 segundos vibrando antes de elevar en cada escalón. El área de influencia de la compactación es de aproximadamente 1 m respecto al tubo.

Esta técnica permite compactar suelos arenosos secos o saturados, pudiéndose alcanzar profundidades de unos 15 a 20 m. Sin embargo, no es eficiente en los primeros 4 m desde la superficie. Los puntos de vibrado se separan habitualmente 1,50 m, en un patrón triangular o rectangular, en función del tipo de suelo y la densificación requerida.

Las condiciones del suelo saturado son ideales para el éxito del método. En los sitios donde el nivel freático es profundo, se instalan lanzas de agua en el tubo para ayudar a la penetración y densificación del suelo. Esta técnica, no obstante, no es útil cuando el contenido de finos supera el 15% o cuando hay materia orgánica en cantidades de más del 5% en peso. También hay que considerar que si existen capas inferiores más blandas, pueden asentar con la vibración. Además, Terra-Probe no es útil cuando se trata de atravesar capas rígidas. Sí que es una técnica muy útil en localizaciones off-shore.

Figura 2. Esquema del sistema Terra-Probe

Terra-Probe es una técnica similar a la vibroflotación, pero es considerablemente más rápida, unas 4 veces más rápida. No obstante, es menos eficaz, pues se necesitan de 4 a 5 veces más puntos de compactación. La zona de influencia de la compactación y la profundidad es menor, así como la densidad relativa alcanzada. Una de las ventajas de Terra-Probe es que se puede utilizar un equipo habitual de pilotaje para realizar el trabajo.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador vibratorio tipo tándem

Compactador vibratorio tipo tándem Caterpillar CD54B de tambor dividido

Son máquinas más utilizadas en la compactación de firmes asfálticos que en obras de tierras. Constan de dos cilindros montados sobre un bastidor, articulado o rígido. En este caso todo el peso se suma al esfuerzo de compactación. Pueden ser vibrantes uno o los dos cilindros, y ser tractores uno o ambos.

Sus anchos de trabajo oscilan entre los 0,60 m y los 2,10 m. Los diámetros de los cilindros varían entre los 0,60 a los 1,30 m. Los pesos pueden ser de 2 toneladas en los más ligeros, a las 10 toneladas en los más pesados. Presentan valores de frecuencia de trabajo elevados, de 50 a 55 Hz y amplitudes nominales comprendidas entre 0,3 y 0,8 mm. Las velocidades de trabajo llegan a 10-13 km/h, aunque en tierra no se aconseja superar los 4 km/h.

Os paso algunos vídeos de este tipo de compactador.

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/es/Tecnolog%C3%ADas/vibrosustituci%C3%B3n

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata normalmente de mejorar la capacidad portante, reducir la deformabilidad, reducir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que pueden aplicarse a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o para estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora; sin embargo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en el caso de tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden clasificar las técnicas de mejora del terreno en función de la temporalidad de la técnica (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo a los métodos de refuerzo y mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación con explosivos

Figura 1. Compactación con explosivos con cargas confinadas. http://62.129.205.139/en/microblasting/

La compactación de un suelo mediante explosivos se considera una técnica de mejora del terreno de carácter permanente y que no precisa de adición de materiales. Se trata de colocar cargas explosivas en profundidad que, en suelos granulares poco densos -con menos del 20% de limos o del 5% de arcillas-, provocan su licuefacción y posterior consolidación. Con ello se consiguen asientos generalizados en su superficie y, por tanto, un aumento de su peso específico. Fue en Rusia, en 1936, donde tuvieron lugar las primeras compactaciones mediante explosivos, incluso bajo el agua. En España se han utilizado en el puerto de Valencia para consolidar rellenos hidráulicos, resolviendo el tratamiento del terreno en solo dos meses (Romana y Ronda, 1997). Como es lógico, este procedimiento no es utilizable en zonas urbanas.

Este procedimiento es más eficiente que la vibrocompactación, por la aplicación de mayor energía, pero siempre que se domine la técnica. También es muy aplicable en suelos con grandes bolos, suelos vinos o con niveles superiores más rígidos, donde otras técnicas no son útiles. Los resultados son muy buenos, pudiéndose incrementar la densidad relativa de una arena floja en un 15-30%. Son típicos cambios de volumen entre el 3 y el 8%. Se trata de un procedimiento rápido y económico, no siendo necesario el empleo de una maquinaria especial. Suele terminarse el tratamiento con una compactación final de tipo superficial mediante rodillos vibrantes.

Como inconvenientes a este método cabría destacar el efecto de las explosiones sobre estructuras próximas al radio de acción, la falta de uniformidad en el terreno tratado, el factor psicológico negativo asociado al uso de explosivos y el cumplimiento de la normativa relacionada con los explosivos, especialmente en áreas pobladas. A veces se pueden utilizar productos expansivos no explosivos para evitar algunos de estos problemas. Por otra parte, el control de resultados requiere una exploración geotécnica posterior para evaluar el efecto del tratamiento.

En función de la situación donde se aloje la carga del explosivo, las voladuras pueden ser confinadas (la carga se coloca dentro de la capa del suelo, Figura 1), superficiales (en la superficie del terreno, Figura 2) o subacúaticas (pero por encima del nivel del terreno a compactar, Figura 3). Lo más normal es usar voladuras confinadas.

Figura 2. Voladuras superficiales.  http://62.129.205.139/en/microblasting/

 

Figura 3. Voladuras subacuáticas. http://62.129.205.139/en/microblasting/

Se puede definir el radio de influencia del tratamiento como la superficie cuyo asiento es mayor a 1 cm. La fórmula empírica que define dicha zona (López Jimeno et al., 1995) es

Rmin = K · Q1/3

donde Q es la carga del explosivo en kg y K un coeficiente adimensional que depende del tipo de suelo, según la Tabla siguiente:

Tabla 1. Coeficiente K para definir el radio de influencia de la compactación con explosivos (López Jimeno et al., 1995)

De forma aproximada, las cargas se suelen colocar a una profundidad en torno al 75% de la profundidad del estrato a compactar, con una separación entre cargas entre 5 y 15 m. Suelen utilizarse cargas del orden de 10 a 30 g de dinamita (o TNT, o amonita) por m3 de suelo. Para mayor detalle en el cálculo y diseño de la cantidad de explosivo, el radio de acción de la carga efectiva, el espesor de la carga efectiva, el espesor de la capa compactada, la profundidad a la que debe situarse la carga y el radio del dren de arena creado, pueden consultarse textos especializados. Hemos dejado un artículo al respecto al final del artículo.

Os dejo algunos vídeos al respecto. Observad cómo tras la explosión de las cargas, existe una salida importante de agua a presión.

Descargar (PDF, 1.43MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • LÓPEZ JIMENO, C. et al. (1995). Manual de perforación y voladuras de rocas. Instituto Tecnológico Geominero de España.
  • ROMANA, M.; RONDA, J. (1997). Consolidación por voladuras de un relleno hidráulico en el puerto de Valencia. Boletín de la Sociedad Española de Mecánica del Suelo y Cimentaciones, 126.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactador monocilíndrico vibratorio autopropulsado de patas apisonadoras

Son muy similares tanto por sus características geométricas como de frecuencias, amplitudes y velocidades a la de rodillos lisos, pudiéndose en muchos modelos intercambiarse los equipos. Llevan de 130 a 165 patas por cilindro, adoptando la forma de tacos de 100 mm de altura, ocupando aproximadamente un tercio de la superficie del tambor. Son adecuados para suelos plásticos y granulares, recomendándose los modelos de 16-20 t, con tracción al tambor. Es conveniente que las patas penetren y no se apoye la parte lisa del tambor en la capa. Para ello los espesores de capa adecuados no deberían ser superiores a la altura de las patas.

Os dejo algún vídeo para que veáis cómo trabaja este compactador.

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

Introducción al movimiento de tierras

La mecanización de las obras públicas es cada vez mayor, y la repercusión en el precio de las diferentes unidades de obra está muy influenciada por los rendimientos de los equipos empleados, por sus precios horarios y por la eficacia de su utilización. Los costes de la maquinaria acaparan un 42% del coste de todas las unidades de obra en una carretera. Las unidades que componen el movimiento de tierras en una obra suponen porcentajes importantes del presupuesto total de dichas obras. En una autovía puede suponer entre el 20 y 30% del coste mientras que en una presa de materiales sueltos, este porcentaje puede subir del 45 al 75%, según los casos.

Se entiende por movimiento de tierras al conjunto de actuaciones a realizarse en un terreno para la ejecución de una obra. Se denomina excavación a la separación o extracción de determinadas partes de dicho volumen, una vez superadas las fuerzas internas que lo mantenían unido: cohesión, adherencia, capilaridad, etc. Llamamos carga a la acción de depositar los productos de excavación en un determinado medio de transporte. Genéricamente, se puede clasificar la maquinaria utilizada en el movimiento de tierras en los siguientes grupos:

  •            Equipos de excavación y empuje:  son equipos de arranque tales como tractores con palas empujadoras: bulldozers.
  •            Equipos de excavación y carga: excavadoras de pala frontal, retroexcavadoras, etc.
  •            Equipos cargadores: palas cargadoras.
  •            Equipos de excavación y refino: Motoniveladoras, traíllas y mototraíllas.
  •            Equipos de acarreo: Camiones volquete, autovolquetes, remolques, camiones góndola, dumpers y motovagones.
  •            Equipos de compactación: Compactadores de ruedas neumáticas, rodillos de “pata de cabra”, compactadores vibratorios.
  •            Otro tipo de equipos: Cucharas bivalvas, dragalinas, topos, dragas, bombas de succión, etc.

Los equipos y medios empleados para la excavación de tierras pueden clasificarse de diversas formas: las que atienden a la traslación de la maquinaria, las que contemplan la resistencia a compresión de los terrenos y las que se refieren a su excavabilidad.

Según el modo de trasladarse, se clasifican en:

  •            Máquinas que excavan y trasladan la carga: tractores con hoja empujadora o con escarificador, motoniveladoras, mototraíllas y palas cargadoras. Efectúan la excavación al desplazarse, o bien, como la pala cargadora, excava y luego traslada la carga.
  •            Máquinas que excavan situadas fijas, sin desplazarse: palas excavadoras hidráulicas o de cables, dragalinas, excavadoras de rueda frontal o de cangilones, dragas de rosario y rozadoras. Cuando la excavación a realizar sale de su alcance, se debe trasladar a una nueva posición de trabajo, si bien no excava durante el desplazamiento.
  •            Máquinas especiales: topos, dragas y bombas de succión, dardos y chorros de agua y fusión térmica. La excavación se realiza mediante otros procedimientos distintos a los anteriores.

Os dejo un vídeo explicativo que sirve de introducción al tema. Espero que os sea útil.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

¿Penalizaciones económicas por una mala compactación?

En un artículo anterior tuvimos ocasión de hablar en detalle de los aspectos básicos del control de calidad en la compactación de un suelo. Pero, ¿qué pasa si existe una desviación entre los resultados que esperábamos y los realmente obtenidos? Es un tema que levanta fuertes discusiones, sobre todo por la repercusión económica y de funcionalidad de la unidad de obra. Mi opinión es que hay que ser muy cauteloso con la aceptación de unidades de obra con mermas de calidad, pero a veces se admiten excepciones que deben estar documentadas y razonadas. Una posibilidad es imponer una penalización económica lo suficientemente fuerte que desaconseje al contratista entrar en esa zona cercana a la aceptación, pero que se encuentre ligeramente por debajo de las especificaciones.

A veces el incumplimiento de las especificaciones que afecten a una determinada parte de la obra de terraplén, y siempre que a criterio del Director Facultativo estos defectos no impliquen una pérdida significativa en la funcionalidad y seguridad de la obra o parte de la obra y no sea posible subsanarlos posteriormente, pueden aplicarse penalizaciones en forma de deducción en la relación valorada. Esta posibilidad no debe nunca implicar una aceptación sin más de la merma de calidad, sino que sólo es aplicable en casos excepcionales.

A modo de ejemplo, y sin que ello suponga que esta penalización sea la más adecuada para todos los casos, el artículo 32.31 del Pliego de Condiciones Técnicas Generales 1988, del Ayuntamiento de Madrid propone las siguientes fórmulas, que podrán ser modificadas o complementadas en el Pliego de Condiciones Técnicas Particulares:

 

P1  = 0,04 ·ΔC · P        (por defecto de compactación)

P2  = 0,20 · N · P        (por cambio de calidad en el material)

siendo:

P1 y P2             deducción unitaria por penalización €/m3

P                     precio unitario del terraplén €/m3

ΔC                  defecto en % del grado de compactación en relación con el especificado.

N                     coeficiente por cambio de calidad.

– de seleccionado a adecuado, N=1

– de seleccionado a tolerable, N=4

– de adecuado a tolerable, N=2.

 

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Densidad de los suelos granulares

De Gsrdzl –  CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9651626

El grado de compactación de los suelos granulares no suele comprobarse con la habitual curva de compactación. Como estos suelos son relativamente permeables, incluso cuando están compactados, no se encuentran afectados de forma significativa por su contenido de agua durante el proceso de compactación. Ello explica que no esté bien definido el máximo de la curva de compactación en las gravas y arenas limpias. Con un esfuerzo de compactación dado, la densidad seca obtenida es alta cuando se encuentra totalmente seco y alta cuando está completamente saturado, dándose densidades algo más bajas con cantidades de agua intermedias. Ello se debe al fenómeno de apelmazamiento, donde pequeñas tensiones capilares en el suelo parcialmente saturado tiende a resistir el esfuerzo de compactación. Este apelmazamiento no se presenta en arenas secas y desaparece cuando la arena está saturada.

Para estos suelos, donde el concepto de curva de compactación no es aplicable, el criterio de compactación normalmente aplicado es el índice de densidad (ID) definido como:

donde

emax = índice de huecos del suelo en su estado más suelto.

e = índice de huecos del suelo ensayado.

emin = índice de huecos del suelo en su estado más denso.

Se puede juzgar si una arena se encuentra en estado denso o suelto en base a su índice de densidad:

Se puede definir como compactibilidad (F):

En un terreno granular bien graduado como SW o GW, emax-emin es elevado y emin es pequeño, luego F es grande. Estos suelos se compactan con facilidad. En suelos uniformes como ciertos tipos de SP y GP, emax-emin es pequeño y emin es grande, por tanto F es pequeño y el suelo es compactable con mayor dificultad.

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control de calidad de la compactación de un suelo

Compactador vibratorio de rodillo liso. https://construction.trimble.com

En la ejecución de los terraplenes son objeto de control los suelos utilizados, la extensión, la compactación y la geometría. El control de la compactación consistirá en la comprobación de que el producto final cumple las condiciones especificadas. Ya vimos que no solo el peso específico, sino otras condiciones como la deformación o el asiento máximo bajo carga pueden medir si se ha logrado o no dicho objetivo.

La medida del porcentaje de compactación, o lo que es lo mismo, del peso específico “in situ” del suelo, puede hacerse mediante la extracción de una muestra del terreno, o bien mediante el uso de aparatos nucleares, más rápidos y con menores errores debidos al operador. Otros procedimientos suponen medir la deformabilidad del terreno, mediante el módulo de deformación o medidas de deflexiones del suelo al paso de cargas.

El control de calidad de esta unidad de obra puede realizarse mediante una comprobación del producto terminado, o bien por una verificación del proceso, teniendo ambos sistemas sus ventajas e inconvenientes.

Durante mucho tiempo, la filosofía subyacente en las relaciones cliente-proveedor se han basado en la desconfianza y las partes se consideraban adversarios. Resulta de interés lo que Juran y Gryna decían al respecto: “… algunos compradores veían a sus proveedores como criminales potenciales que podían tratar de que sus productos defectuosos pasaran la inspección al ser recibidos”.

En la actualidad, se va asumiendo la necesidad de que la relación entre compradores y proveedores -dirección técnica y contratista-, se base en el respeto mutuo y la cooperación, pues de esta forma se benefician las dos partes. El intercambio de información de todo tipo y la colaboración en la resolución de problemas son aspectos fundamentales en la consecución de componentes de calidad. En este sentido, el proveedor no solamente suministra productos de calidad sino que, además, facilita la información que evidencia que su Sistema de Calidad (por ejemplo, basado en ISO 9001) es eficiente, con lo que se garantiza y se asegura la calidad ganándose la confianza del comprador.

Control del producto terminado o de recepción

Es el clásico procedimiento contractual, en el cual sólo se comprueba la densidad final alcanzada en una serie de puntos. Se establecen lotes de control y el muestreo se hace de forma aleatoria. En este tipo de verificación, el constructor puede establecer el sistema de trabajo que considere adecuado, siempre que luego cumpla con las especificaciones.

El sistema está indicado cuando tanto los materiales como los métodos de compactación no son demasiado homogéneos. Ello suele coincidir con ritmos de obra de medios a bajos, permitiendo la realización de un número elevado de determinaciones de densidad.

Existen dos grandes grupos o tendencias en cuanto al control de calidad por “resultado” (remitimos a bibliografía específica la descripción de estos procedimientos de control de calidad):

1) Control por peso específico:

            1.1.- Métodos directos:

                        1.1.1.- Clásicos: Arena, membrana, aceite, grandes catas, etc.

                        1.1.2.- Isótopos radiactivos.

            1.2.- Métodos indirectos: medición de asientos.

2) Control de la capacidad portante:

            2.1.- Métodos estáticos: placa de carga.

            2.2.- Métodos dinámicos: deflexiones, dinaplaca, compactímetros.

Las recomendaciones españolas de la Dirección General de Carreteras para el control de la calidad de la compactación de terraplenes definen dentro del tajo a controlar lo siguiente:

Control de compactación. http://www.geoconstruye.com

Lote: Material que entra en 5.000 m2 de tongada, o fracción diaria compactada si ésta es menor, exceptuando las franjas de borde de 2 m de anchura. Si la fracción diaria es superior a 5.000 m2 y menor del doble se formarán dos lotes aproximadamente iguales.

Muestra: Conjunto de cinco unidades, tomadas en forma aleatoria de la superficie definida como lote. En cada una de estas unidades se realizarán ensayos de humedad y peso específico.

Franjas de borde: En cada una de las bandas laterales de 2 m de anchura adyacentes al lote anteriormente definido se fijará un punto cada 100 m. El conjunto de estos puntos se considerará una muestra independiente de la anterior, y en cada uno de los mismos se realizarán ensayos de humedad y peso específico.

Los pesos específicos secos obtenidos en la capa compactada deberán ser iguales o mayores que las especificadas en el Pliego de prescripciones técnicas en cada uno de los puntos ensayados. No obstante, dentro de una muestra, se admitirán resultados individuales de hasta un 2% menores que los exigidos, siempre que la media aritmética del conjunto de la muestra resulte igual o mayor que el valor fijado en el Pliego.

La humedad de las capas compactadas no será causa de rechazo, salvo cuando, por causa justificada, se utilicen suelos con características expansivas. En este caso, si no está previsto en el pliego de prescripciones técnicas, estos suelos deberán ser objeto de un estudio cuidadoso en laboratorio en el que se determinarán los valores de humedad y densidad a obtener en obra y los márgenes de tolerancia.”

Vemos que se trata de controles muestrales, de los que se pretenden inferir las características de la totalidad de la superficie ensayada. La inferencia estadística pretende obtener información de las muestras para conocer los parámetros poblacionales, cuantificando el riesgo de error en términos de probabilidad.

El lote es el conjunto del que se toma la muestra y sobre el que hay que tomar la decisión de aceptar o rechazar. Cada lote deberá haberse producido bajo condiciones homogéneas y durante un período de tiempo determinado.

Llegados a este punto es necesario hacer la siguiente consideración, basada en los fundamentos estadísticos de los planes de muestreo: no es justo realizar tamaños de muestra proporcionales a los tamaños del lote, ya que se varían las probabilidades de aceptar el lote, y ello puede ser utilizado injustamente en beneficio propio por la parte que toma la decisión. De esta forma, si quien decide el tamaño del lote es el contratista, tenderá a lotes de pequeño tamaño -y por tanto reducidos tamaños de muestra-, pues así, la casi totalidad de los lotes serán aceptados incluso -injustamente- los de baja calidad. Si, por el contrario, quien decide el tamaño es la administración, tenderá a pedir lotes de gran tamaño pues, así, se aceptarán solamente los muy buenos aunque también lotes de buena calidad serán -injustamente- rechazados. Por tanto, no es lo mismo determinar lotes de 1.000 m2 y una muestra de una unidad, que lotes de 5.000 m2 y muestras de 5 unidades, o lotes de 10.000 m2 y muestras de 10 unidades.

La muestra aleatoria simple es aquella que se toma de tal forma que todos los conjuntos de n determinaciones del lote tienen la misma probabilidad de constituir la muestra o, lo que es equivalente, que todas las determinaciones que se puedan tomar del lote tienen la misma probabilidad de formar parte de la muestra. Se deben evitar ir a los sitios “peores”, o a los que el operador que realiza los ensayos le parecen “representativos”.

Conviene tener en cuenta que un punto de porcentaje no es una cosa nimia, puesto que un material completamente suelto tiene ya una densidad del orden del 85% de la de referencia.

Los pesos específicos “in situ” y las diferencias entre humedades “in situ” y la óptima siguen una distribución normal. Para situaciones generales es corriente un coeficiente de variación inferior al 3% respecto al peso unitario e inferior al 1,5% respecto a la diferencia entre la población de humedades y la óptima. Es interesante el concepto de “homogeneidad” aplicado por la norma Suiza (SNV 640585a) en cuanto al peso específico aparente húmedo que establece un coeficiente de variación máximo del 5% para dicha variable.

Control del proceso

Con objeto de limitar el número de ensayos, que puede ser prohibitivo en algunos casos, se trata de aumentar el nivel de fiabilidad del producto introduciendo especificaciones en la forma de ejecutar la unidad de obra. Así, según el tipo de suelo, se pueden fijar unas máquinas a utilizar, unos espesores máximos de capa y delimitar el número mínimo de pasadas necesarias. Otro método sería establecer todos estos parámetros en función de los resultados obtenidos para un material en un tramo de prueba.

Su uso está indicado para fuertes ritmos de producción con materiales y sistemas de ejecución homogéneos. La rapidez de ejecución impide la realización de ensayos de producto terminado en número suficiente, y a veces hay que tomar decisiones con rapidez y agilidad, sin merma en la calidad.

El control de “proceso” requiere un conocimiento previo del comportamiento de cada material, un control exhaustivo de la capacidad de trabajo de las máquinas y un método de trabajo estrictamente controlado.

Este tipo de control, combinado con el de producto final, presenta ventajas evidentes, pero supone cierto “compromiso” por parte de la Administración contratante en el proceso de ejecución, que a veces es difícil de establecer de forma contractual.

Los nucleodensímetros como aparatos de medida

El empleo de ensayos tradicionales como el método de la arena han sido desplazados por el empleo de nucleodensímetros ya que éstos permiten la obtención de la densidad y la humedad de un forma casi instantánea. Son equipos que poseen una fuente radiactiva en el extremo de la sonda que se introduce en el terreno y dos detectores de radiación. La fuente se compone de Cesio 137, el cual emite fotones gamma. Estos fotones, antes de llegar a los detectores, chocan con los electrones de los átomos del suelo. Una alta densidad implica un alto número de choques, siendo menor el número de fotones que llegan a los detectores. La fuente radiactiva también posee Americio-241: Berilio, que emite neutrones. El detector de neutrones localiza  la cantidad de los mismos que, debido a la presencia de átomos de hidrógeno del agua del suelo, son termalizados. Este mecanismo permite la obtención de la humedad.

Los nucleodensímetros tienen dos modos de obtener las densidades: transmisión directa (la sonda penetra en el material) y retrodispersión (en caso contrario). El modo de transmisión directa se debe emplear siempre que sea posible introducir la sonda en el material que se desea ensayar. El operador realiza un orificio en el suelo ayudándose de una pica y un mazo. La profundidad a la que debe introducirse la sonda deber ser igual o ligeramente inferior al espesor de la capa que se ensaya, para obtener una medición representativa de toda la capa.

El modo retrodispersión sólo debe utilizarse cuando la dureza de la capa impide la penetración de la sonda, como sucede en el hormigón en las mezclas bituminosas. En este caso sólo se mide la densidad de material situado hasta unos 8 cm por debajo de la superficie, perdiéndose la representatividad.

La prevención conlleva el reconocimiento de que la calidad debe generarse durante el proceso y no ser inspeccionada cuando el producto está acabado. Es mejor adelantarse a los acontecimientos en vez de reaccionar constantemente cuando los fallos se producen. Incluso desde el punto de vista de la eficiencia económica, es más barato dedicar parte de los recursos a la prevención que asumir sin más los costes de la no calidad.

A continuación dejo un vídeo sobre lo que es el densímetro nuclear.

Os dejo a continuación un vídeo sobre seguridad nuclear en el uso de medidores industriales nucleares, nucleodensímetros.

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.