Evaluación del ciclo de vida en viviendas sociales: un enfoque multicriterio para decisiones sostenibles

Acaban de publicarnos un artículo en la revista Building and Environment, revista indexada en el JCR en el primer decil. Presenta un análisis integral del impacto ambiental, económico y técnico de cinco soluciones estructurales aplicables a viviendas sociales. La investigación cobra especial relevancia en contextos como el peruano, donde la elevada demanda de vivienda y las limitaciones presupuestarias requieren soluciones eficientes, sostenibles y ampliamente replicables. Este trabajo se inscribe dentro del marco de los Objetivos de Desarrollo Sostenible (ODS), y aporta criterios objetivos para la toma de decisiones en el diseño y ejecución de programas como Techo Propio y Fondo Mi Vivienda.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València. A continuación se recoge un resumen sintético del trabajo.

Este artículo describe una investigación que evalúa la sostenibilidad de diferentes sistemas estructurales para viviendas sociales, enfocándose en su impacto ambiental, económico y técnico a lo largo de todo su ciclo de vida. La metodología empleada integra el Análisis del Ciclo de Vida (LCA), el Coste del Ciclo de Vida (LCC) y la Toma de Decisiones Multicriterio (MCDM) para proporcionar una visión completa. Los hallazgos principales indican que los sistemas de Light Steel Frame (LSF) son los más equilibrados en términos de sostenibilidad y rentabilidad, lo que ofrece criterios objetivos para la planificación de proyectos de vivienda social, especialmente en contextos como el peruano. El estudio resalta la importancia de una evaluación holística para la toma de decisiones en el sector de la construcción.

La principal aportación del artículo es la integración de tres herramientas de evaluación: el Análisis del Ciclo de Vida (LCA), el Coste del Ciclo de Vida (LCC) y la Toma de Decisiones Multicriterio (MCDM). El análisis se realiza con un enfoque cradle-to-grave, es decir, considerando todas las etapas del ciclo de vida de una vivienda: desde la extracción de materias primas hasta la demolición y el tratamiento de residuos. Esta perspectiva ofrece una visión más completa y realista del impacto de cada sistema constructivo, en contraste con los estudios más limitados comúnmente aplicados en América Latina.

Los cinco sistemas estructurales analizados fueron los siguientes: (1) estructuras de hormigón armado con muros de ladrillo (RCF-M), (2) muros de hormigón vaciados in situ (RCW), (3) sistemas industrializados de acero ligero tipo Light Steel Frame (LSF), (4) estructuras de hormigón armado con paneles sándwich prefabricados (RCF-CP) y (5) paneles sándwich de hormigón atornillados (LBSPS). Todas las alternativas se diseñaron siguiendo las normas técnicas peruanas de edificación (RNE), incluidos los requisitos sísmicos y de eficiencia energética. La unidad funcional utilizada fue el metro cuadrado de vivienda construida, con una vida útil de 50 años.

Desde el punto de vista ambiental, el sistema LSF resultó ser el de menor impacto global, incluso por debajo de soluciones convencionales como el RCF-M, que destacó por su alto consumo energético y emisiones durante la etapa de fabricación, principalmente debido a la producción de ladrillos cerámicos. En contraste, los sistemas prefabricados como LBSPS, aunque reducen los tiempos de ejecución, presentaron impactos ambientales elevados debido al uso intensivo de maquinaria y transporte especializado. El potencial de calentamiento global (GWP) fue la categoría con mayor peso ambiental, seguida del consumo de recursos naturales.

En cuanto al análisis económico, el sistema LSF también demostró ser el más competitivo. Su menor coste de construcción, el reducido mantenimiento y la facilidad de desmontaje le confieren ventajas económicas importantes. El sistema RCF-M, aunque tiene un bajo coste inicial, tiene mayores costes durante la fase de uso y al final de su vida útil debido a su elevada generación de residuos y dificultad de reciclaje. Las alternativas basadas en hormigón (RCW y RCF-CP) mostraron costes intermedios, con un mayor gasto en mantenimiento preventivo debido a la necesidad de recubrimientos anticorrosivos y anticarbonatación.

Para integrar todas estas variables, se emplearon seis métodos de decisión multicriterio (AHP, DEMATEL, TOPSIS, WASPAS, EDAS, MABAC y MARCOS), y a cada criterio se le asignaron pesos según la experiencia de un panel de expertos. Los criterios que más influyeron en la toma de decisiones fueron el coste de construcción, la necesidad de mano de obra especializada y el impacto ambiental sobre los recursos. La consistencia entre los métodos aplicados y los análisis de sensibilidad realizados confirma la solidez de los resultados: en más del 90 % de los escenarios simulados, el sistema LSF se mantuvo como la mejor opción global.

Las conclusiones del estudio son claras: ningún sistema constructivo es perfecto en todos los aspectos, pero el LSF se posiciona como la solución más equilibrada en términos de sostenibilidad, coste y eficiencia técnica. Esto tiene implicaciones directas para la planificación de proyectos de vivienda social, donde la rapidez de ejecución, la reducción de emisiones y la viabilidad económica deben ir de la mano. Además, el marco metodológico propuesto en este trabajo puede replicarse en otros países o contextos donde se busque optimizar la selección de sistemas constructivos en función de múltiples criterios.

En definitiva, este artículo supone un avance significativo en la evaluación integral de las tecnologías constructivas para la vivienda social. Proporciona a ingenieros, arquitectos y responsables de políticas públicas una herramienta sólida para fundamentar sus decisiones, superando enfoques tradicionales centrados únicamente en el coste o la rapidez constructiva. La aplicación de metodologías multicriterio, combinadas con análisis del ciclo de vida, se consolida así como un enfoque clave para impulsar una construcción social verdaderamente sostenible.

Referencia:

LUQUE-CASTILLO, X.; YEPES, V. (2025). Life Cycle Assessment of Social Housing Construction: A Multicriteria Approach. Building and Environment, 282:113294. DOI:10.1016/j.buildenv.2025.113294

Os paso el artículo, pues está publicado en abierto.

Descargar (PDF, 6.45MB)

Glosario de términos clave

  • Análisis del ciclo de vida (LCA – Life Cycle Assessment): Una herramienta para evaluar los impactos ambientales asociados con todas las etapas de la vida de un producto, desde la extracción de la materia prima hasta la disposición final.
  • Coste del ciclo de vida (LCC – Life Cycle Costing): Una herramienta de evaluación económica que considera todos los costes relevantes de un producto o sistema a lo largo de su vida útil, incluyendo diseño, construcción, operación, mantenimiento y disposición.
  • Toma de decisiones multicriterio (MCDM – Multi-Criteria Decision-Making): Un conjunto de métodos y técnicas utilizados para evaluar y clasificar alternativas cuando hay múltiples criterios en conflicto, permitiendo tomar decisiones más informadas.
  • Enfoque «Cradle-to-Grave»: Una metodología de análisis que abarca todas las etapas del ciclo de vida de un producto o sistema, desde la «cuna» (extracción de materias primas) hasta la “tumba” (disposición final o reciclaje).
  • Objetivos de Desarrollo Sostenible (ODS): Un conjunto de 17 objetivos globales establecidos por las Naciones Unidas para lograr un futuro más sostenible para todos, abordando desafíos como la pobreza, la desigualdad, el cambio climático y la degradación ambiental.
  • RESILIFE: El proyecto de investigación en el marco del cual se realizó este estudio, dirigido por el investigador principal en la Universitat Politècnica de València.
  • Techo Propio y Fondo Mi Vivienda: Programas de vivienda social en Perú mencionados como contextos clave donde los hallazgos del estudio pueden aplicarse para la toma de decisiones.
  • RCF-M (Hormigón armado con muros de ladrillo): Uno de los sistemas estructurales analizados, que representa una solución constructiva convencional.
  • RCW (Muros hormigonados in situ): Uno de los sistemas estructurales analizados, caracterizado por el vertido de hormigón directamente en el lugar de la obra.
  • LSF (Light Steel Frame): Un sistema industrializado de acero ligero, destacado en el estudio por su eficiencia ambiental y económica.
  • RCF-CP (Estructuras de hormigón armado con paneles sándwich prefabricados): Un sistema que combina hormigón armado con paneles prefabricados.
  • LBSPS (Paneles sándwich de hormigón atornillados): Un sistema prefabricado de paneles sándwich de hormigón que se ensamblan mediante atornillado.
  • Unidad funcional: El parámetro de referencia utilizado en el LCA y LCC para comparar diferentes alternativas, en este caso, el metro cuadrado de vivienda construida con una vida útil de 50 años.
  • Potencial de calentamiento global (GWP – Global Warming Potential): Una medida del impacto de una sustancia en el calentamiento global, expresada en equivalentes de CO₂. Fue la categoría de mayor peso ambiental en el estudio.

¿Cuáles son las características de una buena estimación de costes?

En la ingeniería o la arquitectura, la estimación de costes no constituye únicamente una labor técnica, sino que representa un componente esencial en la planificación, gestión y toma de decisiones de todo proyecto. Ya sea para la construcción de una presa, una carretera o una infraestructura ferroviaria, es fundamental contar con una estimación precisa, bien fundamentada y comunicada adecuadamente, ya que esto puede marcar la diferencia entre el éxito y el fracaso de una iniciativa. En el presente artículo, se aborda la evaluación de las competencias que constituyen una estimación de costes sólida y conforme a las normas profesionales y las prácticas óptimas del sector.

Una estimación de costes sólida y confiable debe cumplir con cuatro características relevantes: exhaustividad, razonabilidad, credibilidad y solidez analítica. Estos principios aseguran que el análisis sea riguroso desde el punto de vista técnico, así como útil y comprensible para quienes toman decisiones.

En primer lugar, toda estimación sólida debe basarse en el rendimiento histórico de programas anteriores. Por lo tanto, es necesario utilizar datos de proyectos análogos como referencia, ya sean similares en alcance, naturaleza o contexto, para respaldar el análisis. Estas experiencias previas deben estar claramente identificadas como fuentes de datos, aportando así transparencia y reforzando la confianza en los resultados.

Sin embargo, si bien los datos históricos constituyen el punto de partida, es imperativo considerar las posibles mejoras en diseño, materiales y procesos constructivos que puedan incorporarse en el nuevo proyecto. A pesar de la ausencia de datos empíricos que respalden estos avances, es necesario evaluar su impacto de manera rigurosa y fundamentada. En tales circunstancias, se acude al juicio profesional o conocimiento experto (también denominado subject matter expertise), cuya aplicación debe estar debidamente documentada y justificada.

Otro aspecto clave es la claridad en la comunicación. Una estimación sólida debe ser comprensible, especialmente para los responsables de programas y directivos que, si bien toman decisiones estratégicas, pueden carecer del tiempo o del perfil técnico necesario para profundizar en los detalles metodológicos. Por ello, se recomienda optar por enfoques sencillos, evitando complejidades innecesarias, para que la estimación pueda ser fácilmente interpretada por sus destinatarios.

Asimismo, es preciso identificar las reglas de base y los supuestos. Como se suele decir en el ámbito del análisis: «Permítame realizar las suposiciones, y usted podrá realizar los cálculos». Esta frase resume la enorme influencia que tienen las hipótesis en cualquier estimación. Si bien es difícil que todos los agentes implicados compartan exactamente los mismos supuestos, la mejor estrategia consiste en incorporar análisis de sensibilidad. Estos instrumentos permiten evaluar la variación de la estimación ante diferentes escenarios y contribuyen a una gestión más eficiente de la incertidumbre.

Precisamente, una buena estimación debe abordar de forma explícita los riesgos y las incertidumbres inherentes al proyecto. Si bien el resultado final se manifiesta a través de una cifra concreta —conocida como «punto estimado»—, es importante destacar que dicha cifra es el resultado de una serie de supuestos. Por lo tanto, es posible que esta haya variado si los supuestos hubiesen sido distintos. Por tanto, es esencial señalar las sensibilidades del modelo y mostrar cómo afectan al resultado final, para ofrecer una visión más completa y realista del coste previsto.

Desde una perspectiva técnica, existen otras cualidades que refuerzan la validez y utilidad de la estimación. Una de las características esenciales que debe cumplir es que esté impulsada por los requisitos del proyecto. Resulta improcedente solicitar una estimación del coste de rehabilitar una cocina sin definir previamente el alcance de dicha rehabilitación. En el ámbito de los proyectos civiles de gran envergadura, resulta imperativo que los requisitos funcionales y técnicos se encuentren debidamente documentados, ya sea a través de especificaciones técnicas, documentos de alcance, solicitudes de propuesta (RFP) o, en el caso de proyectos públicos, mediante instrumentos normalizados como el «Cost Analysis Requirements Description» (CARD).

Otra condición esencial es que el proyecto esté suficientemente definido desde el punto de vista técnico y que se hayan identificado las áreas de mayor riesgo. De este modo, se garantizará una selección meticulosa de la metodología de estimación más apropiada y una aplicación precisa de las herramientas de análisis.

En proyectos de gran envergadura, especialmente en el ámbito público, se recomienda disponer de una estimación independiente. Esta función de validación externa contribuye a reforzar la credibilidad del análisis. De igual manera, es importante contar con estimaciones independientes que respalden los presupuestos en los grandes proyectos.

Finalmente, una estimación de calidad debe ser trazable y auditable. Por lo tanto, es imperativo que sea posible reconstruirla a partir de los datos, supuestos y fuentes utilizadas. Existe un consenso tácito entre los profesionales de la estimación, según el cual cualquier individuo con conocimientos básicos de análisis cuantitativo debería estar en condiciones de seguir los pasos del cálculo, aplicar los datos y reproducir el resultado. La transparencia, por tanto, no es solo un valor añadido, sino un requisito indispensable para asegurar la fiabilidad del proceso.

En el ámbito de la ingeniería civil, donde los proyectos conllevan frecuentemente inversiones significativas y pueden afectar a miles de personas, la estimación de costes deja de ser una tarea secundaria para convertirse en una herramienta estratégica esencial. El cálculo de cifras por sí solo no es suficiente; es imperativo comprender el proyecto en su totalidad, anticipar escenarios, comunicar con claridad y tomar decisiones con fundamento.

Invito a todas las personas —ya sean profesionales con experiencia o estudiantes en proceso de formación— a considerar la estimación de costes no como un mero trámite técnico, sino como una disciplina que integra ciencia, experiencia y criterio. Reflexionar sobre el proceso de construcción de nuestras estimaciones, los supuestos que las sustentan y la manera en que las comunicamos, puede resultar fundamental para mejorar la eficiencia, la transparencia y la sostenibilidad de nuestras infraestructuras.

Glosario de términos clave

  • Estimación de costes: Proceso de predecir el coste monetario de un proyecto o iniciativa, basándose en datos disponibles, supuestos y metodologías de análisis.
  • Exhaustividad: Característica de una estimación que implica considerar todos los elementos relevantes del proyecto y sus posibles costes asociados.
  • Razonabilidad: Característica que indica que la estimación está lógicamente estructurada y los valores utilizados tienen sentido dentro del contexto del proyecto y la experiencia previa.
  • Credibilidad: Característica que denota la confianza en la estimación, basada en la solidez de la metodología, la transparencia en los datos y supuestos, y la validación (interna o externa).
  • Solidez analítica: Característica que se refiere a que la estimación se basa en métodos de análisis cuantitativos rigurosos y bien aplicados.
  • Rendimiento histórico: Datos de coste y ejecución de proyectos anteriores similares que se utilizan como base empírica para una nueva estimación.
  • Juicio profesional (o conocimiento experto): Aplicación de la experiencia y conocimiento de expertos en la materia para realizar estimaciones o tomar decisiones cuando los datos empíricos son limitados.
  • Reglas de base y supuestos: Las hipótesis fundamentales y las condiciones iniciales que subyacen a una estimación y sobre las cuales se realizan los cálculos.
  • Análisis de sensibilidad: Técnica que evalúa cómo varía el resultado de una estimación cuando se modifican los supuestos o parámetros clave, ayudando a entender el impacto de la incertidumbre.
  • Punto estimado: La cifra única que representa el resultado más probable o esperado de la estimación de costes.
  • Requisitos del proyecto: Las especificaciones funcionales, técnicas y de rendimiento que definen el alcance y los objetivos de un proyecto, y que deben impulsar la estimación de costes.
  • Cost Analysis Requirements Description (CARD): Instrumento normalizado, especialmente en proyectos públicos, que documenta los requisitos necesarios para realizar un análisis de costes.
  • Estimación independiente: Una estimación de costes realizada por un equipo o entidad separada del equipo principal del proyecto, con el fin de validar o contrastar la estimación principal.
  • Trazabilidad: La capacidad de seguir y documentar el proceso de estimación, desde los datos y supuestos iniciales hasta el resultado final.
  • Auditabilidad: La capacidad de verificar la exactitud y fiabilidad de una estimación, examinando los datos, métodos y supuestos utilizados, de modo que otro analista pueda reproducirla.

Referencias:

Mislick, G. K., & Nussbaum, D. A. (2015). Cost estimation: Methods and tools. John Wiley & Sons.

Yepes, V. (2022). Gestión de costes y producción de maquinaria de construcción. Universidad Politécnica de Valencia.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

¿Se puede predecir el futuro? Claves de la estimación de costes en proyectos de ingeniería

En el ámbito de la ingeniería civil, planificar correctamente no es solo deseable, sino que es imprescindible para garantizar la eficiencia y la calidad en el desarrollo de proyectos. En todas las etapas de un proyecto, ya sea la construcción de una carretera, un puente o una infraestructura hidráulica, la estimación de costes es un componente esencial. La estimación precisa del costo de una obra es fundamental para tomar decisiones informadas, optimizar recursos y reducir riesgos. Para proceder con la estimación de costes, es preciso definir de manera precisa el concepto. Para ello, es necesario establecer los fundamentos técnicos y metodológicos que rigen dicha práctica.

El físico danés Niels Bohr, distinguido con el Premio Nobel en 1922, expresó en una ocasión: «Predecir es sumamente complejo, especialmente en lo que respecta al futuro». Esta expresión, originariamente empleada en el contexto de la física, resulta de aplicación en el ámbito de la estimación de costes, dada su compatibilidad tanto con su dimensión técnica como con la naturaleza incierta inherente a todo proceso de planificación.

La estimación de costes puede definirse como el proceso mediante el cual se recopilan y analizan datos históricos, y se aplican modelos cuantitativos, técnicas, herramientas y bases de datos con el objetivo de prever el coste futuro de un producto, proyecto, programa o tarea. En esencia, se trata de una práctica que integra elementos del arte y la ciencia, con el objetivo de estimar el valor, alcance o características probables de un elemento, en función de la información disponible en un momento determinado.

Uno de los pilares fundamentales de esta disciplina son los datos históricos. Como ocurre en cualquier otra actividad científica, la estimación de costes se apoya en evidencias contrastadas. Dado que no es posible disponer de datos futuros, es imperativo recurrir a la información relevante del pasado. La búsqueda y tratamiento de datos históricos es una labor esencial del profesional de la estimación. La recopilación, organización, normalización y gestión adecuadas de los datos históricos son valiosos para sentar una base sólida para el análisis posterior.

En lo que respecta a la estimación de costes, esta se fundamenta en el empleo de modelos cuantitativos, los cuales deben caracterizarse por su transparencia, racionalidad y capacidad de revisión por parte de terceros. Este componente científico ha sido determinante para que la asignatura de estimación de costes se integre de manera habitual en los departamentos universitarios de ingeniería de sistemas, investigación operativa o administración de empresas, lo que refleja su naturaleza técnica y rigurosa.

Un aspecto central de esta profesión es la capacidad de predecir. Frecuentemente, se escucha la afirmación de que «no se puede predecir el futuro», pero esta idea es engañosa. Si alguien afirma que «mañana va a llover», podrá estar en lo cierto o equivocado, pero en cualquier caso estará realizando una predicción. De hecho, muchas de nuestras decisiones cotidianas —como la elección de un paraguas o la planificación de una inversión— se fundamentan precisamente en el intento de anticipar el futuro. Predecir, también conocido como pronosticar, es una actividad legítima y valiosa, especialmente en campos como la ingeniería civil, donde los proyectos suelen implicar plazos largos, recursos significativos y un alto grado de incertidumbre.

Algunas voces críticas señalan que la utilización de datos históricos para estimar costes futuros podría implicar la repetición de errores del pasado en la toma de decisiones. Según esta lógica, estaríamos asumiendo que los gestores actuales cometerán los mismos fallos que sus predecesores, lo cual, según afirman, carece de sentido. Sin embargo, esta objeción se fundamenta en un error de base. Por un lado, los errores del pasado no suelen deberse a la incompetencia de quienes lideraban los proyectos, sino más bien a factores externos que escapaban a su control. Por otro lado, quienes gestionan proyectos en la actualidad se enfrentarán a un contexto diferente, con nuevos retos y condicionantes que también podrían obligarles a desviarse de sus planes iniciales. Como respuesta más irónica (pero igualmente válida), podría decirse que «no cometerás los mismos errores que tus antecesores: cometerás los tuyos propios».

Por último, es fundamental tener presente que toda estimación se realiza con base en la información disponible en el momento. Si bien nos gustaría contar con datos precisos sobre las condiciones futuras en las que se ejecutará un proyecto, la realidad es que solo podemos trabajar con lo que sabemos hoy, e intentar prever las circunstancias del mañana. Es comprensible que no sea posible anticipar todos los cambios que puedan producirse, especialmente en proyectos a largo plazo. A modo ilustrativo, si se está calculando el coste para producir de 200 m³ de hormigón en una planta propia para una obra, pero más adelante el cliente quiere un modificado de obra que nos obliga a producir 2000 m³, es evidente que nuestra estimación inicial no será válida para ese nuevo escenario. Sin embargo, en su momento, la estimación se ajustó a los supuestos establecidos. Por ello, el profesional encargado de estimar costes debe contemplar posibles contingencias y estar preparado para ajustar sus cálculos a medida que evolucionen los planes o cambien las condiciones del entorno.

En definitiva, la estimación de costes constituye una disciplina de gran importancia en el ámbito de la ingeniería civil y otras ramas técnicas, pues facilita la toma de decisiones fundamentadas en entornos caracterizados por la incertidumbre. Para su correcta aplicación, se requiere una combinación de análisis histórico, rigor matemático y juicio profesional. Se trata de una herramienta fundamental para el éxito de cualquier proyecto de gran envergadura.

Glosario de términos clave

  • Estimación de costes: Proceso de prever el coste futuro de un producto, proyecto, programa o tarea mediante la recopilación y análisis de datos históricos y la aplicación de modelos cuantitativos, técnicas, herramientas y bases de datos.
  • Datos históricos: Información relevante del pasado utilizada como evidencia para fundamentar la estimación de costes, dada la imposibilidad de disponer de datos futuros.
  • Modelos cuantitativos: Herramientas matemáticas y estadísticas empleadas en la estimación de costes, caracterizadas por ser transparentes, racionales y revisables.
  • Predecir/Pronosticar: La actividad de anticipar o prever eventos o valores futuros, crucial en campos como la ingeniería civil para la planificación.
  • Incertidumbre: La falta de certeza sobre las condiciones futuras en las que se ejecutará un proyecto, un factor inherente a la planificación a largo plazo.
  • Contingencias: Posibles eventos o cambios futuros que podrían afectar la estimación inicial de costes y que deben ser contemplados por el profesional.
  • Rigor matemático: La precisión y exactitud en la aplicación de principios y cálculos matemáticos en la estimación de costes.
  • Juicio profesional: La aplicación de la experiencia, el conocimiento y la intuición del experto en el proceso de estimación, complementando el análisis de datos y modelos.
  • Ingeniería civil: Disciplina de ingeniería que se ocupa del diseño, construcción y mantenimiento de infraestructuras físicas y naturales, como carreteras, puentes y sistemas hidráulicos.
  • Optimizar recursos: Utilizar los recursos disponibles de la manera más eficiente posible para lograr los objetivos del proyecto, facilitado por una estimación precisa de costes.

 

Referencias:

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Jornada sobre infraestructuras resilientes al clima

El Colegio de Ingenieros de Caminos, Canales y Puertos organizó una jornada sobre Infraestructuras Resilientes al Clima el 4 de abril en el Auditorio Agustín de Betancourt. Estas jornadas tan interesantes se grabaron en un vídeo, que ahora os dejo.

El vídeo, titulado «Jornada sobre Infraestructuras Resilientes al Clima», es un recurso muy valioso que aborda la creciente necesidad de desarrollar infraestructuras que puedan resistir y adaptarse a los efectos del cambio climático.

Durante la jornada, se presentaron diferentes puntos de vista sobre cómo la ingeniería civil puede hacer frente a estos desafíos, resaltando la importancia de la resiliencia climática en la planificación y gestión de infraestructuras. Y ahora, vamos a echar un vistazo más de cerca a todo lo que se habló en la jornada.

 

 

 

1. Importancia de la resiliencia climática

La resiliencia climática se ha convertido en un concepto central en la planificación de infraestructuras, debido a la creciente vulnerabilidad de las comunidades ante eventos climáticos extremos.

Los impactos del cambio climático, tales como huracanes, inundaciones y sequías, han aumentado en frecuencia e intensidad. Estos fenómenos no solo afectan a las infraestructuras físicas, sino que también tienen repercusiones sociales y económicas significativas, que incluyen la pérdida de vidas, desplazamientos forzados y daños económicos.

A modo ilustrativo, en la jornada se expusieron ejemplos de comunidades que han adoptado soluciones resilientes, tales como sistemas de drenaje mejorados, infraestructura verde y edificaciones diseñadas para resistir eventos extremos. Estos ejemplos ponen de manifiesto los beneficios tangibles a largo plazo que conlleva la inversión en resiliencia.

2. Oportunidades profesionales en ingeniería civil

La jornada puso de manifiesto que la búsqueda de infraestructuras resilientes está generando nuevas oportunidades profesionales para los ingenieros civiles.

Se evidenció una demanda de especialistas debido a la necesidad imperante de adaptación al cambio climático, lo que ha generado una demanda de expertos en diversas áreas, tales como la gestión de recursos hídricos, la planificación urbana sostenible y la ingeniería de infraestructuras.

Se subrayó la relevancia de la educación continua y la formación especializada para que los profesionales puedan afrontar los desafíos emergentes en este campo. Los programas de capacitación y certificación en resiliencia climática son de vital importancia para la preparación de los ingenieros del futuro.

3. Retos normativos y de implementación

Uno de los asuntos más críticos que se ha planteado es la necesidad imperativa de adaptar las normativas vigentes para facilitar la implementación de infraestructuras resilientes.

Un número significativo de normativas vigentes no han sido concebidas para hacer frente a los riesgos asociados al cambio climático. Esta situación puede generar obstáculos para la implementación de soluciones innovadoras y efectivas.

En este sentido, se destacó la importancia de la colaboración interdisciplinaria entre ingenieros, urbanistas, arquitectos y responsables políticos. Un enfoque interdisciplinario puede ayudar a crear un marco normativo que apoye la resiliencia y facilite la implementación de proyectos.

Finalmente, se presentan ejemplos de mejores prácticas de otras regiones que han logrado adaptar sus normativas con éxito, lo que puede servir de modelo para otras comunidades.

4. Ingeniería humanitaria y adaptación a emergencias

En las jornadas también se subrayó el rol de la ingeniería humanitaria en el desarrollo de infraestructuras resilientes.

En lo que respecta a los denominados «Proyectos de respuesta rápida», se debatieron enfoques para el diseño de infraestructuras que puedan ser implantadas con celeridad en situaciones de emergencia, garantizando que las comunidades afectadas tengan acceso a servicios básicos de manera inmediata.

Por último, se abordó la importancia de la capacitación y los recursos, así como la formación de equipos de respuesta a emergencias y la disponibilidad de recursos adecuados, elementos esenciales para asegurar que las infraestructuras puedan soportar eventos extremos y facilitar la recuperación.

5. Educación y conciencia social

La jornada puso de manifiesto la importancia de la educación y la comunicación en la promoción de infraestructuras resilientes.

Es imperativo que la sociedad comprenda la relevancia de invertir en infraestructuras resilientes. En este sentido, la educación desempeña un papel crucial, ya que permite a las comunidades identificar los beneficios a largo plazo de tales inversiones.

Se propusieron programas de sensibilización que involucren a la comunidad en la planificación y diseño de infraestructuras, fomentando un sentido de propiedad y responsabilidad.

6. Financiación de infraestructuras resilientes

La financiación constituye uno de los desafíos más significativos en el desarrollo de infraestructuras resilientes.

En lo que respecta a las fuentes de financiación, se presentan diversas estrategias para asegurar fondos, tales como la colaboración entre los sectores público y privado, así como la búsqueda de fondos internacionales destinados a proyectos de adaptación y mitigación del cambio climático.

También se presentaron ejemplos de modelos de inversión exitosos que han permitido financiar proyectos de infraestructura resiliente, destacando la importancia de demostrar el retorno de inversión a largo plazo.

7. Implementación de directivas y normativas en España

La jornada abordó la implantación de la directiva de gestión de avenidas en España, cuyo objetivo es el de mejorar la preparación y respuesta ante inundaciones.

Se abordó la cuestión de las dificultades que enfrentan las autoridades para aplicar estas directivas de manera efectiva, así como las adaptaciones necesarias para enfrentar fenómenos climáticos inesperados.

Finalmente, se presentaron las lecciones aprendidas de la implantación de estas directivas, así como recomendaciones para mejorar la efectividad de las políticas existentes.

8. Innovaciones tecnológicas y soluciones sostenibles

La jornada destacó la importancia de la tecnología en el desarrollo de infraestructuras resilientes. También se abordó el tema de tecnologías emergentes, tales como la inteligencia artificial y el modelado predictivo, que tienen el potencial de ayudar a anticipar y gestionar los riesgos climáticos.

En lo que respecta a la Infraestructura Verde, se expusieron soluciones basadas en la integración de la naturaleza, como los techos verdes y los sistemas de drenaje sostenible, que se presentan como una estrategia eficaz para aumentar la resiliencia de las infraestructuras.

9. Perspectivas futuras y llamado a la acción

La jornada concluyó con una exhortación a la acción dirigida a todos los profesionales implicados en la planificación y gestión de infraestructuras.

Se hizo especial hincapié en que la responsabilidad de hacer frente al cambio climático es compartida y requiere la colaboración de todos los sectores de la sociedad.

Asimismo, se instó a los profesionales a adoptar una visión a largo plazo en la planificación de infraestructuras, contemplando no solo las necesidades actuales, sino también los desafíos futuros que plantea el cambio climático.

Conclusión

La jornada sobre infraestructuras resilientes al clima constituye un llamamiento a la acción dirigido a los profesionales de la ingeniería civil y otros actores implicados en la planificación y gestión de infraestructuras. La adaptación al cambio climático no solo es una responsabilidad, sino una oportunidad para innovar y crear un futuro más seguro y sostenible. Para ello, resulta imprescindible la colaboración, la educación y la inversión, que son pilares fundamentales para lograr infraestructuras que no solo resistan los desafíos actuales, sino que también estén preparadas para los retos del futuro. Este enfoque integral resulta imperativo para asegurar que las comunidades no solo sobrevivan, sino que prosperen en un mundo cada vez más afectado por el cambio climático.

Aquí tenéis un mapa conceptual de la jornada.

Pero creo que lo mejor es que, si tenéis un rato, oigáis de primera mano todas y cada una de las intervenciones en este vídeo. Espero que os sea de interés.

Glosario de términos clave

  • Adaptación al Cambio Climático: Proceso de ajuste a los impactos actuales o esperados del cambio climático. En el contexto de las infraestructuras, implica modificar su diseño, construcción y operación para soportar condiciones climáticas extremas.
  • Resiliencia (Climática): Capacidad de un sistema, comunidad o infraestructura para anticipar, resistir, adaptarse y recuperarse de eventos adversos del clima.
  • Dana (Depresión Aislada en Niveles Altos): Fenómeno meteorológico que puede causar lluvias torrenciales e inundaciones severas, mencionado en el texto como causa de trágicas consecuencias.
  • Niveles Preindustriales: Periodo de referencia (antes de la Revolución Industrial) utilizado para medir el aumento de la temperatura global debido a las actividades humanas.
  • Fenómenos Meteorológicos Extremos: Eventos climáticos de intensidad inusual, como olas de calor, sequías, inundaciones torrenciales y tormentas severas.
  • Infraestructuras Críticas: Infraestructuras esenciales para el funcionamiento de la sociedad y la economía, como las de transporte, energía, agua y telecomunicaciones, cuya afectación tiene consecuencias significativas.
  • Plan Nacional de Adaptación al Cambio Climático (PNACC): Marco de acción en España para integrar el cambio climático en la planificación sectorial, incluyendo las infraestructuras.
  • Ley de Cambio Climático y Transición Energética (2021): Ley española que establece objetivos de reducción de emisiones y promueve la adaptación al cambio climático en diversos sectores.
  • Directiva de Resiliencia de Infraestructuras Críticas: Normativa de la Unión Europea que obliga a los Estados miembros a adoptar estrategias para mejorar la resiliencia de sus infraestructuras esenciales.
  • Seopán: Asociación de Empresas Constructoras y Concesionarias de Infraestructuras, mencionada por su análisis de inversión en infraestructuras prioritarias.
  • CEDEX (Centro de Estudios y Experimentación de Obras Públicas): Organismo técnico español que realiza estudios y análisis relacionados con la ingeniería civil y el medio ambiente.
  • Cuencas Hidráulicas: Áreas geográficas donde el agua drena hacia un río principal, mencionadas en relación con la planificación hidrológica y la gestión de inundaciones.
  • Soluciones Basadas en la Naturaleza: Enfoques para abordar los desafíos ambientales que utilizan o imitan procesos naturales para proporcionar beneficios tanto para el medio ambiente como para la sociedad.
  • Sistemas de Saneamiento: Infraestructuras urbanas destinadas a la recogida y tratamiento de aguas residuales y pluviales.
  • Vías Separativas: Sistemas de saneamiento en los que las aguas residuales y las aguas pluviales se recogen y transportan por redes de tuberías separadas.
  • Resiliencia Estructural: Capacidad de una estructura para mantener su función y recuperarse después de ser sometida a eventos extremos o perturbaciones.
  • Robustez: Capacidad de una infraestructura o sistema para resistir un evento adverso sin una pérdida significativa de funcionalidad.
  • Rapidez (en Resiliencia): Velocidad con la que un sistema o infraestructura puede recuperarse y restaurar su funcionalidad después de una perturbación.
  • Análisis de Riesgos Climáticos: Evaluación de la probabilidad e impacto potencial de los eventos climáticos adversos sobre las infraestructuras.
  • Marco de Sendai para la Reducción del Riesgo de Desastres (2015-2030): Acuerdo internacional que establece un marco global para la reducción del riesgo de desastres, incluyendo la importancia de invertir en resiliencia.
  • Predicción y Modelos Predictivos: Uso de datos y herramientas para anticipar futuros eventos climáticos y sus posibles impactos.
  • Incertidumbre Profunda: Situación en la que hay una falta de conocimiento sobre las probabilidades o los posibles resultados de un evento.
  • Cisne Negro (Teoría): Término utilizado para describir eventos altamente improbables, de gran impacto y que solo se pueden explicar o predecir en retrospectiva.
  • Disponibilidad: Capacidad de una infraestructura para estar operativa y proporcionar su servicio.
  • Capacidad (en Infraestructura): Volumen o nivel de servicio que una infraestructura puede soportar o manejar.
  • Vulnerabilidad: Susceptibilidad de una infraestructura a sufrir daños o perder funcionalidad debido a un evento climático adverso.
  • Exposición: Grado en que una infraestructura está situada en un área propensa a eventos climáticos adversos.
  • Sensibilidad: Grado en que una infraestructura se ve afectada por un evento climático adverso una vez expuesta a él.
  • Escenarios de Cambio Climático: Proyecciones de posibles futuras condiciones climáticas basadas en diferentes supuestos sobre las emisiones de gases de efecto invernadero.
  • Trayectorias Socioeconómicas Compartidas (SSP): Marcos utilizados en la investigación del cambio climático para describir posibles futuros socioeconómicos y sus implicaciones para las emisiones y la adaptación.
  • Análisis Coste-Beneficio: Método para evaluar la rentabilidad de diferentes opciones de inversión, comparando los costos y beneficios esperados.
  • Gobernanza: Procesos y estructuras para tomar decisiones e implementar acciones, en este contexto, relacionadas con la resiliencia de las infraestructuras.
  • Inventario de Activos: Base de datos que contiene información detallada sobre las infraestructuras y sus componentes.
  • Sistemas de Ayuda a la Decisión: Herramientas informáticas y modelos que asisten en la toma de decisiones complejas, como la gestión de inundaciones o sequías.
  • Llanuras de Inundación Controlada: Áreas designadas para ser inundadas de manera planificada durante eventos de crecida para reducir el riesgo en otras zonas.
  • Probable Maximum Flood (PMF) / Avenida Máxima Probable: Estimación del evento de inundación más severo que es razonablemente posible en un lugar dado.
  • Flash Floods / Crecidas Repentinas: Inundaciones rápidas y violentas que ocurren con poca o ninguna advertencia, a menudo causadas por lluvias torrenciales intensas.
  • Six Sigma: Metodología de gestión de procesos que busca reducir al mínimo la probabilidad de defectos o errores.
  • Poka-yoke: Sistemas a prueba de errores diseñados para prevenir o detectar errores humanos.
  • Consorcio Administrativo: Entidad legal formada por varias administraciones públicas para coordinar y ejecutar acciones conjuntas.
  • Gemelos Digitales: Réplicas virtuales de sistemas o infraestructuras físicas que permiten la simulación y el análisis.
  • Big Data: Conjuntos de datos muy grandes y complejos que pueden ser analizados para revelar patrones y tendencias.
  • Ingeniería Humanitaria: Aplicación de principios y habilidades de ingeniería para abordar crisis humanitarias y promover el bienestar humano.
  • Estacionariedad Climática: Suposición de que las propiedades estadísticas del clima (como las distribuciones de precipitación o temperatura) permanecen constantes a lo largo del tiempo.
  • Análisis Probabilístico: Enfoque para evaluar la probabilidad de ocurrencia de eventos y sus posibles consecuencias.
  • Métodos Semiprobalísticos: Métodos de diseño estructural que utilizan factores de seguridad parciales basados en consideraciones probabilísticas.
  • Trayectorias Adaptativas: Secuencias de medidas de adaptación que se pueden implementar a lo largo del tiempo para hacer frente a los impactos cambiantes del cambio climático.
  • KPIs Financieros (Indicadores Clave de Rendimiento Financiero): Métricas utilizadas para evaluar el desempeño financiero, que pueden incorporarse en el análisis de la resiliencia de las infraestructuras.

Evaluación de la sostenibilidad social en infraestructuras: un análisis multicriterio y sus desafíos

A continuación, explicaremos el contenido de uno de los artículos más citados en nuestro grupo de investigación. El artículo plantea la siguiente pregunta de investigación: ¿Cómo se tratan los aspectos sociales en la evaluación multicriterio de infraestructuras? Esta cuestión se estructura en tres subpreguntas que buscan determinar qué aspectos sociales se valoran en la evaluación de infraestructuras, qué métodos multicriterio se utilizan para evaluar su contribución social y qué enfoques se aplican en la evaluación social multicriterio. La pregunta principal permite dar una respuesta clara en función de los hallazgos del estudio, que se centran en identificar métodos, criterios y limitaciones en la evaluación social de infraestructuras.

El artículo realiza una revisión sistemática de la literatura existente en el campo de la evaluación social de infraestructuras mediante métodos multicriterio. Para ello, se identificaron 94 estudios relevantes mediante una búsqueda en la base de datos Web of Science, que abarca publicaciones entre 1995 y 2017. La metodología de selección se desarrolló en dos fases. La primera consistió en seleccionar inicialmente los estudios, basándose en criterios de pertinencia y revisión por pares. En la segunda fase, se analizaron las referencias y citas de los estudios seleccionados para ampliar la muestra y obtener una visión más completa del tema. Posteriormente, los estudios fueron categorizados según los criterios sociales evaluados, los métodos multicriterio utilizados y las consideraciones de contexto, equidad y aprendizaje social en la evaluación.

El trabajo sistematiza los criterios sociales utilizados en la evaluación de infraestructuras y los clasifica en siete dimensiones. La primera es el capital humano, que abarca las necesidades básicas, la educación y la salud. La segunda dimensión es el capital comunitario, que incluye la opinión pública, la estética y la seguridad. En tercer lugar, se encuentra el capital cultural, relacionado con la preservación de valores culturales tangibles e intangibles. La cuarta dimensión es el capital productivo, que tiene en cuenta la movilidad, la accesibilidad y la urbanización. En quinto lugar, el capital social e institucional se refiere a la participación de los actores y su capacidad de gestión. La sexta dimensión, el sistema socioeconómico, comprende el desarrollo económico regional y el empleo. Finalmente, la séptima dimensión es la relación entre la empresa y la comunidad, que engloba el diseño centrado en el usuario y las prácticas laborales éticas.

Además, el estudio analiza los métodos multicriterio más empleados, entre los que destacan el Analytic Hierarchy Process (AHP), el Simple Additive Weighting (SAW) y el Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Se identifican brechas en la consideración de equidad, incertidumbre y aprendizaje social en las evaluaciones existentes, lo que sugiere la necesidad de mejorar los enfoques actuales para una evaluación más integral.

Los hallazgos revelan que la evaluación de la sostenibilidad social en infraestructuras ha recibido menos atención que las dimensiones económica y ambiental. Ciertos criterios, como la movilidad, la seguridad y el desarrollo local, se tienen en cuenta recurrentemente en los estudios analizados, mientras que otros, como la equidad en la distribución de beneficios y la participación comunitaria, se abordan menos. Además, los métodos actuales no abordan de manera adecuada la incertidumbre inherente a los aspectos sociales, lo que limita su aplicabilidad en contextos dinámicos y diversos. Ante esta situación, el artículo propone utilizar herramientas como la teoría de conjuntos difusos y los sistemas grises para mejorar la representación de estos factores en los modelos de evaluación.

El artículo plantea varias líneas de investigación futuras para mejorar la evaluación de la sostenibilidad social en infraestructuras. En primer lugar, se recomienda el desarrollo de métodos que tengan en cuenta la equidad en la distribución de beneficios. En segundo lugar, se plantea la integración de técnicas de gestión de incertidumbre en los modelos multicriterio para mejorar su aplicabilidad en distintos contextos. Asimismo, se enfatiza la necesidad de fortalecer la participación de los interesados en los procesos de evaluación para promover modelos de toma de decisiones más inclusivos. Por último, se sugiere la aplicación de enfoques de aprendizaje social para mejorar la adaptabilidad de las evaluaciones a distintos contextos y garantizar una toma de decisiones más informada y eficaz.

En resumen, el estudio ofrece un análisis detallado sobre la evaluación de la sostenibilidad social en infraestructuras mediante métodos multicriterio. Se destaca la necesidad de mejorar la representación de la equidad y la incertidumbre en los modelos existentes, así como la oportunidad de desarrollar metodologías que fomenten la inclusión de los actores implicados en el proceso de evaluación. Además, se subraya la importancia de promover procesos de aprendizaje social que permitan adaptar mejor las evaluaciones a los distintos contextos en los que se desarrollan las infraestructuras. En este sentido, el artículo supone un avance significativo en la comprensión de la evaluación social de infraestructuras y sentará las bases para futuras investigaciones en este campo.

Glosario de términos clave

  • Evaluación multicriterio: Un conjunto de métodos y técnicas que permiten analizar problemas complejos en los que se deben considerar múltiples criterios, a menudo conflictivos, para tomar una decisión o realizar una valoración.
  • Infraestructura: Las estructuras físicas y organizativas básicas necesarias para el funcionamiento de una sociedad o empresa, como carreteras, puentes, sistemas de energía, comunicaciones, etc.
  • Sostenibilidad Social: Una dimensión de la sostenibilidad que se centra en el impacto de las actividades humanas en las personas y en la sociedad en general, incluyendo aspectos como la equidad, la justicia social, la salud, la seguridad y la participación comunitaria.
  • Revisión sistemática de la literatura: Un método riguroso y transparente para identificar, seleccionar, evaluar y sintetizar todas las evidencias empíricas relevantes para responder a una pregunta de investigación específica.
  • Capital humano: Los conocimientos, habilidades, competencias y atributos incorporados en los individuos que facilitan la creación de valor económico y social.
  • Capital comunitario: Los recursos y relaciones sociales dentro de una comunidad que fomentan la cooperación y el beneficio mutuo, incluyendo aspectos como la confianza, las normas y las redes sociales.
  • Capital cultural: Los activos culturales, tanto tangibles (patrimonio físico, obras de arte) como intangibles (tradiciones, conocimientos, expresiones artísticas), que tienen valor social, económico e histórico.
  • Equidad: La cualidad de ser justo e imparcial, asegurando que los beneficios y las cargas se distribuyan de manera proporcional y considerando las diferentes necesidades y circunstancias.
  • Incertidumbre: La falta de certeza o conocimiento preciso sobre eventos futuros, sus probabilidades y sus posibles consecuencias.
  • Aprendizaje social: Un proceso colectivo a través del cual los individuos y los grupos adquieren nuevos conocimientos, habilidades y comprensiones a través de la interacción, la experiencia y la reflexión conjunta.
  • Analytic Hierarchy Process (AHP): Un método multicriterio que estructura un problema de decisión en una jerarquía de criterios, subcriterios y alternativas, y utiliza comparaciones pareadas para determinar las prioridades relativas.
  • Simple Additive Weighting (SAW): Un método multicriterio que asigna pesos a cada criterio y calcula una puntuación total para cada alternativa multiplicando su rendimiento en cada criterio por el peso del criterio y sumando los resultados.
  • Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS): Un método multicriterio que identifica la alternativa con la distancia más corta a la solución ideal positiva y la distancia más larga a la solución ideal negativa.
  • Teoría de conjuntos difusos: Un marco matemático que permite representar y manejar la imprecisión y la vaguedad en la información, utilizando grados de pertenencia en lugar de la lógica binaria tradicional.
  • Sistemas grises: Un enfoque metodológico diseñado para analizar y modelar sistemas con información incompleta o incierta, utilizando conceptos como intervalos numéricos y números grises para representar la incertidumbre.
  • Partes interesadas (Stakeholders): Individuos, grupos u organizaciones que pueden afectar o ser afectados por las decisiones o actividades de un proyecto o política.

Os dejo un pequeño programa de radio sobre este tema (en inglés).

Os dejo un mapa mental del trabajo.

Referencia:

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:10.1016/j.jclepro.2018.03.022

Como el artículo se publicó en abierto, lo dejo por si lo queréis consultar.

Descargar (PDF, 3.16MB)

El impacto del cambio climático en las infraestructuras

DANA OCTUBRE 2024 – Vías del Metro entre Picanya y Paiporta. https://commons.wikimedia.org/

El diseño y la planificación de infraestructuras se han basado históricamente en el análisis de datos climáticos pasados para definir criterios estructurales de seguridad. Sin embargo, la aceleración del cambio climático ha puesto en cuestión la validez de esta metodología y ha obligado a reconsiderar los fundamentos sobre los que se establecen los códigos de construcción y las normativas de diseño. El carácter no estacionario del clima, la creciente magnitud de los eventos meteorológicos extremos y la necesidad de infraestructuras más resilientes han convertido la adaptación al cambio climático en un imperativo técnico y social.

Las estructuras deben garantizar la seguridad de sus ocupantes en condiciones tanto ordinarias como extremas, así como su funcionalidad a lo largo de su ciclo de vida. Es preciso tener en cuenta que la frecuencia y severidad de ciertos fenómenos, como tormentas, inundaciones y variaciones térmicas, ya no pueden preverse con precisión únicamente mediante datos históricos. La integración de modelos de análisis probabilístico y enfoques basados en la fiabilidad estructural representa una vía fundamental para mitigar los riesgos asociados al cambio climático y asegurar la estabilidad y operatividad de infraestructuras críticas en el futuro.

El fin de la estacionariedad climática y sus implicaciones en el diseño estructural

El diseño estructural se ha desarrollado bajo la premisa de que las condiciones climáticas permanecen relativamente estables a lo largo del tiempo, lo que ha permitido definir cargas normativas basadas en registros históricos. No obstante, el cambio climático ha invalidado esta hipótesis al introducir una variabilidad que altera tanto la frecuencia como la intensidad de los fenómenos atmosféricos y compromete la fiabilidad de los métodos de predicción empleados en el ámbito de la ingeniería.

Las estructuras diseñadas bajo códigos convencionales pueden experimentar cargas superiores a las previstas en su diseño original, lo que resulta en un aumento del riesgo estructural y la necesidad de reevaluaciones constantes para garantizar su seguridad. La acumulación de efectos derivados de condiciones climáticas extremas no solo afecta a la estabilidad estructural inmediata, sino que acelera los procesos de deterioro de los materiales y compromete la capacidad de servicio de la infraestructura a largo plazo.

El análisis de la no estacionariedad climática requiere el desarrollo de nuevas herramientas de modelado que permitan proyectar escenarios de carga climática futura con mayor precisión. La variabilidad espacial y temporal de las alteraciones climáticas obliga a establecer criterios de diseño diferenciados según la localización geográfica, la exposición a determinados fenómenos y la importancia funcional de cada infraestructura. En este contexto, la colaboración entre científicos del clima e ingenieros estructurales se erige como un componente esencial para la elaboración de mapas de cargas dinámicos que reflejen las condiciones cambiantes del entorno.

Aumento de cargas climáticas y su impacto en la estabilidad estructural

El cambio climático incide directamente en la magnitud y distribución de las cargas climáticas, lo que supone un desafío significativo para el diseño estructural. El incremento de la temperatura media global y la intensificación de eventos meteorológicos extremos tienen un impacto directo en la resistencia y durabilidad de los materiales de construcción, lo que requiere una revisión exhaustiva de los criterios de diseño para adaptarlos a condiciones más exigentes.

El aumento de la carga de viento, debido a la mayor frecuencia de tormentas severas y huracanes, plantea desafíos particulares para estructuras expuestas a esfuerzos aerodinámicos, tales como rascacielos, puentes y torres de telecomunicaciones. La variabilidad en la dirección y velocidad de los vientos extremos introduce incertidumbre en el diseño convencional, lo que requiere la aplicación de metodologías de análisis probabilístico que permitan anticipar los efectos acumulativos de estas fuerzas sobre los elementos estructurales.

Ciertamente, la carga de nieve y hielo constituye un factor de riesgo cuya evolución en un clima cambiante requiere especial atención. En climas fríos, la combinación de precipitaciones extremas y ciclos de congelación y deshielo genera esfuerzos adicionales sobre cubiertas y soportes, lo que puede ocasionar la fatiga de los materiales y aumentar el riesgo de fallos estructurales. La acumulación de hielo en líneas de transmisión eléctrica y otros elementos de infraestructura crítica puede comprometer su funcionalidad, lo que resalta la necesidad imperante de implementar estrategias de adaptación en el diseño de dichos sistemas.

El aumento del nivel del mar y la intensificación de tormentas costeras representan amenazas crecientes para las infraestructuras situadas en zonas litorales. La erosión del suelo y la intrusión salina pueden afectar la estabilidad de las cimentaciones y las estructuras de contención, mientras que el aumento en la magnitud de las marejadas ciclónicas aumenta el riesgo de colapso en las edificaciones expuestas. Por lo tanto, es esencial adoptar enfoques probabilísticos para estimar las cargas de inundación y considerar criterios de adaptación costera en el diseño estructural, con el fin de mitigar estos efectos y garantizar la seguridad y estabilidad de las infraestructuras en zonas litorales.

Resiliencia estructural y continuidad operativa en escenarios de riesgo creciente

En lo que respecta a la resistencia inmediata de las infraestructuras a eventos climáticos extremos, su capacidad de recuperación y continuidad operativa tras un desastre constituye un aspecto de suma importancia en el contexto del cambio climático. La resiliencia estructural implica no solo garantizar que las edificaciones y redes de transporte soporten cargas excepcionales sin fallar, sino también que puedan volver a estar plenamente operativas en un tiempo razonable tras una interrupción.

La planificación de infraestructuras resilientes requiere un enfoque basado en la funcionalidad tras el desastre, estableciendo criterios de diseño que permitan minimizar los tiempos de inactividad y optimizar los procesos de reparación y reconstrucción. Este enfoque cobra especial relevancia en infraestructuras críticas, tales como hospitales, plantas de tratamiento de agua y redes de energía, cuya operatividad continua resulta esencial para la estabilidad de las comunidades.

El diseño basado en rendimiento (Performance-Based Design, PBD) surge como una herramienta clave para integrar la resiliencia en la ingeniería estructural. A diferencia de los enfoques convencionales basados en requisitos normativos predeterminados, el PBD permite establecer objetivos concretos de rendimiento para cada tipo de estructura, considerando tanto su resistencia ante cargas extremas como su capacidad de recuperación tras eventos disruptivos.

Conclusión: La adaptación de las infraestructuras al cambio climático como una necesidad inaplazable

La evidencia científica sobre el impacto del cambio climático en la infraestructura es concluyente y requiere una revisión exhaustiva de los criterios de diseño estructural. La dependencia exclusiva de datos históricos ya no constituye una estrategia viable en un contexto donde la frecuencia e intensidad de eventos extremos están en constante aumento. Por ello, es necesario implementar análisis probabilísticos, actualizar periódicamente los mapas de cargas climáticas y adoptar estrategias de resiliencia estructural. Estos cambios son fundamentales para garantizar la seguridad y funcionalidad de las infraestructuras en el futuro.

La ingeniería estructural debe evolucionar hacia un enfoque basado en la adaptación y la gestión del riesgo, integrando modelos de predicción climática en el diseño y planificación de nuevas construcciones. La colaboración entre ingenieros, científicos del clima y responsables de políticas públicas será esencial para desarrollar normativas que reflejen la realidad cambiante del entorno y permitan la creación de infraestructuras más seguras y sostenibles.

La adaptación al cambio climático no es únicamente una cuestión técnica, sino una necesidad económica y social que determinará la capacidad de las comunidades para hacer frente a los desafíos del siglo XXI. El diseño estructural del futuro debe asumir este reto con un enfoque proactivo, asegurando que las infraestructuras no solo resistan el clima cambiante, sino que también contribuyan a la estabilidad y el bienestar de la sociedad en su conjunto.

Referencias:

  • ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.
  • ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.
  • ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.
  • Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.
  • Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.
  • Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.
  • Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.
  • Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.
  • IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.
  • McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209
  • O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025
  • Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.
  • Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción a la teoría de juegos

https://upload.wikimedia.org/wikipedia/

La teoría de juegos es un área de las matemáticas aplicadas que utiliza modelos para estudiar interacciones en estructuras formales de incentivos, es decir, los llamados «juegos».

Se ha convertido en una herramienta clave para la economía y la administración de empresas, ya que ayuda a entender mejor la conducta humana en la toma de decisiones.

Los investigadores analizan las estrategias óptimas, así como el comportamiento previsto y observado de los individuos en dichos juegos. Tipos de interacción aparentemente distintos pueden tener estructuras de incentivos similares, lo que permite representar el mismo juego una y otra vez.

La teoría de juegos estudia las estrategias óptimas de los jugadores, así como su comportamiento previsto y observado, y ha contribuido a una mejor comprensión de la toma de decisiones humana.

La teoría de juegos aborda situaciones de decisión en las que hay dos oponentes inteligentes con objetivos opuestos. Algunos ejemplos típicos son las campañas de publicidad para productos de la competencia y las estrategias bélicas entre ejércitos. Estas situaciones difieren de las estudiadas previamente, en las que no se tiene en cuenta a la naturaleza como oponente adverso.

El juego es un modelo matemático que se utiliza para entender la toma de decisiones y la interacción entre los participantes, siendo el «dilema del prisionero» uno de los más conocidos. En este escenario, dos personas son arrestadas y encarceladas, y se fija la fecha del juicio. El fiscal se entrevista con cada prisionero por separado y les ofrece la siguiente opción: si uno confiesa y el otro no, el que confiesa queda libre y el otro recibe 20 años de prisión; si ambos confiesan, ambos cumplen 5 años; y si ninguno confiesa, ambos reciben 1 año de prisión. En este dilema, el destino de cada uno depende de la decisión del otro. Aunque confesar parece ser lo mejor, si ambos lo hacen, el castigo es peor que si guardan silencio.

https://www.bbc.com/mundo/noticias/2015/02/150220_teoria_de_juegos_que_es_finde_dv

La teoría de juegos se ha desarrollado y formalizado a partir de los trabajos de John von Neumann y Oskar Morgenstern, especialmente durante la Guerra Fría, debido a su aplicación en la estrategia militar. Los principales conceptos de la teoría de juegos incluyen los juegos de suma cero, los juegos de suma no cero, los equilibrios de Nash, los juegos cooperativos y los juegos de información perfecta e imperfecta.

En la teoría de juegos existen conceptos fundamentales para entender las interacciones estratégicas entre los agentes. Algunos de ellos son:

  • Estrategia: conjunto de acciones posibles que un jugador puede llevar a cabo en un juego. Las estrategias pueden ser puras (una acción única) o mixtas (una distribución de probabilidad sobre varias acciones).
  • Equilibrio de Nash: situación en la que ningún jugador tiene incentivos para cambiar su estrategia, dado el conjunto de estrategias de los demás. Es un concepto clave que describe una situación estable en la que las decisiones de los jugadores están equilibradas.
  • Juego de suma cero: tipo de juego en el que la ganancia total es constante, es decir, lo que uno gana, otro lo pierde. En estos juegos, el objetivo es maximizar la ganancia propia a expensas de los demás jugadores.

La matriz de recompensas es una herramienta clave en la teoría de juegos que representa las combinaciones de decisiones de los jugadores. Muestra los resultados, generalmente en forma de recompensas, para cada jugador según las decisiones de todos los participantes. Es decir, describe cómo las elecciones de cada jugador afectan a sus pagos o beneficios según las decisiones de los demás.

En un conflicto de este tipo hay dos jugadores, cada uno con una cantidad (finita o infinita) de alternativas o estrategias. Cada par de estrategias tiene una recompensa que un jugador paga al otro. A estos juegos se les llama de suma cero, ya que la ganancia de un jugador es igual a la pérdida del otro. Si los jugadores se representan por A y B, con m y n estrategias respectivamente, el juego se suele ilustrar con la matriz de recompensas para el jugador A.

La representación indica que si A usa la estrategia i y B usa la estrategia j, la recompensa para A es aij, y entonces la recompensa para B es —aij.

Aquí os dejo un esquema conceptual sobre la teoría de juegos.

Os dejo unos vídeos explicativos, que espero, os sea de interés:

En este vídeo se presentan los conceptos fundamentales de la teoría de juegos, que estudia cómo las decisiones de varios jugadores están interconectadas en situaciones estratégicas. A través de ejemplos visuales como matrices y árboles de decisión, se explica cómo los jugadores eligen estrategias para maximizar su utilidad teniendo en cuenta las acciones de los demás. Se destaca la importancia de entender los pagos y resultados de cada estrategia, lo que permite analizar comportamientos competitivos y cooperativos en diversos contextos.

En este otro vídeo se explican distintos tipos de juegos en teoría de juegos, como el dilema del prisionero, el juego del gato y el ratón y la batalla de los sexos, y se destacan sus equilibrios de Nash y las estrategias cooperativas o no cooperativas.

Referencias:

  • Binmore, K. (1994). Teoría de juegos. McGraw-Hill.
  • Friedman, J. W. (1991). Teoría de juegos con aplicaciones a la economía. Alianza Universidad.
  • Kreps, D. M. (1994). Teoría de juegos y modelación económica. Fondo de Cultura Económica.
  • Martínez-Muñoz, D., Martí, J. V., & Yepes, V. (2025). Game theory-based multi-objective optimization for enhancing environmental and social life cycle assessment in steel-concrete composite bridges. Mathematics, 13(2), 273. https://doi.org/10.3390/math13020273
  • Meyerson, R. (1991). Game theory: Analysis of conflict. Harvard University Press.
  • Nash, J. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of the USA, 36(1), 48-49.
  • Poundstone, W. (1992). Prisoner’s dilemma: John von Neumann, game theory, and the puzzle of the bomb. Doubleday.

Licencia de Creative Commons

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión y sostenibilidad de las playas en la Comunidad Valenciana: un análisis del turismo y la erosión costera

De Siocaw – Trabajo propio, Dominio público, https://commons.wikimedia.org/w/index.php?curid=3782634

El turismo es un pilar económico esencial para España, ya que representa el 12,8 % del Producto Interior Bruto (PNB) y el 12,6 % del empleo directo en 2023. Entre las distintas formas de turismo, el modelo de «sol y playa» ocupa un lugar privilegiado gracias a las favorables condiciones climáticas y a la riqueza natural de sus costas. En este contexto, la Comunidad Valenciana se posiciona como una de las principales zonas receptoras de turistas nacionales e internacionales gracias a sus playas, que suponen un recurso tanto económico como medioambiental.

Sin embargo, este modelo de desarrollo se enfrenta a importantes desafíos. La erosión costera, la presión urbanística y la sobreexplotación de recursos están poniendo en peligro la sostenibilidad de las playas, que constituyen el núcleo de la oferta turística de la región. Este informe, basado en el análisis de Yepes y Medina (2005), profundiza en los modelos turísticos, identifica las causas principales de la erosión costera y propone soluciones para garantizar el equilibrio entre desarrollo económico y conservación ambiental. Aunque este artículo tiene 20 años, algunos datos deberían actualizarse, su contenido sigue siendo plenamente vigente. No obstante, algunas de las conclusiones del estudio pueden sorprender a quienes no conocen este sector. Por tanto, recomiendo leer el artículo completo para comprenderlo mejor.

El turismo como motor económico

España es uno de los destinos turísticos más visitados del mundo, compitiendo con Estados Unidos y Francia, que en 2004 recibieron 85,7 millones de turistas extranjeros y generaron 37 250 millones de euros, lo que convierte al turismo en un sector clave para la economía nacional, ya que cubre más de la mitad del déficit comercial. En este contexto, la Comunidad Valenciana destaca por su litoral de 454 km y su clima privilegiado, con 4,9 millones de turistas internacionales y 15,9 millones de viajeros nacionales en 2004, que sumaron más de 151 millones de pernoctaciones, gracias a sus playas, sus 3000 horas de sol anuales y las temperaturas del agua, entre 13 °C y 29 °C.

Modelos de desarrollo turístico

El desarrollo turístico de las zonas litorales de la Comunidad Valenciana se puede dividir en dos modelos principales: intensivo y extensivo. Ambos tienen características distintivas que afectan a su impacto económico, medioambiental y social.

El modelo intensivo se caracteriza por estancias cortas en hoteles o apartamentos de alquiler, con alta densidad urbana y elevados niveles de gasto diario. Benidorm es un ejemplo destacado por su rentabilidad y sostenibilidad. Entre sus principales ventajas se encuentran una alta productividad económica, con ingresos de hasta 12 000 €/m², un menor consumo de recursos como agua, energía y suelo por turista, y la capacidad de operar durante todo el año, lo que reduce significativamente la estacionalidad.

El modelo extensivo se basa en estancias prolongadas en segundas residencias, con baja densidad urbana y un gasto diario reducido. Torrevieja es un ejemplo destacado por su predominio de viviendas vacacionales. Entre sus principales desventajas se encuentran un uso ineficiente de recursos, ya que se requieren hasta catorce veces más suelo por turista que en el modelo intensivo, altos costes en servicios públicos debido a la dispersión geográfica y baja densidad poblacional, así como una limitada capacidad para generar empleo y dinamismo económico local.

El análisis de Yepes y Medina demuestra que los modelos intensivos son superiores desde las perspectivas económica y medioambiental. Por ejemplo, un turista en un modelo intensivo consume cuatro veces menos agua y requiere un 93 % menos de superficie que un turista en un modelo extensivo. Además, los gastos diarios del modelo intensivo son un 60 % más altos, lo que contribuye a dinamizar el sector servicios y a crear empleo.

Erosión costera: una amenaza crítica

La erosión costera es uno de los mayores desafíos para el turismo y la sostenibilidad ambiental en la Comunidad Valenciana, donde se ha perdido arena a un ritmo de 3 millones de m³ al año desde la década de 1950, lo que supone la reducción de 200 000 m² de playas cada año y afecta al 58 % de sus 178 km de playas arenosas. Entre sus principales causas se incluyen la construcción de represas, como los 187 embalses del río Ebro, que han reducido casi totalmente su aporte de sedimentos, antes de 15 millones de m³ anuales; las barreras costeras, como espigones y rompeolas en los puertos de Valencia, Sagunto y Castellón, que generan desequilibrios sedimentarios; y la urbanización, que disminuye los reservorios naturales de sedimentos y agrava la erosión durante tormentas.

Propuestas de soluciones sostenibles

Las soluciones sostenibles para mitigar la erosión costera incluyen la recuperación de sedimentos fluviales mediante sistemas de bypass en presas y el drenaje de sedimentos acumulados en embalses para reabastecer las playas. También se proponen proyectos de regeneración de playas mediante la alimentación artificial con sedimentos marinos y fluviales, priorizando zonas críticas como la costa sur de Benidorm, que cuenta con 20 millones de m³ disponibles. Además, se recomienda restringir el desarrollo urbano en áreas vírgenes de la costa, implementando planes de ordenación territorial que equilibren turismo y conservación ambiental. Finalmente, se sugiere promover el modelo intensivo, replicando casos de éxito como el de Benidorm, e incentivar el uso eficiente de recursos mediante políticas y normativas específicas.

Impacto futuro de la inacción

La falta de medidas efectivas para abordar la erosión y la presión urbanística podría tener consecuencias desastrosas. Si no se actúa, las playas continuarán retrocediendo a un ritmo alarmante, y los recursos críticos, como el espacio litoral y la arena, se agotarán. Esto no solo afectará al turismo, sino también a la biodiversidad costera y al bienestar de las comunidades locales.

Conclusiones

El turismo costero en la Comunidad Valenciana es un recurso de incalculable valor económico y ambiental. Sin embargo, la erosión costera, la presión urbanística y la falta de estrategias de manejo sostenible están poniendo en peligro este modelo. Las soluciones deben centrarse en:

  • Restablecer el transporte natural de sedimentos.
  • Limitar la expansión urbana en áreas críticas.
  • Promover modelos turísticos intensivos más eficientes.

Si se implementan estas medidas, se puede garantizar la sostenibilidad a largo plazo de las playas valencianas, protegiendo su riqueza natural y asegurando su viabilidad económica para futuras generaciones.

Referencias

  • Yepes, V. & Medina, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49, 83-88.
  • Organización Mundial del Turismo (2004). Tourism Highlights Edition 2004.

Os dejo el artículo completo para su consulta:

Descargar (PDF, 72KB)

Optimización de programas de mantenimiento vial: eficiencia y estrategias a largo plazo con algoritmos heurísticos.

Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm

El artículo, titulado «Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm», escrito por Víctor Yepes, Cristina Torres-Machí, Alondra Chamorro y Eugenio Pellicer, y publicado en el Journal of Civil Engineering and Management, presenta una innovadora herramienta para la gestión eficiente del mantenimiento vial. Este trabajo aborda cómo diseñar programas que maximicen la efectividad a largo plazo (Long-Term Effectiveness, LTE) en redes viales, superando las limitaciones presupuestarias y el desgaste progresivo de las infraestructuras. Para ello, se desarrolla un enfoque híbrido que combina los algoritmos Greedy Randomized Adaptive Search Procedure (GRASP) y Threshold Accepting (TA), lo que permite optimizar la asignación de recursos y cumplir con restricciones técnicas y económicas. Entre los resultados más destacados, se encuentra una mejora del 40 % en la LTE en comparación con estrategias reactivas, que también subraya la importancia de priorizar inversiones tempranas y de implementar tratamientos preventivos como la opción más eficiente a largo plazo.

Introducción

La infraestructura vial es uno de los activos más valiosos de cualquier nación, ya que tiene un impacto directo en el desarrollo económico y social al facilitar el transporte de bienes y personas, por lo que es necesario realizar un mantenimiento adecuado para evitar el deterioro y el incremento de los costes futuros de rehabilitación. Sin embargo, los presupuestos de las agencias públicas son limitados y no alcanzan a cubrir las necesidades de conservación, lo que genera una brecha cada vez mayor entre el estado actual de las infraestructuras y los niveles de inversión requeridos. En Estados Unidos, un tercio de las carreteras están en condiciones mediocres o deficientes, y uno de cada nueve puentes presenta deficiencias estructurales. En España, las necesidades de mantenimiento vial superan los 5500 millones de euros, pero los presupuestos se redujeron un 20 % en 2012, lo que agravó aún más la situación. Este mantenimiento tardío no solo incrementa los riesgos estructurales, sino que también triplica los costes de rehabilitación y los gastos operativos de los vehículos, lo que plantea un problema central: decidir cómo asignar los fondos disponibles de forma óptima para maximizar el rendimiento a largo plazo de las infraestructuras, respetando restricciones técnicas y económicas, y considerando los beneficios acumulados para los usuarios.

Metodología

Formulación del problema de optimización

El problema se define como la maximización de la LTE, un indicador que mide los beneficios acumulados derivados de una infraestructura bien mantenida durante su ciclo de vida.

  1. Función objetivo:
    • Maximizar el área bajo la curva de rendimiento de las infraestructuras (Area Bounded by the Performance Curve, ABPC). Este área refleja la calidad y el nivel de servicio de la infraestructura a lo largo del tiempo.
  2. Restricciones:
    • Presupuestaria: Garantizar que los costos anuales de mantenimiento no excedan el presupuesto disponible en cada año del periodo de planificación.
    • Técnica: Mantener las secciones de la red en una condición mínima aceptable. Esto se evalúa mediante indicadores como el Urban Pavement Condition Index (UPCI, Índice de Condición del Pavimento Urbano), que clasifica la calidad del pavimento en una escala del 1 (peor) al 10 (mejor).
  3. Variables de diseño:
    • Determinar qué secciones de la red deben tratarse, qué tratamiento aplicar y en qué momento realizarlo durante el horizonte de planificación.
  4. Parámetros:
    • Inventario: Datos sobre el tipo de pavimento, su longitud y ancho, condiciones climáticas y características del tráfico.
    • Técnicos: Condición inicial del pavimento, modelos de deterioro a lo largo del tiempo y el conjunto de tratamientos disponibles.
    • Económicos: Costos unitarios de mantenimiento para cada tratamiento.
    • Estratégicos: Periodo de planificación, tasa de descuento y estándares mínimos requeridos.
Las actividades de mantenimiento conllevan un aumento de la vida útil del firme (ΔSL) y, por tanto, una mejora inmediata de su estado (ΔUPCI) en el momento de su aplicación

Algoritmo GRASP-TA

El enfoque híbrido combina dos estrategias complementarias:

  1. GRASP (Procedimiento de Búsqueda Aleatoria Codiciosa Adaptativa):
    • Genera una población inicial de soluciones viables considerando una relajación controlada de las restricciones presupuestarias.
    • Utiliza funciones de priorización para evaluar el impacto de cada posible tratamiento en la LTE y seleccionar las mejores alternativas mediante un proceso probabilístico.
  2. TA (Aceptación de Umbral):
    • Realiza una optimización local a las soluciones generadas por GRASP.
    • Permite aceptar soluciones ligeramente peores en las primeras iteraciones para evitar quedarse atrapado en óptimos locales.
    • Ajusta iterativamente las restricciones presupuestarias relajadas en GRASP para cumplir con las condiciones originales.
Efecto del tratamiento sn para construir la solución en el año t con el algoritmo GRASP

Caso de estudio: red urbana en Santiago, Chile

La red analizada se encuentra en Santiago de Chile. Está compuesta por 20 secciones con pavimentos flexibles (asfálticos) y rígidos (hormigón). El clima de la región es mediterráneo, lo que influye en los patrones de deterioro del pavimento. La condición inicial media de la red es 6,8, según el Índice de Condición del Pavimento Urbano (UPCI), lo que indica una calidad intermedia.

Para los pavimentos asfálticos, los tratamientos evaluados incluyeron opciones de preservación, mantenimiento y rehabilitación. En preservación, el sellado de fisuras aumenta la vida útil en 2 años y tiene un coste de 0,99 USD/m². En el mantenimiento, el fresado y la repavimentación funcional ofrecen 10 años de vida útil por 23,24 USD/m². En rehabilitación, la rehabilitación en frío alcanza los 13 años con un coste de 36,50 USD/m².

Para los pavimentos de hormigón, los tratamientos incluyeron preservación y rehabilitación. El pulido con diamante aumenta la vida útil en 10 años y tiene un coste de 15,39 USD/m². La reconstrucción completa proporciona 25 años de servicio por un coste de 134,60 USD/m². Estos tratamientos representan opciones para diferentes niveles de deterioro y requisitos estructurales.

El programa optimizado mostró un impacto significativo en la efectividad a largo plazo (LTE). Se logró una mejora del 40 % en la LTE en comparación con las estrategias reactivas. Los tratamientos preventivos dominaron las decisiones, seleccionándose en el 80 % de los casos, lo que evidencia su mayor efectividad frente a opciones correctivas o de rehabilitación.

En términos de coste-eficacia, no se seleccionaron los tratamientos reciclados. Aunque ofrecen beneficios similares en términos de vida útil, su alto coste los hace menos competitivos frente a alternativas más económicas, lo que destaca la importancia de equilibrar costes y beneficios en el diseño de programas de mantenimiento.

Análisis de escenarios

1. Escenarios de inventario:

Se analizaron redes con diferentes proporciones de pavimentos asfálticos y de hormigón, con configuraciones del 25 %, 50 % y 75 % para cada tipo. También se estudiaron tres condiciones iniciales de las redes: buenas, intermedias y deficientes. Este análisis permitió evaluar la influencia de las características estructurales y del estado inicial en la optimización de los programas de mantenimiento.

En todos los casos, los resultados mostraron que la optimización mediante el algoritmo GRASP-TA era superior a las estrategias reactivas tradicionales. Esto demostró que el método es altamente adaptable a diversas configuraciones de red y capaz de ofrecer soluciones efectivas en términos de LTE, independientemente de las características de la red o de su estado inicial.

2. Escenarios presupuestarios:

El análisis incluyó variaciones en el presupuesto total, con incrementos y reducciones de hasta el 20 %, así como cambios en la distribución de los fondos a lo largo del tiempo. Se evaluaron dos configuraciones principales para entender su impacto en el rendimiento a largo plazo.

El escenario con mayor inversión en los primeros años mostró un aumento significativo de la LTE. Esto puso de manifiesto que la asignación temprana de fondos mejora sustancialmente los resultados del mantenimiento. Por el contrario, los aumentos progresivos anuales redujeron la LTE en un 15 % respecto al caso base, lo que indica que posponer la inversión perjudica el rendimiento de la red.

Conclusiones

Asignar más recursos durante los primeros años de un programa de mantenimiento es fundamental para optimizar el rendimiento a largo plazo de las infraestructuras. Este análisis pone de manifiesto la importancia de una planificación presupuestaria estratégica, ya que señala que el momento en que se invierten los recursos tiene un impacto considerable en los beneficios acumulados de la red.

  1. Eficiencia del método GRASP-TA: Diseña programas que maximizan la LTE bajo restricciones técnicas y económicas reales.
  2. Importancia de la prevención: Las actividades preventivas son significativamente más rentables a largo plazo.
  3. Estrategias presupuestarias: Es esencial priorizar mayores inversiones en los primeros años del programa para maximizar su impacto.
  4. Limitaciones de los tratamientos reciclados: Aunque presentan beneficios ambientales, su alto costo relativo limita su inclusión en las soluciones optimizadas cuando solo se consideran aspectos técnicos y económicos.

Como recomendaciones futuras habría que integrar criterios de sostenibilidad, como impactos ambientales y sociales, y extender el análisis a redes más grandes y diversas.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Aquí os dejo el artículo por si os resulta de interés.

Descargar (PDF, 1.2MB)

 

Construcción en América Latina y el Caribe: digitalización e innovación como claves para la sostenibilidad

El sector de la construcción en América Latina y el Caribe (ALC) es uno de los pilares fundamentales de la economía regional, pero también se enfrenta a desafíos significativos en términos de sostenibilidad, productividad y digitalización.

A continuación nos hacemos eco de un informe donde se detallan las claves para transformar el sector basándose en datos, análisis de tendencias y recomendaciones prácticas. El informe lo tenéis al final de este resumen.

 

1. Introducción: importancia del sector y sus retos

El sector de la construcción genera aproximadamente 300 000 millones de dólares en América Latina y el Caribe, lo que representa el 6 % del producto interior bruto (PIB) regional y más de 20 millones de empleos directos. A nivel mundial, contribuye al 13 % del PIB y da empleo a 250 millones de personas. Sin embargo, su productividad ha crecido solo un 1 % anual en las últimas dos décadas, lo que la sitúa muy por debajo de sectores como la manufactura (3,6 %) y la agricultura (2,8 %).

El sector de la construcción es uno de los mayores consumidores de recursos naturales y contribuye significativamente al cambio climático. Según el World Green Building Council (2023):

  • Representa el 50 % del consumo global de recursos extraídos.
  • Utiliza el 15 % del agua potable mundial.
  • Es responsable del 37 % de las emisiones globales de CO₂ relacionadas con la energía.
  • Genera el 35 % de los residuos sólidos producidos anualmente en el planeta.

Además, las proyecciones indican que el sector crecerá considerablemente en los próximos años. Se estima que para 2050 aún no se ha construido el 60 % de los edificios necesarios y que el 20 % de las estructuras existentes requieren renovaciones para cumplir los objetivos de sostenibilidad y cero emisiones netas.

2. Soluciones habilitantes para la construcción sostenible

El documento identifica seis categorías fundamentales de soluciones que pueden transformar el sector hacia la sostenibilidad. Estas soluciones integran tecnologías digitales, diseño innovador, materiales sostenibles y enfoques de gestión eficientes.

  • Tecnologías digitales avanzadas: Las tecnologías digitales son esenciales para mejorar la eficiencia, la transparencia y la sostenibilidad en todas las etapas del ciclo de vida de los proyectos de construcción.
    1. Building Information Modeling (BIM): permite el diseño colaborativo de infraestructuras en un entorno digital. Sus beneficios incluyen:
      • Incremento de la productividad en un 13%.
      • Reducción de costos en un 4% y de los plazos en un 6%.
      • Automatización de procesos como la simulación de consumo energético y la evaluación de impactos climáticos.
      • Caso de éxito: en Uruguay, el uso de BIM y LEAN Construction en el proyecto CAIF Aeroparque resultó en un ahorro del 50% en tiempos de respuesta y un 63% menos en sobrecostos durante la pandemia​.
    2. Inteligencia artificial (IA): mejora la planificación, el diseño y la operación de los activos construidos. Ejemplos:
      • Simulaciones para evaluar el rendimiento energético y el comportamiento estructural ante desastres.
      • Optimización de rutas de transporte y logística en obra, reduciendo costos y emisiones.
    3. Internet de las cosas (IoT):
      • Sensores inteligentes monitorean el uso de energía, agua y recursos en tiempo real, ajustando automáticamente los sistemas para maximizar la eficiencia.
      • Aplicaciones como Building Resilience ayudan a evaluar riesgos climáticos y seleccionar ubicaciones óptimas para proyectos.
    4. Impresión 3D:
      • Permite fabricar componentes en obra o en fábricas cercanas, reduciendo los residuos y las emisiones de transporte.
      • Facilita el uso de materiales reciclados, disminuyendo la dependencia de recursos vírgenes.
    5. Blockchain:
      • Asegura la trazabilidad de materiales, verifica certificaciones ambientales y gestiona residuos con mayor transparencia.
    6. Gestión en la nube:
      • Reduce el empleo de papel, mejora la colaboración en tiempo real y almacena datos clave para optimizar la sostenibilidad.

  • Diseño sostenible: El diseño sostenible aborda el impacto ambiental desde la concepción del proyecto, empleando enfoques como el diseño bioclimático, que optimiza la orientación solar, el aislamiento térmico y la ventilación pasiva para reducir la demanda energética. Un ejemplo de ello son los edificios pasivos, que minimizan el uso de climatización activa; la eficiencia energética y la generación de energía renovable mediante paneles solares, sistemas LED y edificaciones de carbono neutro o positivas que producen más energía de la que consumen; y la flexibilidad en el diseño, con espacios modulares que se adaptan a diferentes usos y disminuyen la necesidad de futuras demoliciones.
  • Materiales sostenibles: El uso de materiales con bajas emisiones de carbono es fundamental para reducir el impacto ambiental. Entre estos materiales destacan la madera certificada, que tiene una huella de carbono negativa, es renovable, reciclable y eficiente energéticamente, y constituye una alternativa clave al hormigón en Chile, que representa el 54 % de las emisiones de carbono de un edificio; el bambú, un material resistente y de rápido crecimiento utilizado en zonas tropicales; y los materiales reciclados, que disminuyen la extracción de recursos naturales y los residuos de construcción.
  • Sistemas de construcción industrializada: La prefabricación, la construcción modular y la impresión 3D contribuyen a reducir los residuos en obra y el tiempo de construcción, y permiten finalizar las obras hasta un 50 % más rápido que con los métodos tradicionales.
  • Medición y verificación del impacto ambiental: Certificaciones como LEED, EDGE y BREEAM permiten evaluar y validar la sostenibilidad de los proyectos.
  • Enfoques de gestión eficientes: Metodologías como LEAN Construction y Advanced Work Packaging optimizan los procesos y reducen retrasos.

3. Experiencias, retos y oportunidades en Latinoamérica y el Caribe

El análisis en Brasil, Chile, Costa Rica y Uruguay revela 44 iniciativas identificadas desde 2015, la mayoría lideradas por el sector público. Entre los retos a los que se enfrentan destacan la falta de integración entre soluciones digitales y sostenibles, la baja percepción del valor económico de la sostenibilidad y los altos niveles de informalidad en el sector. Entre las buenas prácticas destacan el uso de estrategias internacionales de benchmarking, la capacitación técnica en metodologías digitales y la compra pública innovadora y ecológica para estimular la demanda de tecnologías sostenibles.

4. Claves para el futuro

Para transformar el sector, se recomiendan políticas de liderazgo público que promuevan la digitalización y la sostenibilidad, así como incentivos financieros y no financieros, como subsidios, créditos y regulaciones, para fomentar la adopción de prácticas sostenibles. También se recomienda fomentar la colaboración multisectorial mediante alianzas entre los sectores público, privado y académico para compartir conocimientos y recursos, y ofrecer programas de capacitación y educación en habilidades digitales para los trabajadores del sector.

5. Conclusión

La adopción masiva de tecnologías digitales, materiales sostenibles y enfoques innovadores puede situar a Latinoamérica y el Caribe a la vanguardia de la construcción sostenible a escala mundial. Para transformar el sector de la construcción, es necesario adoptar un enfoque holístico que combine innovación tecnológica, gestión eficiente y políticas públicas. La adopción generalizada de soluciones digitales y sostenibles no solo mejorará la productividad, sino que también reducirá el impacto ambiental, lo que hará que el sector sea más resiliente y competitivo en el contexto global.

Os dejo el siguiente documento, donde tenéis toda la información. Espero que os sea de interés.

Descargar (PDF, 4.11MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.