¿Por qué es tan difícil asignar recursos a la conservación de las carreteras?

Figura 1. Conservación de carretera Guayaquil-Santa Elena.

En muchos foros se repite, a modo de mantra, que la falta de conservación de nuestras carreteras (y calles, en el caso de las ciudades) se debe fundamentalmente a un problema de orden económico. Por algún u otro motivo (crisis económica, dificultad en aprobar presupuestos, falta de voluntad política, etc.), la falta aparente de recursos obliga a realizar una conservación correctiva o reactiva de las carreteras que, como ya se justificó en un artículo anterior, provoca estados sub-óptimos en la infraestructura y tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Conviene insistir en este punto, una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico. La justificación económica de las restricciones presupuestarias queda en entredicho cuando se consideran los costes totales del transporte.

Sin embargo, en nuestro grupo de investigación hemos desarrollado modelos que, incluso en el caso de disponer presupuestos restrictivos, pueden maximizar el estado o condición, no de una carretera, sino de una red completa, considerando, además, distintas funciones objetivo (costes económicos, sociales y medioambientales). Pero para entender mejor el problema, expongo a continuación la dificultad intrínseca de este tipo de problemas y justificaré las razones por las que muchos gestores del mantenimiento de carreteras toman decisiones que se alejan de ser óptimas.

La clave para entender la magnitud del problema radica en la dificultad que tienen los gestores de la red de carreteras en la toma de decisiones debido a la explosión combinatoria de las soluciones posibles cuando se tienen en cuenta distintos tipos de tratamientos de preservación, mantenimiento y rehabilitación (P+M+R) y los periodos de aplicación. Dicho de otra forma, en una red de carreteras se trata de decidir en qué tramo de la red se aplica un tratamiento de los múltiples posibles y cuándo se debe realizar. Las decisiones tomadas conforman el programa de conservación de la red de carreteras.

En la Figura 2 se representan las variables fundamentales que conforman el problema. En una red de carreteras tenemos N activos (tramos considerados), S posibles tratamientos cada uno de los cuales se aplicará en el instante t en los T años considerados en el programa de conservación.

Figura 2. Programa de conservación (Torres-Machí, 2015)

El programa de conservación resultante de las decisiones tomadas para un horizonte de T años nos dirá para cada uno de los años dónde actuar y qué tipo de tratamiento se deberá realizar. En la Figura 3 queda representada un posible programa fruto de las decisiones tomadas.

Figura 3. Ejemplo de programa de conservación (Torres-Machí, 2015)

Lo difícil de este problema, como hemos dicho anteriormente, es acertar con el mejor programa de conservación. No hay más remedio que aplicar técnicas de optimización para resolver el problema si los presupuestos son escasos. Caben dos enfoques, el secuencial y el holístico. El primero se centra en un activo (tramo de carretera, calle en una ciudad) y se decide qué tratamientos y cuándo se van a aplicar. En este caso el problema tiene N·S^T soluciones. En cambio, el enfoque holístico considera toda la red: se trata de elegir qué activo tiene prioridad en la red y luego decidir qué tratamiento y cuándo se aplica. Aquí se dispara el número de posibles soluciones a S^(N·T). A modo de ejemplo, teniendo en cuenta solo dos tratamientos (S=2), un horizonte de 10 años (T=10) y 7 tramos diferentes de carretera (N=7), el número de posibles soluciones es de 1,18E+21.

La única forma de abordar este problema es con algoritmos heurísticos de optimización multiobjetivo. Os dejo algunas referencias de cómo hemos resuelto en nuestro grupo de investigación este problema y en un artículo posterior os explico cómo formular el problema de optimización (funciones objetivo, restricciones, etc.). Como ya dije en artículos anteriores, la puerta está abierta a quien quiera participar en nuestro grupo.

Referencias:

  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La evaluación técnica de una carretera

Figura 1. Representación de la evolución del índice PSI. https://www.pavementinteractive.org/

En una entrada anterior vimos que una infraestructura se puede evaluar con indicadores de estado y de prestaciones. En el caso de una carretera, las funciones básicas que debe cumplir pasan por poseer una capacidad estructural suficiente para soportar las cargas a la estará sometida, presentar un nivel de servicio adecuado bajo el punto de vista del usuario y garantizar la seguridad en cualquier momento. En consecuencia, el estado y las prestaciones de una carretera varían a lo largo del tiempo debido a las solicitaciones directas o indirectas, como puede ser el tráfico o el clima, y por tanto, se debe evaluar periódicamente el estado  de la carretera para garantizar las funciones básicas que antes hemos definido.

Dentro de la gestión de una carretera, llamaremos evaluación técnica al proceso que pasa por recoger datos, evaluar la infraestructura a través de un indicador y predecir la condición futura de la carretera mediante un modelo de comportamiento.

La primera fase de la evaluación técnica implica examinar las características de una carretera tanto desde el punto de vista funcional como estructural. Existen distintos tipos de indicadores para evaluar las características de una carretera. Estos indicadores se correlacionan entre ellos para comparar los valores cuando se utilizan distintas metodologías de medición. Si se evalúa la funcionalidad del pavimento, se puede medir el nivel de servicio o la seguridad. Por otra parte, la evaluación estructural mide la capacidad de soporte del pavimento. Para ello se pueden medir las propiedades mecánicas (deflexiones y deformaciones) o bien el deterioro superficial (agrietamiento, defectos superficiales o la deformación del pavimento.

  • El nivel de servicio mide la capacidad del pavimento para servir al tránsito ofreciendo un nivel de calidad adecuado a los usuarios; por tanto, se trata de una percepción subjetiva basada en la comodidad. Esta percepción se mide habitualmente relacionándola con la regularidad superficial, medida con indicadores como el IRI (International Roughness Index), PSI (Present Serviceaility Index)PSR (Present Serviceaility Rating) . Hoy en día el IRI es el indicador más importante, y se evalúa a partir del perfil longitudinal del pavimento.
  • El nivel de seguridad de una carretera depende de múltiples factores, como son el diseño geométrico, la señalización o las características de los vehículos, entre otros muchos. Sin embargo, para medir la seguridad del pavimento se suele utilizar la textura (macrotextura o microtextura) y la resistencia al deslizamiento (coeficiente de fricción internacional, IFI). Hay que tener presente, en este caso, que la resistencia al deslizamiento no solo depende de la textura del pavimento, sino que también depende de las características de los neumáticos y de las condiciones del vehículo. Pero si se tiene que medir la condición del pavimento, deberemos centrarnos en la microtextura, que influye fuertemente en el deslizamiento de vehículos a baja velocidad sobre superficies mojadas) y la macrotextura (que facilita el drenaje del agua y que ofrece resistencia al deslizamiento en vehículos a alta velocidad sobre pavimentos mojados). El IFI, que es el indicador que se utiliza internacionalmente, consta de dos números, uno adimensional que representa la fricción (cero es un deslizamiento perfecto, y uno es adherencia) y otro, en unidades de velocidad (km/h) que representa la macrotextura. Con estos dos valores se puede calcular el valor de fricción a cualquier velocidad de deslizamiento.
  • Las propiedades mecánicas del pavimento (módulo elástico, fatiga, deformación y tensiones residuales) definen los parámetros de resistencia de las diferentes capas de la estructura del pavimento. Sin embargo, el indicador más utilizado para para evaluar la capacidad estructural es la medición de las deflexiones (deformación elástica de un pavimento al paso de una carga).
  • El deterioro superficial se hace patente con las grietas, defectos superficiales y deformaciones del pavimento, así como en los defectos de los tratamientos o reparaciones realizadas. Suele medirse mediante una inspección visual, que puede ser manual o automática.

 

Figura 2. Características evaluadas en la auscultación de pavimentos. Elaboración propia basada en Torres-Machí (2015)

Sin embargo, aunque todos los indicadores expuestos son de interés en la toma de decisiones, también es cierto que resulta conveniente disponer de indicadores compuestos que permitan simplificar la información. Se trata de combinar los indicadores individuales para simplificar la toma de decisiones. Algunos de ellos son el PCI (Pavement Condition Index), el PQI (Pavement Quality Index) y el POI (Pavement Overall Index). Como estos indicadores son una agregación de distintos deterioros, para utilizarlos en la gestión de una red de carreteras, es necesario una calibración previa (de Solminihac, 2001).

Estos indicadores se utilizan, entre otros, para realizar una optimización multiobjetivo en la toma de decisiones necesaria para el mantenimiento de una red de carreteras. En el caso de los indicadores de condición, se trata de maximizar dicho indicador a lo largo del ciclo de vida de la red de carreteras. Os dejo a continuación algunas referencias y trabajos de nuestro grupo de investigación.

Referencias:

  • DE SOLMINIHAC, H. (2001). Gestión de infraestructura vial. Pontificia Universidad Católica de Chile. Santiago, Chile.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Indicadores de estado y de prestaciones de las infraestructuras

En una entrada anterior vimos las distintas estrategias de conservación de las infraestructuras y cómo éstas influían en el coste que debían pagar los usuarios. Estas estrategias podían modificar el estado o las prestaciones de la infraestructura, que de forma irremediable, se degradan con el tiempo. Llegado a este punto, conviene diferenciar los conceptos de estado y de prestaciones de una infraestructura.

La gestión de las infraestructuras (carreteras, puentes, etc.) supone un proceso por el cual se debe asignar de forma eficiente los recursos limitados en la dirección marcada por los objetivos estratégicos de la organización responsable de dicha gestión. Para ello se hacen necesarios una serie de indicadores que permitan medir de forma cuantitativa o cualitativa los resultados procedentes de las acciones realizadas sobre dichos activos respecto a los objetivos.

Dichos indicadores pueden ser de estado o de prestaciones. El estado o condición de una infraestructura se define como su estado físico, que puede afectar o no a sus prestaciones. En cambio, la prestación o rendimiento se define como la capacidad de la infraestructura para proveer un determinado nivel de servicio a los usuarios. Se pueden llamar también prestaciones funcionales, pues indican el nivel de habilitación de una infraestructura para desarrollar su función principal, que es la prestación del servicio, aunque también podrían incluir otras características o efectos no directamente relacionados con el servicio a los usuarios.

Saber diferenciar ambos conceptos es básico para cualquier organización responsable de la gestión de una infraestructura. Así, por ejemplo, las prestaciones de un puente pueden no verse afectadas por el estado hasta que se produzca un fallo. Es fácil encontrar un puente de hormigón con defectos superficiales (corrosión de armaduras, desconchados, etc.) que mantiene intacta su funcionalidad e integridad estructural. También podría darse el caso de un puente en muy buen estado que no sea capaz de soportar determinadas cargas de tráfico o que impone restricciones de gálibo que afectan al tráfico.

Puente “traga camiones” de Leganés. https://www.lavanguardia.com

Pero, ¿cuáles son las razones para disponer de indicadores en la gestión de las infraestructuras? Pues son imprescindibles para tomar decisiones que afectan a estos activos. Permiten identificar las necesidades de intervención, proporcionan la guía de los procesos y criterios en la toma de decisiones y son los elementos que permiten controlar el progreso hacia los objetivos y metas trazados por la organización responsable de la gestión.

En el caso de una carretera, los indicadores utilizados en su gestión se suelen agrupar en diferentes categorías que corresponden con los objetivos de la organización responsable de dicha gestión. Se podrían considerar, entre otros, los siguientes: conservación de la carretera, seguridad vial, movilidad y accesibilidad, medioambiente, operaciones y mantenimiento y eficiencia económica.

Si se disponen de mediciones de dichos indicadores, éstos permiten comparar sus valores con determinados estándares, umbrales o niveles mínimos. Esta información es determinante en la identificación de las necesidades de intervención y, por tanto, catalizan todo el proceso posterior de selección de intervenciones y asignación de recursos económico.

En artículos posteriores hablaremos de cómo podremos utilizar estos índices para el caso particular de las carreteras y utilizar técnicas procedentes de la optimización multiobjetivo y de la toma de decisiones multicriterio para asignar los presupuestos restrictivos de los que dispone una organización para que la condición de las carreteras sea la máxima posible. Ya adelantamos que el problema no es sencillo, pero afortunadamente nuestro grupo de investigación ya dispone de las herramientas necesarias para planificar el mantenimiento y la conservación de una red de carreteras o de calles en una ciudad con presupuestos muy restrictivos.

 

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influyen las estrategias de conservación y el coste que pagan los usuarios de las carreteras?

Figura 1. Las generaciones futuras tendrán que pagar por unas infraestructuras deterioradas

En esta entrada vamos a justificar cómo determinadas estrategias de gestión del mantenimiento y conservación de las carreteras disparan los costes que tienen los usuarios. Por tanto, en primer lugar vamos a definir las distintas estrategias posibles y posteriormente analizaremos cuál de ellas influye negativamente en el coste de los usuarios.

Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, no menos cierto es que una parte significativa de dicha infraestructura está empezando a notar el paso del tiempo; es más, parece que podemos vivir dentro de un horizonte no tan lejano, un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación (Figura 1) se va a encontrar con la sorpresa de tener que pagar por unas infraestructuras con pésimos niveles de servicio. Es lo que en otro artículo califiqué como la “crisis de las infraestructuras“. Todo ello nos lleva a la cuestión central del problema: la urgente necesidad de tener un plan racional con recursos suficientes para mantener las infraestructuras básicas de un país.

En la Figura 2 podemos ver una gráfica donde se representa no solo la degradación del estado o de las prestaciones de la carretera, sino las distintas estrategias que se tienen al alcance para modificar dicho deterioro.

Figura 2. Estrategias de conservación (Clemente, 2012)

Así, la estrategia preventiva o proactiva tiene como objetivo mantener en el tiempo el estado físico del elemento en un nivel adecuado, evitando que alcance elevados niveles de deterioro que puedan afectar a su funcionalidad y disparar los costes de reparación. Estas actuaciones son normalmente de alcance y coste limitado y se realizan con cierta periodicidad en función de la evolución observada o incluso de manera programada antes de que el defecto se llegue a manifestar. La estrategia correctiva o reactiva es la que deja al elemento que se deteriore al límite, en cuyo momento se realizan intervenciones de gran calado, como por ejemplo grandes rehabilitaciones integrales o estructurales, que lo devuelven, o lo intentan devolver, a su estado original. Sin embargo, son actuaciones de mayor coste, aunque más separadas en el tiempo. Por último, se podría optar por un deterioro controlado hasta la retirada. En este caso se pasa directamente a retirar el elemento cuando se ha alcanzado su vida útil de servicio y se sustituye por otro similar. Durante este periodo no se interviene, o se hace mínimamente para no afectar la funcionalidad.

Por tanto, la estrategia óptima no es evidente, pues depende tanto de factores endógenos (características constructivas de la carretera, edad, etc.) y exógenos (condiciones del clima, nivel de tráfico, etc.) y por tanto no se pueden generalizar las conclusiones. Este problema, por consiguiente, es uno de los focos más importantes de nuestro grupo de investigación. Os he puesto referencias de algunas de nuestras publicaciones.

Pero el problema se hace más complejo cuando se tienen en cuenta los costes de los usuarios. En efecto, las características de la carretera y el nivel y la composición de la demanda de tráfico influyen en los costes de los usuarios. Un mal estado del pavimento, incrementa claramente el coste soportado por el usuario. Y lo que es peor, un estado sub-óptimo de la infraestructura debido a una estrategia de conservación reactiva, tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Insisto en este punto. Una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico.

En la Figura 3 se puede ver que existe un hipotético nivel de conservación óptimo que minimiza los costes totales del transporte, teniendo en cuenta el coste del usuario, el coste de conservación y el coste de construcción. Sin una estrategia clara de conservación, los responsables de una red de carreteras suelen realizar una conservación correctiva, que tiene un aparente ahorro económico en el corto plazo, pero que traslada al futuro unos costes que pueden ser muy elevados tanto para los contribuyentes que sufragan la inversión como para los usuarios.

Figura 3. Costes totales del transporte

A continuación os dejo algunas de las referencias y de los trabajos que se han publicado al respecto. Todo lo que estamos haciendo ahora se encuentra dentro de un proyecto de investigación competitivo al que hemos denominado DIMALIFE (BIA2017-85098-R): Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Si alguien se anima trabajar en estos temas de investigación con nosotros o hacer una tesis doctoral, tiene las puertas abiertas.

Además, igual os interesa leer los enlaces que publicamos en una entrada anterior: ¿Qué hemos hecho para conservar nuestras carreteras?

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Simposio GeoRoads19. La pasión por las carreteras

Las nuevas tecnologías están cambiando profundamente la forma que tenemos de comunicarse. Todo es más rápido, directo y con mayor impacto.

En esta entrada voy a dar difusión a un evento que se desarrollará en línea, cuya inscripción es totalmente gratuita. Se trata del simposio #GeoRoads19, “La pasión por las carreteras”. Se trata de una conferencia que se desarrollará los días 11 y 12 de abril de 2019 y se retransmitirá desde los estudios de ITAFEC en Guadalajara, Jalisco, México. Si queréis inscribirse, lo podéis hacer ya en el siguiente enlace: https://www.geotechtips.com/georoads19. El cupo es limitado a los primeros 1500 inscritos.

Pero antes de dar más detalles, lo primero que tengo que hacer es agradecer la invitación de Freddy J. Sánchez-Leal, director de Geotechtips, que ha tenido la amabilidad de incluirme en el panel de expertos internacionales que van a participar en las conferencias.

Contará con la participación de 8 muy reconocidos expertos de Argentina, Chile, Colombia, Costa Rica, Estados Unidos, España, Perú y México, que nos disertará cada uno en una presentación de 30 minutos sobre sus paradigmas personales relacionados con la ingeniería de carreteras.

Se abarcará el tema de la infraestructura vial desde los aspectos de la investigación, desarrollo y aplicación de tecnologías, construcción, auscultación, mantenimiento y conservación, entre otros.

Se realizarán cuatro presentaciones por día, dejando un espacio de 30 minutos entre presentación para recibir y contestar las preguntas de la audiencia, y para la transmisión de publicidad de nuestros cuatro únicos anunciantes. Al final del segundo día se presentarán las conclusiones del evento, construidas directamente por un grupo seleccionado de asistentes, y moderadas desde el estudio aplicando la conocida técnica de los “6 Sombreros para pensar”.

Desde el estudio de TV en Guadalajara, se moderarán las presentaciones y organizando el desarrollo de las preguntas y de las demás actividades de intensa interacción entre el público y los presentadores.

La grabación de las presentaciones y todo el evento quedará de forma permanente en una sala exclusiva del portal de Geotechtips a la que los participantes podrán, luego del evento, acceder de forma gratuita. De la misma manera, personas que no se hayan registrado para el evento, pero que posteriormente quieran verlo, solo tendrán que acceder a esa sala, de igual manera gratuita.

Los conferenciantes previstos al simposio son los siguientes. Los podéis localizar en las redes sociales.

  • Dr. Rodolfo Adrián Nosetti. Profesor Adjunto en Universidad Nacional de La Plata, Argentina. Red social principal: Facebook Adrian Nosetti LinkedIn: adrian-nosetti-26022743
  • Dr. Guillermo Thenoux. Profesor en Pontificia Universidad Católica de Chile. Director del Centro de Ingeniería e Investigación Vial. LinkedIn: Guillermo-thenoux-8b7b5844
  • Dr. Fredy Alberto Reyes Lizcano. Profesor e Investigador en pavimentos e infraestructura vial en Pontificia Universidad Javeriana de Colombia, Bogotá. Red social principal: Facebook: Fredy Alberto Reyes Lizcano. LinkedIn: Fredy-Alberto-reyes-Lizcano-80b6282a
  • Dr. Luis Guillermo Loría-Salazar. Director del Laboratorio Nacional de Materiales y Modelos Estructurales (LanameUCR) de la Universidad de Costa Rica. Red social principal: Twitter @lgloria27 LinkedIn: luisguillermoloria
  • Dr. Juan José Potti. Presidente Ejecutivo de la Asociación Española de Fabricantes de Mezclas Asfálticas (ASEFMA). Madrid, España. Red social principal: Twitter: @jjpotti LinkedIn: juan-jose-potti-29a86ab
  • Dr. Víctor Yepes. Catedrático Universitat Politècnica de València, España. Autor del Blog de Victor Yepes. Red social principal: Twitter: @vyepesp LinkedIn: -victor-yepes-5b79409
  • Dr. Paul Garnica Anguas. Director de los Laboratorios de Investigación en Infraestructura del Instituto Mexicano del Transporte. Sanfandila, Querétaro, México. Red social principal: Twitter: @pgarnica LinkedIn: paul-garnica
  • Ing. Pablo del Águila, MSc. Consultor Internacional en Infraestructura del Transporte para el American Development Bank. Director de Camineros Consulting. Lima, Perú. Red social principal: Twitter: @caminerosperu LinkedIn: pmdelaguila

Organizador:

  • Ing. Freddy J. Sánchez-Leal, M en I. Director de Geotechtips. Zapopan, Jalisco, México. Red social principal: Twitter: @saintloyal LinkedIn: ramcodesceo

Descargar (PDF, 711KB)

 

¿Cómo se distribuyen las presiones en el suelo al paso de un compactador?

Figura 1. Compactador de neumáticos

Un aspecto de gran interés práctico en la compactación es conocer cómo se distribuyen las presiones bajo la superficie por la que pasa el compactador. Si en vez de considerar las tensiones y deformaciones uniformemente distribuidas por todo el material, tal y como hemos visto en los ensayos descritos en entradas anteriores, nos centramos en lo que ocurre bajo la superficie donde se aplica la carga, comprobaremos que los efectos de la carga únicamente se soportan por una porción del suelo bajo ella.

Boussinesq desarrolló, para un suelo homogéneo, isótropo y elástico, la distribución de las tensiones bajo placas cargadas (en 1885 obtuvo una solución para los esfuerzos debidos a una carga aplicada en dirección normal a la superficie de un semiespacio elástico semi-infinito). Se forma un bulbo de presiones bajo la placa, de forma que la presión a determinada profundidad es proporcional a la presión de contacto (Figura 2).

Figura 2. Distribuciones de presiones según Boussinesq

Asimismo, la forma y el tamaño de la placa influyen en el bulbo de presiones. A igualdad de carga y superficie, una placa cuadrada produce mayores presiones a medida que aumenta la profundidad. También se observa que, para una presión de contacto dada, cuanto más ancha es la placa de carga, mayor es la profundidad alcanzada para la misma compresión. Ello explica que un compactador de neumáticos (Figura 1) -cuya huella se aproxima a un círculo- es más eficaz en cuanto a penetración que un compactador de cilindro liso (Figura 3), estando cargados por igual, y a igual superficie total de contacto.

Figura 3. Compactador de rodillo liso

Tanto las tensiones como las deformaciones disminuyen rápidamente con la profundidad de la tongada a compactar. Así en un neumático de una anchura D, con una presión de contacto con la superficie de PC, transmite a 0,5 D solo 0,6 PC, a una distancia D transmite 0,3 PC y al llegar a 2D únicamente nos llega 0,09 PC. El tamaño del bulbo nos indica qué partes de la masa del suelo serán afectadas por la carga aplicada de forma significativa, tanto en profundidad como en extensión lateral. La Tabla 1 proporciona los valores aproximados de la profundidad y ancho de los bulbos de presión de 0,2q y 0,1q.

Tabla 1
Tabla 1. Bulbos de presión bajo el terreno

Como existe una presión por debajo de la cual las deformaciones dejan de ser permanentes (se puede tomar como idea unos 0,2 MPa), por ser de tipo elástico, es fácil comprender que la presión en superficie, al ir disminuyendo, encontrará una línea divisoria por debajo de la cual no es posible compactar el terreno.

Debido a que para cada carga, existe una deformación remanente límite, independiente del número de ciclos, se obtendrá una profundidad límite de capa para cada compactador y para cada peso unitario especificado. Se puede calcular dicho espesor límite interpolando entre varios valores de deformación límite y grosor de capa, para un compactador prefijado. Las relaciones entre los pesos unitarios iniciales, especificada y las deformaciones son las descritas mediante la siguiente ecuación, basada en que el peso unitario de cada capa crece en la misma relación que disminuye la altura:donde:

ε = deformación unitaria

δ = deflexión

h = grosor de la tongada

γ0 = peso unitario inicial

γesp = peso unitario especificado

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diagramas de carga-deflexión en la compactación mecánica de suelos

Figura 1. Rodillo compactador Hamm 3412

La compactación mecánica está basada en las relaciones entre las tensiones y las deformaciones o deflexiones causadas por una carga compresora.

Si se analiza el ensayo realizado sobre una probeta de suelo cilíndrica, permaneciendo la superficie lateral libre y en cuya base superior aplicamos una carga mediante una chapa metálica, con un valor que vaya aumentando a velocidad constante, se obtiene el diagrama de carga-deflexión como el de la Figura 2. En este ensayo, una vez alcanzado determinado valor en la carga, la probeta rompe. Asimismo, la pendiente de la curva cargas-asientos correspondiente a cada ciclo permite calcular el módulo de deformación del suelo.

Figura 2. Tensión-deformación en una probeta con paredes laterales libres

La curva permite comprobar ciertos fenómenos significativos. El primero de ellos es que si al llegar al punto 3 dejamos de aumentar la carga, sigue la probeta deformándose hasta estabilizarse en el punto 4 al cabo de cierto tiempo. Este efecto es acusado en suelos plásticos y húmedos por su dificultad en evacuar el aire y el agua. El segundo fenómeno es que si a partir de un punto tal como el 1 descargamos a la misma velocidad que veníamos cargando, la probeta recupera parte de su deformación, hasta llegar a 2 cuando ya no existe tensión. Si a partir de este punto repetimos el proceso, la nueva curva se aproxima a la original hasta ser tangente con ella. Estas dos ramas, de compresión y de descompresión, no se confunden, sino que forman un lazo nominado de histéresis.

Si este experimento se realiza con un terreno natural, y otro recompuesto de la rotura de los anteriores ensayos, y ambos se vuelven a testar con la misma humedad, se observa que a igualdad de cargas, los suelos recompuestos o amasados rompen antes y sufren mayor deformación. Análogamente, si experimentamos a mayores velocidades de incremento de carga, las deformaciones son menores ya que no da tiempo suficiente a evacuar aire y agua de la muestra.

El segundo tipo de ensayo propuesto sería someter la probeta cilíndrica a un proceso de cargas escalonado, de forma que permanezca constante la compresión durante un periodo de tiempo dilatado que garantice que se alcanza el alargamiento límite para dicha carga. A su vez, la probeta tendrá impedida su deformación lateral, siendo porosas las bases del cilindro, pudiendo así aplicar cargas de mayor magnitud. En este caso sólo existe deformación vertical siendo la lateral nula, hablándose entonces de deformación edométrica, por ser el edómetro el aparato en el cual se realiza este experimento. Por cierto, edómetro viene del griego “oidos“, hinchamiento, por ser la medida de la expansividad de los suelos en contacto en el agua, una de sus primeras aplicaciones.

Figura 3. Celda de edómetro

En este caso, la curva obtenida presenta las mismas características que la anterior. Si no se descarga, la curva (0135) se denomina de compresión noval. Al descargar, nos movemos de forma lineal por la rama de descarga. Se llama presión de preconsolidación la máxima que ha sufrido el material en su historia, siendo por tanto que un suelo o está en la rama elástica o en la tensión de preconsolidación.

Se distinguen tres tipos de asientos al realizar un ensayo edométrico. La consolidación inicial es un asiento independiente del fenómeno de consolidación y que está asociado a deformaciones debidas al cierre de fisuras de la muestra, a rozamientos y huelgos del sistema de aplicación de la carga, etc. La consolidación primaria se rige por la teoría de la consolidación, es decir, existe un asiento debido a la expulsión del agua como consecuencia de la sobrepresión aplicada. Por último, la consolidación secundaria se debe a fenómenos viscosos y de reajuste de la estructura del suelo una vez las sobrepresiones se han anulado, y tampoco se debe al fenómeno de consolidación. La teoría de la consolidación está basada en el principio de Terzaghi, y plantea que un suelo saturado y poco permeable reacciona inicialmente a un cambio tensional como si no cambiara de volumen, generando sobrepresiones intersticiales. A medida que éstas se van disipando hacia los contornos drenantes, las tensiones totales transmitidas inicialmente se transforman, gradualmente, en presiones efectivas, y el suelo se deforma.

Se llaman suelos normalmente consolidados aquellos en los que la tensión efectiva actual es la máxima que han tenido en su historia, y suelos sobreconsolidados o preconsolidados los que han soportado en el pasado una tensión superior a la actual. Es evidente que cuanto antes se hablaba de un suelo remoldeado en anteriores ensayos, este es, por definición, sobreconsolidado.

A continuación os dejo un vídeo sobre el ensayo edométrico. Espero que os sea de interés.

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Mejor pocas pasadas de un compactador muy pesado?

Figura 1. Compactador vibratorio

Una pregunta que suelen hacerme es saber si resulta más económico compactar un terreno con un compactador pesado con pocas pasadas o un compactador menos pesado, pero con más pasadas. Es conocido que el número de pasadas y la profundidad de la capa de terreno a compactar dependerá no solo de las características de la máquina, sino también de la naturaleza del suelo y su humedad. La determinación de estos parámetros se puede realizar mediante un tramo de prueba. Sin embargo, en esta entrada quiero centrarme en el aspecto energético del problema. En efecto, voy a contar qué ocurre con los ciclos de carga-descarga sobre un terreno al que se le aplican deformaciones remanentes progresivas.

Si se consideran varios ciclos de carga y descarga, es interesante comprobar cómo los módulos de deformación de cada lazo de histéresis van aumentando progresivamente hasta alcanzar un valor de equilibrio. La densificación del terreno va provocando deformaciones remanentes progresivas, que llegan a un límite, en cuyo rango de presiones el suelo se comporta elásticamente (esto es cierto salvo en terrenos muy plásticos y con gran humedad).

En la Figura 2 se observa la variación de la deformación residual con el número de ciclos de carga-descarga.

Figura 2. Número de ciclos de carga-descarga con respecto a la deformación residual

Estos mismos ciclos de carga y descarga ocurren al pasar un compactador por encima de una capa que se desea compactar. Cada pasada constituye un ciclo completo de carga y descarga, con un terreno que se encuentra en una situación intermedia entre el confinamiento horizontal total y el libre, que son los dos experimentos descritos.

El proceso provoca deformaciones residuales cada vez menores, hasta llegar a una situación en el límite, donde las tensiones y deformaciones son lineales, y donde una carga mayor rompe el suelo, subiendo éste alrededor del compactador. Veamos en la Figura 3 las sucesivas relaciones entre tensiones y deformaciones que se producen en cada pasada de compactador. El área formada por los puntos OA1B1 es proporcional a la energía necesaria para obtener la deformación remanente OB1. Por tanto, cuanto mayor sea la carga del compactador, menos pasadas serán necesarias para llegar a la deformación remanente deseada, es decir, al grado de densidad especificado. Ahora bien, dicha carga debe ser inferior a la de rotura del material.

Figura 3. Relación entre tensión y deformación con ciclos de cargas y descargas sucesivas

Se presentan dos formas de llegar a la deformación remanente necesaria: o bien con muchas pasadas de un compactador menos pesado, o bien con pocas pasadas de un compactador más pesado. En el límite la energía necesaria con una sola pasada sería proporcional a la curva OAB, mientras que con muchas pasadas sería proporcional aproximadamente a OANBN. Ello podría hacer pensar que sería más económico muchas pasadas con un compactador pequeño que pocas con uno más grande. Esto no es del todo cierto ya que también se consume energía por rozamiento al trasladarse los equipos. Bajo una perspectiva energética, lo óptimo se encuentra en una situación intermedia.

Referencia:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las fiebres tifoideas y los puentes de altura estricta de Carlos Fernández Casado

Carlos Fernández Casado (1905-1988)

No hay nada como un retiro obligado para que las mentes más brillantes reluzcan con todo su esplendor. Así, cuando en 1665 cerró la Universidad de Cambridge debido a la peste, Isaac Newton (1642-1727) tuvo que volver a casa natal de Woolsthorpe y, durante ese retiro, sentó las bases de sus teorías de cálculo y las leyes del movimiento y la gravitación. Algo similar ocurrió con uno de los ingenieros españoles más destacados y singulares del siglo XX, D. Carlos Fernández Casado. Recomiendo leer su biografía y obras a las nuevas generaciones de ingenieros, pues es todo un referente. Ingeniero de Caminos, Canales y Puertos con 19 años, también fue Ingeniero de Telecomunicaciones, Licenciado en Filosofía y Letras, Licenciado en Derecho a los 68 años, e incluso inició los estudios universitarios de Psicología. Con todo, su faceta humana y generosidad sobrepasan su inteligencia privilegiada y sus extraordinarios logros profesionales.

Pero la entrada de hoy tiene que ver con la relación existente entre el tiempo disponible forzado por un retiro, enfermedad o cualquier otra circunstancia, y la creación. Carlos Fernández Casado tuvo su primer destino profesional como ingeniero de caminos en Granada (1928-1932), lo que le permitió entrar en contacto con la intelectualidad de la época, cuya figura más visible fue Federico García Lorca, y con la Naturaleza en sus primeros trabajos, lo cual contribuyó a conformar su planteamiento intelectual y vital. Pues bien, al final de sus años en Granada enfermó con fiebres tifoideas, lo que le obligó a guardar cama durante varias semanas, propiciando esta situación la reflexión personal sobre lo que había hecho hasta el momento. Este hecho fue fundamental en su vida, pues significó un cambio de rumbo en su vida.

Fruto de estas reflexiones, a la temprana edad de 25 años, en 1930, Fernández Casado desarrolla la conocida “Colección de Puentes de Altura Estricta” (Manterola, 1988). El objetivo de esta colección era el diseño de puentes que pudieran salvar las luces prácticas más corrientes con la mínima pérdida de altura. Se trata de una de las mejores y más queridas obras realizadas por D. Carlos. Se refleja en esta colección la manera de concebir la ingeniería y el afán por lo estricto como planteamiento ético y estético. En una referencia recogida por su hijo, Leonardo Fernández Troyano (2007) publicada en la Revista de Obras Públicas, definía claramente esta concepción de lo estricto, concepción que ha calado en numerosas generaciones de ingenieros:

Este sentido de lo estricto -supresión de lo accesorio de la obra definitiva y a lo largo del proceso constructivo- elimina radicalmente lo decorativo, partiendo de lo funcional llegamos directamente a lo estructural” (Fernández-Casado, 1933).

La colección destila una simplicidad absoluta de sus elementos, con el uso exclusivo del plano y la línea recta, con la única excepción de las columnas cilíndricas, que encajan a la perfección al ser también ellos elementos estrictos, pues su forma interfiere mínimamente con el flujo hidráulico.

Pero esta simplicidad se hermana directamente con el amor que procesaba a la Naturaleza. El paradigma actual de la sostenibilidad, y que también tiene mucho que ver con mi pasión por la optimización multiobjetivo de los puentes, a la que tanto esfuerzo he dedicado. Todo un adelantado a su tiempo. En sus propias palabras:

Que se arranque lo menos posible el material de la mina, que la menor cantidad de piedra y arena se desvíen de su proceso evolutivo, que se consuma el mínimo de combustible en los transportes y se introduzcan las menos ideas nuevas en el paisaje” (Fernández-Casado,  1951).

La colección, muy ambiciosa morfológicamente, incluye pórticos sencillos (series I y II), pórticos en pi (series III y IV), puentes continuos de tres vanos (series V y VI), puentes continuos de tres vanos con articulaciones intermedias a media ladera (series VII y VIII). La sección transversal, por su parte, podía ser en losa, o en vigas T en la zona central del vano y cajones cerrados en las zonas laterales.

Los primeros tres puentes de esta colección se realizaron en Jaén, por encargo del ingeniero José Acuña y Gómez de la Torre. El primero fue el de Santo Tomé, el segundo el del río Onsares, y el tercero, el del río Guadalimar, construidos el primero en 1934 y los dos últimos, un año más tarde (Burgos et al., 2012). Se construyeron más de 50 puentes de la colección, tanto por Fernández Casado como por otros ingenieros. Como dice Javier Manterola en un artículo publicado a los pocos meses del fallecimiento de D. Carlos, (justo en el año en el que esto escribe terminó su carrera de Ingeniero de Caminos): “estos puentes son historia y en ellos nos reconocemos los que nos dedicamos a este quehacer” (Manterola, 1988).

Puente en Santo Tomé sobre el río de La Vega. Vista del puente en construcción. http://www.cehopu.cedex.es/cfc/pict/I-FC001-003.htm

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pavimentación con hormigón

http://www.imcyc.com/

Se define como pavimento de hormigón en masa al constituido por un conjunto de losas de hormigón en masa separadas por juntas transversales, eventualmente dotado de juntas longitudinales; en el que el hormigón se pone en obra con una consistencia tal que requiere el empleo de vibradores internos para su compactación y maquinaria específica para su extensión y acabado superficial.

La ejecución del pavimento de hormigón incluye las siguientes operaciones:

  • Estudio y obtención de la fórmula de trabajo.
  • Preparación de la superficie de asiento.
  • Fabricación del hormigón.
  • Transporte del hormigón.
  • Colocación  de  elementos  de  guía  y  acondicionamiento  de  los  caminos  de rodadura para la pavimentadora y los equipos de acabado superficial.
  • Colocación de los elementos de las juntas.
  • Ejecución de juntas en fresco.
  • Terminación.
  • En su caso numeración y marcado de las losas.
  • Protección y curado del hormigón fresco.
  • Ejecución de juntas serradas.
  • Sellado de las juntas.
https://www.gomaco.com/

Para ampliar la información os remito al Pliego de Prescripciones Técnicas para Pavimentos de Hormigón, de IECA y al siguiente enlace para visualizar vídeos.