Galerías de drenaje en el control del nivel freático

Figura 1. Galería de drenaje, con barrenos en abanico (IGME, 1987)

Las galerías de drenaje constituyen un sistema muy utilizado en obras subterráneas y minería para disminuir las presiones intersticiales y controlar las corrientes profundas de agua. En ocasiones se utiliza un procedimiento similar en la captación de aguas para abastecimiento de la población y también se disponen en el interior de las presas para interceptar las pérdidas de agua.

Se trata de un sistema de control del nivel freático efectivo, pero poco frecuente por su elevado coste, útil en taludes de gran altura o situaciones problemáticas donde son inviables otros sistemas de drenaje. Se trata de abrir una galería, generalmente subhorizontal, en el macizo que se desea drenar, normalmente con una dirección paralela al talud, y a distancia del mismo. Es habitual perforar una serie de barrenos en abanico en la bóveda de la galería para cortar los posibles niveles impermeables o acceder a zonas de mayor permeabilidad (Figura 1).

En función del tipo de terreno a atravesar, las paredes de las galerías pueden precisar diferentes tipos de sostenimiento y revestimiento, típico de la construcción de túneles. En rocas competentes se puede ejecutar la galería sin sostenimiento, pero en suelos y rocas muy fracturados puede ser necesario un revestimiento continuo, normalmente de hormigón armado, lo cual obliga a instalar un haz de drenes en distintas direcciones. Si es posible, estas galerías deben ser accesibles, tanto para equipos como personas encargadas de su construcción y posterior mantenimiento. Las excavaciones suelen iniciarse con una boca de entrada (pozo de visita) y tener varios pozos de ventilación a lo largo de la extensión del conducto (galería). La parte superior de la galería se localiza en la zona húmeda, mientras que la parte inferior se ubica en la zona saturada.

Las galerías de drenaje presentan, a pesar de su coste, ventajas de interés. Son de gran capacidad drenante por su amplia sección, pudiendo conectar pozos drenantes y otros sistemas; son apropiadas en actuaciones a largo plazo, con un drenaje por gravedad; no interfiere en trabajos en superficie, al estar construidas en profundidad; son muy eficaces en terrenos con mayor permeabilidad en sentido vertical que horizontal, como es el caso de macizos rocosos diaclasados; además, son muy efectivas si se construyen en superficies inestables y se complementan con taladros hacia la dirección de la superficie de deslizamiento.

Por contra, son menos eficaces en formaciones con mayor permeabilidad horizontal que vertical, precisando en este caso perforaciones verticales que aumenten el drenaje; además, son menos eficaces en formaciones heterogéneas y en macizos rocosos con gran separación entre discontinuidades.

En la Figura 2 se representa, de forma aproximada, la mejor posición de la galería de drenaje, aunque tanto la situación como su tamaño se ajusta a las características del terreno. Si bien es económicamente costoso, a veces se suele rellenar la galería con material granular de distintos tamaños, lo cual disminuye las deformaciones posteriores de la galería. Se recomienda disponer una solera hormigonada con ligera pendiente transversal y un canal de evacuación de las aguas con pendiente longitudinal suficiente.

Figura 2. Disposición de galería de drenaje (IGME, 1987)

Os paso un vídeo donde se relata una noticia de galería filtrante en Bolivia.

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)

La economía circular y la normalización

El papel de la normalización es una herramienta de apoyo a los objetivos de la economía circular. Es por ello que AENOR ha publicado un documento dirigido a los órganos técnicos de normalización de UNE (Comités Técnicos de Normalización, Subcomités, Grupos de trabajo y Grupos Específicos Temporales) que tiene como objetivo informar y visibilizar las normas en este ámbito. El documento incluye ejemplos que facilitan la identificación de aspectos de la economía circular en los trabajos de normalización.

Tal y como indica este documento, “la perspectiva circular influye en todas las etapas de la cadena de valor, desde el inicio del ciclo de vida con la fase de diseño, continuando con los procesos de producción, la fase de uso y consumo, la reutilización y reparación, la gestión de los residuos y, por último, el uso de materias primas secundarias obtenidas a partir de residuos y subproductos, que se reintroducen en la economía“.

 

El enlace donde descargar el documento es el siguiente: https://www.une.org/normalizacion_documentos/La%20Econom%C3%ADa%20Circular%20y%20la%20Normalizaci%C3%B3n.pdf

Descargar (PDF, 1.46MB)

 

 

Drenaje de excavaciones mediante zanjas perimetrales

Figura 1. Bombeo desde sumidero y zanja perimetral. https://gharpedia.com/blog/dewatering-methods-for-waterlogged-area/

El agotamiento del agua a cielo abierto (open sump pumping) de grandes excavaciones puede realizarse mediante bombeo desde zanjas perimetrales a la excavación (dewatering by constructing drains). Estas zanjas, más profundas que la excavación principal, llevan el agua a unos pozos o sumideros donde una bomba la evacua fuera de la excavación.

En el caso de áreas extensas, incluso se pueden disponer zanjas intermedias, además de las perimetrales. Se trata de un sistema de poca complejidad y, normalmente, de menor coste frente a otros sistemas. El rebajamiento conseguido por este método rara vez supera 1,50 m.

Tanto las zanjas como los sumideros se realizan con maquinaria de excavación convencional. Las bombas deben ser suficientemente robustas como para afrontar el manejo de partículas sólidas y finos. Este sistema presenta problemas con suelos granulares, por su poca estabilidad cuando se encuentran saturados. Se trata de un sistema que solo es útil cuando el volumen de agua aportado por el terreno no es muy alto; sirve en obras pequeñas o rebajes limitados en suelos cementados y arenas gruesas limpias. La zanja drenante se rellena de árido graduado para garantizar su integridad y retener los finos, evitando la erosión del suelo; pero si los suelos son suficientemente estables y cohesivos, no se precisa de dicho relleno.

En el caso de que se deba drenar una cantidad de agua importante, se debe incrementar la sección de la zanja, aumentar la pendiente, e incluso, colocar tuberías horizontales fisuradas dentro de la zanja drenante para favorecer la circulación del agua hacia los sumideros. Antes de disponer los áridos que rodean esta tubería, se coloca una membrana de geotextil para evitar la salida de finos. En ocasiones se pueden omitir las tuberías drenantes, de forma que la parte inferior de la zanja quedaría completamente rellena de material drenante, con unas dimensiones de 0,50 m x 0,50 m (o superior), constituyendo un dren denominado ciego o francés (French drain), cuya construcción se puede observar en la Figura 2.

Figura 2. Dren francés. https://construblogspain.wordpress.com/2014/01/23/dren-frances-ejecucion-y-caracteristicas/

El sistema es adecuado para descensos someros del nivel freático, entre 1 y 2 m, donde el nivel previo al bombeo se encuentre próximo a la superficie del terreno. En efecto, en condiciones de presión atmosférica, el máximo nivel de aspiración real de la bomba se reduce a unos 5 a 6 m. Es por eso que excavaciones a mayor profundidad requeriría de una batería escalonada de bombas o bien utilizar bombas sumergibles.

Figura 3. Sistema de bombeo con zanja perimetral desde pozos abiertos (Pérez-Valcárcel, 2004)

La profundidad de las zanjas y sumideros puede aumentarse a medida que avanza la excavación (Figura 4). El fondo de las zanjas debe mantenerse 0,30-0,60 m por debajo del fondo de la excavación. En excavaciones pequeñas, la profundidad de las zanjas puede ser de 0,30 a 0,60 m con un ancho de 0,40 m y una relación de inclinación de 1:1-1:1,5. También se dispone una pequeña pendiente mínima del 0,5 % para el buen drenaje de la zanja. Los sumideros suelen ser cúbicos, de 1 m de lado. El espaciamiento de centro a centro de los sumideros a lo largo de la línea central de las zanjas puede variar de 20 a  a 30 m. El sumidero final debe ser lo suficientemente profundo como para que, cuando se bombee hacia afuera, se drene toda la excavación. El fondo del sumidero se sitúa entre 0,40 y 1,00 m por debajo de las zanjas. Las paredes del sumidero se pueden reforzar con tablas de madera y otro material. Para evitar el arrastre de partículas finas suele revestirse el sumidero con un material filtrante. El bombeo debe realizarse de forma continua hasta que terminen las operaciones.

Figura 4. Profundización de zanjas perimetrales y sumideros. https://link.springer.com/chapter/10.1007/978-981-10-0669-2_4

Uno de los problemas del sistema es que la corriente subterránea de agua puede arrastrar partículas finas y aumentar la presión intersticial del terreno colindante, con el consiguiente riesgo de subsidencias o asientos indeseados en estructuras colindantes. Este efecto se acentúa en aquellos terrenos con estratos de arena fina o limo. En casos extremos se podría producir erosión interna, sifonamiento, roturas de fondo o deslizamiento de taludes. Este fenómeno puede producirse cuando las pendientes son pronunciadas o existe un potencial hidráulico elevado. Cuando hay filtración de agua por el talud de la excavación y se tienen taludes poco inclinados, a veces es suficiente proteger la base del talud (batter protection) con una berma de gravas o sacos de arena (Figura 5) para evitar su erosión o fallo por colapso; pero en otros casos, sobre todo en zonas urbanas, el riesgo de inestabilidad de los taludes de la excavación aconseja la construcción de recintos cerrados con muros pantalla o tablestacas y bombear el agua que penetre en el recinto. En este caso resulta imprescindible asegurarse de que no existe levantamiento del fondo, sifonamiento o erosión interna.

Figura 5. Protección de talud mediante sacos de arena. https://grupoivda.com/productos/geobolsas/

A continuación os dejo un vídeo donde os explico los aspectos más destacados de este tipo de drenaje. Espero que os sea de interés.

REFERENCIAS:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de muros de hormigón mediante la metodología de la superficie de respuesta

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Optimización de muros de hormigón mediante la metodología de la superficie de respuesta“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, la metodología de la superficie de respuesta, a un cálculo estructural, en este caso, un muro. La optimización de procesos mediante la superficie de respuesta es habitual en el campo de la experimentación. La idea es considerar que el cálculo de una estructura se puede considerar también un experimento, donde los datos de entrada son las variables y parámetros que definen dicha estructura y el resultado final es el coste. En este caso, se trata de minimizar el coste. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto. En este caso se han optimizado las emisiones de CO2.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 603-615.

Descargar (PDF, 369KB)

Necrológica: Han fallecido los profesores José Luis Ripoll García y Manuel Romana Ruiz

José Luis Ripoll (izquierda) y Manuel Romana (derecha)

La Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia ha perdido a dos de sus grandes catedráticos de geotecnia con un solo día de diferencia. Se trata de D. José Luis Ripoll García y D. Manuel Romana Ruiz. Tuve la suerte de tenerlos como profesores en las asignaturas de Geotecnia y Cimientos y de Cimentaciones Especiales. Estos días están siendo muy difíciles y dolorosos y como consecuencia, se nos están yendo los mejores. Voy a hacer una muy breve reseña de ambos, que seguro se quedará muy corta. Un abrazo muy fuerte y mis condolencias a familiares y amigos.

 

 

José Luis Ripoll García es Dr. Ingeniero de Caminos, Canales y Puertos, Catedrático Universidad Politécnica de Valencia, M. Sc. Ing. del terreno U. K., ex director general y consejero de Cubiertas y Mzov SA, Presidente de honor de Fundación Vodafone España, Vicepresidente de honor de la Corte de Arbitraje del Colegio de ICCP, Piloto de Aviación General. Medalla al Mérito en el Trabajo, en su categoría de Plata. Cruz de Oro de la Orden Civil de la Solidaridad Social. Miembro de la Academia Europea de Ciencias y Artes.

 

 

Manuel Romana Ruiz es Ingeniero de Caminos (1961) por la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Madrid y Doctor Ingeniero de Caminos (1971) por la Universidad Politécnica de Madrid. Durante sus estudios trabaja como becario de investigación en el Departamento de Materiales del Instituto Eduardo Torroja. En 1978 asume la Cátedra de Geotecnia y Cimientos, y desde 1980 es Catedrático de Ingeniería del Terreno en la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de la Universidad Politécnica de Valencia, donde imparte docencia en las asignaturas de Geotecnia y Cimientos 2, Túneles y Obras Subterráneas, Mecánica de Rocas y Geotecnia aplicada a las Obras Hidráulicas. Su carrera profesional comienza en Dragados y Construcciones, a pie de obra (1961-1968) y continúa en INTECSA (1969-1986), donde desarrolla el Departamento de Geotecnia y Obras Subterráneas. En 1987 funda INGEOTEC, empresa consultora especializada en el proyecto de túneles y los estudios geotécnicos, y en 1999 STMR (Servicios Técnicos de Mecánica de Rocas). Ha sido Presidente de ambas empresas. Ha sido miembro de las Juntas Directivas de la Sociedad Española de Mecánica del Suelo (SEMSIG), Sociedad Española de Mecánica de las Rocas (SEMR) y de la Asociación Española de los Túneles (AETOS). Ha sido vicepresidente del Comité Español de Túneles de Carretera de ATC-PIARC y representante español en el Comité Internacional de Explotación de Túneles de PIARC, del que también fue Secretario de idioma español. Ha realizado numerosos proyectos de túneles de carretera, ferroviarios, de metro e hidráulicos actualmente en servicio (más de 500 km). Así mismo, ha sido autor de numerosas comunicaciones y textos sobre su especialidad.

Aquí dejo una entrevista que hicieron a D. Manuel con motivo del 50 aniversario de la Sociedad Española de Mecánica de Rocas.

 

Selección del sistema de control del nivel freático

Figura 1. Control del nivel freático. https://www.flickr.com/photos/wsdot/4997287082/

Los trabajos a cielo abierto, donde la cota de excavación se encuentra por debajo del nivel freático requieren emplear procedimientos constructivos diferentes para evitar que dicha excavación se inunde. El agua modifica el estado del terreno, pudiendo provocar desprendimientos, socavaciones, etc., complicando el trabajo de la maquinaria y del personal. Construir en estas condiciones requiere acertar con el procedimiento adecuado.

La elección del sistema de control del nivel freático depende fundamentalmente de la estabilidad y permeabilidad del terreno, del caudal a evacuar y de la geometría (profundidad y extensión del control).

La empresa constructora seleccionará aquel método más rentable que minimice el impacto ambiental y los riesgos asociados, especialmente aquellos relacionados con la seguridad del personal y de terceros. Sin embargo, hay que tener presente que las técnicas no son directamente intercambiables y solo son eficaces bajo determinadas condiciones.

La Figura 2 proporciona una orientación inicial que recoge el rango de aplicación de los sistemas de control del nivel freático en función de la permeabilidad del terreno y de la reducción requerida del nivel de agua. En dicha figura, las áreas sombreadas indican zonas donde los métodos pueden solaparse.

Figura 2.  Rango de aplicación de los sistemas de control del nivel freático (Cashman y Preene, 2012)

En la Figura 3 se muestra cómo el porcentaje de finos frente al tamaño de partícula puede utilizarse como una primera aproximación para decidir el tipo de drenaje a utilizar. La figura también muestra que el flujo por gravedad del agua se reduce cuando el tamaño de las partículas es inferior al de arena muy fina.

Figura 3. Sistemas de drenaje aplicables a diferentes tipos de terrenos (Powers et al., 2007)

En la Tabla 1 se recoge, de forma simplificada respecto a la Figura 2, los rangos de permeabilidad para los cuales es aplicable un sistema de control del nivel freático u otro.

Tabla 1. Aplicabilidad del sistema de control del nivel freático en función de la permeabilidad del terreno (Justo Alpañes y Bauzá, 2010). http://contactoetsa.us.es/descarga/Postgrado—-Doctorado/Curso-Codigo-T%C3%A9cnico/TEMA-10-DB-SE-C—Excavaciones-y-drenajes-[Modo-de-compatibilidad].pdf/
En la Figura 4 tenemos otro procedimiento para seleccionar el sistema de control teniendo en cuenta el diámetro eficaz y la profundidad. El diámetro eficaz, que es el correspondiente al 10% en la curva granulométrica, permite caracterizar la permeabilidad del suelo. En este caso, incorporamos el criterio de profundidad, a diferencia de la Figura 3.

Figura 4. Gráfico de Herth y Arnodits (1973) para seleccionar el sistema de control del nivel freático en función del diámetro eficaz (permeabilidad) y de la profundidad del rebajamiento.

La Tabla 2 resulta de gran interés para valorar qué métodos sería el más adecuado en función de la granulometría del suelo, la hidrogeología, los requerimientos técnicos y la capacidad (Powers, 1992). Según esta tabla, resulta ilustrativo comprobar cómo los drenes horizontales suele ser el método más eficaz ante cualquier naturaleza y condición.

Tabla 2. Aptitud del sistema de control del nivel freático (Powers, 1992). https://www.interempresas.net/Rehabilitacion/Articulos/133892-Innovacion-sistemas-drenaje-elevada-siniestralidad-incidencia-agua-subterranea.html

Se pueden agrupar los suelos en cuatro grupos a efectos del posible rebajamiento del nivel freático (Schulze y Simmer, 1978; Muzas, 2007):

  • Bolos y gravas gruesas: k > 1 cm/s y tamaño del árido mayor de 5 mm. Con grandes caudales es muy costoso el bombeo, por lo que se hace el trabajo sumergido o con aire comprimido. También se puede impermeabilizar el recinto antes de los trabajos con inyecciones o con una pantalla plástica realizada con una mezcla de bentonita-cemento.
  • Arenas gruesas y finas: 1 > k > 10-2 cm/s y tamaño del árido entre 0,1 a 5 mm. Se usan pozos filtrantes y bombeo, al circular el agua por gravedad, con una velocidad de 1 a 0,01 cm/s.
  • Arenas finas y limos: 10-3 > k > 10-5 cm/s y tamaño entre 0,2 y 0,008 mm. El agua no puede circular libremente entre los poros, por lo que se pueden producir sifonamiento si aumenta la presión intersticial que se pueden evitar si se recurre al método de vacío (wellpoints).
  • Limos y arcillas:  10-4 > k > 10-6 cm/s y tamaño entre 0,02 y 0,002 mm. El agua no se puede desplazar por descenso del nivel freático. Con terrenos estables se puede usar el agotamiento ordinario, permitiendo construir taludes sin entibación, excepto en el caso de suelos muy susceptibles, en cuyo caso solo se pueden drenar por electroósmosis.

En el caso de bombeos, para seleccionar el diseño adecuado, siempre es recomendable realizar una prueba de bombeo que determine, entre otras, las siguientes características:

  • Permeabilidad media o transmisividad y radio de influencia
  • Gradiente horizontal probable, cuyo efecto es importante en estructuras vecinas o pozos cercanos
  • Dificultades de instalación de los pozos, para el diseño y selección del procedimiento constructivo
  • El caudal que se puede extraer del pozo
  • Cualquier condición imprevista que pueda afectar al bombeo

Os dejo a continuación un Polimedia explicativo. Espero que os sea de interés.

REFERENCIAS:

  • CASHMAN, P.M.; and PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MUZAS, F. (2007). Mecánica del suelo y cimentaciones, Vol. II. Universidad Nacional de Educación a Distancia, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pantalla de lodo autoendurecible armado

Figura 1. Cuchara para excavar pantalla. https://www.geo-solutions.com/resource-category/slurry-walls-equipment/

La pantalla de lodo autoendurecible armado, también llamada pantalla de lechada armada (reinforced slurry wall) es una pantalla compuesta, de carácter estructural, donde colaboran unos elementos portantes resistentes a flexión y un relleno intermedio que los solidariza y que descarga los empujes recibidos hacia los elementos portantes. Se trata de una técnica a medio camino entre un muro berlinés y un muro pantalla.

Los elementos resistentes suelen ser tablestacas o perfiles metálicos de sección en “I” y el relleno intermedio, de una mezcla bentonita-cemento. Es por ello que el sistema también trabaja como elemento de contención del agua. Una variante es utilizar una mezcla de suelo-cemento en vez de la lechada, las llamadas pantallas de suelo-cemento armadas (reinforced soil-mixing wall).

El procedimiento constructivo para la pantalla de lodo armado utiliza las mismas herramientas de excavación (cuchara bivalva) que los muros pantalla (Figura 1), donde la lechada de bentonita-cemento actúa también como elemento estabilizante de las paredes. En la lechada fresca se colocan perfiles verticales (Figura 2).  La transmisión del empuje activo de las tierras y del agua se moviliza en el lodo endurecido por efecto bóveda hacia los perfiles, los cuales resisten a flexión gracias a los apoyos en anclajes, arriostramientos y el empotramiento bajo el fondo de excavación. En el caso de utilizar tablestacas, la pantalla funciona como un muro continuo convencional.

Figura 2. Procedimiento constructivo de una pantalla de lodo autoendurecible armado. https://www.rodiokronsa.es/contencion/pantalla-compuesta/

 

Figura 3.  Procedimiento constructivo de una pantalla de lodo autoendurecible armado.  https://www.raitoinc.com/technologies/soil-mixing-wall/

REFERENCIAS:

  • CASHMAN, P.M.; PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA (1987). Manual de ingeniería de taludes. Serie: Guías y Manuales nº 3, Ministerio de Educación y Ciencia, Madrid, 456 pp.
  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Conceptos básicos del agua en medio poroso

Figura 1. Esquema de acuífero. https://es.wikipedia.org/wiki/Archivo:Aquifer_es.svg

Cualquier curso de geotecnia básica dedica una parte importante de su temario a describir y caracterizar el agua en el suelo, especialmente el flujo en medios porosos y la incidencia de las presiones efectivas en la deformación de los suelos.

En este artículo vamos a recordar algunos conceptos básicos que, de una u otra forma, influyen directamente en los procedimientos constructivos, especialmente cuando se trata de controlar el agua. Se remite al lector a la bibliografía básica para profundizar más en estos temas.

  • Acuífero: terreno por donde circula el agua. Al límite impermeable inferior del acuífero se le denomina muro y al superior techo. Si el agua se encuentra en contacto con la atmósfera a través de los poros o fisuras existentes en la zona no saturada, se denomina acuífero libre. En cambio, en un acuífero confinado, el techo se encuentra a presión superior a la atmosférica.
  • Acuicludo: formación geológica que conteniendo agua en su interior, incluso hasta la saturación, no la transmite y, por tanto, no es posible su explotación (caso de terrenos arcillosos).
  • Acuitardo: formación geológica que transmiten muy lentamente el agua, por lo que tampoco son aptos para la captación. Sin embargo, en condiciones especiales, permiten una recarga vertical de otros acuíferos. Es el caso de un estrato de arcillas limosas o arenosas.
  • Nivel freático: lugar geométrico de los puntos donde la presión del agua es la atmosférica. Es el nivel que alcanza la superficie del agua en pozos de observación en libre comunicación con los vacíos del suelo in situ. Por encima del nivel freático existe el agua capilar donde su presión es menor que la atmosférica. En un punto concreto, en un pozo, se habla de nivel piezométrico, que si se encuentra por encima de la superficie del terreno, se dice que existen “condiciones artesianas”.
  • Coeficiente de almacenamiento: cantidad de agua que cede un prisma de acuífero de base cuadrada unitaria cuando se le deprime la unidad. Es adimensional. Su valor oscila normalmente entre 0,2 y 0,4 en acuíferos libres, oscilando entre 10-5 y 10-3 en los acuíferos cautivos y semiconfinados, al entrar en juego los efectos mecánicos del terreno o de la propia agua.
Figura 2. Esquema de acuífero libre y confinado (Bouwer, 1987)
  • Porosidad: porcentaje del volumen total de un suelo o roca que está ocupado por poros. Estos poros estarán rellenos de agua si el material está saturado, o de aire y agua si no lo está. Si solo se considera el volumen de los poros que están interconectados, se denomina “porosidad eficaz”. En los acuíferos libres el coeficiente de almacenamiento coincide con la porosidad eficaz.
  • Índice de poros o huecos: razón entre el volumen de poros y el volumen de sólidos.
  • Humedad: relación entre el peso del agua que contiene un suelo y el peso del suelo seco.
  • Grado de saturación: porcentaje del volumen de huecos ocupados por el agua.
  • Carga hidráulica total: también llamado potencial, es la energía por unidad de peso (expresada como una altura) en un determinado punto de un fluido en movimiento. Donde H es la carga hidráulica total, z la altura geométrica, u/γw  la altura de presión, siendo u la presión del agua en el punto considerado y  γw  el peso específico del agua y v2/2g la altura de velocidad, siendo v la velocidad del flujo en el punto considerado y g la aceleración de la gravedad. Todos estos términos tienen unidades de longitud. Si el agua está en reposo (condiciones hidrostáticas), o bien se desprecia la velocidad por ser muy baja (caso de la circulación del agua en medio poroso), la carga total es la altura piezométrica.

  • Líneas de corriente o líneas de flujo: son las curvas por las que se mueven las partículas fluidas, invariables en el transcurso del tiempo. A medida que el agua circula a través del suelo, modifica su velocidad y potencial.
  • Líneas equipotenciales: lugares geométricos del flujo donde la altura piezométrica es constante.
Figura 3. Red de flujo, formada por líneas equipotenciales (Ψ) y  líneas de corriente (Φ)
  • Teorema de Bernouilli: en el caso ideal de un fluido perfecto e incompresible sujeto a un flujo permanente y estacionario, la carga hidráulica total se mantiene constante entre dos puntos cualesquiera del fluido a lo largo de una línea de corriente. Como un fluido real no es perfecto, cualquier obstáculo al flujo produce una pérdida de carga. De hecho, existe flujo entre dos puntos si existe una diferencia en la carga hidráulica, de forma que el agua circula del punto de mayor a menor potencial. Si se añade energía H al caudal mediante una bomba, y se consideran las pérdidas hr, del punto 1 al punto 2, la ecuación queda:

  • Coeficiente de permeabilidad: k, mide la facilidad para que el agua circule a través de un suelo. También se llama conductividad hidráulica, y tiene unidades de velocidad, normalmente cm/s. La permeabilidad implica una posibilidad de recorrido y exige la existencia de vacíos o huecos continuos. La permeabilidad depende de factores intrínsecos al acuífero y extrínsecos, que dependen del fluido, y son su viscosidad y su peso específico. Según Hazen, en arenas uniformes, la permeabilidad es proporcional al cuadrado del diámetro eficaz (D10 ).
  • Permeabilidad equivalente horizontal: el flujo atraviesa horizontalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal equivalente será la suma de los caudales, por lo que la permeabilidad equivalente, kh vale lo siguiente:

  • Permeabilidad equivalente vertical: el flujo atraviesa verticalmente un conjunto de n estratos, con una permeabilidad cada uno de ki  y un espesor ei .  El caudal a lo largo de los estratos, y cada estrato tendrá un gradiente distinto ii, por lo que igualando las pérdidas de carga y despejando, obtenemos la permeabilidad equivalente kv , que vale lo siguiente:

 

  • Gradiente hidráulico: i, se define como la pérdida de carga (altura piezométrica) por unidad de longitud recorrida. Es un vector cuya dirección se orienta con los potenciales decrecientes.

  • Ley de Darcy: la velocidad del fluido en medio poroso es proporcional al gradiente hidráulico a través del coeficiente de permeabilidad. No es una propiedad intrínseca del suelo y tiene unidades de velocidad. Aquí se ha supuesto un flujo laminar en medio poroso y una velocidad media a través de una sección “macroscópica” de suelo, es decir, la velocidad aparente a lo largo de las líneas de flujo.

Figura 4. Esquema de la ley de Darcy
  • Transmisividad: caudal que se filtra a través de una franja vertical de terreno, de ancho unidad y de altura igual al espesor saturado, bajo un gradiente unidad, a una temperatura determinada y durante la unidad de tiempo. Sus unidades son las de una velocidad multiplicada por una longitud.
  • Ecuación de Laplace: modeliza un flujo estacionario en medio poroso homogéneo e isótropo de un fluido incompresible, en un suelo de peso específico constante y saturado. De difícil solución analítica, se puede resolver gráficamente dibujando dos familias de curvas ortogonales entre sí, las líneas equipotenciales (Ψ) y las líneas de corriente (Φ), que forman la red de flujo. Para dibujar la red de flujo hay que considerar que las fronteras impermeables constituyen líneas de corriente y las fronteras permeables (como una lámina de agua) es una línea equipotencial. Al cortarse ambas familias de líneas, se deben obtener “cuadrados curvilíneos”.

  • Red de flujo: una vez dibujada la red, la pérdida de carga total se distribuye de forma uniforme entre las equipotenciales, todos los canales de flujo transportan el mismo caudal, y un canal de flujo es el comprendido entre dos líneas de corriente. Las principales aplicaciones de las redes de flujo son: calcular las presiones del agua subterránea en unas determinadas líneas o superficies, estimar los caudales del agua subterránea y calcular los gradientes hidráulicos.
Figura 5. Red de flujo bajo una presa
  • Fuerzas de filtración o de arrastre: son fuerzas másicas (fuerza por unidad de volumen) que el agua ejerce sobre el terreno al circular por sus poros. El módulo de estas fuerzas por unidad de volumen es el producto del peso específico del agua por el gradiente. La fuerza de filtración tiene la dirección y el sentido del flujo.

  • Presión efectiva: es la presión que se transmite grano a grano, siendo la diferencia entre las presiones totales y las intersticiales. Según el postulado de Terzaghi, la resistencia al esfuerzo cortante y el cambio de volumen de un suelo dependen de la magnitud de la presión efectiva y sus variaciones.

Os voy a dejar algunos vídeos explicativos de estos conceptos. Espero que os sean de utilidad.

Referencias:

  • BOUWER, H. (1978). Groundwater Hidrology. Mc Graw-Hill Book Co., New York, 480 pp.
  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W., DYER, M.R. (2004). Groundwater control: design and practice. CIRIA C515, London.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La ingeniería humanitaria y la teoría del cisne negro: Totalán, DANA, Zaldibar y el coronavirus nos dan las claves

Fotografía con Ángel García Vidal, en la Escuela de Ingeniería de Caminos de Valencia

La primera vez que oí a alguien hablar de “ingeniería humanitaria” fue a Ángel García Vidal en una conferencia que impartió, junto con Mauricio Delgado, en la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia el 24 de septiembre de 2019. Tal fue la impresión que me causó su relato de la tragedia de Totalán, que escribí un artículo en The Conversation sobre las lecciones aprendidas del rescate de Julen.

Después de ese día, Ángel y yo hemos conversado largo y tendido sobre el tema. Ángel intuía que el concepto de “ingeniería humanitaria” era especialmente importante, pero que se tenía que profundizar más en él. Todas nuestras conversaciones, junto con la de otros compañeros como Eugenio Pellicer, le hicieron reflexionar en una mesa redonda que tuvo lugar en el VIII Congreso Nacional de Ingeniería Civil que tuvo lugar en Madrid los días 17 y 18 de febrero de 2020. El escritor y articulista del diario El País Manuel Jabois escribía el 23 de enero de 2019 lo siguiente en referencia al concepto de Ingeniería Civil Humanitaria haciendo referencia a Ángel en una declaración que queda en las hemerotecas para la historia: “Esto no es una operación de rescate, sino una obra de Ingeniería Civil Humanitaria“.

Un cisne de la especie Cygnus atratus, desconocido en Occidente hasta el siglo XVIII. Wikipedia

Desde esos días de enero de 2019 han pasado muchos acontecimientos que deberían ocurrir solo de muy de vez en cuando. Según la teoría del cisne negro, desarrollada por el investigador Nassim Taleb, esta teoría es una metáfora que describe un suceso sorpresivo (para el observador), de gran impacto socioeconómico y que, una vez pasado el hecho, se racionaliza por retrospección (haciendo que parezca predecible o explicable, y dando impresión de que se esperaba que ocurriera).

Las características de la teoría del cisne negro es que determinados acontecimientos ocurren de forma sorpresiva, pues como los cisnes negros, son sucesos muy extraños. Estos acontecimientos presentan un alto impacto desproporcionado y es difícil de predecir, teniendo un papel dominante en la historia. Sin duda, la crisis actual del coronavirus (COVID-19) es un cisne negro.

Sin embargo, en solo unos meses, además han ocurrido impactos tales como el DANA (Depresión Aislada en Niveles Altos) que puso en jaque a nuestro país, con grandes desastres económicos y pérdidas de vidas humanas, o la desgracia del vertedero de Zaldibar, donde en estos momentos aún siguen dos personas sepultadas.

Todo parece indicar que sucesos de emergencia local, regional o global van a ser recurrentes y pueden poner en muy alto riesgo no solo vidas humanas, sino la economía y el futuro de las generaciones actuales y futuras.

¿Y cuál es el papel de la ingeniería ante estos sucesos que son emergentes? ¿Qué es la ingeniería civil humanitaria? Tras muchas reflexiones, aquí escribo alguna de ellas. Animo a Ángel a que publique el texto íntegro de su comunicación en el congreso al que hice antes referencia.

¿Cómo se podría definir el concepto de ingeniería civil humanitaria? Se trata de una idea que, si bien de una u otra forma existía de forma difusa desde el origen de los tiempos, cuando los humanos usaban su ingenio y su rudimentaria tecnología en ayudar al resto de sus congéneres, ha cobrado una gran actualidad con motivo del rescate del niño Julen en Totalán.

Pero antes de intentar dar una definición, debemos aclarar unas cuantas ideas y, sobre todo, debemos descartar algunas cosas que no deberían incluirse en este concepto. No toda la ingeniería civil tiene carácter humanitario, y es justamente el adjetivo humanitario el que permite caracterizar mejor esa parte de la ingeniería que tiene ciertas características que la diferencia del resto de ingeniería que hacemos los ingenieros civiles. Por otra parte, tampoco el carácter humanitario es exclusivo de la ingeniería civil. Otros ámbitos de la ingeniería, de la técnica y de cualquier actividad humana también puede tener este carácter. Por tanto, hay que buscar entre las características de una ingeniería muy específica, que es la civil, qué rasgos o características definen su carácter humanitario.

Humanitario es un adjetivo que, según la Real Academia de la Lengua, tiene tres acepciones. La primera nos dice “que mira o se refiere al bien del género humano”. Esta primera acepción entraría de lleno en los objetivos de la ingeniería civil en general. En efecto, si la ingeniería civil tiene como objeto el diseño, construcción y mantenimiento de todo tipo de infraestructuras, éstas son el soporte del progreso y bienestar de la sociedad y, por tanto, toda la ingeniería civil sería humanitaria con esta primera acepción. Por tanto, no es esta acepción la que nos interesa destacar.

La segunda acepción identifica humanitario con “benigno, caritativo, benéfico”. En nuestro caso se trataría de la ingeniería civil que es solidaria con el sufrimiento ajeno, que presta auxilio a los necesitados. De alguna forma, se trata de una ingeniería que dispone de los recursos técnicos y materiales que ayuda a aquellos que la necesitan. Esta idea se relaciona también con la tercera acepción del diccionario donde humanitario tiene “como finalidad aliviar los efectos que causan la guerra u otras calamidades en las personas que las padecen”.

Por tanto, en todas las acepciones humanitario siempre se relaciona con el auxilio a personas que necesitan dicha ayuda. Sin embargo, hay un aspecto de especial relevancia, y es que la ayuda sea desinteresada. En caso contrario, se trata de la ingeniería civil habitual, es decir, una actividad económica que, si bien tiene como fin el bien común, precisa de un beneficio económico para mantenerse en el tiempo. ¿Pero puede existir una ingeniería civil desinteresada que ayude a los demás?

Para responder a esta pregunta, antes hay que contestar otra más importante. Se trata de saber si, como dicen algunos, el hombre es malo por naturaleza y gracias al Estado reprime su impulso egoísta. Esta es una tesis del filósofo Thomas Hobbes que, afortunadamente, no se puede afirmar que sea cierta. En efecto, algunas investigaciones realizadas con niños han demostrado que más del 95% de ellos ayudaban a los demás sin recibir ningún tipo de orden o instrucción (https://www.elmundo.es/elmundo/2012/11/16/ciencia/1353063447.html). Esta tendencia innata al altruismo ya está presente en los ancestros comunes que tenemos los humanos con los chimpancés, que también tienen esta tendencia altruista. Impacta saber que un mono prefiere quedarse sin comer varios días antes que ver a los compañeros sufrir. Algunos han justificado este comportamiento de cooperación como una de las claves de nuestra supervivencia como especie. Por tanto, la cooperación, el altruismo y la moral, forman parte de lo más profundo de nuestro cableado humano. No obstante, contraejemplos de maldad intrínseca se encuentran por doquier, pero ello no justifica la maldad intrínseca del ser humano.

Otro de los aspectos que también interesa sacar a colación es averiguar si la ingeniería civil humanitaria tiene que estar planificada o bien debe actuar de forma inmediata ante un problema puntual. Pues las dos cosas.

Cuando existe un problema importante en una comunidad, por ejemplo, falta de agua por sequía, carencias de infraestructuras sanitarias o educativas, la ingeniería civil se pone al servicio de los programas de ayuda humanitaria y, de forma planificada, con recursos escasos, pero bien dirigidos, se pueden realizar infraestructuras que generan un beneficio extraordinario a la comunidad que los recibe.

Por otra parte, y es el caso de la tragedia de Totalán, una emergencia requiere de toda la voluntad y recursos disponibles para, de forma urgente, ayudar en lo posible a resolver un grave problema humanitario. Aquí la ingeniería civil actúa, como se ha podido comprobar, de forma directa con todos los recursos técnicos disponibles.

En ambos casos, con proyectos planificados o en situación de emergencia, la ingeniería civil ofrece todos sus recursos técnicos, humanos y materiales para ayudar, de forma desinteresada, a otras personas.

Pues bien, aquí tenemos una de las claves del concepto de ingeniería civil humanitaria. Se podría definir como el conjunto de recursos técnicos, humanos y materiales disponibles por la ingeniería civil para ayudar, de forma desinteresada, a las personas que lo necesitan, ya sea en forma de proyectos de ayuda o en situaciones de emergencia.

Todo esto es posible gracias a la naturaleza intrínsecamente buena del ser humano y al avance en la técnica disponible de la ingeniería civil puesta al servicio de la sociedad por parte de personas que, sin esperar nada a cambio, se ofrecen para auxilio de los demás.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.