El factor de impacto de las revistas JCR del año 2023

Acaba junio y es justo ahora cuando se pueden consultar los factores de impacto de las revistas científicas indexadas en el Journal of Citation Reports (JCR). Los índices de impacto son un instrumento para comparar y evaluar la importancia relativa de una revista determinada dentro de un mismo campo científico en función del promedio de citas que reciben los artículos por ella publicados durante un periodo determinado. Estos indicadores son de especial importancia en el ámbito científico, pues aunque tiene sus detractores (leer, por ejemplo: ¿A quién no interesa que se use el índice h para evaluar la calidad de los investigadores científicos?), permite evaluar con un indicador objetivo cierto aspecto de la calidad científica de la revista donde un investigador publica sus artículos.

Tal y como pongo en la figura, Forrest Gump definía con claridad la sorpresa que más de un investigador, editor o lector se lleva todos los años cuando ve que su querida revista del alma sube o baja del primer cuartil al segundo cuartil, o viceversa. Es muy desagradable publicar en una revista que normalmente tiene un impacto alto y que, al año siguiente, te lleves una sorpresa mayúscula y baje de cuartil. Pero bueno, estas son las reglas de juego.

Por mi parte, os voy a poner algunas de las revistas en la que he publicado y que están en los dos primeros cuartiles. Más aún, alguna de las que están en el primer decil. No están todas las que son, pero son todas las que están. Si os fijáis, el cuartil a veces no corresponde con el impacto, pues depende del área de conocimiento. Os paso la lista de mis revistas favoritas de mayor impacto.

 

REVISTAS. DATOS 2023 Impacto
RESOURCES CONSERVATION AND RECYCLING 11.2 D1
SUSTAINABLE CITIES AND SOCIETY 10.5 D1
ENVIRONMENTAL IMPACT ASSESSMENT REVIEW 9.8 D1
JOURNAL OF CLEANER PRODUCTION 9.7 D1
AUTOMATION IN CONSTRUCTION 9.6 D1
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING 8.5 D1
JOURNAL OF BUILDING ENGINEERING 6.7 D1
ENGINEERING STRUCTURES 5.6 D1
INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT 4.9 Q1
OCEAN & COASTAL MANAGEMENT 4.8 D1
JOURNAL OF COMPUTING IN CIVIL ENGINEERING 4.7 Q1
COMPUTERS & STRUCTURES 4.4 Q1
ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING 4.4 Q1
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT 4.3 Q1
JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT 4.1 Q1
ADVANCES IN ENGINEERING SOFTWARE 4.0 Q1
JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH 4.0 Q1
STRUCTURES 3.9 Q1
SCIENTIFIC REPORTS 3.8 Q1
JOURNAL OF STRUCTURAL ENGINEERING 3.7 Q1
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION 3.6 Q1
IEEE ACCESS 3.4 Q2
SUSTAINABILITY 3.3 Q2
LAND 3.2 Q2
MATERIALS 3.1 Q1
JOURNAL OF MATERIALS IN CIVIL ENGINEERING 3.1 Q2
COMPUTERS AND CONCRETE 2.9 Q2
JOURNAL OF MARINE SCIENCE AND ENGINEERING 2.7 Q1
STRUCTURE AND INFRASTRUCTURE ENGINEERING 2.6 Q2
APPLIED SCIENCES-BASEL 2.5 Q1
MATHEMATICS 2.3 D1
STRUCTURAL ENGINEERING AND MECHANICS 2.2 Q2


Además, las revistas donde soy editor asociado o bien pertenezco al Comité Editorial, también van mejorando sus factores de impacto:

Mathematics (D1-SCI Journal)

Structure & Infrastructure Engineering (Q2-SCI Journal)

Sustainability (Q2-SCI Journal)

Advances in Concrete Construction (Q2-SCI Journal)

Structural Engineering and Mechanics (Q2-SCI Journal)

Advances in Civil Engineering (Q3-SCI Journal)

Revista de la Construcción (Q3-SCI Journal)

 

Hormigoneras de tambor basculante y eje inclinado

Figura 1. Hormigonera de tambor basculante. https://www.archiproducts.com/es/productos/lino-sella-world/hormigonera-hidraulica-con-tambor-basculante-skipper-s-360_652525

Las hormigoneras de tambor basculante y eje inclinado son las más comunes en pequeñas obras, para mezclas de hasta 0,5 m³ y para una producción de hormigón plástico de calidad media. No obstante, también existen máquinas grandes capaces de producir hasta medio metro cúbico de hormigón. Estas hormigoneras están formadas por una cuba o tambor, que gira alrededor de su eje, con una parte superior troncocónica y una inferior cilíndrica.

La cuba está fabricada con chapa de acero soldada, reforzada en la boca de carga. En su interior, lleva atornilladas unas paletas deflectoras cuya función es arrastrar hacia el centro de la cuba los componentes más pesados de la mezcla, que tienden a situarse en la periferia debido al movimiento centrífugo. El conjunto generalmente está montado sobre un chasis principal provisto de un eje con dos ruedas neumáticas y una lanza de tiro para facilitar su remolque por carretera.

El tambor puede ajustar su inclinación según la operación en curso, ya sea llenado, amasado o descarga. Tanto el llenado como la descarga del aparato se realizan a través de una única abertura centrada en el eje de rotación del tambor. No obstante, existen ciertos modelos con dos aberturas: una para el llenado y otra para la descarga. En posición de amasado, su eje es horizontal y la descarga por gravedad se realiza inclinando la cuba. Para la descarga, la cuba se inclina alrededor de un eje horizontal con la ayuda de un volante o de un motor. Este volante hace pivotar la cuba y su abrazadera mediante un mecanismo de piñones dentados. El principio del tambor basculante permite una alimentación rápida y un vaciado completo. Este sistema también facilita una limpieza conveniente al final de la jornada laboral.

El movimiento de la cuba se produce mediante el engranaje de un piñón motor, cuyo eje coincide con el de la cuba, sobre una corona dentada. El conjunto motor, que puede ser eléctrico o térmico, y los elementos de reducción de velocidad están montados en una carcasa lateral.  Los motores de gasolina se usan con capacidades de 80 a 150 litros, mientras que los diésel para capacidades mayores. La mezcla de los elementos se optimiza al reducir la inclinación del eje de la cuba respecto a la horizontal. No obstante, esta inclinación no debe exceder los 15º a 20º aproximadamente. Superar estos valores puede reducir el volumen del tambor, ya que aumenta su capacidad útil; sin embargo, aunque esto disminuye el precio de compra, empeora la calidad del amasado. Por lo tanto, el ángulo de inclinación es uno de los factores principales que el comprador debe considerar.

Este problema también ocurrirá si la pared interior del tambor no tiene ninguna paleta. Inicialmente, los materiales se acumulan en el fondo de la cuba y se arrastran al principio del amasado por la fricción generada por el giro. Sin embargo, después de algunas vueltas, especialmente si se ha añadido mucha agua, la mezcla se vuelve muy plástica y se desliza a lo largo de la pared de la cuba en lugar de subir y caer nuevamente. En este caso, no se puede considerar un verdadero amasado. La presencia y disposición de las paletas facilitan la elevación de los materiales, permitiendo una buena agitación de los componentes. Además, la fijación de las paletas al tambor debe diseñarse cuidadosamente para asegurar un impulso constante durante el amasado.

Un inconveniente frecuente de estas hormigoneras y las de eje horizontal es que, durante la primera amasada, parte del mortero del hormigón queda adherido a las paredes, lo que hace que esta primera mezcla sea de menor calidad que las siguientes y deba ser desechada. Para evitar este problema, se debe realizar una pequeña amasada de mortero antes de arrancar la producción del hormigón. Parte de este mortero recubrirá las paredes de la hormigonera, eliminando el exceso. Para facilitar el amasado, se debe introducir el árido grueso en último lugar. Si se introduce primero, la mezcla será deficiente y el hormigón corre el riesgo de ser heterogéneo. El tiempo mínimo de amasado, en segundos, para una hormigonera de este tipo y diámetro D, se calcula mediante la fórmula t = 120 √D.

Estas hormigoneras pueden estar equipadas con un cargador elevable para la alimentación de los materiales y con dispositivos de suministro de agua, como depósitos, dosificadores o contadores de agua. Se embraga para subir el cargador y al desembragar baja por gravedad. El cargador puede ser de los siguientes tipos:

  • Basculante mediante cilindro hidráulico. Sin cargador para capacidades de 120 a 200 litros, con o sin cargador para 250 a 500 litros.
  • Skip, accionado por cable, que se enrolla en un cabrestante, accionado por el mismo motor que impulsa la hormigonera, con su correspondiente embrague. Al activar el embrague, el cargador se eleva, y al desactivarlo, desciende por gravedad.
  • Radio rascante, con un conjunto de cangilones de alimentación continua.

Os dejo algunos vídeos al respecto de esta hormigonera.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Integración de los elementos intangibles del paisaje en la gestión de los puertos deportivos mediante la aplicación de métodos de decisión multicriterio

De izquierda
De izquierda a derecha: Manuel Pulido, Vicente Negro, Víctor Yepes, Ricardo Marín y Alejandro Grindaly.

Hoy 19 de junio de 2024 ha tenido lugar la defensa de la tesis doctoral de D. Ricardo Martín Polo titulada “Integración de los elementos intangibles del paisaje en la gestión de los puertos deportivos mediante la aplicación de métodos de decisión multicriterio“, dirigida por Víctor Yepes Piqueras. La tesis recibió la máxima calificación de sobresaliente “cum laude”. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

El objeto de esta tesis doctoral es cuantificar la importancia de los componentes intangibles del paisaje en la gestión de los puertos deportivos, aplicando métodos de decisión multicriterio.

El paisaje es un concepto que integra el medio físico, la presencia de un observador y una mirada subjetiva, fruto, a su vez, de un momento determinado. Este concepto tiene su origen en el arte y, en su evolución, ha ido adquiriendo mayor significación. Sin embargo, las diversas acepciones han ido quedando englobadas en el mismo término, lo que puede originar confusión en la interpretación de su expresión. En cualquier caso, dicha significación deberá encontrarse complementada en su contexto. El actual concepto de paisaje queda recogido en el Convenio Europeo del Paisaje, que supone una definición con carácter extensivo, integrador y dinámico, suponiendo un reconocimiento jurídico del mismo.

El elemento crucial en el paisaje estriba en la subjetividad, que le proporciona una característica distintiva en cada individuo. La forma en que se produce la relación entre el medio físico y el observador, así como en los mecanismos por lo que se incorporan al conocimiento, marcan el proceso de percepción y asimilación, No obstante, las condiciones socioculturales crean patrones que condicionan estos mecanismos llegando, en casos extremos, a disociarse de la realidad que los sustenta. Así pues, el conocimiento de los patrones culturales que filtran la mirada y la escala de aproximación a la significación del entorno, resultan factores sustanciales en los procesos de percepción y asimilación del entorno, en el análisis y la interpretación del paisaje.

Los puertos deportivos son instalaciones que se encuentran fuertemente vinculadas al turismo náutico. Se trata de elementos de transición entre el medio marítimo y el terrestre, proporcionando acomodo y actividades de ocio. Los puertos deportivos presentan una serie de relaciones con su entorno, con afecciones de carácter recíproco. Por una parte, existe una serie de condicionantes de carácter ambiental y social sobre el puerto deportivo, por lo que puede servir de espacio de oportunidad para proporcionar nuevos servicios basados en el potencial espacial y en los recursos naturales locales. Por otro lado, el puerto deportivo representa una oportunidad de revitalización de las comunidades próximas, no solo por los recursos tangibles, sino por los componentes intangibles. Dentro del primer grupo, el puerto puede incorporar materiales, colores y texturas diversas que den lugar a unos contornos y siluetas características, y que creen una imagen reconocible del mismo. Igualmente, es espacio portuario representa un área de oportunidad en una zona costera, frecuentemente sometida a presiones urbanísticas. En el segundo grupo, el puerto puede ser albergar recursos históricos, culturales, hospitalidad, seguridad, etc., que creen un ambiente agradable. Por tanto, el paisaje puede ser un activo importante dentro del puerto deportivo, estableciendo una identidad característica y propiciando unos valores intangibles atractivos para los usuarios y visitantes. En este sentido, no solo puede representar una ventaja competitiva respecto a otras instalaciones, sino materializarse en una ventaja económica dentro de su gestión.

Esta investigación propone procedimientos para integrar del paisaje en la gestión de los puertos deportivos, centrando la atención en los elementos intangibles del paisaje y proporcionando herramientas para su cuantificación a través de métodos de decisión multicriterio. Partiendo de una definición de paisaje en el puerto deportivo, se asocia este elemento con las actividades relacionadas con la gestión de los puertos deportivos. Resulta importante la percepción que tienen del paisaje tanto los gestores del puerto deportivo como sus usuarios. En el primer caso, es un reflejo de las fortalezas y debilidades de este concepto y, por tanto, representa un punto de partida en su gestión. En el segundo caso, los valores paisajísticos percibidos por los usuarios ponen de manifiesto sus preferencias. Además, la asignación de un valor a este paisaje, tanto desde una perspectiva social como económica, evidencia una cuantificación de la importancia de los elementos intangibles del paisaje.

Referencias:

MARTÍN, R.; YEPES, V. (2023). Landscape values in a marina in Granada (Spain): Enhancing landscape management through public participation. Land, 12(2):492. DOI:10.3390/land12020492

MARTÍN, R., YEPES, V. (2022). Economic valuation of landscape in marinas: Application to a marina in Spanish Southern Mediterranean coast (Granada, Spain). Land, 11(9):1400. DOI:10.3390/land11091400

MARTÍN, R., YEPES, V. (2022). Assessing the relationship between landscape and management within marinas: The managers’ perception. Land, 11(7):961. DOI:10.3390/land11070961

MARTÍN, R.; YEPES, V. (2021). Bridging the gap between landscape and management within marinas: A review. Land, 10(8), 821. DOI:10.3390/land10080821

MARTÍN, R.; YEPES, V. (2019). The concept of landscape within marinas: Basis for consideration in the management. Ocean & Coastal Management, 179: 104815. DOI:10.1016/j.ocecoaman.2019.104815

MARTÍN, R.; YEPES, V. (2017). El paisaje en la planificación y gestión de los puertos deportivos en Andalucía. Revista de Obras Públicas, 164 (3593):38-55.

El amasado del hormigón en tiempo caluroso

https://hormigonaldia.ich.cl/recomendaciones-tecnicas/hormigonado-en-tiempo-caluroso/

El proceso de amasado no difiere del realizado en condiciones normales. Es importante amasar el tiempo necesario para obtener una mezcla homogénea, pero no más, para evitar el calor generado por el rozamiento del hormigón con la cuba y las palas. Para lograr un mezclado eficaz en poco tiempo, se debe asegurar que la amasadora esté libre de adherencias y que las paletas de los camiones amasadores estén en buen estado. Una vez que se ha conseguido un hormigón homogéneo, la rotación debe mantenerse a la velocidad mínima de agitación de la unidad. No obstante, no es conveniente detener la cuba durante largos periodos, pues existe el riesgo de un falso fraguado del hormigón.

Proteger la amasadora de la luz solar directa ayuda a evitar un aumento innecesario de la temperatura. Pintar su superficie de blanco también minimizará el efecto de la radiación solar. Además, cuando se utiliza un aditivo retardante, su efecto será mayor si se añade al final del amasado en lugar de al principio.

Es importante controlar cuidadosamente la fluidez del hormigón a la salida de la amasadora para asegurar que llegue a la obra en las condiciones necesarias para su uso. También es posible enfriar el hormigón en la amasadora mediante la evaporación de un producto inerte, aunque esta instalación es compleja.

Para retardar el fraguado del hormigón, aunque no es una práctica corriente, se pueden dosificar los materiales sólidos en la planta y premezclarlos, añadiendo el agua y los aditivos líquidos en la obra, seguido de un mezclado posterior en el camión de suministro. Sin embargo, esto puede causar una pérdida de uniformidad entre las amasadas. Dado que es complicado controlar la dosificación de líquidos y el mezclado en obra, es necesario preparar adecuadamente todo el proceso si se elige este método.

Cuando se utilizan aditivos plastificantes, superplastificantes y retardadores, su efecto es más prolongado si se introducen al final del amasado, mezclados con una pequeña cantidad del agua de amasado. Los superplastificantes pueden añadirse parcialmente en la planta para obtener la fluidez necesaria para la carga y el transporte del hormigón, y el resto en la obra para compensar la pérdida de asiento durante el transporte. Para un control preciso, el aditivo puede dosificarse previamente en recipientes. Es necesario un amasado posterior en el camión antes del vertido en el encofrado o el sistema de colocación en obra.

La fabricación del hormigón según las especificaciones requeridas es esencial para evitar rechazos que provoquen la formación de juntas de hormigonado o problemas en el acabado. Por ello, es recomendable realizar una inspección previa antes del transporte. En la planta, el hormigón puede inspeccionarse visualmente durante la descarga. En el caso de utilizar un camión amasador, se recomienda realizar un amasado inicial en la planta y verificar el asiento antes de proceder al transporte.

Referencias:

AA.VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 305. Guide to Hot Weather Concreting. ACI 305R-10.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigonado en condiciones de viento

Figura 1. Nomograma de Menzel

Se tomarán medidas de precaución especiales al hormigonar en condiciones de viento, pues puede causar serios problemas durante el proceso. Al igual que en condiciones de calor, especialmente cuando ambas se combinan, el viento aumenta la tasa de evaporación más allá de la cantidad de agua necesaria para el endurecimiento del hormigón, lo que acelera su fraguado. Esto provoca un curado inadecuado, grandes retracciones y problemas de resistencia a largo plazo. En la Figura 1 se puede apreciar cómo la velocidad del viento, junto con la temperatura del hormigón y la humedad relativa del aire, influyen en la cantidad da agua evaporada en el hormigón. Dejamos al lector un enlace para ampliar información sobre el agrietamiento plástico durante el fraguado del hormigón.

La fisuración plástica ocurre durante las primeras horas del fraguado del hormigón, cuando aún se encuentra en estado plástico. Es causada por la disminución de volumen en la pasta de cemento al hidratarse. Esta hidratación natural puede verse agravada por una rápida evaporación del agua de la mezcla (retracción hidráulica) durante esta fase plástica del hormigón.

Los casos de fisuración plástica incluyen la fisuración en “piel de cocodrilo”, que aparece en losas y forjados como un cúmulo de pequeñas fisuras sin dirección dominante, y las fisuras en elementos alargados como losas, forjados y zapatas corridas, que son perpendiculares a la longitud mayor del elemento hormigonado y pueden llegar a cortar completamente su sección.

Para evitar la aparición de fisuras, es esencial:

  • Solicitar hormigón con un contenido menor de finos y agua que el acostumbrado, aunque esto implique una reducción en la trabajabilidad.
  • Humedecer generosamente los encofrados o soportes (terreno natural) que recibirán el hormigón.
  • Proteger el elemento hormigonado inmediatamente después del vertido para evitar la evaporación, especialmente en condiciones de altas temperaturas y viento fuerte.
  • Iniciar las tareas de curado lo antes posible.

En el caso de condiciones de frío extremo, el viento puede agravar los problemas asociados a las bajas temperaturas, pues favorece la congelación por efecto adiabático.

Os dejo un vídeo donde se explican algunas de estas patologías.

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vertido y compactación de hormigón en soportes de sección reducida

Figura 1. Hormigonado de un pilar. https://docplayer.es/61072005-Protecciones-en-obras-de-construccion-fases-de-obra.html

El vertido y la colocación del hormigón en soportes de sección reducida, como puede ser un pilar, debe realizarse de manera que se evite la disgregación de la mezcla, además de desplazamientos en armaduras o encofrados. También debe evitarse la formación de juntas, coqueras o planos de debilidad. Antes de iniciar el hormigonado, se monta un caballete o andamio, según corresponda, para facilitar el acceso de los operarios hasta la parte superior del pilar. Para alturas superiores a 2 m y cuando no se utiliza una bomba de hormigón ni es posible ejecutar el pilar en dos fases, se emplea un embudo metálico con una manguera para evitar caídas libres mayores de 1,50 m. Durante el vertido, el hormigón debe dirigirse mediante trompas de hormigonado u otros dispositivos para evitar que golpee directamente contra el encofrado o las armaduras.

El hormigón se coloca de forma continua o en capas, cuidando que no se formen juntas frías. Se espera que cada capa esté en estado plástico cuando se coloca la siguiente. La compactación del hormigón se realiza con vibradores de aguja, introduciendo la aguja verticalmente en la masa de manera rápida y profunda. Posteriormente, se retira lentamente y de forma constante hasta que la lechada fluya a la superficie. El vibrador debe estar siempre en el fondo del encofrado antes de comenzar con la primera capa de hormigón. Esta primera capa es la más crítica, pues debe adherirse al hormigón endurecido, y una compactación inadecuada puede provocar la aparición de coqueras, una permeabilidad excesiva o la formación de una capa superficial débil por compactación excesiva.

El método óptimo para colocar y compactar hormigón en columnas pequeñas consiste en verterlo de forma continua a una velocidad que permita al vibrador realizar la compactación mientras se retira lentamente con una velocidad constante. La velocidad de vertido no debe superar los 300 mm en 30 segundos. Para una columna de 25 cm x 25 cm de sección y 3 m de altura, esto equivale a un tiempo total de aproximadamente 5 minutos. Si las circunstancias no permiten ejecutarlo de esta forma, es necesario limitar el espesor de cada capa a unos 300 mm. La aguja del vibrador se introduce entre 10 y 15 cm en la capa inferior.

El vertido desde tolvas móviles solo está permitido si el operador puede controlar el inicio y la parada de la descarga, asegurando que no se viertan más de tres cubetas por soporte. Si no se puede garantizar este control, es preferible verter el hormigón sobre una plataforma situada encima del soporte y distribuirlo cuidadosamente con una pala. Aunque también se puede utilizar un balde, aunque este método puede ser más lento.

Para asegurar una buena compactación en secciones pequeñas al trabajar con columnas, un vibrador de 40 mm de diámetro es suficiente, siempre que haya espacio para insertarlo en el centro. El vibrado se debe extender hasta los vértices, aristas y fondos. Es fundamental asegurarse de que el vibrador no entre en contacto con las armaduras. Es recomendable sumergir el vibrador en diferentes puntos cercanos durante períodos cortos (5 a 15 segundos) en lugar de prolongar el tiempo de vibrado en puntos más distantes. Al verter las capas de 300 mm de espesor, es crucial garantizar que cada capa esté completamente compactada antes de proceder con la siguiente. Además, se recomienda verificar la superficie del hormigón para asegurar su visibilidad; en caso contrario, se aconseja utilizar una fuente de luz adecuada.

Si se utiliza una bomba para el vertido del hormigón, la manguera flexible debe llegar hasta el fondo y retirarse al mismo tiempo que el vibrador. Es fundamental reducir la velocidad de descarga de la bomba para permitir una correcta compactación con el vibrador. Para obtener un acabado superficial de calidad, se aconseja volver a vibrar los últimos 450 mm media hora después del vertido. Si la caída es libre desde la parte superior del encofrado, el mortero se adhiere parcialmente al encofrado y a las armaduras, alterando la dosificación del hormigón que llega a la base.

Después del hormigonado, se verifica el aplomado del pilar tras un período aproximado de 30 minutos para asegurarse de que no haya habido ningún desplazamiento. Conviene no olvidar que, durante el fraguado y el primer período de endurecimiento del hormigón, es crucial mantener adecuadamente su humedad mediante un correcto proceso de curado.

Dejo algunos vídeos al respecto.

Os dejo un documento que puede complementar la información que os he ofrecido.

Descargar (PDF, 843KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mesa vibrante de hormigón

Figura 1. Mesa vibrante para compactar hormigón. https://www.eralki.com/maquinas/mesas-compactacion/

Por lo general, una mesa vibrante está compuesta por una superficie de acero u hormigón armado, con vibradores externos montados en el marco de soporte (ver Figura 1). Tanto la mesa como el marco están aislados de la base mediante resortes de acero, juntas aislantes de neopreno u otros dispositivos similares. La propia mesa puede formar parte del molde. Sin embargo, normalmente se coloca un molde separado sobre la mesa. La vibración se transmite desde la mesa al molde y luego al hormigón. Existen diferentes opiniones sobre la conveniencia de sujetar el molde a la mesa.

Normalmente, se prefiere una vibración de baja frecuencia (por debajo de 100 Hz) y alta amplitud (más de 0,13 mm), al menos para mezclas más rígidas. La efectividad de la vibración de mesa depende en gran medida de la aceleración impartida al concreto por la mesa. Generalmente, se recomiendan aceleraciones en el rango de 3 g a 10 g (30 m/s² a 100 m/s²), siendo necesarios valores más altos para las mezclas más rígidas. Además, la amplitud no debe ser inferior a 0,025 mm para mezclas plásticas, ni a 0,050 mm para mezclas más rígidas.

Se trata de mesas conformadas por un tablero rígido, comúnmente de acero, que se sostiene de manera elástica sobre una base fija adecuadamente aislada. La vibración se genera mediante generadores ubicados debajo del tablero. En mesas de dimensiones pequeñas (aproximadamente L = 1,50 m), un solo vibrador es suficiente, pero si las dimensiones son mayores, se requiere aumentar proporcionalmente el número de vibradores.

Estas mesas vibrantes se utilizan tanto en laboratorios como en la compactación de elementos prefabricados de hormigón. Por lo tanto, la amplitud y la frecuencia del vibrador deben ser ajustables para adaptarse a los diferentes tipos de hormigón. Es esencial que el tablero sea completamente rígido para garantizar una transmisión uniforme de las vibraciones a toda la pieza.

Figura 2. Movimiento de las masas excéntricas.

Los vibradores, similares a los vibradores externos de encofrado, cuentan con dos masas excéntricas que giran en direcciones opuestas, generando fuerzas vibratorias perpendiculares a la mesa. Deben tener una amplitud elevada y baja frecuencia, ya que los hormigones utilizados en la prefabricación suelen ser secos.

Al igual que con los vibradores de encofrado, la fuerza centrífuga del vibrador puede calcularse aproximadamente en función de los pesos del hormigón y del molde o encofrado, mediante la siguiente fórmula:

donde:

  • PM: peso de la mesa (más el del molde si es solidario a ella)
  • Pm: peso del molde (apoyado y convenientemente fijado a la mesa)
  • Ph: peso del hormigón
  • k: coeficiente variable, que va de 0,5 a 4 según la rigidez de la mesa.

Cuando se vayan a vibrar secciones de hormigón de diferentes tamaños, la mesa debe tener una amplitud variable. Una frecuencia variable es una ventaja adicional.  Si la mesa vibratoria tiene un elemento vibrante que contiene solo un excéntrico, puede generarse un movimiento vibratorio circular que imparte un movimiento rotacional no deseado al hormigón. Esto puede evitarse montando dos vibradores uno al lado del otro, de tal manera que sus ejes giren en direcciones opuestas. Esto neutraliza la componente horizontal de la vibración, de modo que la mesa esté sujeta únicamente a un movimiento armónico simple en la dirección vertical. De esta manera, se pueden obtener amplitudes muy altas. Para lograr una buena consolidación de mezclas muy rígidas, con frecuencia es necesario aplicar presión sobre la superficie superior durante la vibración.

Os dejo algunos vídeos sobre mesas vibradoras.

Referencias:

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vibradores de aguja para compactar el hormigón

Figura 1. Vibrador de aguja. https://www.kiloutou.com/es/c/vibrador-hormigon/

La vibración interna o por inmersión se realiza introduciendo en la masa de hormigón un elemento tubular, conocido como vibrador de aguja. Este dispositivo está compuesto por una cabeza cilíndrica metálica, resistente al desgaste y fácilmente intercambiable, que alberga en su interior el mecanismo vibratorio. Estos son los más utilizados en obras de carácter general. En la mayoría de situaciones, los vibradores internos requieren el efecto refrigerante del hormigón para prevenir el sobrecalentamiento, es decir, el hormigón actúa como un refrigerante.

La vibración por inmersión es una forma de compactación eficiente, pues el vibrador está en contacto directo con el hormigón. Esto permite que el vibrador actúe y cambie de posición según sea necesario, adaptándose al tipo de hormigón. Presentan la ventaja de ser sencillos de manejar y llevar de un lugar a otro. Su efecto se restringe a una masa contenida en un tronco de cono con un diámetro mayor en la superficie que en el fondo, efecto causado por la mayor viscosidad del hormigón en las capas inferiores. Esta situación requiere insertar el vibrador en distintos puntos para que las zonas de acción se superpongan. Por lo general, la separación entre los pinchazos, en centímetros, es equivalente al tamaño de la aguja en milímetros. La distancia entre los puntos de inmersión también depende de la consistencia del hormigón, la forma y tamaño de la pieza, y el tipo específico de vibrador. Además, el radio de acción de un vibrador interno es significativamente menor en el caso del hormigón armado en comparación con el hormigón en masa. Esta reducción puede alcanzar hasta un 50 %.

Los vibradores internos utilizados en la actualidad son de tipo rotativo. Los impulsos vibratorios se generan desde la cabeza del vibrador en ángulo recto. Esta maquinaria suele operar a altas frecuencias (entre 200 Hz y 300 Hz) para producir vibraciones intensas y radios de acción suficientes, gracias a su peso reducido. Con el paso del tiempo, ha habido una tendencia a emplear vibradores de aguja con diámetros más pequeños, incrementando la frecuencia de vibración para conseguir una mayor eficacia. Este cambio también se debe a la demanda de herramientas ligeras y la construcción de obras con secciones delgadas y armaduras cada vez más densas.

Figura 2. Retirar el vibrador de forma lenta. https://diariodecolima.com/noticias/detalle/2022-08-30-vibrado-de-concreto-cmo-contribuye-a-la-resistencia-de-una-obra

En cuanto al proceso, el vibrador interno se introduce verticalmente en el hormigón de manera rápida, pero no debe permanecer en funcionamiento durante un periodo prolongado para prevenir segregaciones o exudaciones, especialmente en hormigones fluidos. Debe continuarse la vibración hasta que las burbujas de aire grandes aparezcan esporádicamente y comience a formarse una capa muy delgada de mezcla fina. Los tiempos habituales de vibrado son de 10 a 15 segundos, al final de los cuales el vibrador debe retirarse lentamente. Tiempos excesivamente largos pueden causar segregación, especialmente si el hormigón no es muy seco. Prolongar el tiempo de vibración para eliminar todo el aire más allá de lo necesario no es práctico y, en hormigones mal dosificados, puede causar efectos nocivos como la disgregación del material. No obstante, es importante tener en cuenta que un exceso de vibración es menos perjudicial que una vibración insuficiente. La extracción debe ser lenta, para que el orificio que se forma se rellene con hormigón y mortero. Es preferible vibrar menos tiempo en muchos puntos, en vez de mucho tiempo en pocos puntos. La Tabla 1 incluye valores orientativos de amplitud y frecuencia, así como el radio de acción y la velocidad de vertido recomendados para diferentes calibres.

Tabla 1. Valores característicos de vibradores de inmersión

Ø vibrador (mm) Frecuencia (Hz) Amplitud (mm) Radio de acción (cm) Velocidad de vertido (m3/h)
20 – 40 170 – 250 0,4 – 0,8 8 – 15 0,8 -4
30 – 60 150 – 225 0,5 – 1,0 13 – 25 2,5 – 8
50 – 90 130 – 200 0,6 – 1,3 18 – 35 4,5 – 15
80 – 150 120 – 180 0,8 – 1,5 30 – 50 11- 30
En general, se considera que la capa de hormigón debe tener una altura inferior a la longitud de la aguja del vibrador para poder revibrar la capa inferior al mismo tiempo que se vibra la superior; no obstante, esto puede resultar complicado de conseguir. Al compactar en profundidad las sucesivas capas de hormigón, el vibrador debe introducirse entre 10 y 15 cm en la capa anterior para asegurar la unión entre las capas (Figura 2).
Figura 2. 10 cm de penetración del vibrador en la capa inferior del hormigón. https://www.vibrafrance.fr/es/content/6-conseils-techniques

Las diferentes inserciones deben situarse aproximadamente a vez y media el radio de acción del vibrador interno para generar solapamientos. Como regla práctica, se puede decir que la distancia entre los puntos de inmersión debería ser unas 8 a 10 veces el diámetro de la aguja. Normalmente, no debe excederse los 50 cm entre los puntos de inserción (Figura 3).

Figura 3. Empleo del vibrador interno.

Durante la vibración, se debe evitar que el vibrador toque el encofrado. Se debería mantener una distancia de unos 10 cm entre el vibrador y las caras verticales de los encofrados para evitar la formación de burbujas superficiales. En cuanto a las armaduras, aunque la norma tradicional recomienda no tocarlas, puede ser beneficioso vibrarlas para lograr una mayor adherencia y una densidad más alta del hormigón en las zonas con mayor concentración de barras. Tampoco se debe distribuir el hormigón utilizando el vibrador de aguja.

El campo óptimo de actuación de estos aparatos se encuentra con relaciones agua/cemento entre 0,4 y 0,6. Con valores inferiores, el hormigón se vuelve muy rígido, y con valores superiores, muy fluido, lo que puede causar problemas de exudación.

Una vibración inadecuada puede provocar distintos defectos en el hormigón:

  • Panal de abeja: Se forman bolsas de áridos sin mortero cuando la vibración es incompleta y no sistemática.
  • Estratos de hormigonado o vetas entre tongadas: Aparecen cuando no se realiza el revibrado y la fusión con la capa anterior, es decir, no se ha llevado a cabo el cosido de capas.
  • Vetas o regueros de arena en la superficie: Ocurren debido a una mala dosificación del hormigón y a fugas en los encofrados, que permiten la pérdida de lechada por una vibración excesiva.
  • Aire ocluido no expulsado: Se manifiesta como huecos de aire en la superficie causados por burbujas de aire que no pudieron salir debido a un tiempo insuficiente de vibrado. Los encofrados de madera permiten liberar las burbujas de aire y logrando una mejor apariencia superficial que con los encofrados metálicos.
  • Fugas en los encofrados y superficies bombeadas: Se producen por un vibrado excesivo o encofrados que no son estancos y resistentes a la vibración.

Desde la perspectiva del tipo de energía, existen tres tipos de vibradores internos: eléctricos, hidráulicos (especialmente utilizados en carreteras y presas), y de aire comprimido.

  • Las agujas eléctricas operan a 200 Hz y están diseñadas para el vibrado de hormigón en edificaciones e ingeniería civil. Los vibradores con motor eléctrico integrado en la cabeza han ganado popularidad en los últimos años. Al tener el motor ubicado en la cabeza del vibrador, no se necesitan motores o flechas separados. Desde la cabeza, sale un cable eléctrico resistente que también sirve como mango. Estos vibradores suelen tener un diámetro mínimo de 50 mm. Este tipo de vibradores está disponible en dos diseños. Uno de ellos utiliza un motor universal y el otro un motor trifásico de 180 Hz (alta frecuencia). En este último caso, la energía generalmente proviene de un motor a gasolina portátil; sin embargo, también se puede utilizar corriente comercial pasada a través de un convertidor de frecuencia. El diseño con motor de inducción experimenta una ligera disminución de velocidad al sumergirse en el hormigón. Esto permite que pueda rotar con un peso excéntrico mayor y desarrollar una fuerza centrífuga más alta que la que producen los modelos con motores eléctricos en la cabeza de un diámetro similar. En algunos países, se utilizan motores para vibradores de 150 o 200 Hz.
  • Los vibradores neumáticos presentan el motor neumático típicamente ubicado dentro de la cabeza del vibrador. El diseño más común emplea aspas que sostienen tanto el motor como los elementos excéntricos sobre apoyos. Sin embargo, existen modelos sin apoyos que requieren menos mantenimiento, así como algunos con flecha flexible que colocan el motor neumático fuera de la cabeza. El uso de vibradores neumáticos presenta ventajas cuando el acceso al aire comprimido es fácil. La frecuencia de vibración depende en gran medida de la presión del aire, la cual debe mantenerse siempre dentro de los niveles recomendados por el fabricante. En ocasiones, puede ser conveniente ajustar la presión del aire para obtener una frecuencia diferente. Las agujas neumáticas, aunque presentan características similares a las eléctricas, incluyen modelos que alcanzan los 320 Hz y diámetros de hasta 140 mm.
  • Los vibradores que funcionan con un motor hidráulico se utilizan ampliamente en las máquinas de pavimentación. Estos vibradores están conectados al sistema hidráulico de la pavimentadora mediante mangueras de alta presión. La frecuencia de vibración puede ajustarse regulando el flujo del fluido hidráulico que pasa a través del vibrador. La eficacia del vibrador depende tanto de la presión como del flujo del fluido hidráulico. Por lo tanto, es crucial realizar revisiones periódicas del sistema hidráulico para garantizar su correcto funcionamiento.

Os dejo algunos vídeos que, espero, sean de vuestro interés.

Os dejo esta presentación que tiene consejos interesantes sobre el vibrado interno del hormigón.

Descargar (PDF, 1.28MB)

Descargar (PDF, 1.39MB)

Referencias:

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nomogramas para el bombeo de hormigón

Roermond, the Netherlands, – August 08, 2019. Construction of a new highway tunnel in the center of the city.

En un artículo anterior explicamos cómo se podía calcular la presión y la potencia para el bombeo del hormigón. Aquí vamos a presentar un par de nomogramas que hemos desarrollado junto a los profesores Pedro Martínez Pagán y Daniel Boulet. Además, se incluye la resolución completa de un problema utilizando estos nomogramas.

Para los que estéis interesados en ampliar conocimientos, os recomiendo un libro de 300 problemas resueltos de Maquinaria y Procedimientos de Construcción. El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras. Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 26 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Podéis conseguir el libro en el siguiente enlace: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

A continuación facilitamos un nomograma propio para el cálculo, que he elaborado junto con los profesores Martínez-Pagán y Boulet.

 

Os dejo un problema resuelto con estos nomogramas.

Descargar (PDF, 640KB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones para la evaluación, selección y rehabilitación de edificios

Acaban de publicarnos un artículo en la revista científica Journal of Civil Engineering & Management (indexada en el JCR, Q1) un artículo que analiza el uso de la toma de decisiones con criterios múltiples (MCDM) para evaluar y modernizar edificios, centrándose en la integración de los criterios de seguridad y sostenibilidad. Asimismo, identifica los métodos MCDM más comunes, como el AHP, el SAW y el TOPSIS, y ofrece recomendaciones para futuras investigaciones a fin de mejorar los procesos de toma de decisiones en la renovación de edificios. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento realiza una revisión exhaustiva de la literatura sobre los métodos de toma de decisiones con criterios múltiples (MCDM) para evaluar, seleccionar y modernizar edificios, haciendo hincapié en la integración de los criterios de seguridad y sostenibilidad.
  • Aborda la necesidad de realizar evaluaciones con múltiples objetivos en la modernización sostenible para demostrar la sostenibilidad tanto a corto como a largo plazo, colmando así un vacío de conocimiento en el campo de la seguridad estructural y la sostenibilidad de los edificios existentes.
  • El estudio evalúa la tendencia actual de utilizar los MCDM para integrar las tres dimensiones de la sostenibilidad con la seguridad estructural, destacando el potencial de las aplicaciones de los MCDM en la toma de decisiones en los ámbitos de la ingeniería civil, la construcción, la tecnología de la construcción y la sostenibilidad.
  • La investigación tiene como objetivo proporcionar información sobre la evaluación, la selección y la modernización de edificios sostenibles y seguros, y ofrece recomendaciones para futuras investigaciones a fin de mejorar las soluciones de toma de decisiones para integrar los aspectos de seguridad y sostenibilidad en los edificios existentes.

Las conclusiones del artículo son las siguientes:

  • El estudio revisa 91 artículos sobre la evaluación, la selección y la modernización de edificios mediante métodos de toma de decisiones basados en criterios múltiples, lo que indica el creciente interés de la comunidad científica por esta área.
  • Los investigadores se centran en los edificios públicos, en particular en las escuelas y los edificios históricos, e integran las consideraciones económicas y sociales al evaluar los edificios vulnerables y las opciones de modernización.
  • El enfoque actual hace hincapié en la integración en cuatro dimensiones de los aspectos de seguridad, económicos, sociales y ambientales en la modernización de edificios, aunque los criterios específicos para cada dimensión carecen de consenso.
  • El proceso analítico jerárquico (AHP) se utiliza ampliamente para la ponderación de los criterios, mientras que el método TOPSIS es el preferido para integrar los criterios de sostenibilidad y seguridad en la modernización de edificios.
  • El estudio destaca la necesidad de seguir investigando para abordar la subjetividad en la toma de decisiones, incorporar el análisis del ciclo de vida y explorar nuevos sistemas de gestión multifuncional para mejorar la integración de la seguridad y la sostenibilidad en las evaluaciones y modernizaciones de los edificios.

Abstract:

Multiple criteria decision-making (MCDM) has experienced significant growth in recent years, owing to its capacity to integrate even contradictory criteria. This study conducted a comprehensive literature review of MCDM for assessing, selecting, and retrofitting buildings. The bibliometric search used a search algorithm in specialized databases. A filtering and expansion process was done by reviewing references, and 91 relevant articles were selected. The analysis revealed that in a group of studies, socioeconomic criteria were used to assess the vulnerability of buildings. On the other hand, some research integrated the three dimensions of sustainability (economic, social, and environmental) along with safety considerations when identifying optimal retrofit alternatives. Classic MCDMs are prevalent in research within this field. Among the most used methods, the Analytic Hierarchy Process (AHP) was employed for criteria weighting, Simple Additive Weighting (SAW) for constructing vulnerability indices, and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for building retrofitting. This literature review contributes to the path toward a holistic renovation of the existing building stock, providing recommendations for future research to improve decision-making solutions for integrating the safety and sustainability of existing buildings.

Keywords:

Decision-making, MCDM, multi-criteria, retrofit, structural assessment, sustainability, vulnerability

Reference:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). A review of multi-criteria decision-making methods for building assessment, selection, and retrofit. Journal of Civil Engineering and Management, 30(5):465-480. DOI:10.3846/jcem.2024.21621

Os paso, para su descarga, el artículo, al publicarse en abierto.

Descargar (PDF, 1.66MB)