Los motivos por los que se equivocan estudiantes y profesionales de ingeniería al abordar la resolución de problemas

Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.

En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.

La falta de comprensión del concepto que subyace a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se encuentra con un problema al que no se ha enfrentado antes, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.

Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, enfocarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgado o inventados puede conducir a conclusiones incorrectas.

El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inadecuado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, la dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede llevar a errores conceptuales y de selección de modelos de cálculo.

Los aspectos psicológicos también desempeñan un papel importante. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden contribuir a errores en la resolución de problemas.

Es crucial comprender que los problemas reales pueden ser complejos y no necesariamente tienen una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y la utilización incorrecta de datos, fórmulas o software pueden llevar a resultados incorrectos.

La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez. La falta de comunicación o colaboración en entornos de trabajo entre profesionales también puede contribuir a errores en la resolución de problemas. La confianza excesiva en la tecnología o herramientas automatizadas sin una comprensión sólida de los principios subyacentes puede ser problemática.

En resumen, resolver problemas en el ámbito universitario o profesional de ingeniería y ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.

Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado me extiendo y explico algo más lo que aquí recogo como una simple lista.

  1. La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
  2. La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta un tipo de problema por primera vez, ya sea durante un examen o en la práctica profesional.
  3. Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
  4. La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
  5. Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
  6. El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
  7. Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
  8. Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
  9. La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
  10. La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
  11. Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
  12. Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
  13. Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del “número gordo” y saber predimensionar.
  14. Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
  15. Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
  16. La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
  17. Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
  18. La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
  19. Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
  20. El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
  21. El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
  22. La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
  23. Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
  24. La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
  25. La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
  26. La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
  27. La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
  28. La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
  29. La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
  30. La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.

Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.

Artículos relacionados en el blog:

Los ingenieros, los ordenadores y mil un indios

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Cifras significativas y errores de medición

¿Cómo predimensionar un muro sin calculadora?

La inteligencia artificial en la ingeniería civil

Introducción a la toma de decisiones

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Referencias de libros de problemas:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp. ISBN: 978-84-17853-62-4

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Razones para compactar el hormigón

Figura 1. Vertido y vibración del hormigón. https://www.paviconj-es.es/hormigon-precios/hormigon-compactado/

Después de la mezcla, transporte y vertido del hormigón, este suele contener aire atrapado en forma de espacios vacíos. Cuando el hormigón no se compacta adecuadamente, pueden surgir coqueras y una macroporosidad elevada (tamaños por encima de 50 nm), llegando a representar entre el 5 y el 20% de su volumen total. Al compactar el hormigón se pretende mejorar sus propiedades modificando su estructura y rebajando su porosidad, reduciéndolo, si es posible, a menos del 1%. El objetivo es comunicar al hormigón, a través de su compactación, la energía necesaria para facilitar el desplazamiento de las burbujas o huecos hacia su superficie. Al mismo tiempo, se busca bloquear la interconexión de poros, en la medida de lo posible. De esta forma se elimina la macroestructura porosa, las coqueras, se aumenta la densidad y mejorando la resistencia y la impermeabilidad se corrigen las irregularidades de distribución del hormigón. La excepción es la inclusión deliberada de aire en el hormigón, donde el aire está estabilizado y distribuido uniformemente.

La cantidad de aire atrapado guarda una estrecha relación con la trabajabilidad del hormigón, la cual se define como la propiedad que determina la facilidad y uniformidad con la que puede ser fabricado y colocado en la obra. Por ejemplo, el hormigón con una consistencia en cono de Abrams de 75 mm contiene aproximadamente un 5% de aire, mientras que aquel con un asentamiento de 25 mm puede contener alrededor del 20%. En consecuencia, el hormigón de baja consistencia requiere un mayor esfuerzo de compactación, ya sea prolongando el tiempo de compactación o utilizando más vibradores, en comparación con el hormigón de mayor asentamiento.

Es importante eliminar el aire atrapado, entre otras, por las siguientes razones:

  • El aire ocluido reduce la resistencia del hormigón (Figura 2). Por cada 1% de aire retenido, la resistencia disminuye entre un 4 y un 7%. Como resultado, un hormigón con, por ejemplo, un 3% de vacíos, será entre un 15% y un 20% menos resistente de lo esperado.
  • El aire atrapado aumenta la permeabilidad, lo que a su vez afecta la durabilidad del hormigón. Si el hormigón no es compacto ni impermeable, no resistirá la penetración del agua ni de líquidos menos agresivos. Además, cualquier superficie expuesta será más susceptible a los efectos de la intemperie, aumentando así el riesgo de que la humedad y el aire alcancen las armaduras, provocando su corrosión.
  • El aire ocluido aminora el contacto entre el hormigón y las armaduras, lo que afecta la adherencia necesaria y, por ende, la resistencia del elemento estructural.
  • El aire ocluido produce defectos visibles, como coqueras y alveolado en las superficies expuestas del hormigón.
Figura 2. Resistencia a compresión del hormigón en función del porcentaje de poros.

El hormigón compactado adecuadamente se caracterizará por su densidad, resistencia, durabilidad e impermeabilidad. Por el contrario, un hormigón mal compactado mostrará debilidad, escasa durabilidad, textura alveolar y porosidad; en resumen, será un producto de calidad inferior.

La compactación del hormigón puede llevarse a cabo mediante diversos métodos. Inicialmente, en los albores del siglo XX, se empleaban el picado y el apisonado como los primeros sistemas utilizados. Sin embargo, hacia la década de 1920, con la investigación de la relación entre la resistencia del hormigón y la proporción agua/cemento, surgieron métodos alternativos, entre los que se incluyó el uso del aire comprimido.

Más tarde, en 1927, el ingeniero francés Charles Rabut descubrió los efectos beneficiosos de la vibración sobre el hormigón. Desde entonces, tras la aparición de la primera patente de este sistema, se ha producido una mejora continua en su tecnología, convirtiéndolo en el método de compactación más ampliamente utilizado y eficaz.

Además de estos métodos principales, existen otras técnicas de compactación utilizadas en campos más específicos. Por ejemplo, la compactación por vacío y la centrifugación son sistemas prácticos y frecuentemente empleados en elementos de forma cilíndrica. Por otro lado, la compactación por percusión, como la mesa de sacudidas, se utiliza en algunas industrias y laboratorios, aunque su aplicación es más limitada.

El método de compactación a emplear dependerá de la consistencia del hormigón y se adaptará, en la medida de lo posible, a las condiciones particulares de cada caso, teniendo en cuenta factores como el tipo de elemento estructural.

Tal y como indica el Art. 52.2 del Código Estructural, la compactación del hormigón en obra se llevará a cabo utilizando métodos apropiados según la consistencia de las mezclas, con el objetivo de eliminar los huecos y lograr un cierre perfecto de la masa, evitando la segregación. Este proceso de compactación deberá continuar hasta que la pasta fluya hacia la superficie y ya no se libere aire. En la Tabla 1 se recomienda el tipo de compactación adecuado a la consistencia del hormigón

Tabla 1. Tipo de compactación en función de la consistencia del hormigón.

Consistencia Tipo de compactación
Seca Vibrado energético
Plástica Vibrado normal
Blanda Vibrado normal o picado con barra
Fluida Picado con barra o vibrado ligero

Os dejo un vídeo de los métodos de compactación del hormigón.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnica Dematel aplicada a la evaluación de la sostenibilidad de puentes en ambiente marino

Figura 1. Puente de A Illa de Arousa. Imagen: V. Yepes (2023).

Acaban de publicar un artículo en el International Journal of Computational Methods and Experimental Measurements. El estudio evalúa diferentes alternativas de diseño para un puente de hormigón situado cerca de la costa utilizando técnicas de toma de decisiones como TOPSIS, COPRAS y VIKOR, con un enfoque en la sostenibilidad y la evaluación del ciclo de vida. La investigación destaca que el hormigón con humo de sílice funciona mejor a lo largo de su ciclo de vida en comparación con otras soluciones que mejoran la durabilidad, como la modificación de la relación agua/cemento o el aumento del recubrimiento del hormigón. Esta adición puede mejorar significativamente la sostenibilidad al aumentar la durabilidad frente a los cloruros y reducir los requisitos de mantenimiento. El estudio destaca que las decisiones de diseño de infraestructuras deben tener en cuenta los impactos sociales junto con los factores económicos y ambientales, y que las diferentes alternativas de diseño muestran diferentes impactos sociales. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción es un sector crítico para alcanzar los Objetivos de Desarrollo Sostenible. Sin embargo, las actividades de construcción y las propias infraestructuras producen impactos positivos y negativos. Ello provoca que el diseño de infraestructuras sea el centro de la investigación actual para encontrar la mejor manera de satisfacer las demandas de sostenibilidad de la sociedad. Aunque los métodos para evaluar el ciclo de vida económico, medioambiental y social de las infraestructuras son bien conocidos, el reto reside en combinar estas dimensiones en un indicador global que ayude a la toma de decisiones. Este estudio utiliza tres técnicas de toma de decisiones, a saber, TOPSIS, COPRAS y VIKOR, para evaluar cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero. Para mejorar la coherencia del proceso de toma de decisiones multicriterio, se aplica un enfoque basado en DEMATEL. Los resultados del estudio demuestran que el hormigón que contiene incluso pequeñas cantidades de humo de sílice se comporta mejor a lo largo de su ciclo de vida que otras soluciones habitualmente consideradas para aumentar la durabilidad, como la reducción de la relación agua/cemento o el aumento del recubrimiento de hormigón.

ABSTRACT:

The construction industry has recently been recognized as a critical sector in achieving the Sustainable Development Goals. However, construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design the focus of current research in finding the best way to meet society’s demands for sustainability. Although methods for economic, environmental, and social life cycle assessments of infrastructures are well-known, the challenge lies in combining these dimensions into a comprehensive indicator that aids decision-making. This study uses three decision-making techniques, namely TOPSIS, COPRAS, and VIKOR, to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. To enhance the consistency of the multi-criteria decision-making process, a DEMATEL-based approach is applied. The study’s results demonstrate unanimously that concrete containing even small amounts of silica fume performs better over its life cycle than other solutions typically considered to increase durability, such as reducing the water/cement ratio or increasing concrete cover.

KEYWORDS:

Sustainable design, bridges, life cycle assessment, DEMATEL, TOPSIS, VIKOR, COPRAS, multi-criteria decision-making.

REFERENCE:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2023). Dematel-Based Completion Technique Applied for the Sustainability Assessment of Bridges Near ShoreInternational Journal of Computational Methods and Experimental Measurements, 11(2):115-122. DOI:10.18280/ijcmem.110206

El artículo está publicado en abierto. Os lo dejo para su descarga.

Descargar (PDF, 1.13MB)

Evaluación del ciclo de vida social de las alternativas de subestructura ferroviaria

Acaban de publicar un artículo en el Journal of Cleaner Production, revista indexada en el primer decil del JCR. El estudio presenta indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias y evalúa los impactos sociales de tres soluciones comunes de este tipo subestructura. La investigación tiene como objetivo determinar la alternativa de diseño más ventajosa desde el punto de vista social para la infraestructura ferroviaria, haciendo hincapié en la importancia de tener en cuenta los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo sostenible. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio utilizó el proceso de redes analíticas (ANP) para sintetizar el desempeño social de las diferentes soluciones de subestructuras en un solo indicador de comparación. La investigación recopiló datos de inventario de las bases de datos oficiales del territorio español para evaluar los indicadores basados en el contexto social. El documento estableció una colección de criterios mensurables y seleccionó seis indicadores sociales basándose en las «directrices» y las fichas metodológicas para las subcategorías de la evaluación del ciclo de vida social. La metodología introducida en la investigación se puede aplicar en la evaluación de los impactos sociales en varios proyectos de infraestructura más allá de los ferrocarriles, como puentes, carreteras o estructuras portuarias, lo que mejora la aplicabilidad de la evaluación del ciclo de vida social.

Las contribuciones más destacables de este trabajo son las siguientes:

  • Introduce indicadores sociales diseñados para evaluar el ciclo de vida de las infraestructuras ferroviarias.
  • Evalúa los impactos sociales de tres soluciones frecuentes de subestructura de vías férreas.
  • Destaca la importancia de considerar los factores sociales junto con las dimensiones económicas y ambientales en el desarrollo de infraestructuras sostenibles.

ABSTRACT

The sustainable design of infrastructure involves assessing economic, environmental, and social impacts. While significant progress has been made in evaluating economic and environmental life cycle impacts since the Paris Agreement, there’s a notable gap in techniques for assessing social aspects in infrastructure design. This study introduces social indicators tailored for evaluating the lifecycle of railway infrastructures. The indicators are applied to assess the social impacts of three common railway track substructure solutions: conventional ballasted track, embedded slab track (BBEST solution), and sleeper-based, ballastless (RHEDA2000) substructure solutions. Using the Analytic Network Process (ANP), the social performance of each alternative is synthesized into a single indicator for comparison. Results indicate that the conventional ballasted track outperforms, scoring 12% higher than BBEST and 61% better than RHEDA in social terms. This is attributed to its reliable capacity for generating high-quality employment and fostering economic activities in the defined product system regions.

KEYWORDS:

Social life cycle assessment; Railway; ANP; Sustainability; Multi-criteria decision-making; Sustainable design.

REFERENCE:

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. (2024). Social life cycle assessment of railway track substructure alternatives. Journal of Cleaner Production, 450:142008. https://doi.org/10.1016/j.jclepro.2024.142008.

 

Fausto Elío Torres y el embalse de Beniarrés (Alicante)

Figura 1. Presa de Beniarrés. Imagen: V. Yepes (2024)

El embalse de Beniarrés está ubicado entre el municipio homónimo y el de Planes de la Baronía, predominando en este último en términos de extensión. Se encuentra en la provincia de Alicante, España.

Abarca una superficie de 268 hectáreas, con una capacidad máxima de almacenamiento útil de 30 hm³. Su presa de gravedad tiene una altura de 53 m y cuenta con un aliviadero de compuertas con capacidad para 1000 m³/s. Se permite en este embalse la práctica de la pesca, donde se pueden encontrar especies como la carpa y el black bass, y también se permite la navegación.

Este embalse es gestionado por la Confederación Hidrográfica del Júcar y sus aguas se utilizan principalmente para el riego de la huerta de la Safor.

La cuenca de drenaje abarca una superficie total de 752,11 km². Su principal río es el Serpis, que tiene un caudal medio de 0,95 m³/s. Este río nace en las estribaciones del Parque Natural del Carrascal de la Font Roja, con altitudes superiores a los 700 m, y después de recorrer aproximadamente 63 km, desemboca en el mar Mediterráneo en el término municipal de Gandía, en la comarca de La Safor.

Carlos Dicenta, ingeniero de la División Hidráulica, redactó el Anteproyecto del Pantano de Beniarrés en el río Serpis (1925), que fue aprobado dos años después. El proyectista de la primera fase fue F. Elío, y R. Donat de la segunda fase.

Figura 2. Construcción de la presa de Beniarrés. http://www.alicantevivo.org/2007/12/beniarrs-un-documento-histrico.html

La construcción del embalse de Beniarrés comenzó en el año 1945; sin embargo, no fue hasta 1958, trece años después, que se consolidó definitivamente como una infraestructura operativa y entró en funcionamiento. La presa fue recrecida en 1970. En el año 2002 se destinaron aproximadamente 1,50 millones de euros para llevar a cabo la consolidación de la infraestructura. Este proyecto incluyó una serie de trabajos, entre los que se destacan la consolidación e impermeabilización de la presa para prevenir posibles fugas, así como la implementación de un nuevo sistema de drenaje para aumentar su capacidad en un 40%. Estas labores se completaron en el año 2010, con un presupuesto total que superó los 17 millones. Desde principios de 2005, los equipos de la Confederación Hidrográfica del Júcar han realizado obras menores en el embalse para prevenir y mantener la infraestructura. En este sentido, se llevó a cabo la consolidación de los cimientos de la presa del embalse mediante inyecciones de cemento (540 toneladas) a través de un sistema de galerías. Durante el año, se detectó una fuga en una de las laderas del embalse, la cual fue sellada de inmediato; además, se delimitó y consolidó toda la zona afectada. Estas tareas de mantenimiento fueron financiadas tanto por el Ministerio de Medio Ambiente como por la propia Confederación. En 2009, la Confederación adjudicó las obras de dragado del embalse con el objetivo de aumentar ligeramente su capacidad, así como realizar reparaciones en el desagüe de fondo de la presa y mejorar sus accesos.

Figura 3. Presa de Beniarrés. https://www.iagua.es/data/infraestructuras/presas/beniarres
Figura 4. Embalse de Beniarrés. Imagen: V. Yepes (2024)
Figura 5. Fausto Elío Torres. https://www.chj.es/es-es/ciudadano/publicaciones/

Aprovechamos este artículo para resaltar la figura de Fausto Elío Torres (Madrid, 1878-1958), redactor de la primera fase del proyecto de la presa de Beniarrés, aunque no sea esta la obra más importante de este ingeniero. Proyectó (1911) y ejecutó obras de mejora en el pantano de Almansa, redactó el anteproyecto del pantano de Benagéber (1920), pantano de Domeño (1928). En 1930 concluía el proyecto del pantano de Benagéber, del cual el ingeniero se sentía singularmente satisfecho. Era, sin duda, uno de los proyectos sobre el que más había reflexionado durante los años vividos al frente de la zona 2ª de la División. La actividad de Fausto Elío está bien documentada entre 1906 y 1931 en Alzira, Albalat, Polinyà, Riola, Sueca y Carcaixent, con varias decenas de proyectos, obras y liquidaciones.

Fausto Elío Torres pertenecía a una familia de ingenieros de Caminos. Después de una breve experiencia como ingeniero subalterno en las Jefaturas Provinciales de Obras Públicas de Tarragona y Valencia, el 1 de febrero de 1906 asumió la responsabilidad de la 2ª zona (cuencas del Turia y Júcar) en la División de Trabajos Hidráulicos del Júcar, posición que ocupó hasta finales de 1931. El 21 de noviembre de 1932 fue designado ingeniero-director de las obras de regulación del Júcar y del Turia. Para fines de 1934, ocupaba el cargo de ingeniero-director de la Confederación Hidrográfica del Júcar. Tras la Guerra Civil en Valencia, el 29 de marzo de 1940 fue designado como Jefe de Aguas de la Delegación de Servicios Hidráulicos del Júcar. Finalmente, concluyó su carrera profesional en Madrid como consejero (marzo de 1942) y presidente (marzo de 1948) del Consejo de Obras Públicas.

Formaba parte de la generación de ingenieros que ingresaron en las Divisiones Hidráulicas a principios del siglo XX y se dedicaron a ellas durante dos o tres décadas. Esta generación, personificada por Manuel Lorenzo Pardo en la cuenca del Ebro, dirigió la política hidráulica del regeneracionismo y, especialmente, contribuyó con su experiencia a las bases técnicas del Plan Nacional de Obras Hidráulicas (1933). Al evaluar las trayectorias profesionales de los ingenieros que se unieron a las Confederaciones en la primera década del siglo XX, se comprende mejor el Plan de 1933 como un proyecto hidráulico que incorpora valiosas contribuciones técnicas de algunos de ellos.

Os dejo a continuación el proyecto de TYPSA de adecuación de la presa de Beniarrés (2023). Tras más de seis décadas de servicio, necesita mejoras de seguridad hidrológica. Se propone un aliviadero de emergencia para afrontar caudales extremos, dado que el actual resulta insuficiente según criterios actuales.

Descargar (PDF, 1MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

El puente de Murillo de Gállego

Figura 1. Antiguo puente de Murillo de Gállego. Imagen: V. Yepes (2024)

Los dos puentes, en la comarca de La Hoya de Huesca, suponen el retrato de cómo un río es capaz de arruinar un puente. Ambas estructuras están ubicadas en las proximidades del pueblo de Murillo de Gállego, en la comarca de La Hoya de Huesca, aunque geográficamente pertenecen a la provincia de Zaragoza. Se accede a ellos a través de la carretera autonómica A-132, que conecta Huesca con Puente la Reina de Jaca. Estas estructuras se sitúan a pocos metros antes de llegar al punto kilométrico 36 en dirección ascendente.

El puente actual, de principios de la década de los años 40 del siglo XX, se alza a pocos metros del antiguo (Figura 2), que debió de inaugurarse sobre el año 1898. Aunque parcialmente intacto, este último aún se erige en algunos tramos, evocando la grandeza y la belleza que alguna vez poseyó. Se construyó en hormigón en masa revestido por una excelente cantería, de talla muy regular. Destacan sus cuatro arcos apuntados u ojivales, que aún se mantienen en pie en su mayoría, con la excepción de un tramo de estructura metálica y plano que conectaba ambas orillas. Fue víctima de una crecida en agosto de 1942, cuando las aguas alcanzaron una altura superior a los 7,5 metros, tres más que la mayor riada registrada en 1900. Se trataba de una estructura mixta. En efecto, en la Figura 2 se puede ver que el vano central del puente se salvaba con una viga metálica en celosía inferior compuesta por barras diagonales entrecruzadas que trazaban una retícula reforzada a su vez por barras verticales, según el sistema Howe, muy aplicado a finales del XIX y principios del XX.

Figura 2. Puente viejo sobre 1940. https://loboquirce.blogspot.com/2016/06/puentes-de-murillo-de-gallego-huesca.html

En aquel entonces, se evaluó el emplazamiento más idóneo para la construcción del puente que lo reemplazaría, apenas a 150 metros río abajo. El puente actual, construido en hormigón y con tablero plano, tiene una longitud aproximada de 64 metros y una anchura de calzada, junto con los pretiles, de 9,60 metros. Está diseñado en una disposición diagonal con respecto al curso del río. Destaca por un gran arco central de tipo parabólico, cuyos tímpanos se aligeran con seis arquillos a cada lado. Además, presenta arcos de medio punto en los extremos (cuatro en el margen derecho y dos en el izquierdo), los cuales se elevan considerablemente sobre el cauce. En cada extremo, se encuentran estribos robustos revestidos de piedra caliza. El pretil, también construido en hormigón y contemporáneo al resto del puente, exhibe una serie continua de huecos cajeados en su frente.

Este nuevo puente, además de soportar un considerable tráfico vehicular, se utiliza para la práctica del puenting, una actividad que se suma al rafting, senderismo y ciclismo de montaña, ofreciendo a la región un paisaje de aventura y emociones. A 1,5 kilómetros del casco urbano de la localidad se encuentra el puente sobre el río Gállego en la carretera A-132, desde donde se realiza un salto de 25 metros de altura hasta casi rozar el agua.

Figura 3. Actual puente de Murillo de Gállego. Imagen: V. Yepes (2024)

Os dejo un vídeo sobre este emplazamiento y otro sobre la actividad de puenting.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional

Severino Bello y la Presa de La Peña (Huesca)

Figura 1. Presa de La Peña. Imagen: V. Yepes (2024)

La presa de La Peña fue proyectada por el ingeniero Severino Bello Poëyusan, habiéndose terminado las obras el 24 de julio de 1913. Su tipología es de arco gravedad, con una altura de 61 m desde cimientos, con una longitud de coronación de 111,70 m, siendo la capacidad de las aguas embalsadas de 15 hm³. La presa, que recoge las aguas del río Gállego, se sitúa en la Hoya de Huesca, dentro del término municipal de Las Peñas de Riglos. Este río, después de recoger las aguas del Pirineo en el extenso Valle de Tena, atraviesa el estrecho de Biescas (donde, sesenta años después, se construiría la presa de Búbal) y fluye hacia Sabiñánigo. El vaso del embalse está situado sobre las margas blandas e impermeables. Los cimientos de la presa se anclan en las calizas, que aunque son resistentes, presentan el problema de la karstificación. La presa se encuentra en explotación, siendo su titular el Sindicato de Riegos Pantano La Peña.

Severino Bello (1866 – 1940), nacido en Madrid, fue un destacado ingeniero español. Realizó su bachillerato en las Escuelas Pías de San Fernando y se graduó como Ingeniero de Caminos en 1889. Trabajó en Huesca, donde diseñó un salto hidroeléctrico en el río Gállego, y luego dirigió las obras del pantano de La Peña. En 1913 organizó el Primer Congreso Nacional de Riegos en Zaragoza, recibiendo la Gran Cruz del Mérito Agrícola. Más tarde, en 1915, supervisó los Riegos del Alto Aragón. Se destacó por su labor en el Canal de Isabel II y en proyectos de abastecimiento de agua en Bilbao. Fue presidente del Consejo Nacional de la Energía en 1928. Se casó en 1900 y tuvo siete hijos, uno de ellos Pepín Bello, conocido por su relación con Buñuel, Lorca y Dalí. Jubilado en 1933, su legado técnico y familiar perdura.

Figura 2.
Figura 2. Presa de la Peña, de arco gravedad. Imagen: V. Yepes (2024)

Para mitigar caudales estimados en 2900 m³/s, que elevaban el nivel del río hasta 20 m por encima del nivel normal, Bello implementó medidas adicionales, además de la tradicional galería inferior de limpieza, hoy en desuso. Dispuso dos desagües de fondo, cada uno con capacidad para 16 m³/s, en ambas orillas, junto con cuatro tomas superiores de 4 m³/s cada una, ubicadas en la margen izquierda y agrupadas. Estas últimas se canalizan a través de un túnel hasta un conducto de desagüe escarpado excavado en la roca, que lo dirige hacia la presa, donde el agua cae muy cerca de su base.

Siguiendo las normativas vigentes en ese entonces, se decidió separar el aliviadero del muro principal y ubicarlo en un túnel apartado de la estructura principal. Este sistema consta de diez túneles paralelos, cada uno controlado por compuertas basculantes automáticas de alzas móviles, dispuestas en línea. Cada compuerta tiene la capacidad de desaguar 30 m³/s y se activa conforme sea necesario. En aquel tiempo, la construcción de nueve túneles más pequeños se consideraba más manejable que la de uno o dos de mayor tamaño. La presión del agua, al alcanzar un nivel predefinido, supera la resistencia de los contrapesos, provocando el movimiento de las compuertas. Cada compuerta está equilibrada con contrapesos a ambos lados, conectados mediante bielas de acero, que se distribuyen simétricamente a lo largo de la línea, creando una estructura similar a un rastrillo plateado que se adhiere a la ladera.

Figura 3. Túnel del embalse de La Peña. Imagen: V. Yepes (2024)

La construcción de la presa se llevó a cabo utilizando mampostería revestida de grandes sillares meticulosamente labrados, salvo en áreas críticas como los cierres de las galerías, que se realizaron en hormigón armado recubierto de fundición. Las compuertas, fabricadas en fundición con todas sus partes mecánicas de bronce, aún están en uso, salvo los elementos motrices que fueron reemplazados alrededor de 1998, así como las compuertas automáticas del aliviadero. Las sólidas barandillas de tubo de hierro son un ejemplo representativo de la calidad de los materiales utilizados en la presa, la cual fue diseñada para una operación y mantenimiento cómodos, siguiendo el estilo de las obras hidráulicas realizadas durante esa época en el Canal de Isabel II.

En esta ubicación, destaca el túnel del embalse de La Peña, con una longitud de 47 m, excavado en caliza y datado a principios del siglo XX, siendo construido simultáneamente con el embalse de La Peña, que se inauguró en 1913. Durante gran parte del siglo pasado, este túnel formaba parte de la antigua carretera de Tarragona a San Sebastián (N-240), la vía principal de acceso al Pirineo central aragonés. Al norte del túnel, comienza un puente de celosía metálica que atraviesa el cuerpo del embalse, mientras que al sur se encuentra un pequeño apartadero que permite estacionar y visitar la imponente y antigua presa de tipo arco-gravedad construida con sillares de piedra caliza. Además, al oeste del túnel se sitúan otros diez túneles sobredimensionados, con longitudes entre 220,5 y 244 m, que funcionan como aliviaderos del embalse, con una capacidad sorprendente de 2900 m³/s. Es importante mencionar que el puente, el túnel y el embalse fueron construidos simultáneamente. En la actualidad, estas dos infraestructuras de comunicación se han vuelto estrechas y presentan algunos problemas de circulación.

Figura 4. Puente de celosía metálica del embalse de La Peña. Imagen: V. Yepes (2024)

Referencias:

  • Aguiló, Miguel; 2002. La enjundia de las presas españolas. ACS, Madrid, p.200-202.
  • Bello Poeyusan, Severino; 1914. Coste de las obras hidráulicas en España. En: I Congreso Nacional de Riegos, Zaragoza. 2 al 6 de octubre de 1913. G. Casañal, Zaragoza, 1914: tomo II, L1-L126, p.57L.
  • Noticiero; 1908. Pantano de la Peña: fundación de las ataguías por aire comprimido. Revista de Obras Públicas, 1908, 56, tomo I (1730): 553-555.
  • Noticiero; 1910. Un triunfo de la ingeniería: el pantano de la Peña y Severino Bello. Revista de Obras Públicas, 1910, 58, tomo I (1821): 389-395.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nuestro proyecto de aerogeneradores en el Anuario InfoRUVID 2023

Es un placer compartir la noticia de que uno de mis proyectos ha sido seleccionado para su inclusión en la sección TECNOLOGÍA de nuestro Anuario InfoRUVID 2023, donde se presentan algunas de las noticias de investigación más relevantes que tuvieron lugar durante el año 2023 y que ya fueron recogidas en alguna de las ediciones mensuales del boletín digital InfoRUVID.

Tanto el boletín como el anuario son editados por la Red de Universidades Valencianas para el fomento de la I+D+i (RUVID) para visibilizar y poner en valor el trabajo investigador que se desarrolla en las universidades y el CSIC de la Comunitat Valenciana y del cual nos sentimos muy orgullosos.

Accede a la versión web del Anuario InfoRUVID 2023 en https://bit.ly/AnuarioInfoRUVID2023, donde podrás consultarlo online o descargarlo en pdf, tanto la versión completa como cada una de sus secciones por separado.

Asimismo, te invitamos a que lo compartas con todas aquellas personas a las que consideres que les podría interesar. ¡Difundamos entre todos el talento de nuestras universidades!

Vibradores externos para encofrados de hormigón

Figura 1. Vibrador eléctrico externo. https://beka.cl/ar26-vibrador-externo-wacker-neuson

La compactación del hormigón mediante vibración externa se lleva a cabo transmitiendo la vibración al hormigón a través del encofrado o molde que lo contiene. El propósito de expulsar burbujas para obtener la mayor compacidad posible en el hormigón. Se puede adaptar a propósito al dispositivo vibratorio incorporado. El vibrador externo contribuye a compactar de manera uniforme toda la masa de hormigón, garantizando un proceso completo en lugar de focalizarse únicamente en algunas áreas. Es especialmente eficaz en zonas de difícil acceso, como zonas densamente armadas, ya que la vibración se transmite a través de todo el encofrado de hormigón y, consecuentemente, al hormigón fresco en su totalidad.

Los vibradores adosados al encofrado son menos eficaces que los vibradores internos, ya que parte de la energía aplicada es absorbida por los moldes; sin embargo, resultan muy útiles para la compactación en ciertos elementos estructurales, como muros poco inclinados y columnas muy reforzadas, donde es difícil o imposible utilizar vibradores de inmersión. En tales situaciones, se utilizan pequeñas unidades portátiles que se aseguran de forma rígida al encofrado.

Su ámbito de aplicación más común es en la prefabricación, donde generalmente se utilizan hormigones de resistencias secas. Ante la vibración del encofrado, que debe ser principalmente metálico, la masa de hormigón responde en función de su granulometría y de la cantidad de agua presente. El mortero permite pequeños movimientos de acomodo de los agregados gruesos, pero limita los desplazamientos excesivos. Si la viscosidad del mortero no es la adecuada, existe el riesgo de segregación del agregado grueso. Al finalizar la acción del vibrado externo, aparece una capa brillante y húmeda sobre la superficie del hormigón.

Para llevar a cabo esta técnica de compactación, se emplean vibradores de encofrado que se fijan firmemente a soportes sólidos en el exterior del encofrado. Esto implica el uso de encofrados robustos, preferiblemente metálicos, y asegurados con abrazaderas o rigidizadores para evitar movimientos durante el proceso de vibración. En términos generales, una placa de acero con un espesor de 5 a 10 mm suele ser adecuada cuando se cuenta con una adecuada rigidización mediante nervios transversales. Estos vibradores se utilizan principalmente en prefabricados de gran tamaño con encofrados adecuadamente reforzados, y ocasionalmente en obras “in situ” en áreas donde los vibradores de inmersión no son viables o cuando el hormigón está demasiado seco. Para encofrados verticales, es aconsejable utilizar apoyos de neopreno u otros elastómeros para evitar la transmisión de vibraciones a la base o al terreno. Esto ayuda a prevenir la formación de aberturas en las juntas que podrían ocasionar pérdidas de lechada.

Generalmente, se utilizan para secciones de hormigón con un espesor que no excede los 30 cm. Cuando el espesor es mayor, se recomienda complementar la vibración en el encofrado con la utilización de vibradores internos, a menos que se trate de elementos prefabricados, donde a veces se han obtenido resultados satisfactorios para secciones de hasta 60 cm de espesor.

Figura 2. Disposición de vibradores externos de encofrado. https://web.icpa.org.ar/wp-content/uploads/2019/04/Compactacion-del-hormigon-jul2016.pdf

Tipos de vibradores externos de encofrado

Los vibradores externos de encofrado más comunes se dividen en dos tipos principales: rotatorios y de reciprocidad.

  • Vibradores rotatorios: son equipos que generan principalmente un movimiento armónico simple con componentes tanto en el plano del encofrado como ortogonal al mismo. Normalmente, operan con frecuencias entre 6.000 y 12.000 r.p.m. Al igual que los vibradores internos, pueden ser neumáticos, hidráulicos o eléctricos. En los dos primeros, la fuerza centrífuga se logra mediante el giro de una masa excéntrica, mientras que en los eléctricos, las masas excéntricas están ubicadas en cada uno de los árboles del motor.
  • Vibradores de reciprocidad: son equipos que operan mediante un pistón que se acelera en una dirección hasta detenerse al impactar contra una placa de acero, para luego ser acelerado en dirección opuesta. Por lo general, son de tipo neumático y su frecuencia oscila entre 1.000 y 5.000 r.p.m. Estos sistemas generan impulsos que actúan perpendicularmente al encofrado.

Los vibradores eléctricos externos ofrecen una alternativa fiable a los dispositivos de vibración neumática, abordando eficazmente dos desafíos principales en aplicaciones de encofrado de hormigón: el ruido y el consumo de energía.

Los vibradores neumáticos pueden generar un nivel de ruido considerable, alcanzando hasta 105 dB(A) incluso en condiciones de vacío. Esto implica que los usuarios deben tomar precauciones cuando el nivel de ruido en el lugar de trabajo excede los 90 dB(A). Por contra, los vibradores eléctricos mantienen su nivel de ruido constantemente por debajo de los 80 dB(A), eliminando la necesidad de tomar medidas adicionales.

Es importante considerar que cuando no hay operarios presentes cerca de los vibradores, la presión sonora se reduce en 3 dB(A) al duplicar la distancia a la fuente. Por lo tanto, una medición estándar de presión acústica de 105 dB(A) tomada a una distancia de 1 m sigue siendo lo suficientemente alta como para superar los 90 dB(A) en un radio de acción de 32 m.

El uso del encofrado conlleva un notable aumento en el nivel de ruido, especialmente al inicio del vertido del hormigón, donde se pueden alcanzar fácilmente los 120 dB(A). Este efecto también se observa en los vibradores eléctricos, aunque la diferencia inicial mínima es de al menos 15 dB(A). Sin embargo, es esencial recordar que los estándares establecidos por el R.D. 286/2006, de 10 de marzo, sobre la protección de la salud y seguridad de los trabajadores frente a los riesgos asociados con la exposición al ruido, se refieren al nivel diario equivalente. En consecuencia, es necesario evaluar el tiempo total de exposición del operario al ruido en lugar de simplemente considerar los niveles instantáneos medidos, limitando esta exposición a un máximo semanal. Por ejemplo, una exposición de 15 minutos diarios a un nivel de 120 dB(A) resultaría en un nivel de presión sonora equivalente de 105 dB(A). Esto implica que el nivel de 90 dB(A) se superaría en un radio de acción de 32 m.

En cuanto al consumo de energía de los equipos, aunque cada situación requiere un análisis individualizado, la realidad es que la relación entre la solución eléctrica y la neumática es de 1 a 20. Por lo tanto, el diferencial de costos entre ambas soluciones se amortiza en menos de un año en condiciones normales de trabajo. De hecho, el uso de un sistema de vibradores eléctricos se vuelve rentable en un plazo máximo de 5 años, gracias al ahorro de energía al cambiar de la solución neumática a la eléctrica. Los defensores de los vibradores neumáticos han argumentado a su favor, afirmando que estos pueden permanecer instalados en los moldes durante el curado con vapor, mientras que los eléctricos no. No obstante, los vibradores eléctricos actuales se diseñan para que puedan operar en atmósferas de vapor, eliminando la necesidad de desmontarlos durante el proceso de curado.

Consideraciones sobre los moldes

El diseño del molde no solo influye en la carga dinámica soportada por la acción de los vibradores, sino que también impacta en su durabilidad y eficiencia. Desde el punto de vista de la resistencia de los moldes, es crucial evitar que la frecuencia de excitación de los vibradores coincida con la frecuencia propia del molde, lo que ayuda a minimizar la carga dinámica inducida por la vibración en la estructura metálica.

La relación entre la frecuencia de los vibradores y la frecuencia propia del molde determina la amplificación dinámica experimentada por la estructura. La frecuencia de funcionamiento debe superar la frecuencia propia del molde, con una relación que exceda el valor de 3 para alcanzar factores de amplificación por debajo de 0,125. El límite inferior de esta frecuencia propia está determinado por la resistencia del molde.

Ubicación de los vibradores

Es esencial considerar que los puntos de anclaje de los vibradores en la estructura del molde deben coincidir con los rigidizadores, o sobre dispositivos especiales, evitando situarlos sobre la chapa del molde. De lo contrario, las tensiones localizadas que se pueden generar cerca del vibrador podrían provocar el colapso del encofrado. Por lo tanto, la disposición de los vibradores está determinada principalmente por la ubicación y distribución de los rigidizadores. Los vibradores se instalan con su eje perpendicular al eje de mayor inercia de los refuerzos del molde. En encofrados verticales, la distancia entre vibradores se encuentra comprendida entre 1,5 y 2,5 m. Además, al emplear vibradores eléctricos en encofrados de membrana, es importante tomar las precauciones necesarias para prevenir el sobrecalentamiento y el riesgo de incendio.

Selección de los vibradores

La selección de los vibradores implica considerar varios parámetros:

  • Amplitud: Influye en la compactación y no debe ser inferior a 0,04 mm.
  • Aceleración: La compactación efectiva del hormigón ocurre dentro del rango de 0,5 a 3 g; niveles superiores no mejoran el proceso. Está relacionada con la fuerza centrífuga generada por el vibrador.
  • Frecuencia: El alcance de la vibración es proporcional a la frecuencia.

Teóricamente, se deberían combinar estos tres parámetros para obtener una amplitud alta, una fuerza centrífuga elevada y una frecuencia entre 6.000 y 9.000 r.p.m. Sin embargo, en la práctica, es necesario encontrar un compromiso. Por ejemplo, dado que la amplitud es inversamente proporcional a la frecuencia, no conviene seleccionar vibradores con una frecuencia excesivamente alta, pues esto limitaría la amplitud.

Para abordar esta dificultad, existen equipos con una función de doble frecuencia. Este vibrador de masa móvil se conecta a través de un variador de velocidad electrónico, permitiendo alcanzar una frecuencia de 3.000 r.p.m., lo que implica una amplitud elevada que facilita el llenado de los moldes y su rápida compactación. Al activar el vibrador en sentido opuesto, el variador ajusta la frecuencia a 6.000 r.p.m., reduciendo así la amplitud. Este proceso de “revibrado” permite redistribuir los áridos más finos en el hormigón y mejorar la calidad superficial del producto final.

En el caso de vibradores externos para encofrados verticales, para hormigones de consistencia seca se prefuere una frecuencia inferior a 6.000 r.p.m., una amplitud mayor a 0,13 mm y una aceleración transmitida a los encofrados verticales de 1 a 2 g. En el caso de consistencia plástica, la frecuencia será mayor a 6.000 r.p.m., la amplitud menor a 0,13 mm y la aceleración de 3 a 5 g.

Consideraciones en el uso de vibradores externos de encofrado

Se destacan los siguientes puntos:

  • Se debe verificar que todas las juntas, tanto dentro como entre los tableros, estén bien ajustadas y selladas. El encofrado tiende a moverse más que cuando se utilizan atizadores, lo que podría permitir que la lechada se filtre por la más mínima de las aberturas.
  • Es importante asegurarse de que los vibradores estén firmemente sujetos o atornillados a los soportes y se supervisen constantemente durante su uso. De lo contrario, las vibraciones no se transmitirán completamente al encofrado y al hormigón.
  • El hormigón se deberá verter en pequeñas cantidades dentro de las secciones para lograr capas uniformes de aproximadamente 150 mm de espesor. Esto ayuda a evitar la incorporación de aire a medida que aumenta la carga.
  • Todos los accesorios deben estar bajo observación constante, preferiblemente atornillados en lugar de clavados, especialmente las tuercas de los pernos, que pueden aflojarse fácilmente debido a la vibración intensa. También se debe monitorear cualquier pérdida de lechada de hormigón y sellar las fugas siempre que sea posible.
  • Cuando sea posible, los 600 mm superiores del hormigón en un muro o una columna se compactarán utilizando un atizador; si esto no es factible, se compactará manualmente o mediante paleo hacia abajo sobre la cara del encofrado. Los vibradores externos pueden crear espacios entre el encofrado y el hormigón; mientras que en las capas inferiores estos espacios se cierran gracias al peso de las capas superiores de hormigón, en la última capa pueden permanecer abiertos, lo que podría deformar la superficie.

Os dejo a continuación un artículo sobre la prevención de daños por el uso de vibradores externos en piezas prefabricadas.

Descargar (PDF, 697KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón precolocado: Prepakt y Colcrete

Figura 1. Hormigón precolocado. https://mvalarezo.files.wordpress.com/2014/01/fierro_valarezo.pdf

El hormigón precolocado, también llamado hormigón inyectado, o de “empaquetado previo”, es un procedimiento de construcción implica la disposición inicial de áridos gruesos en el encofrado o molde previsto y el posterior relleno de sus huecos. Para obtener un hormigón de calidad, es fundamental asegurar el completo relleno de todos los espacios, evitar la separación debido a la retracción del árido precolocado, prevenir la segregación y garantizar la retención adecuada de la humedad en la mezcla. Además, se requiere una fluidez óptima que evite obstrucciones en los conductos de inyección.

En la última etapa de la década de los cuarenta del siglo pasado, se alcanzó un hito significativo con la introducción de morteros de tipo coloidal, que lograron una dispersión efectiva de las partículas en la fase líquida y una estabilidad óptima tras la inyección. Estas suspensiones coloidales se lograban mediante métodos químicos, como en el caso de Prepakt, o bien, mediante procesos mecánicos, como los empleados en Colcrete o Colgrout.

En el procedimiento Colcrete, el mortero se sometía a un vigoroso batido en una máquina para laminarlo, evitando la formación de racimos de partículas de cemento y logrando una suspensión uniforme. Por otro lado, en el hormigón Prepakt, el mortero estaba compuesto por cinco elementos: cemento, arena, agua, un agente químico y un polvo mineral o fíller con características fisicoquímicas específicas. El agente químico se utilizaba en cantidades mínimas para conferir al mortero una suspensión coloidal altamente fluida, inducir una ligera incorporación de aire y reducir la retracción. El fíller, en proporciones variables entre el 30% y el 60%, reemplazaba al cemento y presentaba un alto contenido de sílice amorfa, la cual reaccionaba con la cal liberada durante el proceso de fraguado. Esta sustitución reducía la retracción y disminuía el desprendimiento de calor durante el fraguado, aunque también resultaba en una reducción de la resistencia inicial, mientras que la resistencia final permanecía inalterada. Además, incrementaba la resistencia a las aguas agresivas. La característica coloidal de la inyección facilitaba el hormigonado bajo el agua, sin ocasionar problemas de disolución apreciable.

El hormigón Prepakt exhibe una serie de características distintivas: presenta una resistencia final equiparable a la del hormigón convencional, al tiempo que permite un ahorro de cemento notable, oscilando entre el 30% y el 60%. Además, destaca por su elevada impermeabilidad y su mínima retracción endógena, llegando incluso a ser nula en algunos casos. Su retracción exógena es inferior al 50% de la convencional, y su menor contenido de cemento resulta en una disminución significativa del desprendimiento de calor durante el proceso de hidratación. Asimismo, exhibe una excelente adherencia tanto a superficies de hormigón antiguas como a rocas, y muestra una excelente resistencia a los ciclos de hielo y deshielo. En particular, demuestra una alta resistencia a las aguas agresivas, incluida el agua marina.

Durante la década de los 40 del siglo XX, el hormigón Prepakt fue empleado en las labores de reparación de los túneles-aliviaderos de la presa Hoover, en Estados Unidos. La experiencia acumulada en los años posteriores, especialmente en proyectos de presas, consolidó al Prepakt como material de elección para la construcción de estas estructuras, superando incluso su aplicación en obras marítimas. En España, durante la década de los 60, este hormigón fue utilizado en la presa bóveda de Matalavilla y en la presa de gravedad de Tiétar, específicamente en la inyección de las juntas.

A continuación, se describe el procedimiento constructivo de este tipo de hormigón inyectado. El árido grueso, exento de arena, se asienta, si es posible, generalmente mediante vibradores. A continuación, los espacios vacíos entre los áridos se rellena con una inyección de mortero de arena y cemento, de gran docilidad y plasticidad, que une los granos gruesos en contacto. Esta inyección se puede realizarse tanto en el aire como en el agua, siempre procediendo de abajo hacia arriba. Para ello, se instalan tubos entre los encofrados, los cuales se van retirando conforme la superficie de la inyección asciende. A medida que el mortero fluya hacia la superficie, se controlarán las posibles fugas para garantizar que toda la masa quede rellenada de manera uniforme con el mortero de inyección.

A medida que el mortero sube, desplaza al agua, quedando una clara línea de separación entre ambos, indicando que el primero no se diluye y que la mezcla se conserva sin variación alguna. La compacidad del árido grueso debe ser la mayor posible, y el mortero o papilla de inyección ha de tener unas características especiales de plasticidad para rellenar con facilidad todos los huecos. Para ello se prepara este mortero con fluidificantes. De esta manera, se logra un hormigón similar al convencional, pero mucho más compacto y con una retracción significativamente menor, aproximadamente la mitad.

El árido grueso, que se dispone antes del proceso, puede variar en tamaño desde los 6 hasta los 10 mm, o incluso más si es necesario. Ya sea de origen natural o producto de trituración, la textura y forma de sus componentes no afectan la facilidad de manipulación ni las propiedades finales. Esta disposición previa del árido genera un entramado rígido entre sus elementos, ya que se establece un contacto puntual entre ellos. Este entramado ayuda a evitar la retracción del hormigón una vez que el mortero lo envuelve. Además, el porcentaje de huecos en el árido es considerablemente menor que en el hormigón convencional, aunque el módulo de elasticidad es ligeramente mayor que el del convencional debido a que las propiedades del árido grueso tienen mayor efecto en el hormigón precolocado.

Inicialmente, se empezó a utilizar en las reparaciones de estructuras de hormigón debido a su extraordinaria capacidad de adherencia con hormigones más antiguos, así como donde se precisa un hormigón con baja retracción. Conforme se fueron destacando sus cualidades, su aplicación se amplió a nuevas construcciones, particularmente en pilares de puentes, túneles y diques marítimos. Asimismo, también se han usado en estructuras muy armadas por sismo u otras razones.

Este método es especialmente útil en situaciones donde el acceso al área encofrada es complicado, en lugares donde hay corrientes de agua fuertes que atraviesan la zona de vertido del hormigón, o en trabajos sujetos a la acción de las olas, donde el uso de métodos tradicionales de hormigonado bajo el agua está prohibido. Otros trabajos donde se usa es el recalce de cimentaciones o el relleno de cavidades de cimentación, que son poco comunes en la construcción convencional.

Para la inyección del mortero, se emplean tuberías que se insertan en la masa de árido grueso. Normalmente, tienen un diámetro de 20 a 30 mm para el hormigón estructural y de hasta 40 mm para el hormigón en masa. Estas tuberías deben colocarse verticalmente dentro de los 150 mm desde la base de la masa de árido, aunque también pueden insertarse horizontalmente a través del encofrado en distintos niveles.

Es una técnica delicada, por lo que es conveniente emplear procedimientos ya experimentados. En cualquier caso, requiere de mano de obra altamente especializada, especialmente dado que en muchas ocasiones resulta imposible inspeccionar el trabajo.

Una descripción con mayor detalle del hormigón precolocado se puede encontrar en la norma ACI 304.

Os dejo un artículo que creo os puede resultar de interés.

Descargar (PDF, 495KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.