Ensanchadoras de la base de pilotes: el balde de quijadas

Figura 1. Balde de quijadas con articulación en la base y con articulación superior

En suelos suficientemente coherentes se puede ensanchar la base de la perforación, a fin de aumentar la capacidad de transmitir resistencia por punta, mediante una herramienta especial denominada balde de campana o de quijadas. Este útil puede ser de dos tipos: con articulación en la base o con articulación superior.

El ensanche del fondo excavación (acampanamiento o underreaming) tiene forma troncocónica. Como criterio general, la altura del ensanchamiento debe ser mayor que el diámetro del pilote y la anchura menor que tres veces el diámetro.

Figura 2. Herramienta para ensanchamiento de la punta del pilote

 

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Conferencias en Chile sobre optimización y toma de decisiones en puentes e infraestructuras viarias

La Pontificia Universidad Católica de Valparaiso y su Escuela de Ingeniería en Construcción, a través del profesor Matias Andrés Valenzuela Saavedra, me han invitado a impartir varias conferencias sobre toma de decisiones en la gestión del ciclo de vida de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos. Estas conferencias, que tendrán lugar en Valparaiso el 22 de mayo de 2019 y en Santiago el 23 de mayo, se complementarán con varias reuniones con diversos profesores y con representantes del Ministerio de Obras Públicas de Chile. Os paso a continuación los folletos anunciadores de las charlas, por si alguno de vosotros se encuentra allí la próxima semana y quiere venir a las mismas.

 

 

Problema de selección de una cimentación. Desarrollo del pensamiento crítico

http://cimentacioneslevante.es/muros-pantalla/

Desde el proceso de Bolonia, muchos cambios han habido en nuestras universidades y planes de estudios. Uno de ellos es la necesidad de desarrollar y evaluar las competencias del título correspondiente a través de cada una de las asignaturas y comprobar que se adquieren los resultados de aprendizaje. De este tema ya hemos hablado varias veces. Hoy os traigo un problema que me sirve para evaluar, a través de una rúbrica, la competencia transversalPensamiento Crítico” en la asignatura de Procedimientos de Construcción II, del grado de Ingeniería Civil de la Universitat Politècnica de València. Espero que os sea de interés.

También os dejo una presentación que hice en un congreso docente donde explico cómo realizamos esta evaluación.

ENUNCIADO:

Se quiere construir un edificio de 30 plantas de altura más seis sótanos (altura de 3,00 m cada sótano) en una ciudad de 500000 habitantes. El solar se encuentra entre dos medianerías, y tiene una superficie rectangular de 20 x 35 m, siendo las medianerías los lados de 20 m. Existe la posibilidad de utilizar un solar anejo para realizar la obra, de 44 x 35 m. Hay acceso directo tanto al solar donde se va a realizar el edificio como al solar disponible, según se observa en la Figura 1. El clima es atlántico, con lluvias abundantes, con temperaturas que se supone oscilan entre 5 y 25 ºC, y se tienen 10 horas de luz de media durante la construcción de la cimentación.

Figura 1. Esquema de la situación del solar del edificio, del solar disponible y de los edificios construidos

Se ha realizado un sondeo y se ha determinado un corte del terreno que se muestra en la Figura 2. Se observa que el nivel freático se encuentra a 3,50 m de la superficie. Existe un sustrato duro de areniscas de 4,00 m de espesor situado entre dos capas de limos arcillosos con trazas de arenas y gravas. A 22 m de profundidad existe una capa de calizas sanas, de al menos 15 m de potencia. Los primeros 2,20 m son un relleno antrópico donde existen tocones de árboles, basura y una mezcla de limos arcillosos y gravas.

Figura 2. Esquema básico del corte geológico

La solución a proyectar debe conjugar la posibilidad técnica de ejecución, el impacto ambiental y social sobre el entorno (contaminación, ruidos, vibraciones, etc.), la facilidad constructiva y la viabilidad económica, Use los datos del enunciado que considere importantes y, en el caso de necesitar datos, razone adecuadamente el uso de información adicional.

Preguntas de grupo:

  1. Indique qué tipo de cimentación sería la más conveniente.
  2. Razone dos procesos constructivos que podrían ser aplicados y cuál de los dos cree que será más eficaz. La respuesta debe ser de consenso entre los miembros del grupo.
  3. Define los principales pasos en la construcción de dichas cimentaciones.
  4. Descarte, justificando las razones, al menos tres procesos constructivos de cimentación que no sean aplicables a este caso.
  5. Indique si ha tenido que consultar otras fuentes para la elección de la tipología y el proceso constructivo (en dicho caso indicar cuál), o ha sido suficiente con el temario de la asignatura.

 

Preguntas individuales:

  1. Critique los dos procesos constructivos de la pregunta 2, indicando si está de acuerdo con lo consensuado por el grupo. Se valorará especialmente su opinión crítica personal justificada y si hay diversidad de opiniones entre los miembros del grupo.
  2. Realice una crítica sobre el ejercicio 1, indicando aquellas cosas con las que está de acuerdo con el grupo o no. Se valorará la justificación crítica de la respuesta.
  3. Indique los cinco riesgos para las personas más importantes que supone el procedimiento constructivo elegido y qué medidas preventivas debería utilizar.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

GARCÍA-SEGURA, T.; YEPES, V.; MOLINA-MORENO, F.; MARTÍ, V. (2017). Assessment of transverse and specific competences in civil engineering studies: ‘Critical thinking’. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3683-3692. ISBN: 978-84-617-8491-2

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Assessment of the argumentative ability in innovation management of civil engineering studies. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3904-3913. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; MOLINA-MORENO, F. (2017). Transverse competence ‘critical thinking’ in civil engineering graduate studies: preliminary assessment. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 2639-2649. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2016, Valencia, pp. 1-14. ISBN: 978-84-9048-541-5.

MARTÍ, J.V.; YEPES, V. (2016). Valoración de la competencia transversal “Pensamiento crítico” por los alumnos de GIOP (2015). XIV  Jornadas de Redes de Investigación en Docencia Universitaria 2016

MARTÍ, J.V.; YEPES, V. (2016). Evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. XIV  Jornadas de Redes de Investigación en Docencia Universitaria 2016

YEPES, V.; SEGADO, S.; PELLICER, E.; TORRES-MACHÍ, C. (2016). Acquisition of competences in a Master Degree in Construction Management. 10th International Technology, Education and Development Conference (INTED 2016), March, Valencia, pp. 718-727. ISBN: 978-84-608-5617-7.

MARTÍ, J.V.; YEPES, V. (2015). Pensamiento crítico como competencia transversal en el grado de Ingeniería de Obras Públicas: valoración previa. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-12. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1560 (link)

JIMÉNEZ, J.; SEGADO, S.; YEPES, V.; PELLICER, E. (2015). Students’ guide as a reference for a common case study in a master degree in construction management. 9th International Technology, Education and Development Conference INTED 2015, Madrid, 2nd-4th of March, 2015,  pp. 4850-4857. ISBN: 978-84-606-5763-7.

YEPES, V.; MARTÍ, J.V. (2015). Competencia transversal ‘pensamiento crítico’ en el grado de ingeniería civil: valoración previa. XIII Jornadas de Redes de Investigación en Docencia Universitaria, Alicante, 2 y 3 de julio,  pp. 2944-2952. ISBN: 978-84-606-8636-1. (link)

YEPES, V.; MARTÍ, J.V. (2015). La competencia transversal de comunicación efectiva en estudios de máster en el ámbito de la ingeniería civil y la construcción. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-14. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1540 (link)

JIMÉNEZ, J.; SEGADO, S.; PELLICER, E.; YEPES, V. (2014). Strategic evaluation of a M.Sc. degree in construction management: a faculty vs. students comparison. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain), 10-12 March, pp. 1974-1984. ISBN: 978-84-616-8412-0  (link)

YEPES, V. (2014). El uso del blog y las redes sociales en la asignatura de Procedimientos de Construcción. Jornadas de Innovación Educativa y Docencia en Red IN-RED 2014. 15-16 de julio, Valencia, pp. 1-9. ISBN: 978-84-90482711.

SEGADO, S.; YEPES, V.; CATALÁ, J.; PELLICER, E. (2014). A portfolio approach to a M.Sc. degree in construction management using a common project. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain),  10-12 March,  pp. 2020-2029. ISBN: 978-84-616-8412-0 (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Descabezado de muro pantalla

Figura 1. Descabezado con martillo rompedor manejado desde una retroexcavadora. http://www.generadordeprecios.info

Se define como descabezado la operación por la cual se retira el hormigón contaminado, o de inferior calidad o el exceso de la cabeza del muro-pantalla por encima del nivel de coronación previsto. Se trata de un procedimiento similar al descabezado de pilotes, tema que ya tratamos en un artículo anterior. A continuación vamos a describir brevemente los procedimientos usuales de descabezado de muros pantalla (Figura 1).

Son varias las razones por las que tenemos que descabezar un muro pantalla. En primer lugar puede ocurrir que hayamos rellenado a una cota superior a la teórica, pero lo más habitual es que el hormigón de la parte superior de las pantallas esté contaminado con los lodos de perforación o con el propio terreno, por lo que debe sanearse. Se debe realizar el descabezado del hormigón hasta el nivel de coronación usando equipos y métodos que no dañen al hormigón, la armadura o cualquier instrumentación instalada en los paneles. En particular, es importante respetar las armaduras del muro pantalla para que solapen con la viga de coronación. En ocasiones se utilizan equipos mecánicos pesado que pueden ocasionar un riesgo de fisuración extensiva, por lo que, en ocasiones, se debe restringir el tipo y tamaño de la máquina empleada.

Cuando sea posible, se puede descabezar por encima del nivel de coronación antes de que el hormigón haya fraguado. Sin embargo, se debe hacer el descabezado final hasta el nivel de coronación solo después de que el hormigón haya alcanzado la suficiente resistencia.

Una de las preguntas habituales es saber qué distancia hay que descabezar. La respuesta fácil es que la Dirección Facultativa, en función de la contaminación de la parte superior de la pantalla, es quien debería determinar la magnitud requerida. En una conversación técnica mantenida con Luis Miguel Salazar (PONTEM), me comentó que la norma NTE-CCP, que trata sobre pantallas, se determina lo siguiente: “la cota final de hormigonado rebasará a la teórica en al menos 30 cm. Este exceso en su mayor parte contaminado por el lodo, será demolido antes de construir la viga de atado de los paneles. Si la cota teórica coincide con la coronación de muretes se deberá hacer rebosar el hormigón hasta comprobar que no está contaminado“. Por tanto, ya tenemos una cota mínima: al menos 30 cm, pero la recomendación es comprobar la profundidad en la que el hormigón se encuentre contaminado.

Una de las formas habituales de descabezar el muro-pantalla es de forma manual con ayuda de martillos picadores. En la Figura 2 se puede ver esta operación. Se trata de un procedimiento que presenta poco rendimiento y que puede resultar penoso para los operarios. Es por ello que, en caso de descabezar grande volúmenes, es preferible desde el punto de vista económico y de rendimiento el uso de medios más mecanizados. Por ejemplo, en la Figura 3 se observa un martillo rompedor manejado desde del brazo de una retroexcavadora.

Figura 2. Descabezado de la pantalla con martillos picadores manuales. Cortesía: Geocisa

 

Figura 3. Descabezado de muro pantalla mediante martillo rompedor. http://www.gestionaobras.com/muros-pantalla-torremalilla/

El descabezado de muros pantalla mediante herramientas hidráulicas presenta ventajas respecto al uso de martillos rompedores: una mayor productividad, mínimo daño sobre el propio muro pantalla, la posibilidad de dejar la armadura intacta, no hay grietas por debajo del nivel de corte, bajos costes de operación y alta eficiencia.

Se puede realizar el descabezamiento de muros pantalla mediante un quebrantador hidráulico, de forma similar a los pilotes (ver Figura 4). Se trata de un cilindro quebrantador que funciona con el principio de cuña. Existen quebrantadores que pueden manejarse por un solo operario con una fuerza de quebrantación superior a las 4000 kN. El trabajo es silencioso, sin polvo ni vibraciones, de peso ligero y apto para utilizarse en espacios cerrados o de difícil acceso.

Figura 4. Descabezamiento de un pilote mediante quebrantador hidráulico. http://www.taladraxa.com/servicios/quebrantado/descabezado-de-pilote.html

También existen herramientas accionadas mediante gatos hidráulicos que permiten un descabezado limpio y preciso de la cabeza del muro-pantalla, tal y como podemos observar en las Figuras 5 y 6.

Figura 5. Descabezado de muro pantalla mediante gatos hidráulicos. http://geojuanjo.blogspot.com/2011/05/descabezando-muros-pantalla.html

 

Figura 6. Descabezador hidráulico de muros pantalla. https://www.pilebreaker.com/wall-breaker

Otra de las opciones que pueden utilizarse es utilizar unas mandíbulas hidráulicas que, literalmente, “se comen” el hormigón, rompiéndolo (Figura 7).

Figura 7. Descabezado de muros pantallas mediante mandíbulas. http://coynsa.com/derribos/demolicion-de-pantallas-de-hormigon-armado-en-macropozo/

También se pueden utilizar otros procedimientos como la hidrodemolición (ya se escribió sobre ello en un artículo sobre descabezado de pilotes) o bien se puede utilizar el fresado para el descabezado. Las Figuras 8 y 9 muestras dos tipos de máquinas que realizan un fresado de la cara interior del muro-pantalla. Sin embargo, la misma herramienta sirve para el descabezado, tal y como se puede ver en el vídeo que sigue.

Figura 8. Fresado de muro pantalla. http://www.retasur.com/servicios/fresado-de-pantallas-de-hormigon/

 

Figura 9. Fresado de muro pantalla. http://www.comportiz.com/fresado-de-muro-de-pantalla.html

 

 

Referencias:

ORDEN de 8 marzo 1983, Norma Tecnológica de la Edificación NTE-CCP, «Cimentaciones, Contenciones, Pantallas». BOE 16 abril 1983, núm. 91, pág. 10529.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Optimización de pórticos de hormigón armado con sistemas de agrupación de columnas

Nos acaban de publicar en la revista Automation in Construction (primer cuartil del JCR) un artículo relacionado con la optimización de pórticos de hormigón armado con sistemas de agrupación de columnas. Se trata de una colaboración con el profesor Moacir Kripka y está dentro del proyecto de investigación DIMALIFE.

Puedes descargar gratuitamente el artículo hasta el 22 de junio de 2019 en el siguiente enlace: https://authors.elsevier.com/a/1Y~vl3IhXMfb77

ABSTRACT

In structural design, it is common practice to adopt the same cross-sectiondimensions for a group of elements. This procedure is mainly for practical and aesthetic reasons, as well as to reduce labour costs, but it also has a positive effect of reducing the number of variables, which simplifies the usual trial and error design process. On the other hand, the total materials cost obtained is closely related to this grouping. Based on this, the present work aims to minimize the cost of reinforced concrete plane frames considering the automated grouping of columns. To achieve this objective, an optimization software was developed by the association of matrix structural analysis, dimensioning and optimization. The sections dimensions, the area of steel and the concrete strength of beams and columns were taken as design variables. For a given maximum number of groups, the optimum grouping and the corresponding values to design variables are obtained. The strategy proposed in this paper to obtain the grouping reduces significantly the number of infeasible candidate solutions during the search process and avoid the proposition of unrealistic designs. For the optimization, a variant of the Harmony Search method was adopted. Some structures were analyzed in order to validate the application of the proposed formulation, as well as to verify the influence of the grouping of elements on the final results. In these structures, it was possible to observe a significant additional reduction in the total cost when automated grouping is performed regarding a uniform grouping, even when a small number of groups is considered. For the 20-floor building frame analyzed, the cost reduction from uniform to automated grouping varied from 5.53 to 7.35%. The influence of the concrete strength on optimal results was also investigated, indicating a cost reduction of 9.74% from best (40 MPa) to worst case (20 MPa). In general, it can be concluded that, when applied in conjunction with the usual design variables, the proposed procedure can enable a significant additional economy, without affecting the structural safety.

KEYWORDS

Optimization; automated grouping; reinforced concrete; plane frames; harmony search

Reference:

BOSCARDIN, J. T.; YEPES, V.; KRIPKA, M. (2019). Optimization of reinforced concrete building frames with automated grouping of columns. Automation in Construction, 104: 331-340. DOI:10.1016/j.autcon.2019.04.024

 

 

 

Problemas en la adopción del BIM en la rehabilitación estructural

La Arquitectura, la Ingeniería y la Construcción ha estado cambiando durante los últimos años por varias razones. La aparición de nuevas tecnologías como BIM y técnicas como Lean Construction o el Análisis del Ciclo de Vida están creando nuevas tendencias y oportunidades que alteran el metodologías de esta industria. De estas técnicas hemos tenido oportunidad de hablar en artículos anteriores en este blog. Además, en los últimos años el modelo de negocio está también sufriendo cambios. La rehabilitación está ganando cada vez más importancia en el sector. A continuación os dejo un capítulo del libro “Reactive proactive architecture” que trata sobre estos problemas. El libro recoge los resultados de la primera edición del Valencia International Biennial of Research in Architecture VIBRArch. Espero que os sea de interés.

 

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V. (2018). Problems in the adoption of BIM for structural rehabilitation, in CABRERA, I. et al. (Eds.): Reactive proactive architecture. Editorial Universitat Politècnica de València, pp. 284-289.  ISBN 978-84-9048-713-6. Valencia.

Descargar (PDF, 165KB)

 

STARSOL: Pilotes con hélice continua mejorada

Figura 1. Pilotes Starsol. http://www.soletanche-bachy.com.ar

Dentro de los pilotes de extracción de barrena continua podemos distinguir un procedimiento mejorado denominado STARSOL. Se trata de un sistema desarrollado por el grupo francés SOTELANCHE-BACHY, al cual pertenece la empresa española RODIO, por lo que también se llama este procedimiento Rodiostar/Starsol. Con este sistema se resuelven dos problemas que tenían procedimientos anteriores: la perforación de capas duras y la ejecución y control de la calidad del hormigonado. La perforación en capas duras se realiza mediante un motor de gran potencia, con un par de 90000 N·m, incorporando un útil de corte bajo el eje de la hélice, con lo que puede atravesar o empotrase en terrenos de 35 a 50 N/mm2 de resistencia a rotura. Ello hace innecesario el uso de trépano. Tampoco se necesitan lodos ni camisa porque el hormigonado se realiza a través del tubo interno, que funciona a modo de Tremie. El mayor problema es que las armaduras deben introducirse después del hormigonado, aunque este problema se podría resolver definitivamente con hormigones armados con fibras de acero. Los diámetros habituales de este tipo de pilotes se encuentran entre 0,40 y 1,00 m, con una profundidad máxima normal de 30 m. La potencia total instalada ronda los 250 KVA.

Los elementos principales del equipo son los siguientes:

  • Grúa dotada de grupo hidráulico
  • Mástil guía
  • Cabeza de rotación hidráulica
  • Manguera de introducción del hormigón al tubo interior
  • Barrena continua alrededor del tubo exterior
  • Tubo central con desplazamiento por el interior del tubo exterior
  • Sistema de gatos que permite el desplazamiento vertical del tubo central hasta 1,50 m
  • Útil de limpieza

En la Figura 2 se muestran las fases constructivas del método. El procedimiento comienza con la perforación mediante rotación de la barrena. Una vez llega a la profundidad requerida, se para la rotación, se levanta el conjunto y se comienza a bombear hormigón a presión. La distancia entre las bases de la barrena y del tubo sumergido es de 1,50 m. Por último, una vez hormigonado el pilote, se coloca la armadura, incluso con vibradores si fuera necesario. La armadura se puede introducir con este método fácilmente hasta 15 m, aunque el mejor registro de 17 m se consiguió en 1988.

La diferencia entre el procedimiento STARSOL y los pilotes de barrena continua convencionales es que en los primeros el hormigón se bombea a presión (de al menos 0,1 MPa, lo que asegura un excelente contacto en cualquier terreno), de forma que dicha presión y el volumen de hormigón se encuentran controlados. Esto garantiza que el primer hormigón vertido es el único que ha estado en contacto con el terreno y el único que puede estar contaminado. En el caso de los pilotes de barrena continua clásica, el hormigón se vierte a través del tubo central de la barrena y directamente sobre el anterior, mientras que en el sistema STARSOL, se realiza mediante un tubo telescópico introducido por dicha barrena hueca, el cual puede quedar introducido hasta 1,0 m por debajo de la lámina libre de hormigón, de ahí la mayor presión de bombeo y la gran ventaja con respecto al CPI-8 convencional; pues se evita la posibilidad de cortes en el hormigón.

Figura 2. Esquema del proceso de ejecución del pilote STARSOL

A continuación os dejo algunos vídeos explicativos que creo de interés.

Referencias:

GARCÍA-VALCARCE, A.; SACRISTÁN, J.A.; GONZÁLEZ, P.; HERNÁNDEZ, R.J.; PASCUAL, R.; SÁNCHEZ-OSTIZ, A.; IRIGOYEN, D. (2003). Manual de edificación. Mecánica de los terrenos y cimentaciones. Editorial CIE Dossat 2000, 710 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de entibación con cajones de blindaje o escudos

Figura 1. Detalle de cajones de blindaje Robust BOX. Fuente: www.atenko.com

Se utilizan los escudos o cajones de blindaje cuando se busca no sólo un sostenimiento del terreno, sino una buena protección a los trabajadores. Se trata de dos paneles unidos por codales de longitud regulable (Figura 20). La longitud de la plancha oscila entre los 2,00 y 6,00 m. Además, no es apta para entibar con presencia transversal de servicios.

Los blindajes se ensamblan en obra, fuera de la zanja, con anchuras regulables en función de la zanja. Cuando se trata de zanjas profundas, se colocan unos blindajes encima de otros, unidos mediante guías. Los cajones de blindajes se pueden utilizar hasta 4 m de profundidad, incluso en terrenos no cohesivos. A mayor profundidad los cajones se extraen con dificultad, pues se originan grandes esfuerzos sobre los codales y pueden aparecer descompensaciones del terreno totalmente desaconsejables. A partir de ahí, y hasta 6 m, deberían utilizarse cámaras con tablestacas.

Se distinguen dos tipos de sistemas de colocación de cajones de entibación: el método de descenso directo y el método de descenso escalonado.

El método de descenso directo, también llamado método de ajuste, consiste en introducir la entibación hasta el fondo en la zanja ya excavada. Esto es posible con paredes estables, verticales y con una excavación que presente la misma anchura que la entibación (ver Figura 2). El espacio entre la cara exterior del blindaje y el frente de excavación debe ser el mínimo posible, debiéndose rellenar para evitar los movimientos laterales del cajón. Estos escudos se montan en obra con una simple retroexcavadora o con una grúa pequeña.

Figura 2. Montaje del sistema de entibación con cajones de blindaje mediante descenso directo. Fuente: http://www.iguazuri.com/catalogos/entibacion_general.pdf

El método de descenso escalonado, también llamado de “corte y bajada”, se utiliza para la colocación de cajones provistos de bordes cortantes. Consiste en empujar cada panel con la cuchara de una pala excavadora a uno y otro lado de la entibación, alternando el descenso con la excavación y retirada del suelo (Figura 22). El avance en el descenso no debe exceder 0,50 m del borde inferior de la plancha.

Figura 3. Montaje del sistema de entibación con cajones de blindaje mediante el método de “corte y bajada”. Fuente: UNE-EN 13331-1

En el siguiente vídeo se muestra cómo se monta el sistema mediante el método de “corte y bajada”.

Referencias:

OSALAN (2009). Seguridad práctica en la construcción. Instituto Vasco de Seguridad y Salud Laborales, Bilbao, 466 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de entibación por presión hidráulica

Entibadora hidráulica Pressbox Serie 800. Cortesía SBH Tiefbautechnick

El sistema de entibación por presión hidráulica está formado por una cámara compuesta por paneles, del tipo tablestacas. Su profundidad recomendada de trabajo es de hasta 7 m y su anchura máxima de 1,70 a 4,70 m. Una viga accionada hidráulicamente hinca e iza los paneles, por lo que no se recomienda en terrenos rocosos o con bolos. Ambas caras de la cámara están apuntaladas y sostenidas por unas secciones especiales situadas en los bordes.

Es un sistema especialmente diseñado para reparar conductos o instalar tuberías. También se recomienda para trabajos de arqueología y en cascos antiguos, pues no transmite vibraciones. Una vez instaladas las tuberías, una excavadora mueve la cámara a lo largo de unos carriles hasta la siguiente sección.

Entibación por presión hidráulica. https://www.sbh-verbau.de/es/entibacion-trench-shoring-perfiles-sbh/entibacion/pressbox.html

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas con la perforación o la hinca de pilotes ante información confusa del terreno

Reconocimiento geotécnico. https://www.arqhys.com/construccion/reconocimiento-geotecnico.html

En algunos artículos anteriores hemos descrito algunos procedimientos constructivos de los distintos tipos de pilotes. También se han comentado en artículos anteriores algunas técnicas relacionadas con los informes geotécnicos.

Podéis consultar el siguiente documento realizado por Juan Herrera y Jorge Castilla, de la UPM: “Utilización de técnicas de sondeos en estudios geotécnicos“:  http://oa.upm.es/10517/1/20120316_Utilizacion-tecnicas-sondeos-geotecnicos.pdf

 

Sin embargo, aquí quiero resaltar algunos casos concretos donde los informes geotécnicos pueden confundir al constructor y llevarlo a errores durante la perforación o hinca de los pilotes (Rodríguez Ortiz, 1982):

  1. Capas delgadas de arenisca floja o vetas de arena cementadas. Las coronas de sondeo las traspasan y disgregan, confundiéndose con arenas. Las barrenas que perforan los pilotes son de diámetro mayor y no tienen potencia suficiente para romper estas capas, con lo que se hace necesario un trépano. En el caso de hinca, se suele dar rechazo al llegar a estas capas, deteniéndose la hinca, lo que supone un riesgo de punzonamiento bajo las cargas de trabajo.
  2. Las vetas carbonatadas y costras, de naturaleza evaporítica y de espesores variables, con elevadas resistencias. Los sondeos a rotación disgregan las gravas presentes, otras veces se sacan testigos rocosos que se confunden con gravas o bolos calcáreos. Son errores de apreciación que, unido a la difícil correlación entre los cortes geotécnicos, provocan que pasen desapercibidas estas vetas y causen problemas en la hinca y en la perforación.
  3. Las vetas silicatadas se confunden con los cantos de sílex. Son capas de extraordinaria dureza que hace difícil la penetración de los pilotes, incluso con espesores de pocos centímetros.
  4. Bloques erráticos u obstáculos de tamaño similar al diámetro del pilote. Pueden dificultar enormemente el hincado o la perforación.
  5. Confusión entre roca sana y alterada en el apoyo del pilote, que puede magnificar o infravalorar la capacidad portante prevista.
  6. Evaluación de la resistencia de una capa rocosa para predecir si la excavación debe realizarse con trépano, tricono o elementos de corte rotativo.
  7. La estructura del substrato rocoso debe caracterizarse geológicamente y con reconocimientos puntuales para determinar si las fracturas impiden la perforación rotativa para un determinado diámetro.
  8. Los sondeos pueden interpretar una estabilidad de las paredes diferente a la perforación del pilote, pues los diámetros son diferentes. Si el terreno lo permite, se prefieren los sondeos helicoidales, pues se aproximan mejor a las condiciones de perforación del pilote.
  9. La permeabilidad del terreno y la presencia de capas granulares abiertas pueden impedir la perforación con lodos, debiéndose recurrir a la entubación. Un sondeo convencional puede pasar por alto este aspecto, salvo que se hagan pruebas de bombeo o permeabilidad.

Veamos este vídeo de geotecnia.ONLINE sobre las cinco cosas que debemos hacer antes de empezar con los sondeos o perforaciones de un estudio del terreno. El contenido se relaciona con lo que hemos contado anteriormente.

 

Referencias:

RODRÍGUEZ ORTIZ, J.M. (1982). Reconocimientos del terreno para pilotajes, en ROMANA, M. (Ed.): Apuntes sobre pilotes. Universidad Politécnica de Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.