Las ecoestructuras: pasos de fauna y estructuras de permeabilidad territorial en tiempos de opulencia

Figura 1. Ecoducto sobre la autopista A50 en los Países Bajos. https://es.wikipedia.org/wiki/Paso_de_fauna

Me ha causado cierto impacto la reflexión de Javier Rui-Wamba cuando en su libro “Teoría unificada de estructuras y cimientos. Una mirada transversal“, realiza una cronología y analiza la semántica asociada a las estructuras del transporte, en particular a los puentes. Textualmente dice lo siguiente: “Mucho más recientemente, en la época de opulencias económicas que suele preludiar otras de decadencia, nacieron las que algunos llaman ‘ecoestructuras’, como pueden ser los pasos de fauna y las estructuras de permeabilidad territorial“.

Resulta curioso relacionar la opulencia económica con la aparición de nuevos conceptos estructurales para los que se hace necesario, incluso, un nuevo vocabulario para describirlas. Los pasos de fauna, también llamados “ecoductos” o “puentes verdes” permiten, como indica su propio nombre, el paso de los animales a través de las autopistas o líneas férreas. Pueden ser puentes, túneles, escaleras para peces o, incluso, tendidos de cable de cuerda, todo depende del tipo de fauna que tenga que atravesar el obstáculo.

Espero que la protección medioambiental no tenga que ser exclusiva de los periodos de opulencia, pues ya hemos visto nuestra dependencia absoluta de nuestro entorno para la supervivencia como especie. Os dejo a continuación varias imágenes al respecto.

Figura 2. Puentes para animales. https://ecologismos.com/ecoductos-puentes-para-animales/
Figura 3. Escalera para peces. https://ecoinventos.com/escalera-de-peces/

Os dejo también algunos vídeos al respecto de estas ecoestructuras.

El significado de la indumentaria universitaria

En ocasiones nos hemos preguntado el significado de la indumentaria universitaria, especialmente cuando los miembros de la comunidad universitaria (estudiantes, licendiados, doctores y rectores) la usan en determinados actos académicos. Esta indumentaria tiene su origen en la tradición grecolatina y en los hábitos clericales. Os paso una infografía de la Universitat Politècnica de València donde se explica cada uno de los elementos de la vestimenta.

High Performance and Optimum Structures and Materials Encompassing Shock and Impact Loading HPSM/OPTI/SUSI 2022

This scientific event is a new edition of the High Performance and Optimum Design of Structures and Materials Conference and follows that originated in Southampton as long ago as 1989 and the Structures under Shock and Impact that started in Cambridge, Massachusetts, also in 1989.

The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. The conference addresses issues involving advanced types of structures, particularly those based on new concepts. Contributions will highlight the latest development in design and manufacturing issues.

Most high-performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis will be placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management.

The conference also addresses the topic of design optimisation. Contributions on numerical methods and different optimisation techniques are also welcome, as well as papers on new software. Optimisation problems of interest to the meeting involve those related to size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products, as the appearance of powerful commercial computer codes has created a fertile field for the incorporation of optimisation in the design process in all engineering disciplines.

The performance of the structures under shock and impact loads is another objective of the meeting. The increasing need to protect civilian infrastructure and industrial facilities against unintentional loads arising from accidental impact and explosion events as well as terrorist attacks is reflected in the sustained interest worldwide. While advances have been made in the last decades, many challenges remain, such as developing more effective and efficient blast and impact mitigation approaches than those that currently exist or assessing the uncertainties associated with large and small scale testing and validation of numerical and analytical models. All of that aimed to a better understanding of critical issues relating to the testing behaviour, modelling and analyses of protective structures against blast and impact loading.

The meeting will provide a friendly and useful forum for the interchange of ideas and interaction amongst researchers, designers and scholars in the community to share advances in the scientific fields related to the conference topics.

All conference papers are archived in the Wessex Institute eLibrary (www.witpress.com/elibrary) where they are easily and permanently available in Open Access format to the international community.

Conference Topics

The following list covers some of the topics to be presented at HPSM/OPTI/SUSI 2022. Papers on other subjects related to the objectives of the conference are also welcome.

  • Composite materials
  • Material characterisation
  • Natural fibre composites
  • Nanocomposites
  • Green composites
  • Composites for automotive applications
  • Transformable structures
  • Environmentally friendly and sustainable structures
  • Reliability-based design optimisation
  • Non-deterministic approaches
  • Evolutionary methods in optimisation
  • Aerospace structures
  • Biomechanics application
  • Lightweight structures
  • Design for sustainability
  • Design for durability
  • Lifecycle assessment
  • Structural reliability
  • Smart materials and structures
  • Optimization of civil engineering structures
  • Optimization in mechanical engineering
  • Optimization in the car industry
  • Design optimization of tall buildings
  • Metaheuristic algorithms
  • New algorithms for size and topology optimisation
  • BIM tools for design optimization
  • Emerging materials
  • Impact and blast loading
  • Energy-absorbing issues
  • Computational and experimental results
  • Response of reinforced concrete under impact
  • Seismic behaviour
  • Protection of existing structures
  • Industrial accidents and explosions
  • Security issues
  • Response of composite structures to blast and impact
  • Vehicle impact
  • Ballistics analysis
  • Dynamic material behaviour
  • Fluid-structure interaction
  • Seismic soil-structure interaction
  • Case studies

More information: https://www.wessex.ac.uk/conferences/2022/hpsm-opti-susi-2022

Descargar (PDF, 198KB)

 

Prólogo y reflexiones sobre la docencia de la asignatura de Procedimientos de Construcción

Estoy en este momento revisando la última prueba de imprenta de un Manual de Referencia (revisado por el sistema doble ciego) de la Universitat Politècnica de València, del cual soy autor. Se trata de un libro de 422 páginas, 259 ilustraciones y 325 preguntas de autoevaluación que se denomina “Procedimientos de construcción para la compactación y mejora del terreno”. Su referencia es el número 428 y os pasaré el enlace para que lo podáis conseguir en cuanto se publique.

Sin embargo, no me he podido resistir a adelantar el prólogo que he escrito a este libro y que, además de presentarlo, sirve como reflexión a la docencia de la asignatura “Procedimientos de Construcción” que actualmente se imparte en los grados de ingeniería civil y de ingeniería de obras públicas de la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia.

Prólogo

La docencia de una asignatura como “Procedimientos de Construcción” resulta complicada debido a que se debe enseñar al futuro ingeniero civil cómo hacer las obras. Eso incluye no solo las fases constructivas, sino también aspectos de gran relevancia como es el conocimiento de la maquinaria y los medios auxiliares, la seguridad y salud, el impacto ambiental de las obras y, sobre todo, el conocimiento básico necesario en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo ello para acertar en la selección del mejor proceso constructivo para una obra determinada. Y todo este conocimiento debe abordarse con una experiencia nula o muy pequeña del alumnado en relación con la realidad física de las obras.

La pregunta es inmediata: ¿Cómo podemos llevar la obra al estudiante en un aula? Resulta evidente la necesidad de que los futuros profesionales pisen las obras lo máximo posible y realicen prácticas en empresa. Pero esta experiencia no es suficiente para adquirir las competencias y conocimientos necesarios.

El problema crece cuando este tipo de asignaturas de construcción se imparten en los primeros cursos de los grados. En los planes antiguos, “Procedimientos Generales de Construcción y Organización de Obras” se impartía en los últimos cursos, incluso en paralelo con la asignatura de Proyectos. Ello permitía al estudiante aplicar todos los conocimientos adquiridos con anterioridad y hacía que la asignatura se pudiese entender con mayor profundidad.

Pero el problema sigue siendo el mismo. Me acuerdo que esta asignatura la estudié en cuarto curso de la titulación de ingeniero de caminos, canales y puertos, cuando el plan se desarrollaba en seis cursos. En aquella época, hablo del año 1986, D. Hermelando Corbí Abad, profesor de la asignatura, utilizaba todos los medios disponibles en su momento como el proyector de opacos, fotografías que nos pasábamos de mano en mano o catálogos de máquinas o de empresas para que nos imagináramos cómo se podría hacer una obra. Y, sobre todo, pizarra, mucha pizarra. Tomábamos apuntes en clase y teníamos fotocopias mecanografiadas por el profesor que nos servían a modo de texto. Todo se complementaba con abundantes visitas a obras y excursiones organizadas que nos abrían los ojos, el compañerismo y la ilusión por esta apasionante profesión.

Cuando en el año 1994 empecé a impartir por primera vez la asignatura, tuve que recurrir a todo tipo de estrategias disponibles en aquel momento. Era entonces profesor asociado, más joven, pero con años ya de experiencia en el sector público y privado. Usábamos vídeos en VHS, transparencias que nos permitían ahorrar mucha pizarra, fotografías y catálogos. Se completaba con las visitas a obra. Pero el problema de acercar la realidad al estudiante seguía siendo complicado. Además, las técnicas constructivas, y sobre todo las máquinas y los elementos auxiliares, cambiaban de forma acelerada. Todo demasiado rápido para los medios de los que disponíamos.

Sin embargo, la aparición de los ordenadores, el PowerPoint y, sobre todo, internet, revolucionó todo con el cambio de milenio. Nada volvió a ser como antes. La información y las novedades se acumularon en mi ordenador. Cientos de fotografías, vídeos y documentación se perdía entre las carpetas de mi disco duro. Había que poner orden.

El descubrimiento de las ventajas que tenía disponer de una bitácora digital fue algo que revolucionó mi forma de impartir las clases de esta asignatura. En efecto, el 5 de marzo de 2012 empecé el que iba a ser un blog personal para organizar la información que tenía dispersa en mi ordenador. Fue una auténtica revolución. Podía ordenar por entradas información dispersa sobre temas de construcción, incluyendo fotografías, vídeos y enlaces a otros documentos. Nada volvería a ser lo mismo. Los estudiantes disponían de una herramienta con la que tener toda la información, no solo de clase, sino que esta la podían ampliar hasta donde quisieran buceando en internet. Así nació el “Blog de Víctor Yepes” https://victoryepes.blogs.upv.es/, que hoy tiene casi 1 500 artículos y más de 5 000 visitas diarias. Además, con la potencia de las redes sociales, toda la información se multiplicaba de forma exponencial.

El paso siguiente era el lógico y normal. Se trataba de depurar y mejorar la información para hacer un libro. Así surgieron una serie de textos docentes que, bajo el nombre de Manual de Referencia, edita la Universitat Politècnica de València. Además, este libro en particular, sirve de base para un curso en línea, gratuito y masivo que, bajo el mismo nombre, se imparte desde este mismo año en la plataforma edX, donde colabora nuestra universidad. En el enlace https://www.edx.org/course/introduccion-procedimientos-construccion-obra-civil se puede acceder al curso en cualquier momento, con la posibilidad de obtener un certificado oficial de dicho curso.

En cuanto a la estructura de este libro, realmente tiene dos grandes partes, una dedicada a la compactación mecánica de los suelos y, la segunda, que se centra en las técnicas de mejora del terreno. Si bien es cierto que la compactación mecánica no deja de ser una técnica de mejora del terreno, por su importancia y generalidad en las obras, se ha tratado como una parte diferenciada. También podréis encontrar un buen número de referencias y una cantidad nada desdeñable de preguntas tipo test con sus respuestas para averiguar si habéis comprendido bien lo explicado en el texto. Al final podréis localizar un índice temático que, de buen seguro, servirá para encontrar información de forma rápida.

La necesidad de un libro como este surge para rellenar un hueco editorial importante. Si bien se pueden encontrar cientos de libros de gran calidad en materias tales como la geotecnia y la mecánica de suelos, la resistencia de materiales y cálculo de estructuras, la hidráulica, etc., son pocos los que se dedican a desgranar los procedimientos constructivos, la maquinaria y los medios auxiliares necesarios para ello.

El reto fue bastante importante. Se trató de estructurar información muy dispersa, técnicas clásicas con otras de rabiosa actualidad, maquinaria que, año tras año, deja a los modelos anteriores obsoletos. Y, afortunadamente, es posible que, en unos años, parte de las técnicas contenidas en este volumen queden como recuerdos del pasado, dando paso a la robotización, la inteligencia artificial, los gemelos digitales y otras muchas técnicas emergentes que van a desdibujar la forma que tenemos de entender las obras.

Por último, y aunque se ha realizado un esfuerzo minucioso por revisar el manuscrito, es posible que pueda existir alguna errata típica de una obra que se edita por vez primera. Asumo la responsabilidad de cualquier error y, en la medida de lo posible, trataré de subsanar y mejorar los aspectos o sugerencias que me hagáis llegar.

Este libro, a partir de ahora, deja de ser mío y pasa a ser vuestro. Espero que sirva para todos los estudiantes y profesionales que quieran introducirse al maravilloso mundo de las obras, y en particular, a aquellos que tienen que luchar, día a día con el terreno donde se van a asentar.

Valencia, a 21 de julio de 2021

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ejecución e interpretación de ensayos no destructivos de pilotes y pantallas “in situ”

A través del blog de Carlos Fernández Tadeo se puede acceder a la descarga gratuita de la monografía del Cedex denominada “Recomendaciones para la ejecución e interpretación de ensayos no destructivos para el control de la integridad de pilotes y pantallas in situ”. Esta monografía también se puede descargar gratuitamente de la página de publicaciones de la web de Aetess. No obstante, la monografía se publicó en 2006, y si bien los conceptos básicos permanecen vigentes, la instrumentación y los equipos ha avanzado considerablemente. Os remito a Carlos Fernández Tadeo, gran especialista en este tema, para más información al respecto.

Descargar (PDF, 7.06MB)

 

Adiós a un gran ingeniero estructural: Jörg Schlaich

Jörg Schlaich (1934-2021). https://www.pinterest.es/pin/714453928359657092/

De vez en cuando nos despertamos con la noticia del fallecimiento de alguien al que admiramos. Este es el caso de Jörg Schlaich, uno de los grandes ingenieros estructurales del siglo XX. Este blog no tendría sentido si no dedicara unas palabras, aunque sean muy pocas, a la figura de este prestigioso ingeniero. Schlaich nació el 17 de octubre de 1934 en Stetten, cerca de Stuttgart (Alemania) y falleció el 4 de septiembre de 2021. Estudió arquitectura e ingeniería civil en las Universidades Técnicas de Stuttgart y Berlín. Fue profesor durante 33 años en la Universidad Técnica de Stuttgart, publicando más de 300 artículos científicos y prácticos de la ingeniería estructural. Ningún ingeniero estructural debería desarrollar su carrera profesional sin haber estudiado y aprendido de este gran maestro. La aparente simplicidad de sus estructuras esconde soluciones radicalmente audaces, convirtiendo sus estructuras en obras maestras. Su forma de enseñar y trabajar no era la tradicional, sino que el diseño y su proceso son los elementos más importantes, donde la forma y la función deben ir de la mano.

El trabajo de Schlaich ha buscado siempre nuevos conceptos estructurales, que han quedado en obras como torres, puentes, cubiertas y edificios. Se puede destacar la gran cubierta de los juegos Olímpicos de Munich, la cubierta retráctil del Estadio Olímpico de Montreal, las cubiertas del Museo de la Tolerancia de Jerusalén, la estación de tren Spandau en Berlín, el puente Ting Kau en Hong Kong y el puente Dubai Creek Crossing, en Dubai.

España también ha construido obras de este gran ingeniero, como el monumento homenaje a las víctimas del  11-M en Madrid, la cubierta del Estadio Olímpico de Sevilla, la cubierta movible de la plaza de toros de Zaragoza, la cubierta de la plaza de toros de Vista Alegre, la cubierta del Palacio de Comunicaciones de Madrid o la cubierta y la fachada de cristal del complejo Príncipe Pío en Madrid.

No obstante, también destaca su preocupación medioambiental, especialmente en el ámbito de la energía solar, como las plantas realizadas en Namibia, Arabia Saudí, Alemana, Almería, Sevilla o la chimenea solar experimental de Manzanares.

En fin, nos ha dejado uno de los grandes. Poco me parece este pequeño recordatorio a su inmensa figura. D.E.P.

Cubierta de los juegos Olímpicos de Munich. https://www.guiadealemania.com/parque-olimpico-munich/

Os dejo un vídeo que se realizó con motivo de la entrega del I Premio de Ingeniería Civil (2008), de la Fundación José Entrecanales Ibarra.

 

Francesc Macià y la primera obra de hormigón armado en España

Francesc Macià (1859-1933) https://es.wikipedia.org/wiki/Francesc_Maci%C3%A0

Francesc Macià i Llussà es conocido por su faceta política y como presidente de la Generalitat de Cataluña. Pero menos conocida es su vertiente como ingeniero militar y como autor de la primera obra construida en España con hormigón armado. Aquí vamos a hablar de los inicios de este novedoso material.

En efecto, fueron los ingenieros militares y los ingenieros de caminos los que mostraron en sus inicios un mayor interés por el empleo del hormigón armado, aunque sus trabajos no tuvieron mucha repercusión. Un ejemplo sería la propuesta del ingeniero de caminos José Nicolau en 1891 con el empleo de carriles embutidos en hormigón para crear un nuevo tipo de traviesas en una línea de ferrocarril catalana.

Pero es el depósito de agua de 1000 m3 construido en 1893 en Puigverd de Lleida por el capitán de ingenieros Francesc Macià, la primera construcción donde se utilizó el hormigón armado. Con 1.000 m³ de capacidad, descubierto y de planta circular de 25,30 m de diámetro, llama la atención el pequeño espesor de sus paredes de 6 cm, reforzadas con la malla de alambres característica del sistema Monier. Macià se decidió a introducir el hormigón armado en España, primero patentando un sistema similar y luego utilizando los derechos del sistema Monier, que comercializará en los siguientes años junto con los empresarios Batlle y Lecanda.

Depósito de agua de Puigverd de Lleida, construido en 1893 por Françesc Macià y aún en uso. http://www.cehopu.cedex.es/hormigon/fichas/img_ficha.php?id_img=52

Una inmensa dificultad para el desarrollo del hormigón lo suponía la inexistencia de fábricas de cemento Portland ya que hasta 1900 no se construyó la primera en Tudela-Veguín (Asturias), con 50 años de retraso en relación con instalaciones similares erigidas en Francia o Inglaterra. Posteriormente iniciaron su andadura las fábricas de Quinto (Zaragoza) y Añorga-Txiki de Rezola (San Sebastián), también en 1900, ya en 1902 la de “Asland”, en Barcelona y en 1903 la de Olatzagutia (Navarra).

Dado que la primera planta de cemento no se construyó en Tudela-Veguín (Asturias) hasta 1900, la ausencia de la Planta de Cemento Portland supuso para el desarrollo del hormigón grandes dificultades. Tengamos en cuenta que estas instalaciones aparecieron 50 años atrás de unas instalaciones similares construidas en Francia o Reino Unido. Posteriormente, también en 1900, las fábricas de Quinto (Zaragoza) y Añorga-Txiki de Rezola (San Sebastián) iniciaron su actividad, comenzando en 1902 la de “Asland” en Barcelona en “Asland” y, en 1903, la de Olatzagutia (Navarra).

Pero si queremos hablar realmente de los inicios del hormigón armado en España, no hay que olvidar a sus verdaderos impulsores, los ingenieros de caminos José Eugenio Ribera y Juan Manuel de Zafra y Esteban. Pero eso será objeto de otro artículo.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sostenibilidad de las carreteras rurales mediante la lógica neutrosófica

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. En este caso se ha considerado la incertidumbre en la determinación de los criterios para la sostenibilidad en carreteras rurales usando la lógica neutrosófica. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En Latinoamérica existe una gran diferencia entre los kilómetros de vías pavimentadas y los que no tienen ningún tipo de protección. Esta situación se agrava en las zonas rurales, limitando las oportunidades de desarrollo y la calidad de vida de los habitantes. En Chile, existen programas estatales que buscan reducir la brecha territorial a través de soluciones básicas de pavimentación de bajo costo; sin embargo, los criterios de priorización aplicables a los caminos rurales son poco claros. Son múltiples los actores que intervienen en los espacios rurales, y la inexistencia de patrones de referencia aumenta la subjetividad en la toma de decisiones de este tipo de infraestructuras. Este estudio intenta determinar los criterios que influyen en la selección de caminos rurales en el sur de Chile para promover el desarrollo territorial sostenible considerando los múltiples actores y la incertidumbre del proceso de selección. Para ello, se realizó una revisión documental, visitas a terreno y 12 entrevistas semiestructuradas. Los criterios se han validado a través de un panel multidisciplinario de expertos y la aplicación de números neutrosóficos para abordar la incertidumbre derivada de estas consultas. Los resultados de este estudio aportan 14 criterios basados en la sostenibilidad para apoyar la planificación de caminos rurales básicos en el sur de Chile.

Abstract:

In Latin America, there is a wide gap between kilometers of paved ways and those with no type of protection. This situation is worse in rural areas, limiting development opportunities and inhabitants’ quality of life. In Chile, there are state programs that seek to reduce the territorial gap through basic low-cost paving solutions; however, the prioritization criteria for rural roads are unclear. Multiple actors affect the rural territories, and the non-existence of reference patterns increases subjectivity in infrastructure decision making. This study attempts to determine criteria that influence the selection of rural roads in southern Chile to promote sustainable territorial development considering multiple actors and the uncertainty of the selection process. For this, a documentary review, field visits, and 12 semi-structured interviews were conducted. The criteria are validated through a multidisciplinary panel of experts and the application of neutrosophic numbers to address the uncertainty derived from the expert consultations. The results of this study contribute 14 sustainable criteria in order to support the planning of basic rural roads in southern Chile.

Keywords:

Rural road; uncertainty; Chile; neutrosophic; sustainability; stakeholders

Reference:

SIERRA, L.; ARAYA, F.; YEPES, V. (2021). Consideration of uncertainty and multiple disciplines in the determination of sustainable criteria for rural roads using neutrosophic logic. Sustainability, 13(17):9854. DOI:10.3390/su13179854

Descargar (PDF, 1.11MB)

Dejar una estructura de hormigón sin reparación alguna: “El Elogio” de Chillida

Elogio del horizonte, de Eduardo Chillida (Gijón). Imagen: V. Yepes (2021)

Este verano tuve la ocasión de volver a visitar Gijón. En el Cerro de Santa Catalina se encuentra una obra escultórica de hormigón armado de grandes dimensiones denominada “Elogio del horizonte“, de Eduardo Chillida. Se trata de una obra de 10 metros de alto y 500 toneladas que se erigió en el año 1990.

Se trata de un lugar icónico de la ciudad, muy visitado y fotografiado por los numerosos visitantes que llegan de todas partes.

Lo curioso de todo esto es que me fijé que la estructura, que ya tiene 31 años de edad, empieza a sufrir el deterioro habitual de cualquier estructura de hormigón situada en ambiente marino. Se dejan ver las armaduras al aire oxidadas. Lo normal en estos casos, sería emprender una labor de mantenimiento para alargar la vida útil de la escultura.

Pero ahí está lo curioso de este asunto. Leyendo la prensa al respecto (La Nueva España, 03/08/17), pude ver que Chillida manifestó su voluntad en el contrato firmado con el municipio que “la integridad de la obra habrá de ser escrupulosamente respetada, quedando expresamente prohibida su transformación o mutilación”. Además, en el contrato se hace referencia al mantenimiento de la escultura de esta forma: “El Ayuntamiento se obliga a mantener la obra y su entorno en perfecto estado de conservación y mantenimiento, debiendo realizar las obras necesarias para tal menester, así como las de reparación para subsanar el deterioro que pudiera sufrir la obra, bien por el simple transcurso del tiempo, o la acción de terceros, lo que deberá hacerse siguiendo las instrucciones e indicaciones que señale el autor”. Eduardo Chillida falleció en 2002 y la familia Chillida, según el gobierno de Foro, indica que no se puede actuar para reparar “daños estructurales por el salitre” dado que “el autor quería que tuviese un envejecimiento natural”.

Detalle del inicio del deterioro de la escultura de Chillida. Imagen: V. Yepes (2021)

Y aquí viene lo curioso de este dilema. El autor, o al menos su familia así lo interpreta, parece que deseaba que la estructura fuera envejeciendo hasta su deterioro total como parte de su idea artística. No obstante, sin un mantenimiento, cualquier estructura se deteriorará irremediablemente. Los daños personales van a ser difícil que se den en un futuro, pues bastaría impedir el paso a la escultura, pero las generaciones futuras solo podrán ver la escultura original a través de fotografías o vídeos.

Supongo que se tendrá que respetar la voluntad de su autor. Si esto fuera así, será un buen ejemplo, a escala real, de cómo se va a deteriorar una estructura de hormigón, en este caso, muy masiva y sometida a su propio peso. No obstante, también es verdad que la escultura se financió con cargo a los vecinos de Gijón, por lo que algo tendrían que opinar.

En fin, tengo aquí un buen ejemplo para fomentar el debate en clase sobre los derechos de autor en la arquitectura y la ingeniería, así como la obligatoriedad, o no, de mantener las estructuras e incluso transformarlas si fuera necesario. Otro caso del que hablé en su momento es la falta de respeto a la voluntad de los autores del puente de Fernando Reig, en Alcoy: https://victoryepes.blogs.upv.es/2018/05/17/el-derecho-de-autor-en-las-obras-de-ingenieria-el-puente-fernando-reig-en-alcoy/.

Ahí dejo el debate.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Open Access Book: Trends in Sustainable Buildings and Infrastructure

Tengo el placer de compartir con todos vosotros, totalmente en abierto, un libro que he editado junto con Ignacio J. Navarro. La labor de editar libros científicos es una oportunidad de poder seleccionar aquellos autores y temas que destacan en un ámbito determinado. En este caso, sobre las tendencias en las infraestructuras y la construcción sostenible.

Además, resulta gratificante ver que el libro se encuentra editado en abierto, por lo que cualquiera de vosotros os lo podéis descargar sin ningún tipo de problema en esta entrada del blog. También os lo podéis descargar, o incluso pedirlo en papel, en la página web de la editorial MPDI: https://www.mdpi.com/books/pdfview/book/3854

Referencia:

YEPES, V.; NAVARRO, I.J. (Eds.) (2021). Trends in Sustainable Buildings and Infrastructure. MPDI, 272 pp., Basel, Switzerland. ISBN: 978-3-0365-0914-3

 

Preface to ”Trends in Sustainable Buildings and Infrastructure”

The Sustainable Development Goals agreed by the United Nations in 2015 advocate for a profound paradigm shift in the way that infrastructures are designed. Actual practices usually fall short in assessing issues beyond the economic ones. Aspects such as the environmental impacts resulting from the life cycle of our structures, as well as the positive and negative effects that their construction and maintenance can have on society, are new criteria that need to be effectively included in our designs by 2030. To face such a challenging task, actual practices need to be reinvented, approaching the design of infrastructures from a holistic perspective that simultaneously integrates each of the three dimensions of sustainability, namely economy, environment and society. This book comprises 11 chapters that explore the actual sustainability-related trends in the construction sector. The chapters collect the papers included in the Special Issue “Trends in Sustainable Buildings and Infrastructure” of the International Journal of Environmental Research and Public Health. We would like to thank both the MDPI publishing and editorial staff for their excellent work, as well as the authors who have collaborated in its preparation. The papers included in this book cover a broad range of topics directly related to the sustainable design of infrastructures, addressing maintenance design criteria towards sustainability, life-cycle-oriented building and infrastructure design, design optimization based on sustainable criteria, inclusion of the social dimension in the design of infrastructures and the application of decision-making processes that effectively integrate the three dimensions of sustainability, resilience and the use of sustainable materials.

About the Editors

Víctor Yepes is a full professor of Construction Engineering; he holds a Ph.D. in civil engineering. He serves at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has been the Academic Director of the M.S. studies in concrete materials and structures since 2007 and a Member of the Concrete Science and Technology Institute (ICITECH). He is currently involved in several projects related to the optimization and life-cycle assessment of concrete structures, as well as optimization models for infrastructure asset management. He currently teaches courses in construction methods, innovation, and quality management. He has authored more than 250 journals and conference papers, including more than 100 published in journals quoted in JCR. He acted as an expert for project proposal evaluation for the Spanish Ministry of Technology and Science, and he is a main researcher in many projects. He currently serves as an Editor-in-Chief for the International Journal of Construction Engineering and Management and a member of the editorial board of 12 other international journals (Structure and Infrastructure Engineering, Structural Engineering and Mechanics, Mathematics, Sustainability, Revista de la Construcci´on, Advances in Civil Engineering, Advances in Concrete Construction, among others).

Ignacio Navarro Martíınez holds a Ph.D. degree in civil engineering. He works at the Department of Construction Engineering, Universitat Politècnica de València, Valencia, Spain. He has published 11 articles and 9 conference papers in JCR journal. He combines his research activity with his professional career as a structural designer. During his professional experience, he has been dedicated to the calculation of steel and concrete structures related to renewable energies, especially in the field of wind energy, both onshore and offshore, as well as to the calculation of road and port structures. He has specialized in the numerical calculation of steel and concrete structures in onshore and offshore environments.

Descargar (PDF, 55.18MB)