Propuesta de indicadores de sostenibilidad para el proyecto de puentes de pequeña luz

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR) sobre la propuesta de indicadores de sostenibilidad para el proyecto de puentes de pequeña luz.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

También es fruto de la colaboración con el profesor Moacir Kripka, de la Universidad de Passo Fundo, de Brasil.

En este trabajo se presenta la aplicación de técnicas que analizan la sostenibilidad en el ciclo de vida de las superestructuras de puentes de pequeña luz. El objetivo es obtener indicadores ambientales y económicos para su integración en el proceso de adopción de decisiones a fin de minimizar el impacto ambiental, reducir el consumo de recursos y  los costos del ciclo de vida. Se analizaron 27 configuraciones de puentes de pequeñas luces (6 a 20 m) de los siguientes tipos: puentes mixtos de acero y hormigón, puentes de hormigón armado in situ, puentes prefabricados y puentes de hormigón pretensado, que comprenden un total de 405 estructuras. Los impactos ambientales y los costos se cuantificaron mediante la evaluación ambiental del ciclo de vida y el análisis del costo del ciclo de vida siguiendo los límites de los sistemas desde la extracción de los materiales hasta el final de la vida del puente (“de la cuna a la tumba”). En general, los resultados indicaron que el rendimiento ambiental de los puentes estaba vinculado significativamente a la selección de los materiales y la configuración de los puentes. Además, el estudio permitió identificar los productos y procesos de mayor impacto a fin de subvencionar el diseño de estructuras y políticas gubernamentales más sostenibles.

Abstract:

The application of techniques to analyze sustainability in the life cycle of small-span bridge superstructures is presented in this work. The objective was to obtain environmental and economic indicators for integration into the decision-making process to minimize the environmental impact, reduce resource consumption and minimize life cycle costs. Twenty-seven configurations of small-span bridges (6 to 20 m) of the following types were analyzed: steel–concrete composite bridges, cast in situ reinforced concrete bridges, precast bridges and prestressed concrete bridges, comprising a total of 405 structures. Environmental impacts and costs were quantified via life cycle environmental assessment and life cycle cost analysis following the boundaries of systems from the extraction of materials to the end of bridge life (“from cradle to grave”). In general, the results indicated that the environmental performance of the bridges was significantly linked to the material selection and bridge configuration. In addition, the study enabled the identification of the products and processes with the greatest impact in order to subsidize the design of more sustainable structures and government policies.

Keywords:

bridges; sustainability; design; life cycle assessment

Reference:

MILANI, C.J.; YEPES, V.; KRIPKA, M. (2020). Proposal of sustainability indicators for the design of small-span bridges. International Journal of Environmental Research and Public Health, 17(12):4488. DOI:10.3390/ijerph17124488

Descargar (PDF, 9.19MB)

Ignacio Javier Navarro Martínez, Premio al Ingeniero Joven 2020

Ignacio Javier Navarro Martínez, Premio Ingeniero Joven 2020
Ignacio Javier Navarro Martínez, Premio Ingeniero Joven 2020

La Junta Rectora de la Demarcación de la Comunidad Valenciana del Colegio de Ingenieros de Caminos, Canales y Puertos, ha otorgado el Premio Ingeniero Joven en su edición 2020 a Ignacio Javier Navarro Martínez, colegiado 30.550, resaltando su carácter emprendedor e innovador, así como su trayectoria profesional internacional, con intervención en obras singulares de relevancia y su extensa labor de investigación, que se refleja en los numerosos artículos que han sido publicados en revistas técnicas de prestigio internacional.

He tenido la oportunidad de dirigir, junto con el profesor José V. Martí, su tesis en el máster en ingeniería del hormigón: “Análisis de los impactos socio-económicos y de la durabilidad de las medidas de prevención de la corrosión por cloruros en estructuras de hormigón armado“, y su tesis doctoral: “Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environments“, que obtuvo la máxima calificación de “Sobresaliente Cum Laude” por unanimidad. De esta tesis se publicaron siete artículos científicos de impacto internacional en revistas indexadas en el JCR.

Para mí es un orgullo dirigir el principio de la investigación y las tesis doctorales de estudiantes que, con el paso de los años, se han convertido en grandísimos profesionales. Destacan, además de Ignacio, el Premio Abertis Chile de Cristina Torres Machí, el premio Cemex y el Junior Award IALCCE a Tatiana García Segura, entre otros muchos estudiantes

¡Enhorabuena por el trabajo bien hecho!

Referencias:

  • PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights. Structure and Infrastructure Engineering, 16(7): 949-967. DOI:10.1080/15732479.2019.1676791
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803. DOI:10.1155/2019/6134803
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845

Puentes mixtos: diseño, análisis de ciclo de vida, mantenimiento y toma de decisiones

Acaban de publicarnos un artículo en la revista Advances in Civil Engineering,  revista indexada en el JCR. Se trata de un artículo de revisión del estado del arte de los puentes mixtos de hormigón y acero desde los puntos de vista del diseño, análisis del ciclo de vida, mantenimiento y toma de decisiones. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Los puentes mixtos de acero y hormigón se utilizan como alternativa a los puentes de hormigón debido a su capacidad de adaptar su geometría a las limitaciones de diseño y a la posibilidad de reutilizar algunos de los materiales de la estructura. En esta revisión del estado del arte, informamos de la investigación realizada sobre el diseño, el comportamiento, la optimización, los procesos de construcción, el mantenimiento, la evaluación del impacto y las técnicas de toma de decisiones de los puentes mixtos para llegar a un enfoque de diseño completo. Además de un análisis cualitativo, se utiliza un análisis multivariante para identificar las lagunas de conocimiento relacionadas con el diseño de los puentes y para detectar las tendencias de la investigación. Un objetivo adicional es hacer visibles las lagunas en el diseño sostenible de los puentes mixtos, lo que permite centrar los futuros estudios de investigación. Los resultados de esta labor muestran cómo la investigación se ha centrado en el diseño preliminar de puentes con un enfoque principalmente económico, mientras que a nivel mundial la preocupación se dirige a la búsqueda de soluciones sostenibles. Se ha comprobado que las estrategias de evaluación del impacto del ciclo de vida y de adopción de decisiones permiten a los gestores de los puentes mejorar la adopción de decisiones, en particular al final del ciclo de vida de los puentes mixtos.

Abstract

Steel-concrete composite bridges are used as an alternative to concrete bridges because of their ability to adapt their geometry to design constraints and the possibility of reusing some of the materials in the structure. In this review, we report the research carried out on the design, behavior, optimization, construction processes, maintenance, impact assessment, and decision-making techniques of composite bridges in order to arrive at a complete design approach. In addition to a qualitative analysis, a multivariate analysis is used to identify knowledge gaps related to bridge design and to detect trends in research. An additional objective is to make visible the gaps in the sustainable design of composite steel-concrete bridges, which allows us to focus on future research studies. The results of this work show how researchers have concentrated their studies on the preliminary design of bridges with a mainly economic approach, while at a global level, concern is directed towards the search for sustainable solutions. It is found that life cycle impact assessment and decision-making strategies allow bridge managers to improve decision-making, particularly at the end of the life cycle of composite bridges.

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020, 8823370. DOI:10.1155/2020/8823370

Descargar (PDF, 1.34MB)

 

 

 

Evaluación del impacto ambiental y social de puentes de carretera óptimos de hormigón postesado

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo se evalúa el impacto social y ambiental de puentes de carretera óptimos de hormigón postesado. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La mayoría de las definiciones de sostenibilidad incluyen tres pilares básicos: económico, ambiental y social. El aspecto económico siempre se evalúa, pero no necesariamente en el sentido de la sostenibilidad económica. Por otra parte, el aspecto ambiental se está considerando cada vez más, mientras que el pilar social apenas se ha trabajado en él. Centrándose en los pilares ambiental y social, resulta crucial el uso de metodologías que permitan una evaluación amplia de todos los aspectos y la integración de la evaluación en unos pocos indicadores que sean comprensibles. Este artículo se estructura en dos partes. En la primera parte se hace un examen de los métodos de evaluación del impacto del ciclo de vida, que permiten una evaluación amplia de los aspectos ambiental y social. En la segunda parte, se realiza una evaluación completa de la sostenibilidad ambiental y social utilizando la base de datos de ecoinvent y el método ReCiPe, para el pilar ambiental, y la base de datos SOCA y el método simple de ponderación del impacto social, para el pilar social. Esta metodología se utilizó para comparar tres puentes optimizados: dos puentes de carretera de hormigón postensado de sección en cajón con diversas características iniciales y de mantenimiento, y un puente prefabricado de hormigón pretensado. Los resultados muestran que existe una alta interrelación entre el impacto ambiental y social para cada etapa del ciclo de vida.

Abstract

Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.

Keywords

 SustainabilityLCAS-LCAsocial assessmentecoinventSOCA

Reference:

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

Descargar (PDF, 1.52MB)

Factores correctores del aforo de las playas en tiempos de coronavirus

Figura 1. Ocupación de una playa en temporada alta (Tossa de Mar). Imagen: V. Yepes (2018)

Uno de los datos más relevantes para que el uso seguro de las playas en tiempos de coronavirus es la estimación del aforo máximo de una playa en función una serie de factores que deben adaptarse a las circunstancias de cada playa y al contexto de la pandemia. Este cálculo no es sencillo, pues los factores que habitualmente se utilizan en los cálculos de aforos en playas se basan en aspectos que relacionados con el confort y con la satisfacción del usuario (Figura 1). En las referencias se encuentra bibliografía para el cálculo del aforo en circunstancias de uso normal.

La determinación de un modelo preciso debe ser objeto de un proyecto de investigación que movilice los recursos necesarios. De hecho, estamos trabajando en la Universitat Politècnica de València a marchas forzadas para tener a punto un modelo que pueda aplicarse este mismo verano. No obstante, en este documento se describe un procedimiento simplificado para corregir el aforo de una playa en función de factores que dependen del riesgo sanitario, del comportamiento de los usuarios y de la capacidad de control que tenga la autoridad responsable de la playa. Los coeficientes que se plantean se podrían ajustar y particularizar para casos concretos, pero sirve de base para el estudio del aforo permitido en una playa.

El dato de partida más importante es la consideración del aforo bruto de la playa. Para conocer dicho aforo son necesarios, entre otros, determinar las siguientes variables que influyen en el problema: distancia de seguridad sanitaria, ocupación estática segura, ocupación dinámica segura, porcentaje de usuarios susceptible de contagio, tipo y porcentaje de ocupación de la playa (toallas, sombrillas, toldos), tamaño de las “unidades de convivencia”, zonificación de la playa por usos (zona activa, zona de reposo, zona de resguardo, zona de servicios), temperatura de la arena, velocidad y dirección de la brisa, carrera de marea, curva horaria de uso de la playa, curva diaria de uso de la playa, separación entre accesos a la playa, separación de pasillos intermedios en zona de reposo, rango de tiempo mínimo y máximo de disfrute de la playa, velocidad de movimiento de los bañistas en la playa, gestión de colas, entre otras variables.

Figura 2. Sección donde se muestran las diferentes zonas de uso en una playa

Una vez conocido el aforo bruto de una playa atendiendo al modelo anteriormente mencionado, se hace necesario conocer el aforo neto de la playa. Para simplificar al máximo este cálculo, se propone un método que solo precisa de tres coeficientes correctores.

El aforo neto se calcula multiplicando el aforo bruto por el coeficiente de riesgo sanitario, por el coeficiente de comportamiento social y por el coeficiente de capacidad de control.

El coeficiente de riesgo sanitario, Crs, corrige el aforo atendiendo al contexto sanitario (porcentaje de la población contagiada, fase de desescalada, y cualquier otro aspecto relacionado con la frecuencia y la gravedad de la propagación del virus). Como estimación se pueden emplear los coeficientes de la Tabla 1, no pudiéndose utilizar un coeficiente unidad salvo justificación debidamente documentada.

El coeficiente de comportamiento social, Ccs, es un coeficiente reductor que tienen en cuenta el cumplimiento de las normas impuestas por las autoridades sanitarias, de orden público o cualquier otra que afecte a la seguridad de las personas. Se puede tomar, como estimación, los coeficientes de la siguiente Tabla 2:

El coeficiente de capacidad de control, Ccc, depende de la capacidad operativa del responsable de las playas para controlar los accesos, tener un control en tiempo real del aforo y presentar capacidad para desalojar de forma eficaz la playa en caso de un incumplimiento grave. Se pueden estimar los siguientes coeficientes recogidos en la Tabla 3, no pudiéndose utilizar un coeficiente igual o mayor a 0,80 salvo justificación debidamente documentada:

Os dejo a continuación la entrevista que me hicieron al respecto en Radio Nacional de España:

Referencias:

YEPES, V. (2002). La explotación de las playas. La madurez del sector turístico. OP Ingeniería y territorio, 61:72-77. Depósito Legal: B-5348/1986. ISSN: 0213-4195. Edita: Colegio de Ingenieros de Caminos, Canales y Puertos. Barcelona. (link)

YEPES, V.; MEDINA, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49: 83-88.

YEPES, V. (2005). Sistemas de gestión de calidad y medio ambiente como soporte de la gestión municipal de las playas. Equipamiento y servicios municipales, 117: 52-62. Depósito Legal: M-3244-1985. ISSN: 1131-6381. Edita: Publiteca, S.A. Madrid. (pdf)

YEPES, V. (2007). Gestión del uso y explotación de las playas. Cuadernos de Turismo, 19:241-254. ISSN: 1139-7861. (pdf) (link)

YEPES, V. (2012). Sistemas voluntarios de gestión de playas de uso intensivo. En: Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.Á., Mir-Gual, M. y Cabrera, J.A. (eds.).  La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa: Mon. Soc. Hist. Nat. Balears, 19: 61-76. ISBN: 978-84-616-2240-5. Palma de Mallorca.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Laminación de la curva horaria de ocupación de las playas en tiempos de coronavirus

Figura 1. Playa saturada en hora punta

Se están proponiendo muchas soluciones, algunas más peregrinas que otras, respecto a cómo utilizar la playa de forma segura en tiempos de pandemia. En un artículo anterior comenté un modelo, muy sencillo, de circulación peatonal en paseos marítimos y playas. Ahora voy a explicar otra medida, también muy sencilla, y fácil de controlar, para garantizar márgenes de seguridad en el uso de la playa. En otros artículos que iré escribiendo, explicaré otros aspectos sobre cómo y dónde medir la ocupación de las playas y qué hacer para evitar problemas de contagios. Las soluciones, insisto, deben ser muy sencillas, de bajo coste y fáciles de controlar.

Para ello, lo más importante es que, en muchas playas, es posible que el grado de saturación no sea tan alto como podemos ver en la Figura 1. De hecho, el aspecto clave va a ser calcular una capacidad máxima de ocupación que sea compatible con la seguridad en el uso de las playas. Este es un concepto novedoso que aparece en este artículo por primera vez. El cálculo de esa capacidad será objeto de otro artículo en breve, y que está en proceso de redacción, pero supongamos que tenemos clara dicha cifra de Densidad Máxima Segura (DMS). Conviene aclarar que esta DMS será una densidad menor a la habitual en el uso de las playas por motivos de satisfacción o comodidad, pues aquí el factor limitante será la seguridad frente al contagio.

Antes de continuar con la exposición, hay que considerar que un número significativo de playas pequeñas, de uso muy familiar, de difícil acceso, o de especial protección, no llegan a esta DMS. Por otra parte, es posible que se vea reducido el turismo internacional y ello implique que determinadas playas saturadas en verano queden con una ocupación menor a la DMS. Por tanto, la metodología que se explica a continuación estaría muy orientada a playas urbanas, muy masificadas en verano, donde el usuario procede fundamentalmente de turismo nacional o es residente. Por eso, mi insistencia en que se debe abordar el problema de forma particular para cada municipio y playa.

Lo primero que tenemos que conocer de una playa es su comportamiento espacio-temporal. Si nos circunscribimos exclusivamente al comportamiento temporal, cada playa presenta una curva característica de ocupación horaria. Este comportamiento deberíamos conocerlo de alguna forma. Pero en caso de no tenerlo claro, os aporto una modelo simplificado en la Figura 2. Como se puede observar, la ocupación máxima, del 100%, ocurre aproximadamente a las 12:30 h en las playas. Posteriormente, y coincidiendo con el almuerzo, existe una meseta de ocupación. En algunas playas muy masificadas, la meseta prácticamente se mantiene una parte importante del día en su punto máximo.

Figura 2. Curva horaria de ocupación de una playa. Elaboración propia.

La propuesta, a partir de aquí, es muy sencilla: Se trata de calcular el DMS y, por tanto, a qué porcentaje de ocupación nos estamos refiriendo. Puede ocurrir que una playa tenga un DMS superior al 100% de su ocupación esperada. En dicho caso, no hay que tomar medidas de restricción horaria. En la Figura 3 se representa en una línea roja el DMS para una playa determinada, en este caso, se ha calculado para el 80% del máximo de ocupación. Como puede verse, la solución es eliminar de alguna forma la saturación entre las 11:30 horas y las 13:30 horas. Pero, ¿cómo tomamos esa decisión?

Figura 3. Determinación de la franja horaria insegura en una playa, una vez determinado el DMS. Elaboración propia.

Necesitamos conocer, a continuación, la pirámide poblacional de los turistas que frecuentan nuestra playa. En cada municipio se debería conocer dicha pirámide. Pero, a falta de datos, vamos a utilizar la pirámide de población española (Figura 4).

Figura 4. Pirámide poblacional española. Fuente: https://datosmacro.expansion.com/demografia/estructura-poblacion/espana

Si nos fijamos en este caso particular, la población mayor de 65 años, que es la más vulnerable, supone aproximadamente el 20% de la población. Los menores de 14 años suponen, del mismo modo, un porcentaje de un 15%. Por tanto, una solución sería la siguiente: desde las 11:30 a las 13:30 horas, no pueden hacer uso de la playa la población mayor de 65 años. De esta forma podríamos afrontar la exigencia del DMS de la Figura 3. Sin embargo, si fuera necesario, se podría añadir a la población menor de 14 años a dicha restricción. Resulta fácil por parte de las autoridades comprobar si en esa franja horaria existen usuarios mayores de 65 años o menores de 14. Es evidente que habría que particularizar el caso para cada una de las playas.

Por tanto, la metodología propuesta es la siguiente:

  • Paso 1. Determinar el DMS para una playa determinada.
  • Paso 2. Determinar la curva horaria de ocupación particular de la playa. En caso de no disponer ninguna, se utiliza la aproximación de la Figura 2.
  • Paso 3. Determinar la franja horaria de restricción horaria, tal y como se ha utilizado en la Figura 3.
  • Paso 4. Calcular la franja de edades, empezando por los usuarios vulnerables, donde se debe restringir el uso en la franja horaria. Se utilizará la pirámide de población de los usuarios de la playa. En caso de no disponer datos, se usará la pirámide de población española.
  • Paso 5. En caso de que sea insuficiente la restricción a las personas vulnerables, se restringirá también el uso a los menores.

Referencias:

YEPES, V. (2002). La explotación de las playas. La madurez del sector turístico. OP Ingeniería y territorio, 61:72-77. Depósito Legal: B-5348/1986. ISSN: 0213-4195. Edita: Colegio de Ingenieros de Caminos, Canales y Puertos. Barcelona. (link)

YEPES, V.; MEDINA, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49: 83-88.

YEPES, V. (2005). Sistemas de gestión de calidad y medio ambiente como soporte de la gestión municipal de las playas. Equipamiento y servicios municipales, 117: 52-62. Depósito Legal: M-3244-1985. ISSN: 1131-6381. Edita: Publiteca, S.A. Madrid. (pdf)

YEPES, V. (2007). Gestión del uso y explotación de las playas. Cuadernos de Turismo, 19:241-254. ISSN: 1139-7861. (pdf) (link)

YEPES, V. (2012). Sistemas voluntarios de gestión de playas de uso intensivo. En: Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.Á., Mir-Gual, M. y Cabrera, J.A. (eds.).  La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa: Mon. Soc. Hist. Nat. Balears, 19: 61-76. ISBN: 978-84-616-2240-5. Palma de Mallorca.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Circulación peatonal en paseos marítimos y playas en tiempos de coronavirus

Figura 1. Zonificación de una playa típica del Mediterráneo
Figura 1. Zonificación de una playa típica del Mediterráneo

El uso de las playas en plena pandemia va a ser distinto al que estamos acostumbrados. Entre las dos opciones extremas, la de permitir el uso sin restricciones de la playa a la prohibición completa, existen opciones intermedias que deben compatibilizar el uso seguro y la actividad económica asociada. Lo que es cierto, es que debemos asumir un uso diferente este verano. En este artículo trato de reflexionar sobre una medida sencilla, de bajo coste, pero que puede evitar muchos problemas en los espacios públicos.

Si atendemos a la llamada “distancia social” para evitar contagios, parece ser que las personas deberíamos separarnos unos 2 m entre sí en el caso de permanecer estáticos. Esta distancia aumenta si las personas se encuentran en movimiento (paseando, corriendo, en bicicleta, etc.).

Figura 2. Red hexagonal o red triangular equilátera. https://es.wikipedia.org/wiki/Red_(grupo)

La distribución de una serie de puntos separados esta distancia permite mallar el espacio con puntos situados en triángulos equiláteros de 2 m de lado. En la Figura 2 podemos ver este tipo de mallado, que forma una red hexagonal o red triangular equilátera. Podrían hacerse redes cuadradas, rectangulares, etc. Lo que es cierto es que esta ocupación estática del espacio implica que, cualquier movimiento supone conlleva incumplimientos en la distancia social.

Por tanto, es fácil entender que, si existe movimiento de las personas, existirán incumplimientos en la distancia social dependiendo de la densidad de ocupación y del tipo de movimiento. En el caso más extremo, si tenemos dos personas separadas una distancia muy grande, la probabilidad de que se encuentren a una distancia menor a la segura, va a ser pequeña. Por contra, si tenemos una malla de personas separadas de forma estricta una distancia social, el movimiento de una sola persona implica el incumplimiento de la distancia segura. Pero si todas ellas se moviesen en la misma dirección, a la misma velocidad, ello significa mantener dicha distancia social.

Por tanto, se puede ver que existe una relación entre la densidad de ocupación de un espacio y el tipo de movimiento que se realice en él. Otra variable adicional sería el porcentaje de personas capaces de transmitir el virus. Si todas las personas están sanas, la probabilidad de contacto es nula, independientemente de la densidad y del movimiento.

Todo esto os lo cuento porque existe una forma muy sencilla de disminuir el riesgo de contagios en las playas y paseos marítimos, aunque estas ideas se pueden extrapolar a otros espacios. Se trata de establecer, al igual que en una carretera, un doble carril de circulación, donde la gente siempre debe circular por su derecha. No es necesario señalar dichos carriles, simplemente se trata de seguir unas mínimas instrucciones a la hora de pasear por estos lugares.

Empecemos por lo más sencillo. Cuando se accede a una playa, normalmente se hace por una pasarela. La gente se cruza, los que van con los que vienen. Pues lo inmediato es duplicar las pasarelas de acceso a la playa, de forma que, tanto para salir como para entrar, los usuarios circulen por su derecha. En la Figura 3 os paso un esquema de esta disposición. Las dos pasarelas estarían separadas la distancia mínima de seguridad (2-3 m). La de salida de bañistas es la que debería estar junto a las duchas o lavapiés (cuyas condiciones de uso es un tema a tratar aparte).

Figura 3. Disposición de dos pasarelas para evitar los cruces en la entrada y salida de la playa

El segundo ejemplo es el paseo por la denominada “zona activa” (ver Figura 1). Esta zona es la más próxima a la línea de la playa y es donde, normalmente, se pasea. Como se puede comprobar en la Figura 4, se debería respetar un mínimo de 10 m de zona activa (no poner sombrillas ni toallas) y la circulación debería ser la del “sentido de la derecha”. Se puede comprobar que entre ambos “carriles” de circulación, debería haber una separación de, al menos, 2 m. Tampoco hay que señalizar nada, pero sí los usuarios pasean de esta forma, se evitarán los cruces y disminuyen los contagios.

Figura 4. Sentido de circulación de las personas en la zona activa de la playa

El tercer ejemplo es el de los paseos marítimos o en calles suficientemente anchas. En la Figura 5 se comprueba que también se puede usar esta disposición. Vemos la necesidad, de al menos, 10 m de anchura. Aquí se podría señalizar con pegatinas en el suelo la separación entre carriles, con flechas de dirección.

Figura 5. Circulación de las personas en paseos marítimos o calles anchas.

Para terminar, me gustaría indicar que estas precauciones se deberían particularizar en cada una de las playas. Además, deben acompañarse de otra serie de medidas para regular el uso de las playas. Pero debido a su sencillez, la he propuesto en mi blog por si pueden ser de interés.

Os paso un vídeo donde se recoge la propuesta en un reportaje de A Punt (televisión autonómica valenciana):

¿Quieres oír mi entrevista sobre la campaña #paseaportuderecha? Puedes simplemente pinchar en este enlace.

Agradecimientos: 

Agradezco a Antonio J. Sánchez Garrido los dibujos que me han permitido explicar las ideas del artículo.

Referencias:

YEPES, V. (2002). La explotación de las playas. La madurez del sector turístico. OP Ingeniería y territorio, 61:72-77. Depósito Legal: B-5348/1986. ISSN: 0213-4195. Edita: Colegio de Ingenieros de Caminos, Canales y Puertos. Barcelona. (link)

YEPES, V.; MEDINA, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49: 83-88.

YEPES, V. (2005). Sistemas de gestión de calidad y medio ambiente como soporte de la gestión municipal de las playas. Equipamiento y servicios municipales, 117: 52-62. Depósito Legal: M-3244-1985. ISSN: 1131-6381. Edita: Publiteca, S.A. Madrid. (pdf)

YEPES, V. (2007). Gestión del uso y explotación de las playas. Cuadernos de Turismo, 19:241-254. ISSN: 1139-7861. (pdf) (link)

YEPES, V. (2012). Sistemas voluntarios de gestión de playas de uso intensivo. En: Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.Á., Mir-Gual, M. y Cabrera, J.A. (eds.).  La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa: Mon. Soc. Hist. Nat. Balears, 19: 61-76. ISBN: 978-84-616-2240-5. Palma de Mallorca.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las playas ante el reto del COVID 19. Reflexiones previas al problema

Víctor Yepes Piqueras. Catedrático de Universidad. Universitat Politècnica de València.

Introducción al problema

La proximidad del verano y la lenta pero progresiva reactivación de la actividad en plena pandemia del coronavirus presenta grandes retos, inéditos hasta ahora, de cómo afrontar la actividad turística, entre otros, en los destinos turísticos de “sol y playa”. No hay que olvidar que esta modalidad turística supone una parte muy importante del empleo y de la actividad económica de España. A expensas de los estudios científicos correspondientes al comportamiento del virus en las condiciones de temperatura, humedad, viento, etc. de una playa, este documento reflexiona sobre los condicionantes básicos y las recomendaciones generales que deberían adoptarse para el uso de estos espacios. No obstante, las soluciones deben analizarse y particularizarse para cada una de las playas. Además, la playa no se puede disociar del destino turístico, por lo que se deben realizar estudios y tomar medidas en otros ámbitos como puedan ser los paseos marítimos, alojamientos turísticos, medios de transporte, etc.

La pandemia ha provocado un problema complejo donde se deben maximizar, a la vez, dos objetivos:

  • Seguridad de los usuarios.
  • Mantenimiento de la actividad económica y del empleo.

En el caso del uso y disfrute de las playas, las dos soluciones extremas son las siguientes:

  1. Ninguna regulación. En dicho caso, a corto plazo se podrían reactivar algunas actividades turísticas y el empleo. Los usuarios se encuentran desprotegidos frente al virus. A largo plazo las consecuencias económicas globales y el desempleo se agravan.
  2. Prohibición del uso de la playa. Se minimiza el riesgo de contagio. Las actividades económicas y el desempleo asociadas al turismo a corto y largo plazo quedan muy dañadas.

Por tanto, cualquier solución debe intentar compatibilizar ambos objetivos contrapuestos. Se trata de un típico problema de optimización multiobjetivo. La solución matemática requiere la disposición de numerosos datos para contextualizar el problema. Sin embargo, los datos son escasos y, a su vez, muy dinámicos, y diferentes en cada playa, lo cual dificulta la toma de decisiones.

Lo cierto es que el uso y disfrute tradicional de las playas debe cambiar para conseguir, entre todos, minimizar los impactos negativos de todo tipo que está causando esta grave crisis. Bajo qué condiciones y cómo afrontarlo es lo que trata de esbozar este documento.

Restricciones o condicionantes del problema

Para definir el problema y ayudar a la toma de decisiones, se deben realizar una serie de consideraciones previas que constituyen las restricciones o condicionantes de este problema:

  1. La prioridad es mantener la seguridad de los usuarios en límites razonablemente altos. La seguridad absoluta, como en cualquier rama de la ingeniería, no es posible, pero sí es factible minimizar el nivel de riesgo a límites aceptables.
  2. Cualquier medida que se tome debe ser fácil de aplicar y sencilla de controlar. Todos los agentes involucrados, empezando por los usuarios de las playas, deben comprender de forma sencilla el motivo por el que se toman determinadas restricciones, así como deben seguir las recomendaciones, sin que existan dudas o diferentes interpretaciones al respecto.
  3. Se deben evitar soluciones de alto coste económico o cuya eficiencia sea dudosa o poco contrastada. Además, las soluciones deben ser eficaces a corto plazo, es decir, para su aplicación inmediata. Soluciones muy innovadoras deben tenerse en cuenta, pero se deben aplicar con mucha cautela si no existe un estudio previo.
  4. Cualquier solución, aunque cumpla requerimientos de carácter general, debe particularizarse para cada playa y municipio. Para ello, una vez establecidas las recomendaciones generales, deben realizarse reuniones de coordinación científico-técnica con cada uno de los municipios afectados y acordar soluciones específicas.
  5. Debe existir un único centro de coordinación que compruebe el cumplimiento de las normas, que tome decisiones inmediatas ante problemas complejos y que coordine a las distintas administraciones y organismos involucrados específicamente en las playas: Comunidad Autónoma, Diputaciones, Ayuntamientos, Demarcación de Costas, Autoridad Marítima, Autoridades Sanitarias, Cruz Roja, Guardia Civil, Empresas, Órganos de Gestión de Playas, y cualquier otro agente involucrado.

Criterios para abordar soluciones

Una vez establecidos los condicionantes, veamos qué criterios son los que permiten abordar las soluciones.

Parece ser que, entre las recomendaciones que se manejan por parte de la comunidad científica y de las administraciones sanitarias, se encuentran las de mantener una distancia de seguridad entre personas (unos 2 m) y la precaución de no tocar superficies que se hayan contaminado, y en el caso de que esto se haya hecho, limpiarse las manos con jabón o usar geles desinfectantes. Otras medidas son el uso de mascarillas en todo momento. Estas medidas deberían matizarse por parte de las autoridades sanitarias en función de la fase en la que se encuentre la pandemia en un lugar determinado. Estas condiciones sanitarias obligan a tomar una serie de medidas que, al menos, son las siguientes:

  1. Se debe garantizar la distancia social entre los usuarios o aquellas medidas que aconseje la autoridad sanitaria en cada momento.
  2. Se debe disponer de un sistema de aviso sencillo y rápido en el caso de un incumplimiento masivo de las reglas básicas para evacuar las playas.
  3. Se debe evitar que los usuarios toquen superficies utilizadas de forma masiva como pulsadores en lavapiés, duchas, áreas de juego, etc. Se aconseja realizar un estudio específico sobre la capacidad de contagio de cada una de estas superficies.
  4. Se debe realizar cierto control, en la medida de lo posible, de los usuarios que acceden a la playa.
  5. Se deben realizar las tareas de limpieza e higienización de las infraestructuras de las playas con la periodicidad suficiente para garantizar cierto nivel de higiene.

 CONDICIÓN 1. Distancia social entre los usuarios.

Esta es la condición más difícil de abordar de las planteadas. Aquí resulta imprescindible particularizar las soluciones para cada una de las playas. En cualquier caso, cualquier solución pasa por realizar un estudio particularizado de la capacidad de carga de la playa que garantice la distancia social. Éste cálculo es complejo, pues la capacidad máxima con usuarios estáticos es sencilla de calcular (ver Referencias), pero con usuarios en movimiento resulta más difícil. Además, las condiciones físicas de la playa, las brisas dominantes, etc., pueden influir en la propagación del virus. De todos modos, veamos algunas consideraciones previas a la toma de decisiones:

  • En playas pequeñas, donde exista la posibilidad de un control de acceso claro, debe limitarse el aforo mediante un control en el acceso. El caso más sencillo son las calas o playas alejadas donde se accede mediante vehículo. Podría bastar la limitación en el número de vehículos.
  • En playas de uso masivo, normalmente muy ocupadas durante el periodo vacacional, la solución pasa por reducir la densidad a límites aceptables. Esta reducción puede realizarse mediante las siguientes técnicas:
  1. Laminación de la curva de uso. La franja horaria de las 12:00 a las 14:00 horas es aquella de uso masivo. Esta franja podría variar de una playa a otra, pero es evidente que aquí hay que tomar medidas. Lo más efectivo es prohibir durante esta franja horaria el uso de la playa a menores de 14 años y mayores de 65 años. En función de la fase de la pandemia, se podrían dar horarios de uso por edades, de forma similar al actual régimen de paseos y deporte.
  2. Se puede realizar una actuación en las zonas de uso de la playa. Cada zona tiene unas características propias que pueden modificarse: zona de reposo, zona libre, zona de accesos, zona de resguardo, concesiones, etc. Se debería dejar libre de uso una distancia de 10 m a cada lado de las pasarelas de acceso a la playa. Las concesiones de hamacas y tumbonas deberían separar sus elementos, pero hacia la parte trasera, sin ocupar más frente litoral debido al esponjamiento.
  3. Se puede realizar una fragmentación de la playa en función de la vulnerabilidad de los usuarios. En cada municipio se debería establecer uno o varios tramos señalizados para usuarios de una especial vulnerabilidad. Se trata, atendiendo a razones sanitarias, de personas mayores de 65 años. Estas zonas, que podrían suponer un 20-25% de la playa serían de uso exclusivo, con recursos y medios especiales. Del mismo modo, se debería establecer una zona de uso especial para unidades familiares con niños menores de 14 años.
  4. De forma inmediata, se deben duplicar las pasarelas en cada uno de los accesos. Para entrar a la playa se utiliza la pasarela de la derecha, al igual que para salir. La separación entre ambas líneas de pasarelas será de un mínimo de 2 m, mejor 3 m. La pasarela de salida será la que sea más próxima a duchas y lavapiés.

En el caso de la separación física de los usuarios, su uso se recomienda únicamente en las zonas destinadas a personas de especial vulnerabilidad o bien de los grupos familiares con niños. No se recomienda el uso de elementos tales como mamparas, de alto coste, que impiden el disfrute de la brisa, y cuyo mantenimiento y desinfección la harían inviable. Existen posibilidades de señalización que deberían estudiarse en cada una de las playas.

CONDICIÓN 2. Sistema de aviso de incumplimiento grave.

El sistema actual de banderas (verde, amarilla y roja) debe ampliarse a un caso no contemplado hasta el momento. Es el uso de la BANDERA NEGRA. Es una bandera, cuyo significado debe explicarse al usuario, y cuyo uso implica el cierre inmediato del uso de toda la playa, no solo de la zona de baño. El uso de la bandera negra debe delimitarse mediante un protocolo, pero se trata de evacuar a los usuarios ante una masificación fuera de los límites aceptables o cualquier otro incumplimiento que suponga un riesgo para los usuarios. Su uso debe ser excepcional y por causas muy justificadas, aunque basta la recomendación de la autoridad sanitaria correspondiente. Este tipo de señalización se podría complementar, en función de cada municipio, con el uso de megafonía y otros medios de los que disponga el municipio. Las autoridades velarán, durante la evacuación, del cumplimiento de las medidas de seguridad oportunas.

CONDICIÓN 3. Superficies de alta peligrosidad de contagio.

Además de la distancia social, un foco de riesgo de contagio es cualquier superficie donde el virus pueda ser activo. A falta de un estudio específico sobre la capacidad de contagio en estas superficies, se recomienda el cierre de todas las áreas de juego y elementos similares. Asimismo, se invita a los usuarios que no toquen con la mano desnuda los pulsadores de duchas y lavapiés. Este problema debe analizarse con mayor profundidad.

Es evidente que una ducha o un lavapiés es un elemento que contribuye a la satisfacción del usuario de las playas. Sin embargo, estos elementos no aparecieron en las playas hasta entrada la década de 1990. Antes, o no existían, o eran escasos. En una pandemia como la actual, existen dos problemas importantes que deben resolverse:

  1. En primer lugar, el uso de estos elementos supone, en las playas muy masificadas, largas colas de usuarios en hora punta esperando turno para su uso. En este caso, la distancia de seguridad puede no guardarse adecuadamente, o bien provocar colas muy largas y tiempos de espera no admisibles. En estos casos hay que estudiar la necesidad de eliminar o desactivar estos elementos higiénicos, especialmente aquellos dañados por los últimos temporales y que resultan difíciles de higienizar. Se recomienda, en estos casos, el desmontaje para evitar enfados o falta de comprensión por parte de los usuarios.
  2. En cualquier caso, se deben dar recomendaciones a los usuarios de no tocar con las manos desnudas los pulsadores de duchas y lavapiés. A falta de estudios sobre la transmisión del virus en estas superficies, se recomienda el uso de una toalla o cualquier otro elemento para evitar el contacto. Los usuarios que no sigan esta recomendación, estarán expuestos al contagio. Además, cuando se llegue al hotel o al apartamento, debe realizarse un lavado de manos con jabón o el uso de un desinfectante.

CONDICIÓN 4. Control de acceso.

En cada una de las playas se debe realizar un control del aforo, del uso y del acceso, particularizando dicho control a cada caso. Por ejemplo, en playas masivas sería de interés un dispositivo que midiese la temperatura corporal a distancia. Este tipo de elemento no solo permite una mayor seguridad, sino que aumenta en el usuario su confianza en las autoridades. En otro tipo de playas, sobre todo las pequeñas y alejadas, hay que controlar el número de vehículos o, incluso los usuarios. En playas que se hayan establecido zonas para usuarios de alta vulnerabilidad o bien para grupos familiares con niños, debe existir un control, al menos visual, sobre el cumplimiento de estas condiciones.

CONDICIÓN 5. Limpieza e higienización de las infraestructuras de las playas

Con la regularidad que imponga el uso y las condiciones sanitarias, se debe realizar una limpieza profunda e higienización de las infraestructuras de las playas. Aquí entra todo tipo de infraestructuras, sean de titularidad pública o privada: papeleras, duchas, lavapiés, tumbonas, paseos marítimos, servicios higiénicos, etc.

Se debe garantizar la limpieza periódica de las playas con máquinas que eliminen residuos. La radiación solar y la aireación de la arena son buenas soluciones para higienizar la arena. En el caso de una roturación de la arena, debe, inmediatamente, realizarse una compactación con rodillo para evitar la remoción de la arena por el viento y, por tanto, la pérdida de arena y la desestabilización de la playa. Los rodillos de compactación, de diámetro determinado, servirían también para delimitar o zonificar espacios, aunque la duración de esta señalización es efímera.

Conclusiones y ultimas recomendaciones

Por último, señalar que algunas de las medidas recomendadas en este documento son muy efectivas y de aplicación inmediata (duplicación de pasarelas, laminación horaria, zonificación por edades y usos, empleo de la bandera negra, uso restringido de duchas y lavapiés, clausura de áreas de juego para niños, desinfección y limpieza, etc.). Sin embargo, es importante señalar que es absolutamente necesario particularizar las medidas necesarias en cada una de las playas. Es obligatorio realizar un estudio científico-técnico pormenorizado en cada playa que determine su capacidad máxima de uso atendiendo no solo a la satisfacción del usuario (4-10 m2/persona), sino que debe atender a la distancia social de los usuarios EN MOVIMIENTO. Este aspecto, sin duda, cambia la forma de calcular la capacidad de carga, que será menor a la habitual.

Por otra parte, la playa no es un ente independiente del resto del destino turístico. Los paseos marítimos, las calles, los alojamientos turísticos, los restaurantes, las tiendas, los accesos por vía terrestre, aérea o marítima, entre otros, son aspectos que deben estudiarse y tomar medidas. La playa no se puede entender disociada del destino turístico.

Además de todo ello, se recomienda recopilar toda la información necesaria durante la crisis para actualizar las recomendaciones y la toma de decisiones conforme vaya transcurriendo la pandemia. No destinar los recursos necesarios para una investigación científica en profundidad de este fenómeno puede provocar pérdidas de oportunidad y conocimiento ante sucesos que puedan repetirse en el futuro.

Por último, debe definirse de forma inmediata un mando único de gestión del uso de las playas que coordine la implantación, control, toma de decisiones, sanciones, sanidad, seguridad, etc. Ello sin menoscabo de este tipo de labores realizadas por cada uno de los Ayuntamientos en sus ámbitos respectivos.

Todo lo anterior requiere de una campaña de comunicación que explique a los usuarios las medidas tomadas, su justificación y la necesidad de su colaboración. Un objetivo adicional de dicha campaña es la transparencia de las acciones realizadas para mejorar la seguridad de los usuarios de las playas y de los turistas en general.

Referencias:

YEPES, V. (2002). La explotación de las playas. La madurez del sector turístico. OP Ingeniería y territorio, 61:72-77. Depósito Legal: B-5348/1986. ISSN: 0213-4195. Edita: Colegio de Ingenieros de Caminos, Canales y Puertos. Barcelona. (link)

YEPES, V.; MEDINA, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49: 83-88.

YEPES, V. (2005). Sistemas de gestión de calidad y medio ambiente como soporte de la gestión municipal de las playas. Equipamiento y servicios municipales, 117: 52-62. Depósito Legal: M-3244-1985. ISSN: 1131-6381. Edita: Publiteca, S.A. Madrid. (pdf)

YEPES, V. (2007). Gestión del uso y explotación de las playas. Cuadernos de Turismo, 19:241-254. ISSN: 1139-7861. (pdf) (link)

YEPES, V. (2012). Sistemas voluntarios de gestión de playas de uso intensivo. En: Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.Á., Mir-Gual, M. y Cabrera, J.A. (eds.).  La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa: Mon. Soc. Hist. Nat. Balears, 19: 61-76. ISBN: 978-84-616-2240-5. Palma de Mallorca.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Metodología para valorar la sostenibilidad con baja influencia de los decisores

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Metodología para valorar la sostenibilidad con baja influencia de los decisores“.

En este artículo se aborda una metodología para reducir al mínimo la influencia subjetiva que tienen los decisores a la hora de tomar decisiones, en este caso, utilizando criterios relacionados con la sostenibilidad. Para este fin se ha utilizado el análisis de componentes principales (ACP), la optimización basada en kriging y el método AHP para buscar soluciones sostenibles, eliminando la relación entre criterios dependientes y asegurando la obtención de una solución sostenible frente a las diferentes perspectivas de los responsables de la toma de decisiones. Os dejo el artículo en abierto.

Referencia:

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Metodología para valorar la sostenibilidad con baja influencia de los decisores. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 461-473. ISBN: 978–84–17924–58–4

Descargar (PDF, 327KB)

 

La ingeniería humanitaria y la teoría del cisne negro: Totalán, DANA, Zaldibar y el coronavirus nos dan las claves

Fotografía con Ángel García Vidal, en la Escuela de Ingeniería de Caminos de Valencia

La primera vez que oí a alguien hablar de “ingeniería humanitaria” fue a Ángel García Vidal en una conferencia que impartió, junto con Mauricio Delgado, en la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia el 24 de septiembre de 2019. Tal fue la impresión que me causó su relato de la tragedia de Totalán, que escribí un artículo en The Conversation sobre las lecciones aprendidas del rescate de Julen.

Después de ese día, Ángel y yo hemos conversado largo y tendido sobre el tema. Ángel intuía que el concepto de “ingeniería humanitaria” era especialmente importante, pero que se tenía que profundizar más en él. Todas nuestras conversaciones, junto con la de otros compañeros como Eugenio Pellicer, le hicieron reflexionar en una mesa redonda que tuvo lugar en el VIII Congreso Nacional de Ingeniería Civil que tuvo lugar en Madrid los días 17 y 18 de febrero de 2020. El escritor y articulista del diario El País Manuel Jabois escribía el 23 de enero de 2019 lo siguiente en referencia al concepto de Ingeniería Civil Humanitaria haciendo referencia a Ángel en una declaración que queda en las hemerotecas para la historia: “Esto no es una operación de rescate, sino una obra de Ingeniería Civil Humanitaria“.

Un cisne de la especie Cygnus atratus, desconocido en Occidente hasta el siglo XVIII. Wikipedia

Desde esos días de enero de 2019 han pasado muchos acontecimientos que deberían ocurrir solo de muy de vez en cuando. Según la teoría del cisne negro, desarrollada por el investigador Nassim Taleb, esta teoría es una metáfora que describe un suceso sorpresivo (para el observador), de gran impacto socioeconómico y que, una vez pasado el hecho, se racionaliza por retrospección (haciendo que parezca predecible o explicable, y dando impresión de que se esperaba que ocurriera).

Las características de la teoría del cisne negro es que determinados acontecimientos ocurren de forma sorpresiva, pues como los cisnes negros, son sucesos muy extraños. Estos acontecimientos presentan un alto impacto desproporcionado y es difícil de predecir, teniendo un papel dominante en la historia. Sin duda, la crisis actual del coronavirus (COVID-19) es un cisne negro.

Sin embargo, en solo unos meses, además han ocurrido impactos tales como el DANA (Depresión Aislada en Niveles Altos) que puso en jaque a nuestro país, con grandes desastres económicos y pérdidas de vidas humanas, o la desgracia del vertedero de Zaldibar, donde en estos momentos aún siguen dos personas sepultadas.

Todo parece indicar que sucesos de emergencia local, regional o global van a ser recurrentes y pueden poner en muy alto riesgo no solo vidas humanas, sino la economía y el futuro de las generaciones actuales y futuras.

¿Y cuál es el papel de la ingeniería ante estos sucesos que son emergentes? ¿Qué es la ingeniería civil humanitaria? Tras muchas reflexiones, aquí escribo alguna de ellas. Animo a Ángel a que publique el texto íntegro de su comunicación en el congreso al que hice antes referencia.

¿Cómo se podría definir el concepto de ingeniería civil humanitaria? Se trata de una idea que, si bien de una u otra forma existía de forma difusa desde el origen de los tiempos, cuando los humanos usaban su ingenio y su rudimentaria tecnología en ayudar al resto de sus congéneres, ha cobrado una gran actualidad con motivo del rescate del niño Julen en Totalán.

Pero antes de intentar dar una definición, debemos aclarar unas cuantas ideas y, sobre todo, debemos descartar algunas cosas que no deberían incluirse en este concepto. No toda la ingeniería civil tiene carácter humanitario, y es justamente el adjetivo humanitario el que permite caracterizar mejor esa parte de la ingeniería que tiene ciertas características que la diferencia del resto de ingeniería que hacemos los ingenieros civiles. Por otra parte, tampoco el carácter humanitario es exclusivo de la ingeniería civil. Otros ámbitos de la ingeniería, de la técnica y de cualquier actividad humana también puede tener este carácter. Por tanto, hay que buscar entre las características de una ingeniería muy específica, que es la civil, qué rasgos o características definen su carácter humanitario.

Humanitario es un adjetivo que, según la Real Academia de la Lengua, tiene tres acepciones. La primera nos dice “que mira o se refiere al bien del género humano”. Esta primera acepción entraría de lleno en los objetivos de la ingeniería civil en general. En efecto, si la ingeniería civil tiene como objeto el diseño, construcción y mantenimiento de todo tipo de infraestructuras, éstas son el soporte del progreso y bienestar de la sociedad y, por tanto, toda la ingeniería civil sería humanitaria con esta primera acepción. Por tanto, no es esta acepción la que nos interesa destacar.

La segunda acepción identifica humanitario con “benigno, caritativo, benéfico”. En nuestro caso se trataría de la ingeniería civil que es solidaria con el sufrimiento ajeno, que presta auxilio a los necesitados. De alguna forma, se trata de una ingeniería que dispone de los recursos técnicos y materiales que ayuda a aquellos que la necesitan. Esta idea se relaciona también con la tercera acepción del diccionario donde humanitario tiene “como finalidad aliviar los efectos que causan la guerra u otras calamidades en las personas que las padecen”.

Por tanto, en todas las acepciones humanitario siempre se relaciona con el auxilio a personas que necesitan dicha ayuda. Sin embargo, hay un aspecto de especial relevancia, y es que la ayuda sea desinteresada. En caso contrario, se trata de la ingeniería civil habitual, es decir, una actividad económica que, si bien tiene como fin el bien común, precisa de un beneficio económico para mantenerse en el tiempo. ¿Pero puede existir una ingeniería civil desinteresada que ayude a los demás?

Para responder a esta pregunta, antes hay que contestar otra más importante. Se trata de saber si, como dicen algunos, el hombre es malo por naturaleza y gracias al Estado reprime su impulso egoísta. Esta es una tesis del filósofo Thomas Hobbes que, afortunadamente, no se puede afirmar que sea cierta. En efecto, algunas investigaciones realizadas con niños han demostrado que más del 95% de ellos ayudaban a los demás sin recibir ningún tipo de orden o instrucción (https://www.elmundo.es/elmundo/2012/11/16/ciencia/1353063447.html). Esta tendencia innata al altruismo ya está presente en los ancestros comunes que tenemos los humanos con los chimpancés, que también tienen esta tendencia altruista. Impacta saber que un mono prefiere quedarse sin comer varios días antes que ver a los compañeros sufrir. Algunos han justificado este comportamiento de cooperación como una de las claves de nuestra supervivencia como especie. Por tanto, la cooperación, el altruismo y la moral, forman parte de lo más profundo de nuestro cableado humano. No obstante, contraejemplos de maldad intrínseca se encuentran por doquier, pero ello no justifica la maldad intrínseca del ser humano.

Otro de los aspectos que también interesa sacar a colación es averiguar si la ingeniería civil humanitaria tiene que estar planificada o bien debe actuar de forma inmediata ante un problema puntual. Pues las dos cosas.

Cuando existe un problema importante en una comunidad, por ejemplo, falta de agua por sequía, carencias de infraestructuras sanitarias o educativas, la ingeniería civil se pone al servicio de los programas de ayuda humanitaria y, de forma planificada, con recursos escasos, pero bien dirigidos, se pueden realizar infraestructuras que generan un beneficio extraordinario a la comunidad que los recibe.

Por otra parte, y es el caso de la tragedia de Totalán, una emergencia requiere de toda la voluntad y recursos disponibles para, de forma urgente, ayudar en lo posible a resolver un grave problema humanitario. Aquí la ingeniería civil actúa, como se ha podido comprobar, de forma directa con todos los recursos técnicos disponibles.

En ambos casos, con proyectos planificados o en situación de emergencia, la ingeniería civil ofrece todos sus recursos técnicos, humanos y materiales para ayudar, de forma desinteresada, a otras personas.

Pues bien, aquí tenemos una de las claves del concepto de ingeniería civil humanitaria. Se podría definir como el conjunto de recursos técnicos, humanos y materiales disponibles por la ingeniería civil para ayudar, de forma desinteresada, a las personas que lo necesitan, ya sea en forma de proyectos de ayuda o en situaciones de emergencia.

Todo esto es posible gracias a la naturaleza intrínsecamente buena del ser humano y al avance en la técnica disponible de la ingeniería civil puesta al servicio de la sociedad por parte de personas que, sin esperar nada a cambio, se ofrecen para auxilio de los demás.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.