Luigi Cremona: el ingeniero que revolucionó la geometría y modernizó la educación técnica en Italia

Luigi Cremona (1830-1903). https://en.wikipedia.org/wiki/Luigi_Cremona

Antonio Luigi Gaudenzio Giuseppe Cremona (Pavía, 7 de diciembre de 1830-Roma, 10 de junio de 1903) fue un influyente matemático italiano, conocido por su decisiva contribución al desarrollo de la geometría algebraica y a la reforma de la enseñanza superior de las matemáticas en Italia. Fundador de la escuela italiana de geometría algebraica, dedicó su vida al estudio de las curvas y superficies algebraicas, y a la modernización de la enseñanza de las matemáticas en Italia. Junto a Francesco Brioschi y Eugenio Beltrami, fue una figura clave para que Italia se posicionara como una potencia en matemáticas hacia finales del siglo XIX.

Cremona nació en Pavía, que entonces formaba parte del Reino Lombardo-Véneto bajo dominio austríaco. Era el hijo mayor de Gaudenzio Cremona y su segunda esposa, Teresa Andereoli. Su hermano menor, Tranquillo Cremona, alcanzó la fama como pintor. Estudió en el ginnasio de Pavía y, tras la muerte de su padre cuando tenía once años, sus hermanastros lo ayudaron a continuar sus estudios. Se graduó cum laude en latín y griego, y luego ingresó en la Universidad de Pavía.

En 1848, con apenas 17 años, se unió como voluntario al Batallón «Italia Libre» para luchar por la independencia italiana contra el ejército austriaco. En este batallón alcanzó el rango de sargento y participó en la fallida defensa de Venecia, que capituló el 24 de agosto del mismo año. Tras regresar a Pavía y fallecer su madre, reanudó sus estudios con el respaldo familiar. El 27 de noviembre de 1849 obtuvo autorización para estudiar ingeniería civil con Bordoni y Gabba, y especialmente con Francesco Brioschi, a quien más tarde consideraría una de las figuras más influyentes de su vida académica. En 1853 se graduó como Dottore negli Studi di Ingegnere Civile e Architetto. Su pasado le impidió ejercer la docencia, pues los austriacos controlaban todavía la región lombarda.

Debido a su historial militar, no pudo obtener un cargo oficial al inicio de su carrera y trabajó como tutor privado de diversas familias notables. En 1854 se casó. Su primera publicación matemática, Sulle tangenti sfero-conjugate, apareció en marzo de 1855. En noviembre de ese mismo año, recibió autorización para enseñar física de manera provisional en el instituto de Pavía. Al año siguiente, fue nombrado profesor asociado y, en enero de 1857, profesor titular en el instituto de Cremona.

Durante su estancia en Cremona (1857-1859), escribió varios artículos originales, entre los que destacan sus contribuciones en geometría proyectiva y el análisis de curvas mediante métodos proyectivos. Entre sus trabajos más relevantes de esta etapa se encuentran:

  • Sulle linee del terz’ ordine a doppia curvatura (1858, dos partes)

  • Intorno alle superficie della seconda classe inscritte in una stessa superficie sviluppabile della quarta classe—nota (1858)

  • Intorno alle coniche inscritte in una stessa superficie del quart’ ordine e terza classe—nota (1859)

El 28 de noviembre de 1859 fue nombrado docente en el Liceo San Alejandro de Milán. En 1860 fue nombrado profesor de geometría superior en la Universidad de Bolonia y, en 1866, pasó al Colegio Técnico Superior de Milán para enseñar geometría superior y estática gráfica. Ese mismo año compitió por el Premio Steiner de la Academia de Berlín con su Mémoire sur les surfaces du troisieme ordre, que compartió con J. C. F. Sturm. En 1868 volvió a recibir este galardón, esta vez sin competencia.

Durante su etapa en Bolonia (1860-1867), desarrolló sus investigaciones más influyentes sobre transformaciones geométricas. Entre sus publicaciones destacan:

  • Introduzione ad una teoria geometrica delle curve piane (1861)

  • Sulle trasformazioni geometriche delle figure piane (1863)

  • Mémoire de géométrie pure sur les surfaces du troisième ordre (1866)

Estas obras fueron luego traducidas al alemán y publicadas como Grundzüge der allgemeinen Theorie der Oberflächen in synthetischer Behandlung (1870). Fue entonces cuando formuló la teoría de las transformaciones de Cremona, un avance clave en geometría birracional.

En octubre de 1867 fue trasladado por decreto real al Instituto Técnico de Milán, donde continuó su labor docente e investigadora hasta 1873. En ese año se le ofreció el cargo de secretario general del reciente gobierno italiano, que declinó por preferir sus actividades académicas. Sin embargo, al ser nombrado director de la Escuela Politécnica de Ingeniería de Roma ese mismo año, debió suspender temporalmente sus investigaciones a causa de la ingente labor burocrática que debía atender. Durante este periodo escribió sobre temas tan diversos como cúbicas torcidas, superficies desarrollables, teoría de las cónicas, curvas planas, superficies de tercer y cuarto grado, estática y geometría proyectiva. También publicó textos fundamentales:

  • Le figure reciproche nella statica grafica (1872)

  • Elementi di geometria proiettiva (1873)

  • Elementi di calcolo grafico (1874)

En 1873 rechazó un cargo político, pero fue nombrado director de la recién creada Escuela Real de Ingeniería de Roma y profesor de matemáticas superiores en la universidad. Su carga administrativa redujo su producción científica, aunque su influencia como pedagogo aumentó considerablemente.

Desde 1856 había comenzado a contribuir a revistas como Annali di scienze matematiche e fisiche y Annali di matematica, llegando a ser coeditor de esta última. Publicó artículos en importantes revistas de Italia, Francia, Alemania e Inglaterra. Varias de sus obras fueron traducidas al inglés y publicadas por la Clarendon Press, como Graphical Statics y Elements of Projective Geometry.

En noviembre de 1877 fue nombrado titular de la cátedra de matemáticas superiores en la Universidad de Roma. En 1879 fue elegido miembro correspondiente de la Royal Society y, ese mismo año, senador del Reino de Italia. En 1898 fue ministro de Educación durante un breve periodo de tiempo. En 1901, la Academia Real de Ciencias de Suecia lo nombró miembro suyo, y en 1902 recibió la distinción alemana Pour le Mérite for Sciences and Arts.

El 10 de junio de 1903, tras levantarse de su lecho de enfermo para intervenir en una sesión legislativa, sufrió un infarto que le causó la muerte.

Las contribuciones de Cremona se destacan en geometría proyectiva, estática gráfica y transformaciones birracionales. Su claridad expositiva y su visión integradora consolidaron una teoría unificada en geometría, situando a Italia a la vanguardia de las matemáticas a finales del siglo XIX.

Diagrama de Cremona. https://es.wikipedia.org/

En el ámbito de las estructuras, es conocido el método gráfico de Cremona. El diagrama de Cremona, también conocido como método de Cremona-Maxwell, es una técnica gráfica desarrollada en el siglo XIX por el matemático italiano Luigi Cremona. Su objetivo es analizar estructuras isostáticas de celosías, como puentes, cerchas o marquesinas. El método se basa en representar gráficamente las fuerzas que actúan en cada nudo de la estructura mediante polígonos funiculares. Para aplicar correctamente este método, la estructura debe estar triangulada y cumplir la relación 2n – 3 = b, donde n es el número de nudos y b el de barras.

El diagrama establece una correspondencia geométrica entre los elementos de la estructura original y los elementos del diagrama: a cada vértice le corresponde un triángulo, a cada barra un segmento y a cada región un punto. La distancia entre los puntos que representan las barras refleja el esfuerzo axial que actúa en ellas, por lo que el diagrama permite calcular las fuerzas internas en cada barra.

Para construir el diagrama, primero se dibujan semirrectas en la dirección de cada fuerza aplicada sobre los nudos. Estas líneas, junto con las barras de la estructura, dividen el plano en regiones numeradas. A partir de un punto inicial asignado a una de las regiones, se ubican los demás puntos del diagrama mediante vectores que representan las fuerzas conocidas. Las regiones interiores se completan con intersecciones de rectas paralelas a los bordes de las regiones adyacentes.

Una vez finalizado el diagrama, las distancias entre los puntos permiten obtener las magnitudes de las fuerzas en las barras, mientras que el tipo de esfuerzo (tracción o compresión) se determina mediante un algoritmo adicional. Este método sigue siendo útil y vigente en el análisis gráfico de estructuras reticulares simples.

Obras fundamentales:

  • Le figure reciproche nella statica grafica (1872)

  • Die reciproken Figuren in der graphischen Statik (1873)

  • Elementi di geometria proiettiva (1873)

  • Elementi di calcolo grafico (1874)

  • Opere matematiche (1914–1917)

Os dejo algunos vídeos del método gráfico de Cremona para la resolución de estructuras.

Eugenio Beltrami: de la geometría no euclidiana a la teoría de estructuras

Eugenio Beltrami (1835-1900) https://www.ecured.cu/

Eugenio Beltrami fue un matemático italiano reconocido por sus contribuciones a la geometría diferencial y la física matemática, por la claridad expositiva de sus escritos. Nació en Cremona el 16 de noviembre de 1835, en el seno de una familia de tradición artística, en el entonces Imperio austríaco. Su padre, Eugenio Beltrami, era pintor de miniaturas y, tras los acontecimientos políticos de 1848, emigró a París, donde se convirtió en conservador de un museo de arte. Desde temprana edad, Beltrami mostró inclinación por la música, que desempeñó un papel importante en su vida junto con las matemáticas.

En 1853, inició sus estudios de matemáticas en la Universidad de Pavía, donde fue discípulo de Francesco Brioschi. Sin embargo, en 1856 fue expulsado del Colegio Ghislieri debido a sus opiniones políticas, ya que simpatizaba con el movimiento del Risorgimento. Las dificultades económicas lo obligaron a interrumpir sus estudios y, durante varios años, trabajó como secretario en la administración del Ferrocarril Lombardía-Venecia, lo que lo llevó a trasladarse a Verona y, posteriormente, a Milán. Esta experiencia le brindó una perspectiva única sobre la aplicación de las matemáticas en campos como la ingeniería y la física, lo que le permitió comprender mejor la relación entre estos dos campos de estudio y su aplicación en diferentes contextos.

A los 25 años, pudo retomar su educación bajo la tutela de Brioschi y, en 1861, publicó su primer artículo matemático. Al año siguiente, en 1862, fue nombrado profesor en la Universidad de Bolonia, ocupando la cátedra de álgebra y geometría analítica. Gracias a la intervención de Enrico Betti, en 1863 fue designado profesor en la Universidad de Pisa, donde asumió la presidencia de la sección de geodesia. Entre 1863 y 1866, compaginó la docencia con la investigación antes de regresar a la Universidad de Bolonia, donde ocupó la cátedra de mecánica teórica hasta 1873.

En 1868, publicó dos memorias fundamentales sobre la consistencia e interpretaciones de la geometría no euclidiana de Bolyai y Lobachevski. En su Ensayo sobre una interpretación de la geometría no euclidiana, propuso que esta geometría podía modelarse en una superficie de curvatura negativa constante: la pseudoesfera. Consideró la curva conocida como tractriz, cuya rotación alrededor de su asíntota genera la pseudoesfera, y demostró que la geometría intrínseca de esta superficie coincide con la geometría del plano de Lobachevski. Gracias a este modelo, Beltrami proporcionó una base tangible para la geometría no euclidiana en el espacio euclidiano tridimensional ordinario. Además, desarrolló el modelo de Beltrami-Klein, que ofrecía otra representación de la geometría no euclidiana en el interior de una esfera unitaria tridimensional.

Tras la proclamación de Roma como capital del Reino de Italia en 1870, se impulsó la creación de una universidad de referencia nacional con los científicos más destacados. Gracias a su prestigio internacional, Beltrami fue invitado a formar parte de este proyecto y, entre 1873 y 1876, impartió clases de mecánica teórica y análisis superior en la Universidad de Roma. Durante este período, su interés se desplazó hacia la física matemática, lo que lo llevó a ser nombrado profesor de esta disciplina en la Universidad de Pavía en 1876, donde trabajó con gran éxito hasta 1891. En esta etapa, abordó prácticamente todas las áreas de la física matemática y publicó 60 tratados sobre electricidad, magnetismo, teoría del potencial, óptica, calor y elasticidad. Su uso del cálculo diferencial en problemas de física matemática influyó en el desarrollo del cálculo tensorial llevado a cabo por Gregorio Ricci-Curbastro y Tullio Levi-Civita. Asimismo, desarrolló la descomposición de valores singulares para matrices, que posteriormente fue redescubierta en varias ocasiones.

En 1891, Beltrami regresó a la Universidad de Roma, donde permanecería hasta su fallecimiento. En 1898 fue elegido presidente de la Accademia dei Lincei y, en 1899, se convirtió en senador del Reino de Italia. Falleció en Roma el 18 de febrero de 1900, conservando hasta el final la serenidad y el equilibrio que caracterizaron su vida, como un auténtico filósofo de la antigüedad.

Principales contribuciones a la teoría de estructuras:

  • Sulle equazioni generali dell’elasticità (1881)
  • Sulle condizioni di resistenza dei corpi elastici (1885)
  • Sull’interpretazione meccanica delle formule de Maxwell (1886)
  • Note fisico-matematiche (2a parte) (1889/1)
  • Sur la théorie de la déformation infiniment petite d’un milieu (1889/2)
  • Opere matematiche (1902-1920)

 

Jean-Victor Poncelet

Jean-Victor Poncelet (Metz, 1 de julio de 1788 – París, 22 de diciembre de 1867) fue un destacado matemático e ingeniero francés cuyas importantes contribuciones permitieron revalorizar la geometría proyectiva como una disciplina matemática fundamental.

En el ámbito matemático, su trabajo más relevante se centró en esta disciplina. Sin embargo, una de sus primeras colaboraciones con Charles Julien Brianchon resultó en una significativa aportación al teorema de Feuerbach. También realizó descubrimientos sobre los conjugados armónicos proyectivos y estableció relaciones entre los polos y las líneas polares asociadas a las secciones cónicas. Desarrolló el concepto de líneas paralelas que se encuentran en un «punto en el infinito» y definió los puntos circulares en el infinito que corresponden a cada círculo del plano. Estos avances condujeron a los principios de dualidad y continuidad, que expuso en su obra Traité des propriétés projectives des figures, y que también fueron fundamentales para el desarrollo de los números complejos. El principio de dualidad establece que todo enunciado de geometría proyectiva plana sigue siendo válido si se sustituyen los puntos por rectas, las rectas por puntos, la concurrencia de rectas por la alineación de puntos, etc., y viceversa. El axioma de continuidad permite un sistema completo de proyecciones, llamado sistema proyectivo.

Como teniente de ingenieros, participó en la campaña rusa de Napoleón, en la que fue abandonado como muerto en Krasnoyarsk y encarcelado en Saratov; regresó a Francia en 1814. Tras su liberación, fue nombrado profesor de mecánica en la École d’application de su ciudad natal, Metz, donde publicó su célebre obra Introduction à la mécanique industrielle y mejoró el diseño de turbinas y ruedas hidráulicas. En 1837, la Universidad de París creó una cátedra especialmente para él, de mecánica física y experimental, en la Sorbona. En 1848, Poncelet fue nombrado comandante general de su alma mater, la École Polytechnique.

Su legado perdura, y se le honra al incluir su nombre entre los ingenieros y científicos más destacados de Francia, cuya memoria está representada en la primera etapa de la Torre Eiffel. Es uno de los 72 científicos cuyo nombre figura inscrito en la Torre Eiffel.

Su padre, Claude Poncelet, era un rico terrateniente que ejercía de abogado en el Parlamento de Metz. Su madre era Anne-Marie Perrein, pero Jean-Victor era hijo ilegítimo y, aunque nació en Metz, antes de cumplir un año fue enviado a vivir con la familia Olier en Saint-Avold, ciudad situada al este de Metz. Cabe señalar que, mucho tiempo después, Claude Poncelet se casó con Anne-Marie Perrein, por lo que Jean-Victor es legítimo desde entonces. La familia Olier le cuidó con mucho amor y cariño y vivió con ellos hasta 1804, cuando cumplió 15 años. Fue una época feliz para Poncelet, que mostraba una gran curiosidad por todo lo que le rodeaba, en particular por los objetos mecánicos, y pasaba muchas horas jugando con el mecanismo de un reloj que le habían regalado.

A los quince años, Poncelet regresó a Metz, donde estudió en el liceo y asistió a clases especiales para prepararse para los exámenes de ingreso en la École Normale y la École Polytechnique. Demostró ser mucho más dotado que sus compañeros de clase y rápidamente se destacó como el mejor de su curso. Ingresó en la École Polytechnique en 1807, donde tuvo profesores de la talla de Monge, Carnot, Brianchon, Lacroix, Ampère, Legendre, Poinsot, Poissony y Hachette. Sin embargo, su salud era delicada y perdió la mayor parte de su tercer año. Se graduó en la École Polytechnique en 1810, con 22 años, más de lo habitual, debido a que se tomó un año extra por sus problemas de salud, y se decantó por la carrera militar. Se alistó en el Cuerpo de Ingenieros y se trasladó a Metz para estudiar en la École d’Application. Tras dos años de estudios, se graduó con el grado de teniente y, en marzo de 1812, su primera misión fue trabajar en las fortificaciones de Ramekens, en la isla de Walcheren, en el estuario del río Escalda (o Escaut).

De The original uploader was Ozob de Wikipedia en inglés. - Transferido desde en.wikipedia a Commons por Ozob., Dominio público, https://commons.wikimedia.org/w/index.php?curid=4174926
En “Correspondance sur l’Ecole Impériale polytechnique”, volumen 2, número 3, placa 4, figura 4. Ilustra la solución de Poncelet al Problema de Apolonio. https://commons.wikimedia.org/w/index.php?curid=4174926

Sin embargo, fue llamado a filas en junio de 1812 para participar en la campaña rusa de Napoleón. Fue hecho prisionero por los rusos en noviembre de 1812. Durante sus años de cautiverio, extendió la Géométrie descriptive de Monge (1794/1795) y transformó los principios en su famoso libro sobre geometría proyectiva (Poncelet, 1822). Tras su regreso a Francia en septiembre de 1814, trabajó como oficial de ingeniería en diversos proyectos de ingeniería militar, incluidos los trabajos de fortificación en Metz.

En 1824, Poncelet fue finalmente nombrado profesor en la École d’application de l’Artillerie et du Génie en Metz, donde enseñó – con elegancia, simplicidad y claridad – los fundamentos de una mecánica aplicada basada en máquinas a los oficiales que asistían al famoso curso Mécanique appliquée aux machines desde 1825 hasta 1834; sus conferencias fueron publicadas en ediciones litografiadas (Poncelet, 1826–1832).

Además, entre 1827 y 1830, presentó las populares conferencias nocturnas sobre aplicaciones de la geometría y la mecánica en la industria para trabajadores e industriales en Metz (Cours de mécanique industrielle), que fueron publicadas con el título Introduction à la mécanique industrielle (Poncelet, 1829, 1841, 1870). Tanto el Cours de mécanique appliquée aux machines de Poncelet como su Introduction à la mécanique industrielle pueden considerarse los dos documentos fundacionales más importantes de la mecánica aplicada.

Al igual que el Résumé des Leçons de Navier constituye la obra principal de la fase de constitución de la teoría de estructuras (1825–1850), las dos obras de Poncelet hicieron una contribución vital a la fase de constitución de la mecánica aplicada (1825–1850). Basado en su trabajo sobre geometría proyectiva (Poncelet, 1822), también resolvió problemas en la teoría de arcos de mampostería (Poncelet, 1822) y la teoría de la presión del suelo. Por ejemplo, el Mémoire sur la stabilité des revêtements et de leurs fondation (1840) de Poncelet, que fue traducido al alemán y ampliado por J. W. Lahmeyer (Poncelet, 1844), contiene la determinación gráfica de la presión del suelo que actúa sobre los muros de contención.

Poncelet se convirtió en miembro del Consejo Municipal de Metz, secretario del Consejo General del Departamento de Mosela (1830), miembro de la Academia de Ciencias de París (1834) y, entre 1838 y 1848, profesor de la Facultad de Ciencias de París. Su carrera militar también es impresionante: en 1848 alcanzó el rango de brigadier general y, ese mismo año, fue nombrado comandante de la École Polytechnique, y en este puesto fue designado comandante en jefe de la Guardia Nacional del Departamento del Sena. Poncelet se retiró a finales de octubre de 1850. Finalmente, para coronar su carrera militar, Poncelet fue nombrado Gran Oficial de la Legión de Honor, el 9 de julio de 1853

El gobierno francés envió a Poncelet a formar parte de los jurados de las Exposiciones Universales de Londres (1851) y París (1855), y escribió libros detallados sobre estas. Rühlmann llamó a Poncelet el «Euler del siglo XIX» porque, al igual que Euler, fue un «creador de teorías totalmente nuevas, un promotor de las ciencias abstractas y empíricas…». Tuvo la suerte de poder participar en el periodo más importante del surgimiento y desarrollo de la industria, la construcción y la mecánica de las máquinas. Al igual que Euler, Poncelet también fue un excelente maestro que, con las presentaciones más simples y una rigurosidad moderada, sabía cautivar a sus estudiantes y hacerles entusiasmar con la ciencia» (Rühlmann, 1885, pp. 387-389).

Tras una larga y penosa enfermedad, falleció en diciembre de 1867. Al año siguiente, su esposa fundó el Premio Poncelet, en cumplimiento de su último deseo, que las ciencias progresaran. A partir de 1876, la Academia de Ciencias concedió este premio, incrementado con otra suma de dinero, a trabajos de matemáticas puras o mecánica. Sus manuscritos inéditos sobrevivieron hasta la Primera Guerra Mundial, momento en el que desaparecieron y no se ha vuelto a saber de ellos. Lamentablemente, es muy probable que fueran destruidos en esa época.

Principales contribuciones a la teoría de estructuras:

  • Traité des propriétés projectives des figures [1822]
  • Cours de mécanique appliquée aux machines [1826–1832]
  • Mémoire sur les centres de moyennes harmoniques; pour faire suite au traité des propriétés projectives des figures et servir d’introduction à la Théorie générale des propriétés projectives des courbes et surfaces géométriques [1828]
  • Mémoire sur la théorie générale des polaires réciproques; pour faire suite au Mémoire sur les centres des moyennes harmoniques [1829/1]
  • Analyse des transversales appliquée à la recherche des propriétés projectives des lignes et surfaces géométriques [1832]
  • Introduction à la mécanique industrielle [1829, 1841, 1870]
  • Solution graphique des principales questions sur la stabilité des voûtes [1835]
  • Mémoire sur la stabilité des revêtements et de leurs fondations [1840]
  • Über die Stabilität der Erdbekleidungen und deren Fundamente [1844]
  • Examen critique et historique des principales théories ou solutions concernant l’équilibre des voûtes [1852]

Los motivos por los que se equivocan estudiantes y profesionales de ingeniería al abordar la resolución de problemas

Resolver problemas en el ámbito universitario o profesional, en áreas tecnológicas, de ingeniería y ciencias, puede plantear una serie de desafíos que pueden conducir a errores. Estos fallos pueden surgir por diversas razones que van desde no comprender el concepto subyacente hasta confiar demasiado en la tecnología.

En un artículo anterior mencioné algunos ejemplos de problemas teóricamente sencillos, pero que marean a nuestros estudiantes. Ahora vamos a analizar detalladamente algunas de estas razones y cómo se relacionan entre sí. También he incluido enlaces a otros artículos del blog donde reflexiono sobre este tipo de cuestiones.

La falta de comprensión del concepto subyacente a un problema es una preocupación fundamental. Esto puede manifestarse de diversas formas, ya sea a través de errores conceptuales, una aplicación incorrecta del concepto o una interpretación errónea del mismo. Esta falta de entendimiento puede empeorar si se carece de experiencia o conocimientos específicos en el campo correspondiente. Cuando un estudiante o profesional se enfrenta a un problema para el que no tiene experiencia previa, puede tener dificultades para aplicar correctamente los principios necesarios para resolverlo.

Los datos son fundamentales para encontrar soluciones, sin embargo, su calidad y disponibilidad pueden ser problemáticos. La falta de datos adecuados, la presencia de información contradictoria o sesgada pueden conducir a conclusiones incorrectas. Asimismo, centrarse excesivamente en utilizar todos los datos disponibles puede distraer de la información realmente importante, al tiempo que validar datos sesgados o inventados puede conducir a conclusiones incorrectas.

El manejo inadecuado de las bases matemáticas también puede ser una fuente de errores (geometría, trigonometría, cálculo o álgebra). Esto puede incluir errores en el cálculo, así como el uso inapropiado de fórmulas o modelos matemáticos. Los problemas reales rara vez tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Además, el uso excesivo de la memoria en lugar de la comprensión de los principios subyacentes puede conducir a errores conceptuales y de selección de modelos de cálculo.

Los aspectos psicológicos también son importantes. El estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración pueden afectar a la capacidad de resolver problemas de manera efectiva. La falta de atención a los detalles, la fatiga y el agotamiento también pueden provocar errores en la resolución de problemas.

Es crucial comprender que los problemas reales pueden ser complejos y no tener necesariamente una solución única. Esto implica la necesidad de tomar decisiones informadas y comprender las limitaciones de los modelos o fórmulas utilizados. Además, la propagación de errores en las operaciones y el uso incorrecto de datos, fórmulas o software pueden dar lugar a resultados erróneos.

La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos una y otra vez. La falta de comunicación o colaboración entre profesionales en entornos de trabajo también puede provocar errores en la resolución de problemas. Confiar ciegamente en la tecnología o en herramientas automatizadas sin comprender en profundidad los principios subyacentes puede ser un problema.

En resumen, resolver problemas en el ámbito universitario o profesional de la ingeniería y las ciencias puede ser un proceso complejo y propenso a errores debido a una variedad de factores interrelacionados. Desde la comprensión del concepto hasta la calidad y disponibilidad de los datos, así como los aspectos psicológicos y técnicos relacionados con la resolución de problemas, es crucial abordar estos desafíos con atención y comprensión para lograr soluciones precisas y efectivas. Desde las universidades debe hacerse todo lo posible para superar este tipo de dificultades y conseguir que nuestros estudiantes adquieran las competencias necesarias para su posterior desarrollo profesional.

Sin querer ser exhaustivo, y sin que estén ordenadas por importancia, aquí os dejo una lista de 30 posibles causas por las cuales nuestros estudiantes en los exámenes o los técnicos en su ámbito profesional, suelen cometer errores al resolver los problemas. Estoy convencido de que hay más causas, pero esto puede ser un buen punto de partida para el debate y la reflexión. En el vídeo que he grabado, me extiendo y explico algo más lo que aquí recojo como una simple lista.

  1. La falta de comprensión del concepto subyacente en un problema puede conducir a errores conceptuales al aplicarlo incorrectamente o interpretarlo de manera errónea.
  2. La inexperiencia o la falta de conocimientos específicos pueden surgir cuando una persona afronta por primera vez un tipo de problema, ya sea durante un examen o en la práctica profesional.
  3. Los problemas relacionados con la disponibilidad de datos pueden presentarse de varias formas, como datos insuficientes, necesarios, innecesarios o contradictorios. A menudo, existe una obsesión por utilizar todos los datos disponibles en el enunciado del problema.
  4. La calidad de los datos también es un factor importante, con la posibilidad de incertidumbre o error en los datos disponibles. Además, dar por válidos datos sesgados, interesados o inventados puede llevar a conclusiones incorrectas. Es necesario un control de calidad de los datos.
  5. Intentar resolver un problema utilizando el enfoque típico visto en clase puede marear a nuestros estudiantes. Los alumnos prefieren resolver un problema típico explicado en clase, a ser posible, con datos parecidos.
  6. El manejo inadecuado de las bases matemáticas, que incluye errores en el cálculo, el uso incorrecto de fórmulas o modelos matemáticos, y la falta de comprensión de los principios subyacentes, puede ser una fuente común de errores. La falta de conocimientos básicos de geometría, trigonometría, álgebra o cálculo básicos son, en ocasiones, escollos. A veces hay dificultades en saber dibujar un esquema para resolver el problema.
  7. Los problemas reales generalmente no tienen una sola solución, lo que requiere habilidades para evaluar y decidir entre múltiples enfoques posibles. Esta distinción, que se da claramente entre los estudios de grado y los de máster, es importante tenerla en cuenta.
  8. Los aspectos psicológicos, como el estrés, la falta de confianza en uno mismo, la presión por terminar a tiempo y la falta de concentración, pueden afectar negativamente la capacidad para resolver problemas de manera efectiva.
  9. La falta de atención o interés, así como la fatiga o el agotamiento, pueden contribuir a errores en la resolución de problemas, al igual que la prisa por resolver el problema.
  10. La complejidad de los problemas puede aumentar cuando se trata de situaciones poco comunes o rebuscadas, lo que requiere un enfoque cuidadoso y creativo para su resolución.
  11. Es crucial comprender la diferencia entre una ley general y una fórmula particular al aplicar normas técnicas que pueden estar basadas en hipótesis o casos específicos.
  12. Utilizar modelos de cálculo inadecuados, ya sean demasiado refinados o demasiado simples para los datos disponibles, puede conducir a soluciones incorrectas.
  13. Carecer de números estimativos para prever el resultado final puede resultar en una falta de comprensión del orden de magnitud del resultado. En este sentido, el uso de nomogramas en la docencia facilita la adquisición de este tipo de habilidad en los estudiantes. Los estudiantes y los profesionales deberían tener un conocimiento del “número gordo” y saber predimensionar.
  14. Es importante ser consciente de la propagación de errores en las operaciones, ya que incluso pequeños errores pueden magnificarse y llevar a resultados incorrectos.
  15. Utilizar fórmulas, datos o tablas en un contexto diferente al que dieron origen puede llevar a interpretaciones incorrectas o a soluciones erróneas.
  16. La extrapolación de resultados a límites no contemplados puede conducir a conclusiones incorrectas o poco realistas.
  17. Utilizar fórmulas empíricas con datos expresados en unidades diferentes a las que funcionan puede generar resultados inconsistentes o incorrectos.
  18. La dependencia excesiva de la memoria en lugar de comprender los principios subyacentes puede conducir a errores en la selección de modelos o fórmulas de cálculo.
  19. Errores conceptuales pueden llevar a la selección incorrecta de modelos o fórmulas de cálculo, lo que resulta en soluciones erróneas.
  20. El uso de software defectuoso o poco contrastado, así como la falta de habilidades para calcular manualmente un problema, pueden resultar en resultados incorrectos. A esto se une un uso inapropiado de la inteligencia artificial.
  21. El mal uso de ecuaciones o fórmulas, como cambiar el nombre de una variable sin entender el concepto subyacente, puede conducir a errores en la resolución de problemas.
  22. La falta de competencia o experiencia en una materia determinada puede resultar en una resolución incorrecta del problema.
  23. Repetir la resolución de problemas de un contexto a otro sin pensar en su validez puede conducir a soluciones inapropiadas.
  24. La falta de comprensión del problema, la pregunta o el tipo de resultado esperado puede resultar en soluciones incorrectas debido a la falta de comprensión lectora, capacidad analítica o de síntesis.
  25. La utilización de unidades defectuosas, notaciones o convenciones específicas puede llevar a interpretaciones erróneas o a soluciones incorrectas.
  26. La falta de retroalimentación o revisión de los errores cometidos puede perpetuar la repetición de los mismos errores una y otra vez.
  27. La falta de comunicación o colaboración en entornos de trabajo entre profesionales puede contribuir a errores en la resolución de problemas.
  28. La confianza excesiva en la tecnología o herramientas automatizadas puede llevar a la falta de comprensión de los principios subyacentes y a la comisión de errores.
  29. La falta de revisión o verificación de los cálculos realizados por parte de un tercero independiente puede resultar en soluciones incorrectas.
  30. La falta de conocimiento del contexto del problema, incluyendo las restricciones, puede conducir a soluciones subóptimas o incorrectas.

Os paso un vídeo donde he desarrollado las ideas anteriores, con ejemplos, y he dejado algunas de mis reflexiones al respecto. Espero que os guste.

Os dejo un podcast sobre este tema (en inglés), generado por una IA sobre el vídeo.

Aquí tenéis un mapa conceptual que también os puede ayudar.

Artículos relacionados en el blog:

Los ingenieros, los ordenadores y mil un indios

De la regla de cálculo al ordenador: olvidarse de cómo se calculaba antes

Cifras significativas y errores de medición

¿Cómo predimensionar un muro sin calculadora?

La inteligencia artificial en la ingeniería civil

Introducción a la toma de decisiones

Problemas teóricamente sencillos pero que marean a nuestros estudiantes

Referencias de libros de problemas:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2023). Ejercicios resueltos de sistemas de transporte continuo: bombas y cintas transportadoras. Ediciones UPCT. Universidad Politécnica de Cartagena, 284 pp. ISBN: 978-84-17853-62-4

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.