Prohibieron la IA en sus clases de ingeniería. Ahora es su mejor herramienta para enseñar a pensar.

Introducción: El dilema de la IA en las aulas.

En los pasillos de la educación superior, un debate resuena con fuerza: ¿qué hacemos con la inteligencia artificial generativa (IAG)? Para muchos, herramientas como ChatGPT suponen una amenaza directa para el pensamiento crítico, ya que facilitan el plagio y fomentan la superficialidad académica. El temor es comprensible y está muy extendido.

Sin embargo, ¿y si el problema no fuera la herramienta, sino nuestra forma de reaccionar ante ella? El proyecto PROFUNDIA (acrónimo de PROFUNDo y autonomÍA) surge de esta cuestión, pero con un enfoque inesperado. Esta iniciativa de innovación educativa en ingeniería estructural no surgió de una prohibición teórica, sino de un problema práctico y urgente: el uso no regulado de la IA por parte de los estudiantes estaba deteriorando la calidad de su aprendizaje.

En lugar de intensificar la prohibición, este proyecto propone una solución radicalmente diferente. Este artículo explora los cuatro descubrimientos clave de un enfoque que busca transformar la IA de una amenaza en una de las herramientas pedagógicas más potentes.

Los 4 descubrimientos clave del proyecto PROFUNDIA

1. La cruda realidad es que el uso no supervisado de la IA estaba deteriorando el aprendizaje.

El proyecto PROFUNDIA no se basó en una hipótesis abstracta, sino que surgió de una necesidad urgente detectada en las aulas a partir del curso 2023-2024. El profesorado comenzó a observar un patrón preocupante en los trabajos de los estudiantes.

Las estadísticas internas confirmaron la sospecha: las encuestas revelaron que más del 60 % del alumnado ya utilizaba la IA para hacer sus trabajos. Sin embargo, el dato más alarmante era otro: solo el 25 % de ellos revisaba críticamente los resultados que la herramienta generaba.

La consecuencia fue una «notable disminución de la calidad técnica y argumentativa» de los proyectos. El problema era específico y grave: aunque la herramienta ofrecía soluciones funcionales, no podía verificar las hipótesis iniciales ni razonar la adecuación del modelo al contexto técnico. Los estudiantes dependían de la IA de forma acrítica, entregando trabajos con «errores conceptuales importantes» y debilitando su capacidad de razonamiento. Esto demostró que mirar hacia otro lado no era una opción, sino que era necesaria una intervención educativa guiada.

2. El cambio de paradigma: de la prohibición a la integración crítica.

Hasta entonces, la política en las asignaturas implicadas era clara: el uso de la IA «estaba explícitamente prohibido». Sin embargo, la realidad demostró que esta medida era ineficaz y contraproducente.

En lugar de librar una batalla perdida contra una tecnología omnipresente, el proyecto PROFUNDIA optó por un cambio de 180 grados: integrarla de forma «explícita, guiada y crítica». La nueva filosofía consistía en enseñar a los estudiantes a utilizar la herramienta de manera inteligente en lugar de ignorarla.

La esencia de este nuevo paradigma se resume en su declaración de intenciones:

Frente a enfoques que restringen o penalizan el uso de la IA, PROFUNDIA propone su integración crítica y formativa como herramienta cognitiva para potenciar el aprendizaje profundo, la interpretación técnica, la argumentación fundamentada y el desarrollo de la autonomía del estudiante.

3. El método: aprender a pensar «enseñando» a la IA.

La propuesta metodológica supone un cambio estructural en el aprendizaje, ya que se pasa de un proceso lineal (profesor-estudiante) a otro triangular (profesor-estudiante-IA). En primer lugar, los estudiantes resuelven un problema por sus propios medios. Después, piden a la IA que resuelva el mismo problema. La fase clave llega a continuación: deben comparar críticamente su solución con la de la IA.

En este punto radica la innovación más profunda del método. La IA se incorpora «como un agente más en el proceso, con un papel activo y con un sesgo deliberado hacia el error». El papel del estudiante cambia radicalmente: deja de ser un usuario pasivo para convertirse en entrenador activo de la IA. Su tarea ya no consiste en obtener una respuesta, sino en identificar, cuestionar y corregir los errores de la herramienta, lo que les lleva a «enseñar» a la IA a resolver problemas complejos y, en el proceso, a dominar el tema a un nivel mucho más profundo.

El objetivo final de este proceso es la «reflexión metacognitiva». Se pretende que el estudiante «reflexione sobre cómo piensa y aprende» al contrastar su razonamiento con el de la IA, sus compañeros y el profesor.

4. La meta final: la IA como una «mindtool» para crear mejores ingenieros.

Este enfoque no es solo una técnica ingeniosa, sino que se fundamenta en un concepto pedagógico sólido: el de las mindtools o «herramientas para la mente». Esta idea defiende el uso de la tecnología no como un sustituto del esfuerzo intelectual, sino como un andamio para potenciar el pensamiento crítico y la construcción activa del conocimiento, es decir, tratar la tecnología no como una muleta, sino como un gimnasio para la mente.

Este planteamiento conecta directamente con las demandas del mercado laboral actual. Como señalan estudios previos (Pellicer et al., 2017), las empresas no solo buscan egresados con conocimientos técnicos, sino también con habilidades transversales como la resolución de problemas, la autonomía y el juicio crítico.

Por tanto, los resultados de aprendizaje que se persiguen son extremadamente precisos y potentes. El objetivo es formar ingenieros que puedan:

  1. Formular problemas técnicos complejos con la precisión necesaria para que la IAG pueda analizarlos.
  2. Evaluar y validar críticamente las soluciones generadas por la IAG, justificando sus decisiones.
  3. Gestionar de forma autónoma el uso de la IAG dentro de estrategias complejas de resolución de problemas.

En definitiva, se les prepara para un entorno profesional «complejo, colaborativo y en constante evolución».

Conclusión: ¿Y si dejamos de temer a la tecnología y empezamos a usarla para pensar mejor?

El proyecto PROFUNDIA demuestra que es posible cambiar la perspectiva sobre la IA en la educación. Transforma lo que muchos consideran una amenaza para el aprendizaje en una oportunidad única para fomentar un pensamiento más profundo, crítico y autónomo.

Su reflexión trasciende las aulas de ingeniería. ¿Qué otras tecnologías emergentes podríamos empezar a integrar en nuestras profesiones, no como un atajo, sino como un catalizador para desarrollar un pensamiento más crítico y sofisticado?

Os dejo un audio en el que dos personas hablan y discuten sobre este tema.

También os dejo un vídeo que resume muy bien el contenido del proyecto.

Referencias:

Blight, T., Martínez-Pagán, P., Roschier, L., Boulet, D., Yepes-Bellver, L., & Yepes, V. (2025). Innovative approach of nomography application into an engineering educational context. PloS one, 20(2), e0315426.

Castro-Aristizabal, G., Acosta-Ortega, F., & Moreno-Charris, A. V. (2024). Los entornos de aprendizaje y el éxito escolar en Latinoamérica. Lecturas de Economía, (101), 7-46.

Hadgraft, R. G., & Kolmos, A. (2020). Emerging learning environments in engineering education. Australasian Journal of Engineering Education, 25(1), 3-16.

Jiang, N., Zhou, W., Hasanzadeh, S., & Duffy Ph D, V. G. (2025). Application of Generative AI in Civil Engineering Education: A Systematic Review of Current Research and Future Directions. In CIB Conferences (Vol. 1, No. 1, p. 306).

Jonassen, D. H., Peck, K. L., & Wilson, B. G. (1999). Learning with technology: A constructivist perspective. Columbus, OH: Merrill/Prentice-Hall.

Liao, W., Lu, X., Fei, Y., Gu, Y., & Huang, Y. (2024). Generative AI design for building structures. Automation in Construction157, 105187.

Navarro, I. J., Marti, J. V., & Yepes, V. (2023). Evaluation of Higher Education Students’ Critical Thinking Skills on Sustainability. International Journal of Engineering Education, 39(3), 592-603.

Onatayo, D., Onososen, A., Oyediran, A. O., Oyediran, H., Arowoiya, V., & Onatayo, E. (2024). Generative AI applications in architecture, engineering, and construction: Trends, implications for practice, education & imperatives for upskilling—a review. Architecture4(4), 877-902.

Pellicer, E., Yepes, V., Ortega, A. J., & Carrión, A. (2017). Market demands on construction management: View from graduate students. Journal of Professional Issues in Engineering Education and Practice143(4), 04017005.

Perkins, D., & Unger, C. (1999). La enseñanza para la comprensión. Argentina: Paidós.

Torres-Machí, C., Carrión, A., Yepes, V., & Pellicer, E. (2013). Employability of graduate students in construction management. Journal of Professional Issues in Engineering Education and Practice139(2), 163-170.

Xu, G., & Guo, T. (2025). Advances in AI-powered civil engineering throughout the entire lifecycle. Advances in Structural Engineering, 13694332241307721.

Zhou, Z., Tian, Q., Alcalá, J., & Yepes, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 100268.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inteligencia artificial y eficiencia en el diseño de edificios

La inteligencia artificial (IA) está transformando de manera radical el diseño arquitectónico y la edificación. En la actualidad, el sector de la construcción se enfrenta a tres tendencias clave: la industrialización, la sostenibilidad y la transformación digital e inteligente. La convergencia de estos factores genera numerosas oportunidades, pero también desafíos significativos.

Los proyectos contemporáneos son cada vez más grandes y complejos, y están sujetos a requisitos ambientales más estrictos, lo que aumenta la presión sobre los equipos de diseño en términos de procesamiento de información, tiempo y recursos. En este contexto, la IA no solo optimiza los procesos, sino que también mejora la eficiencia de los métodos tradicionales de diseño.

A continuación, analizamos cómo la IA puede impulsar la eficiencia del diseño, fomentar la innovación y contribuir a la sostenibilidad de los proyectos. La tecnología ya está presente en todas las etapas del ciclo de vida del edificio, desde el análisis predictivo y la supervisión de la construcción hasta el mantenimiento de las instalaciones.

La digitalización ha transformado profundamente la forma en que concebimos, proyectamos y gestionamos las infraestructuras. Tras la aparición del diseño asistido por ordenador (CAD) y el modelado de información para la construcción (BIM), la inteligencia artificial (IA) se presenta como el siguiente gran avance tecnológico. A diferencia de otras herramientas, la IA no solo automatiza tareas, sino que también aprende, genera propuestas y ayuda a tomar decisiones complejas de manera óptima. Como señalan Li, Chen, Yu y Yang (2025), la IA se está consolidando como una herramienta fundamental para aumentar la eficiencia en el diseño arquitectónico e integrar criterios de sostenibilidad, industrialización y digitalización en toda la cadena de valor.

La IA se puede definir como un conjunto de técnicas informáticas que buscan reproducir procesos propios de la inteligencia humana, como el razonamiento, el aprendizaje o el reconocimiento de patrones. Entre sus ramas se incluyen el aprendizaje automático (machine learning o ML), basado en algoritmos que identifican patrones en grandes volúmenes de datos; las redes neuronales artificiales, que imitan el funcionamiento del cerebro y permiten resolver problemas complejos, como la predicción energética (Chen et al., 2023); los algoritmos genéticos, que simulan procesos evolutivos para hallar soluciones óptimas en problemas con múltiples variables, y la IA generativa, capaz de crear contenidos originales, como imágenes o planos, a partir de descripciones textuales. Este último enfoque, también conocido como AIGC (contenido generado por IA), ha popularizado herramientas como Stable Diffusion o Midjourney (Li et al., 2025).

En el sector de la construcción confluyen tres grandes tendencias: la industrialización, vinculada a la modularización y la prefabricación de componentes; el desarrollo sostenible, que impulsa diseños energéticamente eficientes y con menor impacto ambiental; y la digitalización inteligente, en la que la IA desempeña un papel protagonista (Asif, Naeem y Khalid, 2024). Estas tres dinámicas están interrelacionadas: sin tecnologías de análisis avanzado, como la IA, sería mucho más difícil cumplir los objetivos de sostenibilidad o gestionar procesos constructivos industrializados.

Tendencias de la construcción

Las aplicaciones de la IA se extienden a lo largo de todo el ciclo de vida del edificio. En las primeras fases de diseño, los algoritmos generan en segundos múltiples alternativas de distribución, optimizando la orientación, la iluminación natural o la ventilación. El diseño paramétrico asistido por IA permite explorar variaciones infinitas ajustando solo unos pocos parámetros (Li et al., 2025). Durante la fase de proyecto, los sistemas basados en procesamiento del lenguaje natural pueden interpretar normativas y detectar incumplimientos de forma automática, lo que reduce la probabilidad de modificaciones en obra (Xu et al., 2024). Además, las técnicas de simulación permiten prever el comportamiento estructural, acústico o energético de un edificio antes de su construcción, lo que proporciona seguridad y precisión en la toma de decisiones.

Avances de la IA en el diseño arquitectónico

En el sector de la construcción, la IA se combina con sensores y análisis de datos en tiempo real para optimizar la producción y la logística. En la construcción industrializada, los algoritmos ajustan la fabricación de elementos prefabricados, optimizan los cortes y los ensamblajes, y mejoran la gestión de las obras (Li et al., 2025). Al mismo tiempo, la monitorización inteligente permite anticiparse a las desviaciones, planificar los recursos con mayor eficiencia e incrementar la seguridad en entornos complejos.

Optimización del ciclo de vida del edificio con IA

Uno de los campos más avanzados es la predicción y optimización del consumo energético. Algoritmos como las redes neuronales, las máquinas de soporte vectorial o los métodos evolutivos permiten modelizar con gran precisión el comportamiento energético, incluso en las fases preliminares (Chen et al., 2023). Gracias a estas técnicas, es posible seleccionar soluciones constructivas más sostenibles, diseñar envolventes eficientes e integrar energías renovables en el proyecto. Como señalan Ding et al. (2018), estas herramientas facilitan el cumplimiento de los sistemas de evaluación ambiental y apoyan la transición hacia edificios de energía casi nula.

Las ventajas de la IA son evidentes: aumenta la eficiencia, reduce los errores y permite generar múltiples alternativas en mucho menos tiempo (Li et al., 2025). También optimiza los aspectos energéticos y estructurales, lo que hace que los proyectos sean más fiables y competitivos. La automatización de tareas repetitivas agiliza la creación de planos y documentos, mientras que los profesionales pueden dedicarse a tareas creativas. Además, las herramientas de gestión de proyectos con IA ayudan a organizar mejor los recursos y los plazos. Gracias a su capacidad para analizar grandes volúmenes de datos, fomentan la innovación, diversifican los métodos de diseño y facilitan la selección de materiales y el rendimiento energético.

Beneficios de la IA en el diseño

Sin embargo, la IA también plantea importantes desafíos. Su eficacia depende de la calidad de los datos; sin información fiable, los algoritmos pierden precisión. Además, integrarla con plataformas como CAD o BIM sigue siendo complicado (Xu et al., 2024). A esto se suman cuestiones éticas y legales, como la propiedad intelectual de los diseños generados por IA, la opacidad en la toma de decisiones y el riesgo de que los diseñadores pierdan cierto control. En algunos lugares, como EE. UU., se han revocado derechos de autor sobre obras generadas por IA, lo que refleja la incertidumbre legal existente.

Otros retos son la homogeneización del diseño si todos usan herramientas similares, la reticencia de algunos profesionales a adoptar soluciones de IA por dudas sobre la personalización y la fiabilidad, y los altos costes y la limitada disponibilidad de hardware y software especializados. Aún así, la IA sigue siendo una herramienta poderosa que, si se utiliza correctamente, puede transformar la eficiencia, la creatividad y la sostenibilidad en el sector de la construcción, abriendo un futuro lleno de oportunidades.

Desafíos de la adopción de la IA en el diseño

Ya existen ejemplos prácticos que muestran el potencial de estas tecnologías. Herramientas como Stable Diffusion o FUGenerator pueden generar imágenes y maquetas a partir de descripciones en lenguaje natural y actúan como asistentes que multiplican la productividad del proyectista (Li et al., 2025). Estas plataformas no sustituyen la creatividad humana, pero ofrecen un apoyo decisivo en la fase de ideación.

Bucle interactivo de inferencia de diseño arquitectónico de FUGenerator (Li et al., 2025)

La IA se está convirtiendo en un pilar fundamental de la construcción, integrándose cada vez más con tecnologías como la realidad aumentada (RA), la realidad virtual (RV), la realidad mixta (RM) y los gemelos digitales. Gracias a esta combinación, no solo es posible visualizar cómo será un edificio, sino también anticipar su comportamiento estructural, energético o acústico antes de su construcción (Xu et al., 2024). Esto permite a los diseñadores y a los clientes evaluar las propuestas en las primeras etapas, lo que mejora la calidad del diseño y la experiencia del usuario.

La IA del futuro será más inteligente y adaptable, capaz de predecir con gran precisión los resultados del diseño y ofrecer soluciones personalizadas. Su impacto no se limita al diseño arquitectónico: la gestión de la construcción se beneficiará de la robótica asistida, lo que aumentará la seguridad y la eficiencia en tareas complejas o de alto riesgo; la operación de los edificios podrá monitorizar su rendimiento, anticipar las necesidades de mantenimiento y prolongar su vida útil, lo que reducirá los costes, y el análisis de mercado aprovechará el big data para prever la demanda y los precios de los materiales, lo que optimizará la cadena de suministro.

En ingeniería civil, la integración de la IA y las tecnologías avanzadas permite tomar decisiones más fundamentadas, minimizar riesgos y entregar proyectos más seguros y sostenibles (Xu et al., 2024). Así, la construcción del futuro se perfila como un proceso más eficiente, innovador y conectado, en el que la tecnología y la planificación estratégica trabajan juntas para lograr resultados óptimos.

En conclusión, la IA no pretende sustituir a los ingenieros y arquitectos, sino ampliar sus capacidades, como ya hicieron el CAD o el BIM (Asif et al., 2024; Li et al., 2025). Automatiza tareas repetitivas, agiliza el diseño, facilita la toma de decisiones basada en datos y ayuda a elegir materiales, mejorar la eficiencia energética y estructural e inspirar soluciones creativas. Su impacto trasciende el diseño y se extiende a la planificación, la supervisión de la construcción y la gestión del ciclo de vida del edificio. No obstante, su adopción plantea desafíos como los altos costes, la escasez de software disponible y la necesidad de contar con datos de calidad y algoritmos robustos. Si se depende en exceso de la IA, los diseños podrían homogeneizarse, por lo que es fundamental definir claramente los roles entre los arquitectos y la IA. Si se utiliza correctamente, la IA puede potenciar la creatividad, la eficiencia y la sostenibilidad, y ofrecer un futuro más innovador y dinámico para la construcción.

Os dejo un vídeo que resume las ideas más importantes.

Referencias:

Glosario de términos clave

  • Inteligencia Artificial (IA): Una disciplina científica y tecnológica de vanguardia que simula el aprendizaje y la innovación humanos para extender el alcance de la aplicación de la tecnología.
  • Inteligencia Artificial Generativa (GAI): Un subconjunto de la IA que utiliza el aprendizaje automático y las capacidades de procesamiento del lenguaje natural para que las computadoras simulen la creatividad y el juicio humanos, produciendo automáticamente contenido que cumple con los requisitos.
  • Diseño Paramétrico: Un método de diseño en el que se utilizan algoritmos para definir la relación entre los elementos de diseño, permitiendo la generación de diversas variaciones de diseño mediante el ajuste de parámetros.
  • Diseño Asistido por IA: Métodos en los que las herramientas de IA ayudan a los diseñadores a optimizar diseños, analizar datos, resolver problemas y explorar conceptos creativos.
  • Colaboración Hombre-Máquina: Un enfoque en el que humanos y máquinas trabajan juntos en tareas complejas, con la IA apoyando la innovación humana y el intercambio de información eficiente.
  • Redes Neuronales Artificiales (RNA o ANN): Un tipo de algoritmo de IA, modelado a partir del cerebro humano, que se utiliza para modelar relaciones complejas entre entradas y salidas, a menudo empleadas en la predicción del consumo de energía de los edificios.
  • Aprendizaje Profundo (Deep Learning): Un subcampo del aprendizaje automático que utiliza redes neuronales con múltiples capas (redes neuronales profundas o DNN) para aprender representaciones de datos con múltiples niveles de abstracción.
  • Redes Neuronales Profundas (DNN): Redes neuronales con numerosas capas ocultas que permiten que el modelo aprenda patrones más complejos en los datos, mejorando la precisión en tareas como la predicción del consumo de energía.
  • Máquinas de Vectores de Soporte (SVM): Un algoritmo de aprendizaje supervisado utilizado para tareas de clasificación y regresión, especialmente eficaz con conjuntos de datos pequeños y para identificar relaciones no lineales.
  • Procesamiento del Lenguaje Natural (PLN o NLP): Un campo de la IA que se ocupa de la interacción entre las computadoras y el lenguaje humano, permitiendo a los sistemas interpretar y generar lenguaje humano.
  • Modelado de Información de Construcción (BIM): Una metodología para la gestión de la información de construcción a lo largo de su ciclo de vida, utilizada con la IA para mejorar las simulaciones de rendimiento del edificio.
  • Algoritmos Genéticos (GA): Una clase de algoritmos de optimización inspirados en el proceso de selección natural, utilizados para encontrar soluciones óptimas en tareas de diseño complejas.
  • Adaptación de Bajo Rango (LoRA): Un método de ajuste de bajo rango para modelos de lenguaje grandes, que permite modificar el comportamiento de los modelos añadiendo y entrenando nuevas capas de red sin alterar los parámetros del modelo original.
  • Stable Diffusion: Una herramienta avanzada de IA para generar imágenes a partir de descripciones de texto o dibujos de referencia, que a menudo utiliza el modelo LoRA para estilos específicos.
  • Inception Score (IS) y Fréchet Inception Distance (FID): Métricas cuantitativas utilizadas para evaluar la calidad y diversidad de las imágenes generadas por modelos de IA, con IS evaluando la calidad y FID la similitud de la distribución entre imágenes reales y generadas.
  • FUGenerator: Una plataforma que integra varios modelos de IA (como Diffusion Model, GAN, CLIP) para respaldar múltiples escenarios de aplicación de diseño arquitectónico, desde la descripción semántica hasta la generación de bocetos y el control.
  • Industrialización (en construcción): Énfasis en métodos de construcción modulares y automatizados para mejorar la eficiencia y estandarización.
  • Desarrollo Ecológico (en construcción): Enfoque en la conservación de energía durante el ciclo de vida, el uso de materiales sostenibles y la reducción del impacto ambiental.
  • Transformación Digital-Inteligente (en construcción): Integración de sistemas de digitalización e inteligencia, aprovechando tecnologías como la GAI para optimizar procesos y mejorar la creación de valor.
  • Problema Mal Definido (Ill-defined problem): Problemas de diseño, comunes en arquitectura, que tienen propósitos y medios iniciales poco claros.
  • Problema Malicioso (Wicked problem): Problemas de diseño caracterizados por interconexiones y objetivos poco claros, que requieren enfoques de resolución complejos.
  • Integración del Internet de las Cosas (IoT): La interconexión de dispositivos físicos con sensores, software y otras tecnologías para permitir la recopilación y el intercambio de datos, crucial para los sistemas de control de edificios inteligentes

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Más allá de los robots: 4 revelaciones sobre la Industria 6.0 que lo cambiarán todo

1. Introducción: La próxima frontera industrial no es lo que esperas.

Hemos oído hablar mucho de la Industria 4.0 y sus fábricas inteligentes, conectadas a través del Internet de las cosas (IoT). Más recientemente, la Industria 5.0 nos ha familiarizado con la idea de una colaboración precisa entre humanos y robots (cobots), en la que la inteligencia humana y la eficiencia de las máquinas trabajan conjuntamente.

Sin embargo, la Industria 6.0 no es simplemente el siguiente paso lógico en esta progresión. Se trata de un salto revolucionario que está a punto de redefinir la esencia de la creación, la inteligencia y la realidad en el mundo de la fabricación. Prepárese para ir más allá de la simple automatización y descubrir un ecosistema industrial que piensa, crea y se regenera por sí mismo.

2. Las cuatro revelaciones más impactantes de la Industria 6.0.

2.1. No es una evolución, es una revolución.

La Industria 6.0 no es una simple actualización de la 5.0. Supone un cambio de paradigma fundamental, que se manifiesta en múltiples dimensiones. Mientras que la Industria 5.0 se centra en la «IA con humanos en el ciclo» para prescribir optimizaciones, la Industria 6.0 introduce la «autonomía de IA generativa que co-crea flujos de trabajo».

Esta distinción es fundamental y se complementa con otros cambios clave:

  • Alcance de la automatización: pasamos de la colaboración a nivel de tareas individuales con cobots a «redes de cobots con IA generativa (GAI-cobots) que autoorquestan cadenas de suministro enteras». Esto significa que la automatización ya no se limita a un paso en un flujo de trabajo fijo, sino que gestiona de manera dinámica ecosistemas de producción completos.
  • Paradigma de decisión: la Industria 5.0 se basa en «respuestas reactivas, impulsadas por eventos». En contraste, la Industria 6.0 opera con una «autoadaptación continua y proactiva», anticipándose a los problemas y ajustándose en tiempo real para evitar interrupciones.
  • Límites del ecosistema: pasamos de las «fábricas inteligentes individuales y aisladas» a los «ecosistemas de metaverso físico-virtuales sin fisuras», que conectan la producción con mundos digitales persistentes.

No se trata solo de proporcionar a los trabajadores herramientas más eficientes, sino de cuestionar los supuestos básicos sobre el funcionamiento de las fábricas y la creación de valor.

«La Industria 6.0 no se limita a añadir nuevas herramientas al marco de la Industria 5.0, sino que cuestiona los supuestos fundamentales sobre cómo se diseñan las fábricas, se toman las decisiones y se genera valor».

2.2. Las fábricas pensarán (y se curarán) por sí mismas.

El concepto de Industria 6.0 va mucho más allá de la automatización tradicional y da paso a fábricas autónomas, adaptativas y autorreparadoras. Se trata de una plataforma industrial diseñada para «crear, sanar e intercambiar recursos en tiempo real».

Esa es la profunda repercusión de la Industria 6.0: un cambio desde el mantenimiento predictivo (una característica de las Industrias 4.0 y 5.0) hacia una autorregulación y regeneración proactivas y autónomas. En lugar de predecir cuándo podría fallar una pieza, el sistema se anticipa, se reconfigura y se cura a sí mismo para evitar el fallo por completo. El resultado es un ecosistema industrial verdaderamente resiliente y adaptable, capaz de anticiparse y ajustarse continuamente en lugar de simplemente responder a los eventos.

2.3. Tu próximo diseñador de productos podría ser una IA generativa.

En la Industria 6.0, la IA generativa (GAI) no es solo una herramienta de optimización, sino un socio creativo. El proceso de diseño se transforma por completo. Por ejemplo, un ingeniero puede describir los objetivos de rendimiento como «una carcasa más ligera, con menor resistencia aerodinámica y menos pasos de ensamblaje». La GAI responde casi de inmediato, produciendo «múltiples geometrías físicamente válidas» para su evaluación.

Así, se invierte el proceso de diseño tradicional, ya que en lugar de que el ser humano cree una geometría específica para que la computadora la pruebe, el ser humano establece metas abstractas y la IA genera múltiples realidades físicas válidas. Este cambio redefine por completo el papel del ser humano. Como describe la investigación, el papel del ser humano pasa de ser un «conserje de datos» a ser un «director creativo». En lugar de sumergirse en el tedioso trabajo de dibujo y borrador, las personas pueden centrarse en la estrategia de alto nivel, ajustando las restricciones y guiando el proceso creativo, mientras la IA se encarga de la iteración y la validación complejas.

2.4. La fabricación se fusionará con mundos virtuales y biológicos.

Quizás el aspecto más sorprendente de la Industria 6.0 sea la sinergia entre las esferas física, digital y biológica. Este nuevo paradigma contempla «metaversos industriales», en los que las fábricas físicas son sustituidas o complementadas por fábricas virtuales. Los clientes pueden explorar diseños y productos funcionales a través de avatares desde la comodidad de sus propios espacios virtuales.

Pero la fusión va aún más lejos al integrarse con «esferas biológicas» a través de la «web emocional» (web 5.0). No se trata de ciencia ficción abstracta, sino de fomentar «conexiones neuronales y emocionales» entre humanos y máquinas. Implica sistemas industriales que no solo se conectan a mundos digitales, sino que también pueden interactuar con los estados biológicos y emocionales de las personas, creando una relación verdaderamente simbiótica. Esta convergencia difumina las líneas entre la realidad, la simulación e incluso la biología en el contexto de la fabricación y representa el aspecto más transformador y visionario de esta nueva era industrial.

3. La Industria 6.0 y el sector de la construcción

La Industria 6.0 está preparada para transformar significativamente el sector de la construcción, conocido como arquitectura, ingeniería y construcción (AEC). Esta nueva fase industrial tiene como objetivo modernizar las operaciones y redefinir los procesos para sincronizarlos con maquinaria, productos y procesos sostenibles y escalables de alta gama.

A continuación, se explica cómo podría afectar la Industria 6.0 a la industria de la construcción.

3.1 Impactos positivos y oportunidades

  • Diseño y desarrollo de estructuras inteligentes y ecológicas: La Industria 6.0 supone una evolución de los enfoques tradicionales de la Industria 5.0 en el sector de la arquitectura, la ingeniería y la construcción (AEC) para satisfacer la creciente necesidad de infraestructuras creativas y respetuosas con el medio ambiente. Los principios de la Industria 6.0 son un paso importante hacia la sostenibilidad de los edificios inteligentes y están en consonancia con los objetivos medioambientales mundiales.
  • Mayor eficiencia y longevidad: La Industria 6.0 en la AEC ha mejorado la eficiencia y la longevidad de los procedimientos de construcción modernos mediante el uso de equipos de vanguardia, digitalización avanzada y enfoques respetuosos con el medio ambiente.
  • Edificios inteligentes y sostenibles: La integración de las tecnologías de la Industria 6.0 hace posible la construcción de edificios inteligentes y ecológicos. Estos edificios utilizan datos de sensores e inteligencia artificial (IA) para ajustar dinámicamente los sistemas de conservación de energía, mejorar la seguridad del edificio y optimizar las operaciones de CVC (calefacción, ventilación y aire acondicionado), lo que conduce a un mejor rendimiento medioambiental y confort del ocupante.
  • Gestión de la construcción basada en datos: La combinación de IA e Internet de las Cosas (IoT) da lugar a técnicas de gestión de la construcción basadas en datos, lo que aumenta considerablemente la previsibilidad de la construcción y reduce los riesgos.
  • Reducción de residuos y mejora ambiental: El uso de robótica, impresión 3D e inteligencia artificial en las operaciones de construcción puede reducir los residuos y sus efectos ambientales negativos. La sostenibilidad y la responsabilidad medioambiental son claramente importantes para la industria 6.0, como se observa en programas como las transiciones verdes de la Unión Europea, que se centran en el uso de la inteligencia artificial, la energía renovable y los materiales energéticamente eficientes.
  • Visualización y colaboración del diseño: La tecnología de Realidad Virtual (RV) y Realidad Aumentada (RA) ha mejorado la visualización del diseño, la colaboración y la inmersión, mejorando los procedimientos de planificación y reduciendo los errores. Esta sinergia permite que arquitectos, algoritmos de IA y robótica trabajen juntos de manera más efectiva.
  • Enfoque en las cualidades humanas: La Industria 6.0 asistida por AEC se centra en utilizar las cualidades y habilidades humanas que van más allá de lo que los robots pueden hacer; por el contrario, la Industria 5.0 se preocupa más por los sistemas ciberfísicos en las cadenas de suministro. El objetivo principal es potenciar las capacidades humanas para que las personas puedan participar activamente en la toma de decisiones complejas, la creatividad y la resolución de problemas.

3.2 Desafíos a considerar

  • Dificultades de implantación: A pesar de las ventajas de la Industria 5.0 de la AEC, como el aumento de la participación de las partes interesadas, la automatización, la optimización mediante robótica, las estructuras de decisión basadas en datos y la gestión meticulosa de los recursos, la implementación de los principios de la Industria 6.0 de la AEC presenta dificultades.
  • Seguridad de los datos: La adopción de estas nuevas tecnologías requerirá una cuidadosa consideración de los desafíos relacionados con la seguridad de los datos.
  • Mejora de las habilidades laborales: Otra preocupación es la necesidad de mejorar las habilidades de la fuerza de trabajo para poder colaborar con estas nuevas tecnologías.
  • Dilemas éticos y consecuencias laborales: La Industria 6.0 aún debe superar una serie de obstáculos, como los dilemas morales y las posibles consecuencias laborales derivadas de la automatización.

4. Conclusión: ¿cuál es nuestro lugar en este nuevo universo creativo?

La Industria 6.0 no consiste solo en fábricas más rápidas o robots más inteligentes. Se trata de crear un ecosistema industrial profundamente integrado, autónomo e inteligente que cambia nuestra relación con la tecnología y la creación misma. Desde la IA que actúa como socio de diseño hasta las fábricas que se curan a sí mismas, pasando por la integración de la sostenibilidad como objetivo central a través de «bucles de economía circular en tiempo real», esta revolución reescribe las reglas.

Esto nos lleva a una pregunta poderosa y fundamental sobre nuestro futuro:

Si las fábricas del futuro pueden crear, pensar e incluso sentir, ¿cuál será nuestro nuevo papel en el universo de la creación?

Os dejo un audio que creo os puede resultar de interés para aclarar algunas ideas.

Lo mismo pasa con este vídeo resumen de todos los conceptos anteriores.

Referencias:

Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.

Maureira, C., Pinto, H., Yepes, V., & García, J. (2021). Towards an AEC-AI industry optimization algorithmic knowledge mapping: an adaptive methodology for macroscopic conceptual analysis. IEEE Access9, 110842-110879.

Verma, A., Prasad, V. K., Kumari, A., Bhattacharya, P., Srivastava, G., Fang, K., Wang, W., & Gadekallu, T. R. (2025). Industry 6.0: Vision, technical landscape, and opportunitiesAlexandria Engineering Journal130, 139-174.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿El futuro de la construcción nació en 1624? 4 revelaciones sobre los edificios del mañana.

Introducción: Más allá de los ladrillos y el cemento.

Cuando pensamos en el sector de la construcción, a menudo lo imaginamos como un sector lento, tradicional y reacio al cambio. Se trata de una imagen de ladrillos, cemento y procesos que parecen haber cambiado poco en las últimas décadas. Sin embargo, bajo la superficie, una revolución silenciosa está cobrando impulso y transformando radicalmente esta percepción.

Esta revolución se conoce como Métodos Modernos de Construcción (MMC). Impulsados por las tecnologías de la Industria 4.0, como la inteligencia artificial y el diseño digital, los MMC están redefiniendo lo que es posible construir, cómo se construye y a qué velocidad. Se trata de un cambio de paradigma que promete edificios más rápidos, económicos y eficientes. Aunque esta revolución pueda parecer novedosa, algunos países ya viven este futuro: en los Países Bajos, el 50 % de las nuevas viviendas se construyen con estos métodos, seguidos de cerca por Suecia y Japón.

Componentes de la Construcción 4.0

Aunque conceptos como «automatización robótica» o «gemelos digitales» suenen a ciencia ficción, las raíces de esta transformación son sorprendentemente antiguas. Sus implicaciones van mucho más allá de la simple eficiencia, ya que apuntan a un futuro en el que los edificios no solo minimizan su impacto ambiental, sino que también lo revierten de forma positiva. A continuación, revelamos los cuatro secretos más impactantes sobre este nuevo paradigma que está transformando nuestro mundo.

Primer secreto: no es una idea nueva, sino una idea antigua que por fin funciona.

Su origen no es del siglo XXI, sino del siglo XVII.

Contrariamente a la creencia popular, la idea de prefabricar edificios no es un concepto moderno. De hecho, sus orígenes se remontan a mucho antes de la era digital. El primer caso registrado de casas prefabricadas data de 1624, cuando se fabricaron en Inglaterra para ser enviadas y ensambladas en Massachusetts.

No se trató de un hecho aislado, sino que la idea reapareció a lo largo de la historia, esperando a que la tecnología se pusiera a su altura. El siglo XX fue testigo de varios intentos clave para descifrar el código.

  • Las populares «Kit Houses» que la empresa Sears vendía por catálogo en 1908 reducían el tiempo de construcción hasta en un 40%.
  • El visionario sistema «Maison Dom-ino» de Le Corbusier, de 1914, es un armazón estructural de losas y pilares que sentó las bases de la arquitectura moderna.
  • Las «American System-Built Houses», diseñadas por Frank Lloyd Wright entre 1911 y 1917, utilizaban un sistema de producción industrializada para los componentes del edificio.

Entonces, ¿por qué esta idea centenaria está despegando ahora con tanta fuerza? La respuesta está en la convergencia tecnológica. El concepto, aunque antiguo, ha encontrado por fin sus catalizadores definitivos. Los avances en inteligencia artificial (IA), la adopción de metodologías colaborativas, como el modelado de información para la construcción (BIM), y un enfoque renovado en la sostenibilidad han creado el ecosistema perfecto para que la prefabricación alcance la precisión, la eficiencia y la sofisticación necesarias para superar a la construcción tradicional.

Segundo secreto: la velocidad es casi increíble (y se demostró en una crisis).

Puede reducir los tiempos de construcción a la mitad.

Uno de los datos más contundentes sobre la eficacia de los MMC es su impacto directo en los plazos y costes de construcción. Las investigaciones han demostrado que los sistemas industrializados y la prefabricación pueden generar ahorros de hasta el 50 % en el tiempo de construcción y del 30 % en los costes.

Esta estadística cobró vida de manera espectacular durante una de las mayores crisis globales recientes. Durante la pandemia de la enfermedad por coronavirus (Covid-19), el mundo fue testigo de la construcción de dos hospitales de emergencia en Wuhan (China) en solo 12 días. Este hito, imposible de alcanzar con métodos tradicionales, demostró el poder de los MMC para responder a las emergencias con una velocidad sin precedentes.

Esta capacidad no solo es crucial en situaciones de crisis. Permite satisfacer la creciente demanda de vivienda de manera más rápida, acelerar el desarrollo de infraestructuras críticas y aumentar drásticamente la eficiencia de un sector que históricamente ha luchado contra los retrasos y los sobrecostes.

Tercer secreto: los edificios más inteligentes no solo son sostenibles, sino «regenerativos».

La sostenibilidad está quedándose obsoleta; el futuro es el diseño regenerativo.

Durante años, la «sostenibilidad» ha sido el objetivo final en la construcción, el santo grial del diseño responsable. Pero ¿y si ya no es suficiente? La vanguardia de la innovación arquitectónica sostiene que la estrategia de «hacer menos daño» está abocada al fracaso. El futuro no solo es sostenible, sino también regenerativo.

Este nuevo paradigma, denominado «diseño regenerativo», no se conforma con minimizar el impacto negativo, un concepto que se resume en el lema «reciclar, reducir y reutilizar». El diseño regenerativo busca generar activamente impactos positivos y adopta un nuevo lema: «restaurar, renovar y reemplazar». Se trata de diseñar edificios que no solo consuman menos, sino que contribuyan a la regeneración de los ecosistemas naturales y humanos que los rodean.

El paradigma actual ya no es suficiente, como señala la investigación:

«Sin embargo, el actual paradigma de la sostenibilidad ya no es suficiente para reducir el impacto medioambiental de la actividad humana».

Los MMC son la herramienta perfecta para hacer realidad este futuro ambicioso. El control preciso de los materiales, la optimización de los procesos desde la fase de diseño y la capacidad de integrar tecnologías innovadoras convierten la construcción industrializada en la plataforma ideal para crear edificios que devuelvan a la naturaleza más de lo que consumen.

Cuarto secreto: su mayor desafío no es construir cosas nuevas, sino arreglar las antiguas.

Su gran potencial oculto radica en la rehabilitación de nuestros edificios existentes.

A pesar de que el enfoque se centra en la nueva construcción, uno de los mayores potenciales de los MMC se encuentra en un área sorprendentemente desatendida: la rehabilitación y modernización (retrofitting) de los edificios existentes. Esta es la diferencia más significativa entre el enfoque científico y la necesidad social identificada por la investigación: la mayoría de los estudios se centran en la obra nueva, pero el mayor impacto climático se consigue mejorando los edificios que ya tenemos.

La importancia de esta tarea es enorme. La industria de la construcción es responsable de aproximadamente el 40 % del consumo final de energía en la Unión Europea. La renovación energética del extenso parque de edificios existentes no es solo una opción, sino una necesidad urgente para cumplir con los objetivos climáticos.

Aquí es donde los MMC pueden cambiar las reglas del juego. Imaginemos la combinación de tecnologías como BIM para crear un mapa digital de un edificio existente, drones para inspeccionar su estado y elementos prefabricados, como paneles de fachada de alto rendimiento, fabricados a medida en una fábrica y ensamblados rápidamente in situ. Este enfoque podría acelerar masivamente la modernización energética de nuestras ciudades, un desafío que hoy parece casi insuperable con los métodos tradicionales.

Conclusión: Rediseñando nuestro mundo.

Los métodos modernos de construcción son mucho más que una simple técnica, ya que suponen un profundo cambio de paradigma. Fusionan una idea con siglos de antigüedad con tecnología de vanguardia para ofrecer soluciones a algunos de los mayores retos de nuestro tiempo: la necesidad de vivienda, la urgencia de la crisis climática y la ineficiencia de las industrias tradicionales.

Hemos visto que sus raíces son más antiguas de lo que imaginamos, que su velocidad puede ser asombrosa, que su objetivo ya no es solo ser sostenible, sino regenerativo y que su próximo gran desafío podría ser la renovación de lo ya construido.

Ahora que sabemos que podemos construir hospitales en 12 días y diseñar edificios que regeneran su entorno, la verdadera pregunta no es qué podemos construir, sino qué queremos construir.

Os dejo a continuación un audio en el que se puede escuchar una conversación sobre este tema, que espero que os resulte interesante y os aporte información valiosa.

Asimismo, en este vídeo podéis ver un resumen de las ideas principales que se tratan en el artículo, el cual os será de utilidad para comprender mejor el contenido.

Referencia:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Journal of Building Engineering, 73:106725. DOI:10.1016/j.jobe.2023.106725

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

5 ideas reveladoras sobre la vida secreta de nuestros edificios y puentes (y por qué debería importarte).

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

Cada día cruzamos puentes y entramos en edificios con una confianza casi absoluta en su solidez. Damos por hecho que el hormigón y el acero que nos rodean son permanentes. Sin embargo, la realidad es que estas estructuras, al igual que cualquier otra cosa, envejecen, se desgastan y están expuestas a amenazas constantes. Esta degradación no es un problema lejano, sino una realidad silenciosa que ya está aquí. Se trata, como ya he comentado algunas veces, de una verdadera «crisis de las infraestructuras». De eso nos estamos ocupando en el proyecto de investigación RESIFIFE, del cual soy investigador principal.

Para comprender la magnitud del desafío, basta con echar un vistazo a las cifras. Según el informe de la Sociedad Americana de Ingenieros Civiles (ASCE) de 2021, casi el 42 % de todos los puentes de Estados Unidos tienen más de 50 años y un preocupante 7,5 % se consideran «estructuralmente deficientes». A nivel mundial, el panorama es igualmente preocupante. El Foro Económico Mundial estima que la brecha de inversión en infraestructuras podría alcanzar los 18 billones de dólares para el año 2040.

No se trata solo de un problema para ingenieros y gobiernos. Afecta a nuestra seguridad, a nuestra economía y a nuestro futuro. Por eso, hemos recopilado la investigación más reciente para compartir cinco de las ideas más reveladoras que los expertos están debatiendo sobre la gestión del ciclo de vida de nuestra infraestructura.

Los dos «enemigos» al que se enfrentan nuestras estructuras

La degradación de un edificio o un puente no es un proceso único. Para los ingenieros, el primer paso es siempre realizar un diagnóstico correcto. En este caso, hay dos tipos muy diferentes:

  • La degradación progresiva: piense en ella como un desgaste lento y constante. Se trata del «deterioro ambiental», por ejemplo, la corrosión del acero causada por la sal en el aire o la fatiga del material tras soportar cargas durante décadas. Es un enemigo paciente que debilita la estructura poco a poco a lo largo de toda su vida útil.
  • La degradación instantánea: son los impactos repentinos y violentos. Se trata de «eventos extremos», como terremotos, inundaciones o incluso desastres provocados por el ser humano. A diferencia de la degradación progresiva, un solo evento de este tipo puede reducir drásticamente el rendimiento de una estructura en cuestión de minutos.

Comprender esta diferencia es crucial, ya que no se puede utilizar la misma estrategia para reparar una grieta por fatiga que para recuperar una estructura después de un terremoto.

La caja de herramientas de los ingenieros: mantenimiento frente a reparación

Frente a estos dos enemigos, la ingeniería no lucha con las manos vacías. Cuenta con una caja de herramientas específica para cada amenaza, con dos categorías principales de soluciones o «mecanismos de intervención».

  • Mantenimiento: son acciones planificadas para combatir la degradación progresiva. Piense en ellas como la medicina preventiva. Estas «intervenciones preventivas o esenciales» incluyen tareas como reparar grietas, aplicar una nueva capa de pintura protectora o reemplazar componentes estructurales antes de que fallen. El objetivo es frenar el desgaste natural.
  • Reparación: son las acciones que se llevan a cabo en respuesta a la degradación instantánea. Pueden ser «preventivas», como reforzar una estructura (retrofit) para que resista mejor un futuro terremoto, o «correctivas», como las labores de recuperación para devolver la funcionalidad lo antes posible.

Este enfoque de «ciclo de vida» supone un cambio fundamental. En lugar de esperar a que algo se rompa para repararlo, los ingenieros modernos planifican, predicen e intervienen a lo largo de toda la vida útil de la estructura para garantizar su rendimiento a largo plazo.

Más allá de la seguridad: las cuatro formas de medir el «éxito» de una estructura

Es aquí donde el campo se ha vuelto realmente fascinante. La forma de evaluar el «éxito» de una estructura ha evolucionado desde una pregunta sencilla de «¿se ha caído o no?» basta un cuadro de mando sofisticado con cuatro indicadores clave. Para entenderlo mejor, podemos pensar en cómo se evalúa a un atleta profesional:

  • Fiabilidad (reliability): esta es la base. ¿Puede el atleta aguantar el esfuerzo de un partido sin lesionarse? Mide la probabilidad de que una estructura no falle en las condiciones para las que fue diseñada.
  • Riesgo (risk): este indicador va un paso más allá. Si el atleta se lesiona, ¿qué consecuencias tiene para el equipo? ¿Se pierde un partido clave o la final del campeonato? El riesgo tiene en cuenta las consecuencias de un fallo: sociales, económicas y medioambientales.
  • Resiliencia (resilience): este es un concepto más nuevo y crucial. En caso de lesión, ¿cuánto tiempo tardará el atleta en recuperarse y volver a jugar al máximo nivel? Mide la capacidad de una estructura para prepararse, adaptarse y, sobre todo, recuperarse de manera rápida y eficiente tras un evento extremo.
  • Sostenibilidad (sustainability): esta es la visión a largo plazo. ¿Está el atleta gestionando su carrera para poder jugar durante muchos años o se quemará en dos temporadas? La sostenibilidad integra los aspectos sociales, económicos y medioambientales para garantizar que las decisiones de hoy no afecten a las generaciones futuras.

Este cambio de enfoque para evaluar las consecuencias supone una revolución en el campo. Los expertos señalan un cambio de mentalidad fundamental: ya no basta con medir el rendimiento en términos técnicos. Ahora se centran en las consecuencias en el mundo real (sociales, económicas y ambientales), ya que estas ofrecen una visión mucho más fiel y significativa de lo que realmente está en juego.

 

La carrera contra el tiempo: por qué este campo está investigando ahora

El interés por modelar y gestionar el ciclo de vida de las estructuras no es solo una curiosidad académica, sino una respuesta directa a una necesidad global cada vez más acuciante. Un análisis de la investigación científica en este campo revela una clara «tendencia ascendente».

El número de artículos publicados sobre este tema ha crecido constantemente, pero se observa un «incremento importante» a partir de 2015. Este auge de la investigación no es académico, sino una respuesta directa a las alarmantes cifras que vimos al principio. La comunidad mundial de ingenieros está en una carrera contra el tiempo para evitar que ese déficit de 18 billones (18·1012) de dólares se traduzca en fallos catastróficos.

El futuro es inteligente: De la reparación a la predicción

Para gestionar esta complejidad, la ingeniería está recurriendo a herramientas cada vez más avanzadas que van más allá del cálculo tradicional. El objetivo es pasar de un enfoque reactivo a otro predictivo y optimizado. Es como pasar de ir al médico solo cuando tienes un dolor insoportable a llevar un reloj inteligente que monitoriza tu salud las 24 horas del día y te avisa de un problema antes incluso de que lo notes.

Entre las metodologías más destacadas se encuentran:

  • Optimización: algoritmos que ayudan a decidir cuál es la mejor estrategia de mantenimiento (cuándo, dónde y cómo intervenir) para obtener el máximo beneficio con recursos limitados.
  • Modelos de Markov: herramientas estadísticas que funcionan como un pronóstico del tiempo para las estructuras, ya que predicen su estado futuro basándose en su condición actual.
  • Inteligencia artificial (IA), aprendizaje automático y aprendizaje profundo: estas tecnologías permiten analizar grandes cantidades de datos (de sensores, inspecciones, etc.) para predecir fallos, identificar patrones invisibles al ojo humano y optimizar la gestión del ciclo de vida a una escala nunca antes vista.

Este cambio de paradigma significa que, en el futuro, las decisiones sobre cuándo reparar un puente o reforzar un edificio se tomarán con la ayuda de datos y algoritmos complejos que pueden prever el futuro de la estructura.

Conclusión: pensar en el mañana, hoy

Gestionar la salud de nuestra infraestructura es un desafío continuo, complejo y vital. Ya no basta con construir estructuras impresionantes; es fundamental adoptar una mentalidad de «ciclo de vida» que nos obligue a evaluar, intervenir y planificar constantemente pensando en el futuro. Solo así podremos garantizar que los edificios y puentes que usamos cada día no solo sean fiables, sino también resilientes ante los imprevistos y sostenibles para las próximas generaciones.

La próxima vez que cruces un puente, no pienses solo en dónde te lleva. Pregúntate cuál es su historia invisible en su lucha contra el paso del tiempo y si, como sociedad, estamos invirtiendo no solo para construir, sino también para perdurar.

Os dejo un vídeo que os puede servir de guía.

Referencias:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por “resiliencia” en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Descargar (PDF, 391KB)

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Entornos de aprendizaje emergentes en la educación en ingeniería

La formación en ingeniería está experimentando una transformación profunda, impulsada por desafíos globales como el cambio climático, la revolución digital y la creciente brecha entre la enseñanza académica y las exigencias del mercado laboral. A continuación, analizamos el trabajo de Hadgraft y Kolmos (2020), donde se explora cómo la educación en ingeniería está evolucionando para hacer frente a estos retos mediante cuatro tendencias clave: el aprendizaje centrado en el estudiante, el aprendizaje contextual, la digitalización de la enseñanza y el desarrollo de competencias profesionales. A partir de estas líneas de cambio, se propone que la educación futura debe pasar de un enfoque en disciplinas individuales a currículos integrados que aborden problemas complejos y promuevan trayectorias de aprendizaje personalizadas. En última instancia, se hace hincapié en la necesidad de un cambio sistémico en el diseño curricular para preparar a los ingenieros para un futuro laboral en constante cambio.

La educación en ingeniería se enfrenta a tres desafíos fundamentales: la sostenibilidad y el cambio climático, la Cuarta Revolución Industrial (Industria 4.0) y la empleabilidad de los graduados. Estos desafíos exigen que los ingenieros del futuro posean habilidades transdisciplinares, pensamiento sistémico y contextual, y la capacidad de actuar en situaciones complejas y caóticas. Para responder a estas necesidades, la educación en ingeniería ha evolucionado hacia un enfoque centrado en el estudiante, la integración de la teoría y la práctica, el aprendizaje digital y en línea, y el desarrollo de competencias profesionales. A largo plazo, se tenderá a modelos curriculares más personalizados y centrados en proyectos que permitan a los estudiantes construir sus propias trayectorias de aprendizaje y documentar sus competencias para el aprendizaje a lo largo de la vida.

1. Desafíos clave para la educación en ingeniería

Se identifican tres desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería:

  • Sostenibilidad y cambio climático: la ingeniería es fundamental para abordar los 17 Objetivos de Desarrollo Sostenible (ODS) de la ONU, especialmente en lo que respecta a la pobreza, el hambre, la salud, el agua, la energía, el crecimiento económico y la acción climática. La educación en ingeniería debe preparar a los graduados para responder a estos desafíos humanitarios, sociales y económicos.
  • Cuarta Revolución Industrial (Industria 4.0): Esta revolución implica la integración generalizada de tecnologías como la automatización, el internet de las cosas (IoT), la inteligencia artificial (IA), la robótica y la fabricación aditiva. Tradicionalmente, la ingeniería no se ha enseñado de manera integradora, pero el éxito de la Industria 4.0 depende de la interacción y la integración de estas tecnologías. Esto requiere una mayor colaboración interdisciplinaria entre diferentes programas y disciplinas universitarias, como informática, análisis de datos, robótica, automatización, producción, gestión, electrónica y materiales. La segunda revolución industrial, que está en la agenda política e industrial, implica la integración generalizada de tecnologías como la automatización, el IoT, la IA, la robótica, los materiales avanzados, la fabricación aditiva, la impresión multidimensional, las bio-, nano- y neurotecnologías, y las realidades virtuales y aumentadas.
  • Empleabilidad y competencias de innovación: a pesar de la creciente importancia de habilidades como el emprendimiento y el pensamiento de diseño, aún existe una brecha entre la formación en ingeniería y la preparación para el mundo laboral. La integración de la teoría y la práctica mediante pasantías, proyectos en colaboración con el sector y laboratorios de aprendizaje son soluciones parciales. El aprendizaje basado en problemas o proyectos (PBL) se presenta como un mecanismo para abordar este desafío. La brecha entre la educación en ingeniería y la preparación para el trabajo sigue existiendo, por lo que se deben integrar la teoría y la práctica mediante un enfoque centrado en la empleabilidad y la colaboración con la industria mediante pasantías, proyectos de asociación y laboratorios de aprendizaje.
Desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería

Estos tres desafíos exigen, en conjunto, un mayor énfasis en la responsabilidad social, la integración del contexto social y la interdisciplinariedad, combinados con habilidades digitales y genéricas.

2. Respuestas actuales y tendencias emergentes

La educación en ingeniería ha respondido a estos desafíos con cuatro tendencias principales que se materializarán a corto plazo:

  1. Aprendizaje centrado en el estudiante: Un cambio significativo de la enseñanza tradicional (el profesor da la clase, los estudiantes escuchan) a un currículo más interactivo donde los estudiantes influyen en la dirección de su propio aprendizaje. Esto incluye metodologías como el aprendizaje activo, el aprendizaje colaborativo, el aprendizaje basado en equipos, el aprendizaje basado en el diseño, el aprendizaje basado en la investigación y, en particular, el aprendizaje basado en problemas y proyectos (PBL). El PBL ha demostrado su eficacia para aumentar la motivación, reducir las tasas de abandono y desarrollar competencias, y constituye una respuesta clave a la necesidad de un aprendizaje más complejo. El aprendizaje centrado en el estudiante es un área bien investigada. Los estudios sobre aprendizaje activo, aprendizaje basado en la investigación, aprendizaje basado en el diseño y aprendizaje basado en desafíos muestran efectos positivos en los resultados del aprendizaje. La motivación aumenta cuando los estudiantes inician proyectos, en los que identifican problemas y tienen un alto grado de influencia en la dirección del proyecto.
  2. Aprendizaje contextual y basado en la práctica: Incorporación de elementos curriculares relacionados con situaciones laborales futuras, como pasantías, proyectos de la industria, emprendimiento y centros de innovación. Los proyectos iniciados externamente (por empresas o la comunidad) son particularmente valiosos porque son auténticos y exponen a los estudiantes a la complejidad del mundo real. Junto con la tendencia del aprendizaje centrado en el estudiante, existe una tendencia de aprendizaje contextual y relacionado con la práctica, en la que los estudiantes cuentan con elementos del currículo relacionados con situaciones laborales posteriores, como pasantías, proyectos de la industria, emprendimiento y centros de innovación.
  3. Aprendizaje digital y en línea: Evolución del aprendizaje a distancia a estrategias de aprendizaje combinado (blended learning) que utilizan nuevas tecnologías como la realidad aumentada y la visualización 3D. El modelo del «aula invertida» (flipped classroom) es un ejemplo destacado, en el que los estudiantes se preparan con contenido en línea antes de clase y utilizan el tiempo en el aula para actividades interactivas y resolución de problemas. Este enfoque es una respuesta a la ineficacia de las clases magistrales tradicionales para los niveles superiores de la taxonomía de Bloom y los aspectos complejos del marco Cynefin. En la actualidad, el aprendizaje digital se centra en las estrategias de aprendizaje combinado. La digitalización es más que ofrecer plataformas y entornos de aprendizaje en línea como Blackboard o Moodle; consiste en usar nuevas tecnologías para el aprendizaje, como la realidad aumentada, la visualización 3D, etc. El modelo de «aula invertida», como enfoque centrado en el estudiante, es una respuesta a la metodología de enseñanza y aprendizaje más extendida en la educación en ingeniería, que consiste en un aprendizaje instructivo basado en libros de texto organizado como conferencias, tutoriales y laboratorios, combinado con la resolución de pequeños ejercicios.
  4. Competencias profesionales: Reconocimiento de la creciente importancia de desarrollar competencias profesionales integradas para la empleabilidad en el siglo XXI. Esto incluye el «aprendizaje meta» para que los estudiantes identifiquen y desarrollen sus propias competencias de manera personalizada, a menudo a través de portafolios que les permitan articular su aprendizaje y trayectoria profesional. Se enfatiza la responsabilidad individual en la construcción de la trayectoria de aprendizaje, combinada con la participación en actividades colaborativas. Otro aspecto emergente en la educación en ingeniería es la creciente importancia del aprendizaje integrado de competencias profesionales. Los portafolios desempeñarán un papel fundamental en este proceso, ya que ayudarán a los estudiantes a presentar su aprendizaje a sí mismos, a sus mentores académicos y a futuros empleadores en una entrevista de trabajo.
Respuestas actuales y tendencias en la educación en ingeniería

3. La complejidad y los sistemas en la educación en ingeniería

Los desafíos del futuro requieren que los ingenieros operen en situaciones de complejidad creciente. El marco Cynefin se utiliza para clasificar las situaciones en simples, complicadas, complejas y caóticas, y prescribe diferentes enfoques para cada una:

  • Simple: Comportamiento bien entendido, “mejores prácticas” definidas. Se aplica el método “sentir, categorizar y responder” (ej. fundamentos de ingeniería, problemas de examen tipo fórmula).
  • Complicado: Requiere comportamiento experto, múltiples respuestas correctas. Se aplica “sentir, analizar y responder” (ej. diseño de puentes o teléfonos móviles; proyectos de diseño de estudiantes). La ingeniería de sistemas proporciona un marco estructurado.
  • Complejo: No hay una solución clara o única; surgen soluciones. Se aplica “probar, sentir y responder”. Estos son los “problemas complejos” (wicked problems), caracterizados por no tener una formulación definitiva, no tener una mejor solución única, no tener un punto final claro, y donde cada intento de solución impacta el sistema. El diseño de sistemas de transporte para grandes ciudades es un ejemplo.
  • Caótico: Resultado de desastres, requiere acción inmediata para estabilizar antes de aplicar otros enfoques. No suelen ser el foco directo de un grado de ingeniería, excepto en la ética de la ingeniería, aprendiendo de desastres pasados.

Los currículos de ingeniería deben incluir formación para afrontar situaciones simples, complicadas y, crucialmente, complejas. Se necesitan currículos de ingeniería que incluyan la complejidad y lo complicado. Además, para educar a los estudiantes del futuro, deben tener la posibilidad de aprender tanto disciplinas específicas como la transdisciplinariedad, así como conocimientos y habilidades técnicos simples y complicados, y la complejidad que implica la comprensión del contexto, los sistemas, la sostenibilidad y los valores.

4. Modelos curriculares futuros e integrados

La evolución de las respuestas educativas muestra una transición de lo «dirigido por el profesor» a lo «dirigido por el estudiante» y de «módulos únicos» a «modelos de currículo completo».

  • Cambio a nivel de sistema: Existe una tendencia emergente a diseñar currículos a nivel de sistema, coordinando todos los elementos curriculares en lugar de simplemente agregar o modificar cursos individuales. Este enfoque sistémico es crucial para el aprendizaje de la complejidad. Pero, en términos generales, definitivamente ha habido un cambio de un entorno de aprendizaje dirigido por el profesor a otro mucho más dirigido por el estudiante. Además, está surgiendo la tendencia a desarrollar currículos a nivel de sistema, lo que implica coordinar todos los elementos del currículo.
  • Proyectos como núcleo: Los proyectos constituyen un elemento central en los modelos curriculares emergentes, especialmente aquellos iniciados por entidades externas (industria, comunidad). Estos proyectos permiten el desarrollo de habilidades técnicas, sociales y ambientales (comunicación, trabajo en equipo, ética, sostenibilidad) y de diseño y resolución de problemas (pensamiento de diseño, ingeniería de sistemas). También facilitan la consideración de perspectivas multidisciplinares y la comprensión de problemas en contexto, con múltiples puntos de vista y sistemas de valores.
  • Ejemplos de modelos emergentes:
    • University College London (UCL) – Integrated Engineering Program (IEP): Dedica una semana de cada cinco a un proyecto integrado. Esto permite a los estudiantes ver las conexiones entre diferentes módulos y disciplinas.
    • Charles Sturt University (CSU): Programa radicalmente diferente con tres semestres orientados a proyectos, donde los estudiantes aprenden “justo a tiempo” a través de módulos en línea y pasan la mitad de su tiempo en proyectos. Luego realizan cuatro pasantías de un año.
    • Swinburne University: Enfoque similar al de CSU, con proyectos de seis semanas patrocinados por la industria realizados en la universidad, operando como una empresa de ingeniería.
    • Iron Range Engineering: Los estudiantes trabajan en proyectos de empresa y reflexionan continuamente sobre su aprendizaje.

Estos ejemplos muestran cómo las instituciones combinan el aprendizaje basado en proyectos, el aprendizaje digital/en línea y el uso de portafolios para apoyar las trayectorias de aprendizaje personalizadas.

5. Perspectivas y conclusiones

La educación en ingeniería se dirige hacia un futuro en el que la combinación de trayectorias de aprendizaje personales, competencias profesionales y capacidad de abordar la complejidad será la tendencia dominante. Esto implica lo siguiente:

  • Currículos sistémicos: Es necesario un enfoque más sistémico y holístico en el diseño curricular, en lugar de modificaciones aisladas a nivel de curso. Los modelos tradicionales centrados en cursos individuales a menudo dejan la tarea de integrar el conocimiento al estudiante.
  • Aprendizaje para la complejidad: La educación debe preparar a los estudiantes para manejar problemas complejos, que requieren integrar conocimientos disciplinarios e interdisciplinarios, teoría y práctica, comprensión contextual y abstracta, y construcción de conocimiento individual y colaborativa.
  • Habilidades del Siglo XXI: La automatización de cálculos técnicos significa que los ingenieros futuros necesitarán comprender los requisitos sociales, ambientales y económicos de la tecnología y su aplicación.
  • Aprendizaje a lo largo de la vida: Los ingenieros serán cada vez más responsables de sus propias rutas de aprendizaje personales y necesitarán saber cómo construir su crecimiento individual dentro de comunidades de aprendizaje colaborativas. El acceso al conocimiento en línea (MOOCs) aumentará, pero la clave será cómo los estudiantes desarrollan competencias para el aprendizaje a lo largo de la vida, incluida la reflexión crítica y el pensamiento sistémico, normativo y anticipatorio.

En resumen, la educación en ingeniería debe evolucionar de un enfoque basado en la transmisión de conocimientos técnicos simples a otro que fomente la capacidad de los estudiantes para navegar y resolver problemas complejos, multidisciplinares y contextualizados, preparándolos para ser aprendices activos de por vida en un mundo en constante cambio.

Referencia:

Hadgraft, R.G.; Kolmos, A. (2020). “Emerging learning environments in engineering education“, Australasian Journal of Engineering Education, 25:1, 3-16, DOI: 10.1080/22054952.2020.1713522

Glosario de términos clave

  • Aprendizaje centrado en el estudiante: Un enfoque pedagógico en el que el estudiante se convierte en el centro del proceso de aprendizaje, con métodos como el aprendizaje activo, colaborativo, basado en problemas y proyectos, donde los estudiantes tienen una influencia significativa en la dirección de su aprendizaje.
  • Aprendizaje contextual y basado en la práctica: Un enfoque de aprendizaje que integra situaciones del mundo real y experiencias prácticas en el currículo, incluyendo pasantías, proyectos industriales y hubs de innovación, para conectar la teoría con la futura situación laboral.
  • Aula invertida (Flipped Classroom): Una metodología de aprendizaje semipresencial donde la instrucción directa se mueve de la clase a un espacio individual (generalmente en línea), y el tiempo en clase se transforma en un entorno de aprendizaje dinámico e interactivo donde el educador guía a los estudiantes a aplicar conceptos.
  • CDIO (Concebir, Diseñar, Implementar, Operar): Un marco curricular para la educación en ingeniería que enfatiza el desarrollo de habilidades profesionales y un enfoque holístico e integrado del currículo, desde la concepción de una idea hasta su operación.
  • Competencias profesionales: Conjunto de conocimientos, habilidades y aptitudes (tanto técnicas como genéricas, como la comunicación, el trabajo en equipo y la ética) que se espera que los ingenieros adquieran para desempeñarse eficazmente en el lugar de trabajo.
  • Complejidad (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto solo puede discernirse en retrospectiva, y las soluciones emergen del sondeo y la experimentación. Se caracteriza por problemas “perversos” sin soluciones únicas o definitivas.
  • Complicado (en el marco Cynefin): Un dominio de situaciones que requieren experiencia y análisis para encontrar múltiples respuestas correctas, pero donde la relación causa-efecto es clara, aunque puede no ser obvia para todos. La resolución de problemas implica “sentir, analizar y responder”.
  • Cuarta Revolución Industrial (Industria 4.0): Un término que describe la tendencia actual de automatización e intercambio de datos en las tecnologías de fabricación, incluyendo sistemas ciberfísicos, el Internet de las Cosas (IoT), la computación en la nube y la inteligencia artificial (IA).
  • Currículo sistémico/integral: Un enfoque de diseño curricular que coordina todos los elementos de un programa educativo a nivel de sistema, en lugar de centrarse solo en módulos o asignaturas individuales, buscando una progresión y coherencia holísticas en los resultados del aprendizaje.
  • Cynefin Framework: Un modelo conceptual creado por Dave Snowden que ayuda a la toma de decisiones al categorizar los problemas en diferentes dominios (simple, complicado, complejo, caótico y desorden) basados en la naturaleza de su relación causa-efecto.
  • Diseño centrado en el usuario (User Experience – UX): Se refiere a la experiencia general que tiene un usuario al interactuar con un producto o sistema. En ingeniería, implica diseñar soluciones que realmente satisfagan los requisitos del cliente, el usuario y la comunidad.
  • Diseño de sistemas (Systems Design): Un enfoque estructurado para el diseño de sistemas complejos que considera las interacciones entre los componentes y el entorno, y busca satisfacer un conjunto de requisitos funcionales y no funcionales.
  • Pensamiento de diseño (Design Thinking): Una metodología de resolución de problemas centrada en el ser humano que implica fases como empatizar, definir, idear, prototipar y probar, común en muchas disciplinas de diseño, incluida la ingeniería.
  • Emergencia: En el contexto de los entornos de aprendizaje, se refiere a cómo las estructuras, patrones y comportamientos de aprendizaje se vuelven visibles a través de las interacciones entre elementos más pequeños, como estudiantes y recursos, indicando posibles direcciones futuras en la educación.
  • Habilidades blandas/genéricas: Habilidades no técnicas pero igualmente importantes, como la comunicación, el trabajo en equipo, la ética, el pensamiento crítico y la resolución de problemas, que son aplicables en una amplia gama de contextos profesionales.
  • Internet de las Cosas (IoT): Una red de objetos físicos equipados con sensores, software y otras tecnologías que les permiten conectarse e intercambiar datos con otros dispositivos y sistemas a través de Internet.
  • PBL (Aprendizaje Basado en Problemas y Proyectos): Un enfoque pedagógico centrado en el estudiante donde los alumnos aprenden sobre un tema trabajando en un problema abierto o un proyecto complejo, desarrollando habilidades de resolución de problemas, trabajo en equipo e investigación.
  • Portafolio: Una colección de trabajos de los estudiantes que demuestra su aprendizaje, habilidades y crecimiento a lo largo del tiempo. En ingeniería, se utiliza para articular las trayectorias de aprendizaje individuales y las competencias profesionales a mentores y futuros empleadores.
  • Simple (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto es obvia para todos, y las “mejores prácticas” pueden aplicarse. La resolución de problemas implica “sentir, categorizar y responder”, como la aplicación de fórmulas fundamentales de ingeniería.
  • Sostenibilidad (ODS): La capacidad de satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades. Los ODS (Objetivos de Desarrollo Sostenible) son una colección de 17 objetivos globales interconectados establecidos por las Naciones Unidas.
  • Sistemas (Pensamiento sistémico): La capacidad de comprender cómo los componentes de un sistema interactúan entre sí y con el entorno para producir un comportamiento determinado, en lugar de analizar los componentes de forma aislada.
  • Trayectorias de aprendizaje personalizadas: Rutas de aprendizaje adaptadas a las necesidades, intereses y aspiraciones profesionales individuales de los estudiantes, permitiéndoles configurar y documentar su propio desarrollo de competencias como parte de una estrategia de aprendizaje a lo largo de toda la vida.

Implicaciones éticas de chatbots generativos en la educación superior

En la actualidad, la inteligencia artificial (IA) está cada vez más presente en nuestra vida diaria, transformando industrias y planteando nuevas preguntas sobre la sociedad, la economía y, por supuesto, la educación. Entre las herramientas de IA emergentes, los «chatbots» generativos como ChatGPT han llamado especialmente la atención, ya que prometen revolucionar la enseñanza y el aprendizaje. Estas potentes plataformas pueden simular conversaciones humanas, ofrecer explicaciones e incluso generar textos complejos como poemas o ensayos. Sin embargo, a medida que educadores y legisladores consideran la implementación de estas tecnologías innovadoras en el ámbito educativo, es crucial reflexionar sobre las implicaciones éticas que conllevan. Aunque los beneficios potenciales son innegables, desde una mayor accesibilidad hasta experiencias de aprendizaje personalizadas, también existen desafíos significativos.

En este artículo, exploramos las consideraciones éticas clave relacionadas con el uso de chatbots generativos en la educación superior. La información que se presenta a continuación se basa en el artículo «The ethical implications of using generative chatbots in higher education» de Ryan Thomas Williams, publicado en Frontiers in Education.

A continuación, se examinan las implicaciones éticas de integrar chatbots generativos, como ChatGPT, en la educación superior. Se abordan preocupaciones clave como la privacidad de los datos de los estudiantes y los desafíos para cumplir con las regulaciones de protección de datos cuando la información es procesada y almacenada por la IA. El artículo también explora el sesgo algorítmico y señala cómo los prejuicios inherentes a los datos de entrenamiento pueden perpetuar estereotipos, además de abordar el impacto en la autoeficacia de los estudiantes al depender excesivamente de la IA, lo que podría disminuir el pensamiento crítico. Por último, se aborda el creciente problema del plagio y las «alucinaciones» de la IA, donde los chatbots generan información incorrecta, y se sugiere la necesidad de políticas claras, detección avanzada y métodos de evaluación innovadores.

1. ¿Cuáles son las principales implicaciones éticas de integrar los chatbots generativos en la educación superior?

La integración de chatbots generativos en la educación superior, como ChatGPT, aborda varias cuestiones éticas fundamentales. En primer lugar, la gestión de los datos sensibles de los estudiantes plantea importantes desafíos de privacidad, por lo que es necesario cumplir estrictamente con las normativas de protección de datos, como el RGPD, lo cual puede ser complejo debido a la naturaleza de los algoritmos de aprendizaje automático que aprenden de los datos y complican su «verdadera» eliminación. En segundo lugar, existe un riesgo significativo de sesgo algorítmico, ya que los chatbots aprenden de vastas fuentes de datos de internet que pueden perpetuar sesgos sociales (por ejemplo, de género o raciales), lo que podría afectar negativamente a la experiencia de aprendizaje del estudiante y a su visión del mundo. En tercer lugar, si bien los chatbots pueden fomentar la autonomía en el aprendizaje al ofrecer acceso bajo demanda a recursos y explicaciones personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes, desincentivando el pensamiento crítico y la participación en actividades de aprendizaje más profundas. Finalmente, el plagio emerge como una preocupación primordial, ya que la capacidad de los chatbots para generar contenido sofisticado podría alentar a los estudiantes a presentar el trabajo generado por la IA como propio, lo que comprometería la integridad académica.

2. ¿Cómo afectan los chatbots generativos a la privacidad de los datos de los estudiantes en entornos educativos?

La implementación de chatbots en entornos educativos implica la recopilación, el análisis y el almacenamiento de grandes volúmenes de datos de los estudiantes, que pueden incluir desde su rendimiento académico hasta información personal sensible. Esta «gran cantidad de datos» permite experiencias de aprendizaje personalizadas y la identificación temprana de estudiantes en situación de riesgo. Sin embargo, esto genera importantes preocupaciones relacionadas con la privacidad. Existe el riesgo de uso indebido o acceso no autorizado a estos datos. Además, las regulaciones actuales de privacidad de datos, como el RGPD, permiten a los individuos solicitar la eliminación de sus datos, pero la naturaleza del aprendizaje automático significa que los algoritmos subyacentes ya han aprendido de los datos de entrada, por lo que es difícil aplicar un verdadero «derecho al olvido» o «eliminación». También hay una falta de transparencia algorítmica por parte de las empresas sobre la implementación de los algoritmos de los chatbots y sus bases de conocimiento, lo que dificulta el cumplimiento total de la ley de protección de datos, que exige que las personas estén informadas sobre el procesamiento de sus datos. Para mitigar estas preocupaciones, las instituciones educativas deben establecer directrices claras para la recopilación, almacenamiento y uso de datos, alineándose estrictamente con la normativa de protección de datos y garantizando la transparencia con todas las partes interesadas.

3. ¿Qué es el sesgo algorítmico en los chatbots educativos y cómo se puede abordar?

El sesgo algorítmico ocurre cuando los sistemas de IA, incluidos los chatbots, asimilan y reproducen los sesgos sociales presentes en los grandes conjuntos de datos con los que son entrenados. Esto puede manifestarse en forma de sesgos de género, raciales o de otro tipo que, si se reflejan en el contenido generado por la IA (como casos de estudio o escenarios), pueden perpetuar estereotipos y afectar a la experiencia de aprendizaje de los estudiantes. Para abordar esta situación, es fundamental que los conjuntos de datos utilizados para entrenar los sistemas de IA sean diversos y representativos, evitando fuentes de datos únicas o limitadas que no representen adecuadamente a grupos minoritarios. Se proponen asociaciones entre institutos educativos para compartir datos y garantizar su representatividad. Además, se deben realizar auditorías regulares de las respuestas del sistema de IA para identificar y corregir los sesgos. Es fundamental que se sea transparente sobre la existencia de estos sesgos y que se eduque a los estudiantes para que evalúen críticamente el contenido generado por la IA en lugar de aceptarlo como una verdad objetiva. El objetivo no es que la IA sea inherentemente sesgada, sino que los datos generados por humanos que la entrenan pueden contener sesgos, por lo que se requiere un enfoque deliberado y crítico para el desarrollo e implementación de la IA en la educación.

4. ¿Cómo impacta la dependencia de los estudiantes de los chatbots en su autoeficacia académica y su pensamiento crítico?

Si bien los chatbots pueden ofrecer una autonomía significativa en el aprendizaje al proporcionar acceso inmediato a recursos y respuestas personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes. Esta dependencia puede llevar a los estudiantes a no comprometerse con el aprendizaje auténtico, lo que les disuade de participar en seminarios, lecturas recomendadas o discusiones colaborativas. A diferencia de las tecnologías informáticas tradicionales, la IA intenta reproducir habilidades cognitivas, lo que plantea nuevas implicaciones para la autoeficacia de los estudiantes con la IA. Además, la naturaleza en tiempo real de las interacciones con el chatbot puede fomentar respuestas rápidas y reactivas en lugar de una consideración reflexiva y profunda, lo que limita el desarrollo del pensamiento crítico. Las tecnologías de chatbot suelen promover formas de comunicación breves y condensadas, lo que puede restringir la profundidad de la discusión y las habilidades de pensamiento crítico que se cultivan mejor a través de una instrucción más guiada e interactiva, como las discusiones entre compañeros y los proyectos colaborativos. Por lo tanto, es crucial equilibrar la autonomía que ofrecen los chatbots con la orientación y supervisión de educadores humanos para fomentar un aprendizaje holístico.

5. ¿Cuál es la preocupación principal con respecto al plagio en la era de los chatbots generativos y qué soluciones se proponen?

El plagio se ha convertido en una preocupación ética crítica debido a la integración de herramientas de IA como ChatGPT en la educación. La capacidad de los chatbots para generar respuestas textuales sofisticadas, resolver problemas complejos y redactar ensayos completos crea un entorno propicio para la deshonestidad académica, ya que los estudiantes pueden presentar la producción de la IA como propia. Esto es especialmente problemático en sistemas educativos que priorizan los resultados (calificaciones, cualificaciones) sobre el proceso de aprendizaje. Los estudiantes pueden incurrir incluso en plagio no intencional si utilizan chatbots para tareas administrativas o para mejorar su escritura en inglés sin comprender completamente las implicaciones. Para abordar esta situación, es necesario un enfoque integral que incluya educar a los estudiantes sobre la importancia de la honestidad académica y las consecuencias del plagio. También se propone desplegar software avanzado de detección de plagio capaz de identificar texto generado por IA, aunque se reconoce que estas metodologías deben evolucionar continuamente para mantenerse al día con los avances de la IA. Más allá de la detección, es esencial reevaluar las estrategias de evaluación y diseñar tareas que evalúen la comprensión de los estudiantes y fomenten el pensamiento original, la creatividad y las habilidades que actualmente están más allá del alcance de la IA, como las presentaciones orales y los proyectos en grupo. También es crucial fomentar la transparencia sobre el uso de la IA en el aprendizaje, algo similar a lo que se hace con los correctores ortográficos.

6. ¿Qué se entiende por «alucinaciones» de la IA en los chatbots educativos y por qué son problemáticas?

Las «alucinaciones» de la IA se refieren a las respuestas generadas por modelos de lenguaje de IA que contienen información falsa o engañosa presentada como si fuera real. Este fenómeno ganó atención generalizada con la llegada de los grandes modelos de lenguaje (LLM), como ChatGPT, donde los usuarios notaron que los chatbots insertaban frecuentemente falsedades aleatorias en sus respuestas. Si bien el término «alucinación» ha sido criticado por su naturaleza antropomórfica, el problema subyacente es la falta de precisión y fidelidad a fuentes de conocimiento externas. Las alucinaciones pueden surgir de discrepancias en grandes conjuntos de datos, errores de entrenamiento o secuencias sesgadas. Para los estudiantes, esto puede llevar al desarrollo de conceptos erróneos, lo que afecta a su comprensión de conceptos clave y a su confianza en la IA como herramienta educativa fiable. Para los educadores, el uso de contenido generado por IA como recurso en el aula plantea un desafío ético significativo, ya que son los responsables de garantizar la precisión de la información presentada. Los estudios han descubierto que un porcentaje considerable de referencias generadas por chatbots son falsas o inexactas. Si bien la IA puede reducir la carga de trabajo de los docentes, la supervisión humana sigue siendo esencial para evitar imprecisiones, lo que puede crear una carga administrativa adicional.

7. ¿Cómo pueden las instituciones educativas equilibrar los beneficios de los chatbots con sus riesgos éticos?

Para conseguirlo, las instituciones educativas deben adoptar un enfoque reflexivo y multifacético. Esto implica establecer límites éticos firmes para proteger los intereses de los estudiantes, los educadores y la comunidad educativa en general. Se recomienda implementar políticas claras y sólidas de recopilación, almacenamiento y uso de datos, alineándose estrictamente con regulaciones de protección de datos como el RGPD, a pesar de los desafíos relacionados con la eliminación de datos y la transparencia algorítmica. Para mitigar el sesgo algorítmico, las instituciones deben garantizar que los conjuntos de datos de entrenamiento sean diversos y representativos, y realizar auditorías regulares. Para evitar una dependencia excesiva y mantener la autoeficacia académica de los estudiantes, los educadores deben fomentar la autonomía en el aprendizaje sin comprometer el pensamiento crítico ni el compromiso auténtico. Con respecto al plagio, es fundamental educar a los estudiantes sobre la integridad académica, utilizar software avanzado de detección de plagio y reevaluar los métodos de evaluación para fomentar el pensamiento original y las habilidades que la IA no puede replicar. Por último, es crucial que se conciencie a la sociedad sobre las «alucinaciones» de la IA, para lo cual los educadores deben verificar la exactitud de la información generada por la IA y reconocer su naturaleza evolutiva, comparándola con los primeros días de Wikipedia. Es una responsabilidad colectiva de todas las partes interesadas garantizar que la IA se utilice de una manera que respete la privacidad, minimice el sesgo, apoye la autonomía equilibrada del aprendizaje y mantenga el papel vital de los maestros humanos.

8. ¿Qué papel juega la transparencia en el uso ético de los chatbots de IA en la educación?

La transparencia es un pilar fundamental para el uso ético de los chatbots de IA en la educación, ya que aborda varias de las preocupaciones éticas clave. En el ámbito de la privacidad de los datos, es esencial que los usuarios estén informados sobre las prácticas de gestión de datos para aliviar sus preocupaciones y generar confianza en los chatbots adoptados. Esto incluye informar a los usuarios sobre cómo se recopilan, almacenan y utilizan sus datos. Con respecto al sesgo algorítmico, la transparencia significa reconocer que los chatbots pueden mostrar sesgos ocasionalmente debido a los datos de entrenamiento subyacentes. Se debe alentar a los estudiantes a evaluar críticamente la producción de los chatbots, en lugar de aceptarla como una verdad objetiva, teniendo en cuenta que el sesgo no es inherente a la IA, sino a los datos generados por humanos con los que se entrena. En la prevención del plagio, la transparencia en la educación es vital para el uso responsable de las herramientas de IA; los estudiantes deben ser conscientes de que deben reconocer la ayuda recibida de la IA, de la misma manera en que se acepta la ayuda de herramientas como los correctores ortográficos. Además, para las «alucinaciones» de la IA, es importante que los educadores y los estudiantes sean conscientes de la posibilidad de que los chatbots generen información falsa o engañosa, lo que requiere un escrutinio humano continuo para su verificación. En general, la transparencia fomenta la alfabetización digital y la conciencia crítica, y empodera a los usuarios para navegar por el panorama de la IA de manera más efectiva.

Referencia:

WILLIAMS, R. T. (2024). The ethical implications of using generative chatbots in higher education. In Frontiers in Education (Vol. 8, p. 1331607). Frontiers Media SA.

Glosario de términos clave

  • Inteligencia artificial (IA): La capacidad de un sistema informático para imitar funciones cognitivas humanas como el aprendizaje y la resolución de problemas (Microsoft, 2023). En el contexto del estudio, se refiere a sistemas que pueden realizar tareas que normalmente requieren inteligencia humana.
  • Chatbots generativos: Programas de IA capaces de simular conversaciones humanas y generar respuestas creativas y nuevas, como poemas, historias o ensayos, utilizando Procesamiento del Lenguaje Natural (PLN) y vastos conjuntos de datos.
  • Procesamiento del lenguaje natural (PLN): Un subcampo de la IA que permite a las máquinas entender, responder y generar lenguaje humano. Es fundamental para la funcionalidad de los chatbots avanzados.
  • Aprendizaje automático (ML): Un subconjunto de la IA que permite a los sistemas aprender de los datos sin ser programados explícitamente. Los chatbots modernos utilizan ML para mejorar sus respuestas a lo largo del tiempo.
  • Privacidad de datos: La protección de la información personal de los individuos, asegurando que se recopile, almacene y utilice de forma ética y legal. En el contexto educativo, se refiere a la información sensible de los estudiantes.
  • Reglamento general de protección de datos (GDPR): Una ley de la Unión Europea sobre protección de datos y privacidad en el Área Económica Europea y el Reino Unido. Es relevante para la gestión de datos sensibles de estudiantes.
  • Ley de protección de la privacidad en línea de los niños (COPPA): Una ley de Estados Unidos que impone ciertos requisitos a los operadores de sitios web o servicios en línea dirigidos a niños menores de 13 años.
  • Derecho al olvido: El derecho de un individuo a que su información personal sea eliminada de los registros de una organización, un concepto que se complica con la naturaleza del aprendizaje de los algoritmos de IA.
  • Transparencia algorítmica: La capacidad de entender cómo funcionan los algoritmos de IA y cómo toman decisiones, incluyendo el acceso a los detalles de su implementación y bases de conocimiento.
  • Big Data: Conjuntos de datos tan grandes y complejos que los métodos tradicionales de procesamiento de datos no son adecuados. En los chatbots, se utilizan para personalizar experiencias.
  • Sesgo algorítmico: Ocurre cuando los sistemas de IA asimilan y reproducen sesgos sociales presentes en los datos con los que fueron entrenados, lo que puede llevar a resultados injustos o estereotipados.
  • Autoeficacia académica: La creencia de un estudiante en su capacidad para tener éxito en sus tareas académicas. El estudio explora cómo una dependencia excesiva de la IA podría impactarla negativamente.
  • Autoeficacia en IA: La confianza de un individuo en su capacidad para usar y adaptarse a las tecnologías de inteligencia artificial. Distinto de la autoeficacia informática tradicional debido a las capacidades cognitivas de la IA.
  • Plagio: La práctica de tomar el trabajo o las ideas de otra persona y presentarlas como propias, sin la debida atribución. Se convierte en una preocupación crítica con la capacidad de los chatbots para generar texto.
  • Software de detección de plagio: Herramientas diseñadas para identificar instancias de plagio comparando un texto con una base de datos de otros textos. La evolución de la IA plantea desafíos para su eficacia.
  • Alucinación de IA: Una respuesta generada por un modelo de lenguaje de IA que contiene información falsa, inexacta o engañosa, presentada como si fuera un hecho.
  • Modelos de lenguaje grandes (LLMs): Modelos de IA muy grandes que han sido entrenados con inmensas cantidades de texto para comprender, generar y responder al lenguaje humano de manera sofisticada. ChatGPT es un ejemplo de LLM.
  • Integridad académica: El compromiso con la honestidad, la confianza, la justicia, el respeto y la responsabilidad en el aprendizaje, la enseñanza y la investigación. Es fundamental para el entorno educativo y está amenazada por el plagio asistido por IA.

Os dejo este artículo, pues está en acceso abierto:

Descargar (PDF, 358KB)

Evolución histórica de la inteligencia artificial en la ingeniería civil: de los sistemas expertos a las infraestructuras inteligentes

La inteligencia artificial (IA) se ha ido integrando en la ingeniería civil y la construcción a lo largo de siete décadas, transformando los procesos de diseño, análisis, gestión y ejecución. El siguiente recorrido histórico muestra los avances más relevantes, que han pasado de meras exploraciones teóricas a aplicaciones prácticas que mejoran la eficiencia, la precisión y la toma de decisiones en proyectos de infraestructura.

El artículo examina la evolución histórica de la IA en la ingeniería civil, desde sus fundamentos teóricos en las décadas de los 50 y 60 hasta la actualidad. A continuación, aborda su popularización en la programación y el diseño a través de los sistemas expertos en las décadas de los 70 y 80. En las décadas siguientes, se integró en el análisis estructural y el diseño, y surgió el auge del aprendizaje automático y el análisis de datos para la gestión de proyectos. Más recientemente, la IA se ha combinado con la robótica y otras tecnologías avanzadas para aplicaciones en obra y monitorización. Finalmente, se vislumbra la creación de infraestructuras inteligentes mediante la convergencia de la IA y el Internet de las Cosas.

1. 1950 s–1960 s: Fundación de la IA
En la década de 1950, la IA surgió como disciplina académica, centrada en el desarrollo de máquinas capaces de simular funciones cognitivas humanas. Los primeros trabajos se orientaron hacia el razonamiento simbólico, los sistemas basados en reglas y los algoritmos de resolución de problemas. Estas investigaciones sentaron las bases teóricas necesarias para posteriores aplicaciones en ingeniería civil, aunque en aquel momento todavía no existían implementaciones específicas en el sector de la construcción.

2. 1970 s–1980 s: Sistemas expertos y sistemas basados en conocimiento
Entre los años 1970 y 1980 se popularizaron los sistemas expertos, que imitaban la forma en que los especialistas en dominios concretos tomaban decisiones. En ingeniería civil, estos sistemas se aplicaron a tareas como la programación de proyectos (scheduling), la optimización de diseños y la evaluación de riesgos, emulando el saber de ingenieros veteranos. Paralelamente, los sistemas basados en el conocimiento centralizaban esta información en bases de datos y ofrecían asistencia automatizada para la toma de decisiones en obra y en oficina técnica.

3. 1990 s–2000 s: Integración en análisis estructural y diseño
Durante los años 90 y principios de los 2000, la IA comenzó a tener un impacto directo en el análisis estructural y la optimización del diseño. Se emplearon redes neuronales y lógica difusa para modelar comportamientos complejos de materiales y estructuras. Al mismo tiempo, surgieron los primeros sistemas de monitorización de la salud estructural que, mediante algoritmos de IA, permitían evaluar el estado de puentes y edificios en tiempo real. En gestión de obra, las primeras herramientas asistidas por IA empezaron a abordar la programación, la estimación de costes y el análisis de riesgos.

4. 2000 s–2010 s: Aprendizaje automático y analítica de datos
La explosión del machine learning y el big data en estos años transformó la previsión de plazos, recursos y costes. Las técnicas de aprendizaje supervisado y no supervisado se integraron en plataformas de gestión de proyectos, mientras que la Modelización de la Información de Edificación (BIM) incorporó algoritmos de inteligencia artificial para mejorar la colaboración multidisciplinar, la detección de conflictos (clash detection) y la toma de decisiones basada en datos.

5. 2010 s–presente: Aplicaciones avanzadas y robótica
A partir de 2010, se intensificó la convergencia entre la inteligencia artificial y la robótica en obra. Aparecieron vehículos autónomos para tareas de excavación, drones integrados con visión por ordenador para inspeccionar los progresos y brazos robóticos en plantas de prefabricados. Asimismo, se generalizó el uso de la realidad virtual y aumentada para visualizar diseños y realizar simulaciones en tiempo real, lo que permite realizar ajustes adaptativos durante la ejecución de los proyectos.

6. Perspectivas futuras: IA e infraestructuras inteligentes
El documento señala la próxima convergencia de la IA con el Internet de las Cosas (IoT) para el desarrollo de infraestructuras inteligentes que puedan monitorizarse de forma continua y realizar mantenimiento predictivo. También se espera la aparición de materiales inteligentes y técnicas de diseño generativo que optimicen la sostenibilidad y la resiliencia de las construcciones, cerrando el ciclo de operación, mantenimiento y rehabilitación de infraestructuras.

Conclusión
Este artículo repasa la trayectoria que va desde los inicios teóricos de la IA hasta sus aplicaciones robóticas y de análisis en tiempo real actuales. Cada etapa ha aportado nuevas herramientas al ingeniero civil: desde los sistemas expertos de los años setenta hasta las infraestructuras inteligentes del mañana, la IA continuará redefiniendo la práctica de la ingeniería civil, haciéndola más eficiente, segura y sostenible.

Glosario de términos clave

  • Inteligencia Artificial (IA): Disciplina académica centrada en el desarrollo de máquinas capaces de simular funciones cognitivas humanas.
  • Sistemas Expertos: Programas informáticos que imitan la forma en que los especialistas en dominios concretos toman decisiones, utilizando conocimiento y reglas.
  • Sistemas Basados en Conocimiento: Sistemas que centralizan información en bases de datos para ofrecer asistencia automatizada en la toma de decisiones.
  • Razonamiento Simbólico: Enfoque inicial de la IA que se basa en la manipulación de símbolos para representar conocimiento y realizar inferencias.
  • Algoritmos de Resolución de Problemas: Procedimientos sistemáticos o heurísticos utilizados por la IA para encontrar soluciones a problemas definidos.
  • Redes Neuronales: Modelos computacionales inspirados en la estructura y funcionamiento del cerebro humano, utilizados para reconocer patrones y aprender de datos.
  • Lógica Difusa: Enfoque que permite el razonamiento con información imprecisa o incierta, utilizando grados de verdad en lugar de valores booleanos (verdadero/falso).
  • Monitorización de la Salud Estructural: Evaluación continua del estado de estructuras como puentes y edificios para detectar deterioros o fallos.
  • Machine Learning (Aprendizaje Automático): Subcampo de la IA que permite a los sistemas aprender de datos sin ser programados explícitamente, utilizando algoritmos para identificar patrones y hacer predicciones.
  • Big Data: Conjuntos de datos extremadamente grandes y complejos que requieren herramientas y técnicas avanzadas para su análisis.
  • Aprendizaje Supervisado: Tipo de machine learning donde el algoritmo aprende de datos de entrenamiento etiquetados (con resultados conocidos).
  • Aprendizaje No Supervisado: Tipo de machine learning donde el algoritmo busca patrones y estructuras en datos no etiquetados.
  • Modelización de la Información de Edificación (BIM): Proceso inteligente basado en modelos 3D que proporciona información sobre un proyecto de construcción a lo largo de su ciclo de vida.
  • Detección de Conflictos (Clash Detection): Proceso en BIM que identifica colisiones o interferencias entre diferentes elementos o sistemas de un diseño.
  • Robótica: Campo que combina la ingeniería y la ciencia para diseñar, construir, operar y aplicar robots.
  • Visión por Ordenador: Campo de la IA que permite a los ordenadores “ver” e interpretar imágenes y videos.
  • Realidad Virtual: Tecnología que crea un entorno simulado por ordenador con el que el usuario puede interactuar.
  • Realidad Aumentada: Tecnología que superpone información digital (imágenes, sonidos, datos) sobre el mundo real.
  • Internet de las Cosas (IoT): Red de objetos físicos (“cosas”) integrados con sensores, software y otras tecnologías para recopilar e intercambiar datos a través de internet.
  • Infraestructuras Inteligentes: Infraestructuras equipadas con sensores y sistemas de comunicación que utilizan IA e IoT para monitorizarse, gestionarse y optimizarse de forma autónoma.
  • Mantenimiento Predictivo: Estrategia de mantenimiento que utiliza datos y algoritmos para predecir cuándo es probable que falle un equipo o componente, permitiendo realizar acciones de mantenimiento antes de que ocurra la falla.
  • Diseño Generativo: Proceso de diseño donde los algoritmos de IA exploran un vasto espacio de posibles soluciones basándose en un conjunto de parámetros y objetivos definidos.

Referencias:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. DOI: https://doi.org/10.4995/INRED2024.2024.18365

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíosIC Ingeniería Civil, 642:20-23.

Docencia e inteligencia artificial: nuevas estrategias para educadores

La educación está experimentando una transformación sin precedentes gracias a los avances en inteligencia artificial (IA). La integración de la IA en el ámbito educativo ha traído consigo oportunidades y desafíos que requieren una adaptación rápida por parte de los docentes y los sistemas de enseñanza.

Esta revolución tecnológica ha dado lugar a la automatización de tareas administrativas, la personalización del aprendizaje, la optimización de evaluaciones y el desarrollo de nuevas metodologías de enseñanza que mejoran la eficiencia del aula. Sin embargo, su implementación también genera preocupaciones relacionadas con la equidad, la privacidad de los datos y la ética en la educación.

Este informe explora en profundidad cómo los docentes pueden aprovechar la IA para mejorar sus prácticas pedagógicas y hacer frente a los desafíos emergentes. Se proporcionarán ejemplos detallados, herramientas específicas y estrategias que permitirán a los educadores integrar esta tecnología de manera efectiva y responsable en sus aulas.

1. Inteligencia artificial generativa y su aplicación en la docencia

1.1. Definición y características

La inteligencia artificial generativa es una rama avanzada de la IA que emplea redes neuronales profundas para crear contenido original en formato de texto, imágenes, audio y vídeo. Este tipo de IA puede proporcionar respuestas personalizadas y adaptadas a distintos contextos de aprendizaje, lo que la convierte en una herramienta muy útil en el ámbito educativo.

Algunos ejemplos notables de IA generativa son ChatGPT, que puede generar respuestas detalladas en múltiples idiomas; DALL-E, que crea imágenes a partir de descripciones textuales, y Bard AI, que ofrece información en tiempo real a partir de consultas específicas.

El uso de estas herramientas en la docencia permite mejorar la interacción con los estudiantes, proporcionar materiales personalizados y fomentar un aprendizaje más dinámico. Además, la IA generativa puede ayudar en la corrección de textos, la generación de pruebas automatizadas y la creación de contenidos visuales para reforzar los conceptos enseñados en el aula.

1.2. Aplicaciones en el aula

Las aplicaciones de la inteligencia artificial (IA) generativa en la enseñanza son diversas y pueden utilizarse en diferentes áreas del conocimiento. Entre las más destacadas se encuentran:

  • Creación de material didáctico: la IA permite generar rápidamente presentaciones, resúmenes y documentos de apoyo para los estudiantes. Herramientas como Canva AI o Tome AI facilitan la producción de diapositivas atractivas con contenido relevante.
  • Automatización de respuestas: los docentes pueden utilizar chatbots educativos como PersonalChat para responder de manera inmediata a las dudas recurrentes de los estudiantes.
  • Evaluaciones y retroalimentación: plataformas como Gradescope permiten corregir exámenes de manera automatizada, lo que reduce la carga de trabajo de los docentes y asegura una evaluación más objetiva.
  • Generación de contenido multimedia: con herramientas como Runway AI y Pictory, los docentes pueden crear vídeos educativos personalizados y mejorar la experiencia de aprendizaje.

Un ejemplo concreto de su aplicación es el uso de ChatGPT en universidades para ayudar a los estudiantes en la redacción de ensayos, proporcionando estructuras sugeridas y correcciones gramaticales detalladas. Esto no solo mejora la calidad de los trabajos académicos, sino que también fomenta la autonomía y la autoevaluación de los estudiantes.

2. Personalización del aprendizaje y evaluación con IA

2.1. Aprendizaje adaptativo

Uno de los mayores beneficios de la inteligencia artificial (IA) en la educación es su capacidad para personalizar el aprendizaje en función del nivel y el ritmo de cada estudiante. Gracias al análisis de datos, los algoritmos de IA pueden identificar fortalezas y debilidades de los alumnos y ajustar los contenidos educativos en tiempo real para optimizar su rendimiento académico.

Algunas plataformas que utilizan este enfoque son:

  • Khan Academy con IA ofrece ejercicios personalizados según el nivel de conocimiento del estudiante.
  • Duolingo AI: adapta la dificultad de los ejercicios de idiomas en función del progreso del usuario.
  • Carnegie Learning ofrece tutorías de matemáticas con IA, que adaptan las preguntas al rendimiento del estudiante.

Este enfoque permite que los estudiantes reciban una educación más centrada en sus necesidades individuales, lo que reduce las brechas de aprendizaje y mejora la retención del conocimiento.

2.2. Evaluación automatizada

Otro aspecto crucial de la IA en la educación es la optimización del proceso de evaluación. Tradicionalmente, corregir exámenes y tareas supone un gran esfuerzo para los docentes. Gracias a herramientas como Gradescope y ZipGrade, ahora es posible evaluar pruebas de manera instantánea, proporcionar retroalimentación detallada y reducir el margen de error.

Además de la corrección automatizada, la IA puede utilizarse para analizar el rendimiento de los estudiantes a lo largo del tiempo y predecir posibles dificultades académicas. Por ejemplo, la plataforma Edsight AI recopila datos sobre las respuestas de los alumnos y genera informes personalizados con recomendaciones para mejorar su rendimiento.

A pesar de sus ventajas, la evaluación automatizada debe complementarse con métodos tradicionales para garantizar una comprensión profunda de los conceptos por parte de los estudiantes y evitar depender exclusivamente de algoritmos para medir los conocimientos.

3. Desafíos y consideraciones éticas

3.1. Sesgo en los algoritmos

Uno de los principales desafíos de la IA en la educación es la presencia de sesgos en los modelos de aprendizaje. Dado que las IA se entrenan con grandes volúmenes de datos históricos, pueden reflejar prejuicios existentes en la sociedad, lo que podría afectar negativamente a la equidad de la enseñanza.

Para minimizar estos riesgos, es fundamental que los docentes supervisen el contenido generado por IA y utilicen diversas fuentes para contrastar la información. Además, se recomienda fomentar el pensamiento crítico entre los estudiantes para que evalúen la veracidad y la imparcialidad de los datos proporcionados por estos sistemas.

3.2. Privacidad y seguridad de datos

El uso de la IA en la educación implica la recopilación y el análisis de grandes volúmenes de datos sobre los estudiantes. Para proteger su privacidad, es crucial que las instituciones educativas implementen regulaciones estrictas sobre el almacenamiento y uso de la información personal.

Algunas estrategias recomendadas son:

  • Utilización de plataformas con altos estándares de seguridad, como Microsoft Copilot y Google AI Education.
  • Concienciar sobre la importancia de la privacidad y enseñar a los estudiantes a gestionar sus datos de forma segura en entornos digitales.
  • Cumplimiento de normativas de protección de datos, como el Reglamento General de Protección de Datos (RGPD) en Europa.

Conclusiones

La inteligencia artificial está revolucionando la educación, ya que ofrece nuevas posibilidades para mejorar la enseñanza y el aprendizaje. Sin embargo, su implementación debe realizarse de manera responsable, garantizando el papel central del docente y promoviendo el uso ético de la tecnología.

Para maximizar sus beneficios, es esencial que los educadores se mantengan actualizados sobre las últimas tendencias en IA y adopten herramientas que complementen sus metodologías de enseñanza. La combinación de innovación tecnológica con estrategias pedagógicas efectivas transformará la educación y preparará a los estudiantes para los desafíos del futuro.

Os dejo un documento de la Universidad de Burgos que profundiza en el tema. Espero que os resulte de interés.

Descargar (PDF, 10.69MB)