El impacto del cambio climático en las infraestructuras

DANA OCTUBRE 2024 – Vías del Metro entre Picanya y Paiporta. https://commons.wikimedia.org/

El diseño y la planificación de infraestructuras se han basado históricamente en el análisis de datos climáticos pasados para definir criterios estructurales de seguridad. Sin embargo, la aceleración del cambio climático ha puesto en cuestión la validez de esta metodología y ha obligado a reconsiderar los fundamentos sobre los que se establecen los códigos de construcción y las normativas de diseño. El carácter no estacionario del clima, la creciente magnitud de los eventos meteorológicos extremos y la necesidad de infraestructuras más resilientes han convertido la adaptación al cambio climático en un imperativo técnico y social.

Las estructuras deben garantizar la seguridad de sus ocupantes en condiciones tanto ordinarias como extremas, así como su funcionalidad a lo largo de su ciclo de vida. Es preciso tener en cuenta que la frecuencia y severidad de ciertos fenómenos, como tormentas, inundaciones y variaciones térmicas, ya no pueden preverse con precisión únicamente mediante datos históricos. La integración de modelos de análisis probabilístico y enfoques basados en la fiabilidad estructural representa una vía fundamental para mitigar los riesgos asociados al cambio climático y asegurar la estabilidad y operatividad de infraestructuras críticas en el futuro.

El fin de la estacionariedad climática y sus implicaciones en el diseño estructural

El diseño estructural se ha desarrollado bajo la premisa de que las condiciones climáticas permanecen relativamente estables a lo largo del tiempo, lo que ha permitido definir cargas normativas basadas en registros históricos. No obstante, el cambio climático ha invalidado esta hipótesis al introducir una variabilidad que altera tanto la frecuencia como la intensidad de los fenómenos atmosféricos y compromete la fiabilidad de los métodos de predicción empleados en el ámbito de la ingeniería.

Las estructuras diseñadas bajo códigos convencionales pueden experimentar cargas superiores a las previstas en su diseño original, lo que resulta en un aumento del riesgo estructural y la necesidad de reevaluaciones constantes para garantizar su seguridad. La acumulación de efectos derivados de condiciones climáticas extremas no solo afecta a la estabilidad estructural inmediata, sino que acelera los procesos de deterioro de los materiales y compromete la capacidad de servicio de la infraestructura a largo plazo.

El análisis de la no estacionariedad climática requiere el desarrollo de nuevas herramientas de modelado que permitan proyectar escenarios de carga climática futura con mayor precisión. La variabilidad espacial y temporal de las alteraciones climáticas obliga a establecer criterios de diseño diferenciados según la localización geográfica, la exposición a determinados fenómenos y la importancia funcional de cada infraestructura. En este contexto, la colaboración entre científicos del clima e ingenieros estructurales se erige como un componente esencial para la elaboración de mapas de cargas dinámicos que reflejen las condiciones cambiantes del entorno.

Aumento de cargas climáticas y su impacto en la estabilidad estructural

El cambio climático incide directamente en la magnitud y distribución de las cargas climáticas, lo que supone un desafío significativo para el diseño estructural. El incremento de la temperatura media global y la intensificación de eventos meteorológicos extremos tienen un impacto directo en la resistencia y durabilidad de los materiales de construcción, lo que requiere una revisión exhaustiva de los criterios de diseño para adaptarlos a condiciones más exigentes.

El aumento de la carga de viento, debido a la mayor frecuencia de tormentas severas y huracanes, plantea desafíos particulares para estructuras expuestas a esfuerzos aerodinámicos, tales como rascacielos, puentes y torres de telecomunicaciones. La variabilidad en la dirección y velocidad de los vientos extremos introduce incertidumbre en el diseño convencional, lo que requiere la aplicación de metodologías de análisis probabilístico que permitan anticipar los efectos acumulativos de estas fuerzas sobre los elementos estructurales.

Ciertamente, la carga de nieve y hielo constituye un factor de riesgo cuya evolución en un clima cambiante requiere especial atención. En climas fríos, la combinación de precipitaciones extremas y ciclos de congelación y deshielo genera esfuerzos adicionales sobre cubiertas y soportes, lo que puede ocasionar la fatiga de los materiales y aumentar el riesgo de fallos estructurales. La acumulación de hielo en líneas de transmisión eléctrica y otros elementos de infraestructura crítica puede comprometer su funcionalidad, lo que resalta la necesidad imperante de implementar estrategias de adaptación en el diseño de dichos sistemas.

El aumento del nivel del mar y la intensificación de tormentas costeras representan amenazas crecientes para las infraestructuras situadas en zonas litorales. La erosión del suelo y la intrusión salina pueden afectar la estabilidad de las cimentaciones y las estructuras de contención, mientras que el aumento en la magnitud de las marejadas ciclónicas aumenta el riesgo de colapso en las edificaciones expuestas. Por lo tanto, es esencial adoptar enfoques probabilísticos para estimar las cargas de inundación y considerar criterios de adaptación costera en el diseño estructural, con el fin de mitigar estos efectos y garantizar la seguridad y estabilidad de las infraestructuras en zonas litorales.

Resiliencia estructural y continuidad operativa en escenarios de riesgo creciente

En lo que respecta a la resistencia inmediata de las infraestructuras a eventos climáticos extremos, su capacidad de recuperación y continuidad operativa tras un desastre constituye un aspecto de suma importancia en el contexto del cambio climático. La resiliencia estructural implica no solo garantizar que las edificaciones y redes de transporte soporten cargas excepcionales sin fallar, sino también que puedan volver a estar plenamente operativas en un tiempo razonable tras una interrupción.

La planificación de infraestructuras resilientes requiere un enfoque basado en la funcionalidad tras el desastre, estableciendo criterios de diseño que permitan minimizar los tiempos de inactividad y optimizar los procesos de reparación y reconstrucción. Este enfoque cobra especial relevancia en infraestructuras críticas, tales como hospitales, plantas de tratamiento de agua y redes de energía, cuya operatividad continua resulta esencial para la estabilidad de las comunidades.

El diseño basado en rendimiento (Performance-Based Design, PBD) surge como una herramienta clave para integrar la resiliencia en la ingeniería estructural. A diferencia de los enfoques convencionales basados en requisitos normativos predeterminados, el PBD permite establecer objetivos concretos de rendimiento para cada tipo de estructura, considerando tanto su resistencia ante cargas extremas como su capacidad de recuperación tras eventos disruptivos.

Conclusión: La adaptación de las infraestructuras al cambio climático como una necesidad inaplazable

La evidencia científica sobre el impacto del cambio climático en la infraestructura es concluyente y requiere una revisión exhaustiva de los criterios de diseño estructural. La dependencia exclusiva de datos históricos ya no constituye una estrategia viable en un contexto donde la frecuencia e intensidad de eventos extremos están en constante aumento. Por ello, es necesario implementar análisis probabilísticos, actualizar periódicamente los mapas de cargas climáticas y adoptar estrategias de resiliencia estructural. Estos cambios son fundamentales para garantizar la seguridad y funcionalidad de las infraestructuras en el futuro.

La ingeniería estructural debe evolucionar hacia un enfoque basado en la adaptación y la gestión del riesgo, integrando modelos de predicción climática en el diseño y planificación de nuevas construcciones. La colaboración entre ingenieros, científicos del clima y responsables de políticas públicas será esencial para desarrollar normativas que reflejen la realidad cambiante del entorno y permitan la creación de infraestructuras más seguras y sostenibles.

La adaptación al cambio climático no es únicamente una cuestión técnica, sino una necesidad económica y social que determinará la capacidad de las comunidades para hacer frente a los desafíos del siglo XXI. El diseño estructural del futuro debe asumir este reto con un enfoque proactivo, asegurando que las infraestructuras no solo resistan el clima cambiante, sino que también contribuyan a la estabilidad y el bienestar de la sociedad en su conjunto.

Referencias:

  • ASCE. (2015). Adapting infrastructure and civil engineering practice to a changing climate. Reston, VA: ASCE.
  • ASCE. (2018). Climate-resilient infrastructure: Adaptive design and risk management, MOP 140. Reston, VA: ASCE.
  • ASCE. (2021). Hazard-resilient infrastructures: Analysis and design, MOP 144. Reston, VA: ASCE.
  • Bruneau, M., Barbato, M., Padgett, J. E., Zaghi, A. E., et al. (2017). State-of-the-art on multihazard design. Journal of Structural Engineering, 143(10), 03117002.
  • Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change, 5(1), 8–10.
  • Ellingwood, B. R., van de Lindt, J. W., & McAllister, T. (2020). Community resilience: A new challenge to the practice of structural engineering. Structural Magazine, 27(11), 28–30.
  • Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.
  • Eisenhauer, E., Henson, S., Matsler, A., Maxwell, K., Reilly, I., Shacklette, M., Julius, S., Kiessling, B., Fry, M., Nee, R., Bryant, J., Finley, J., & Kieber, B. (2024). Centering equity in community resilience planning: Lessons from case studies. Natural Hazards Forum, Washington, D.C.
  • IPCC (1997). The regional impacts of climate change: an assessment of vulnerability. IPCC, Geneva.
  • McAllister, T., Walker, R., & Baker, A. (2022). Assessment of resilience in codes, standards, regulations, and best practices for buildings and infrastructure systems. NIST Technical Note 2209. National Institute of Standards and Technology. https://doi.org/10.6028/NIST.TN.2209
  • O’Neill, B., van Aalst, M., Zaiton Ibrahim, Z., Berrang Ford, L., Bhadwal, S., Buhaug, H., Diaz, D., Frieler, K., Garschagen, M., Magnan, A., Midgley, G., Mirzabaev, A., Thomas, A., & Warren, R. (2022). Key risks across sectors and regions. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2411–2538). Cambridge University Press. https://doi.org/10.1017/9781009325844.025
  • Poland, C. D. (2009). The resilient city: Defining what San Francisco needs from its seismic mitigation policies. San Francisco Planning and Urban Research Association Report. Earthquake Engineering Research Institute.
  • Vogel, J., Carney, K. M., Smith, J. B., Herrick, C., et al. (2016). Climate adaptation: The state of practice in US communities. The Kresge Foundation and Abt Associates.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entrevista en Levante-EMV sobre la reconstrucción tras la DANA

Recojo a continuación una entrevista que me han realizado en Levante-EMV sobre la reconstrucción tras la DANA. La noticia la podéis leer en el siguiente enlace: https://www.levante-emv.com/comunitat-valenciana/2025/03/17/error-reconstruir-dana-valencia-sin-adaptar-cambio-climatico-115061981.html

Esta noticia está muy relacionada con el artículo de opinión que escribí en mi blog hace unos días: La ingeniería de la reconstrucción.

La reconstrucción de infraestructuras tras la DANA del 29 de octubre no debe limitarse a la reposición de lo perdido, sino que debe corregir vulnerabilidades y minimizar futuros daños, evitando errores del pasado. Infraestructuras clave como la autovía A7 y la V31 han sido identificadas como barreras que agravaron la inundación, por lo que se plantea la necesidad de medidas de adaptación y mitigación, incluyendo posibles pasos elevados y tecnologías avanzadas para reducir riesgos. Se recomienda rediseñar puentes con cimentación profunda y menor número de soportes para evitar bloqueos en el flujo del agua, así como considerar el impacto de los vehículos arrastrados por la riada en el sistema de drenaje. Expertos en infraestructuras han destacado la necesidad de carreteras y líneas de tren más resilientes al cambio climático, con infraestructuras más permeables a crecidas y posibles modificaciones en su trazado. Para gestionar de manera eficiente la reconstrucción, se propone la creación de un consorcio administrativo que facilite la coordinación entre ayuntamientos, Generalitat y Gobierno central, integrando una visión metropolitana en la planificación territorial.

Descargar (PDF, 158KB)

José Echegaray: ingeniero de caminos, matemático y premio Nobel

De Desconocido – Mundo Gráfico Magazine. Madrid, Spain, 1931-05-13, Dominio público, https://commons.wikimedia.org/w/index.php?curid=17211545

José María Waldo Echegaray y Eizaguirre (1832-1916) fue una de las figuras más polifacéticas de la España del siglo XIX. Ingeniero, matemático, dramaturgo y político, destacó en todas las disciplinas en las que participó, dejando un legado notable tanto en el campo de la ciencia como en el de la literatura.

Echegaray nació en Madrid el 19 de abril de 1832. Su padre, José Echegaray Lacosta, era médico y profesor de instituto, natural de Zaragoza, mientras que su madre, Manuela Eizaguirre Charler, era natural de Azcoitia (Guipúzcoa). A los cinco años, su familia se trasladó a Murcia por motivos laborales. Allí pasó su infancia y estudió primaria. Fue en el Instituto de Segunda Enseñanza de Murcia donde despertó su afición por las matemáticas.

Tras obtener el título de bachiller, Echegaray se trasladó a Madrid y, tras finalizar sus estudios en el Instituto San Isidro, ingresó en 1848 en la primitiva Escuela de Ingenieros de Caminos, Canales y Puertos. La Escuela de Ingenieros se destacaba por su disciplina y rigor académico, reflejo de la importancia atribuida a la formación de sus estudiantes. Fomentaba en ellos una ética basada en el esfuerzo y les recordaba su pertenencia a una élite, tanto por su preparación científica como por la relevancia de sus contribuciones al desarrollo y progreso del país. Además, promovía ideales liberales y una profunda admiración por las naciones europeas más avanzadas. Echegaray adoptó plenamente las normas y valores de la institución, y, a pesar de la exigencia de su formación, se mantuvo como el mejor de su promoción, culminando sus estudios en 1853 a los veinte años. Después de una breve estancia en Almería y Granada, Echegaray regresó a Madrid en 1854, coincidiendo con la sublevación de O’Donnell y el inicio del Bienio Progresista.

Su formación como ingeniero le permitió desempeñar un papel clave en el desarrollo de infraestructuras en España. Además, ocupó cargos ministeriales en los departamentos de Hacienda y Fomento, donde impulsó proyectos que modernizaron el país en un periodo de grandes cambios, todo ello con la participación de diversos gobiernos, y fue elegido senador vitalicio. Desempeñó un papel fundamental en la creación del Banco de España en su estructura moderna.

En 1854, comenzó a impartir clases en la Escuela de Ingenieros de Caminos, de la que también se hizo cargo de la secretaría. Durante su etapa docente, enseñó matemáticas, estereotomía, hidráulica, geometría descriptiva, cálculo diferencial y física hasta 1868. Además, entre 1858 y 1860, fue profesor en la Escuela de Ayudantes de Obras Públicas.

A los treinta y dos años, fue elegido miembro de la Real Academia de las Ciencias Exactas. Su discurso de ingreso, titulado Historia de las matemáticas puras en nuestra España, generó una gran polémica al ofrecer una visión extremadamente crítica sobre la evolución de las matemáticas españolas y defender la primacía de la «ciencia básica» sobre la «ciencia práctica».

Junto a Gabriel Rodríguez, fundó la revista El Economista, donde publicó numerosos artículos, iniciando así una actividad periodística que mantendría a lo largo de su vida. En 1850, participó en la creación de la Asociación para la Reforma de los Aranceles y, en 1869, fue ponente en las conferencias dominicales sobre la educación de la mujer en la Universidad de Madrid. En una de ellas, titulada Influencia del estudio de las ciencias físicas en la educación de la mujer, defendió la importancia del conocimiento científico en la formación de la mujer.

Además, presidió el Ateneo de Madrid, el Consejo de Instrucción Pública, la Junta del Catastro, la Real Academia de Ciencias, la Sociedad Española de Física y Química, la Sociedad Matemática Española y la Asociación Española para el Progreso de las Ciencias. Como reconocimiento a su producción literaria, recibió el Premio Nobel de Literatura. También fue catedrático de Física Matemática en la Universidad Central y senador vitalicio. Ningún otro español de su época, ni antes ni después, ha acumulado tantos títulos y distinciones.

Echegaray realizó importantes contribuciones a las matemáticas y la física, introduciendo en España conceptos avanzados como la geometría de Chasles, la teoría de Galois y las funciones elípticas. Su influencia fue tan significativa que el matemático Julio Rey Pastor afirmó: «Para la matemática española, el siglo XIX comienza en 1865 y comienza con Echegaray». En 1911, fundó la Real Sociedad Matemática Española, consolidando su compromiso con el desarrollo de esta disciplina en España.

A pesar de su formación científica, Echegaray también destacó en el mundo de las letras. En 1904, recibió el Premio Nobel de Literatura, galardón que compartió con Frédéric Mistral, convirtiéndose así en el primer español en obtener este galardón. Su obra teatral, influenciada por el drama romántico y el realismo, fue muy reconocida en su época. Durante su juventud, alternó la lectura de autores como Goethe, Homero y Balzac con la de matemáticos como Gauss, Legendre y Lagrange.

Durante el último tercio del siglo XIX, Echegaray fue una figura destacada en el panorama teatral y gozó de la preferencia del público. Sin embargo, al comenzar el siglo XX, autores contemporáneos como Azorín y Valle-Inclán, criticaron su obra. La Generación del 98 no ocultó su animosidad; para Baroja, Unamuno, los hermanos Machado, Rubén Darío y Maeztu, Echegaray personificaba una España «corroída por los prejuicios y la superchería», según manifestaron en un manifiesto conjunto.

A pesar de ello, Echegaray es recordado principalmente como literato y no como científico o matemático. Sin embargo, algunos lo consideran el mejor matemático español de dicho siglo. No realizó descubrimientos originales, pero sí introdujo en España teorías matemáticas de vanguardia, como las de Évariste Galois, que ya estaban transformando el pensamiento matemático internacional. No obstante, cabe preguntarse si podría haber sido un matemático aún más influyente y qué limitaciones enfrentó.

En 1907, la Real Academia de Ciencias Exactas, Físicas y Naturales instauró la Medalla Echegaray a propuesta de Santiago Ramón y Cajal, y en su primera edición la otorgó al propio José Echegaray. Este destacado ingeniero, matemático y dramaturgo mantuvo una intensa actividad intelectual hasta su fallecimiento el 14 de septiembre de 1916 en Madrid. A su muerte, se entregó su biblioteca y la medalla del Nobel a la Academia de Ciencias Exactas, Físicas y Naturales. En sus últimos años, escribió entre 25 y 30 volúmenes de física matemática, lo que demuestra su incansable pasión por el conocimiento.

A lo largo de su carrera, Echegaray publicó numerosas obras sobre física, matemáticas e ingeniería. Entre sus publicaciones más relevantes se encuentran:

  • Cálculo de variaciones (1858), introduciendo en España un área matemática poco conocida hasta entonces.
  • Problemas de geometría plana (1865).
  • Problemas de geometría analítica en dos dimensiones (1865), considerada una obra maestra por Zoel García de Galdeano.
  • Historia de las Matemáticas puras en nuestra España (1866).
  • Teorías modernas de la física. Unidad de las fuerzas materiales (tres volúmenes publicados en 1867, 1883 y 1889).
  • Introducción a la geometría superior (1867), basada en la geometría de Michel Chasles.
  • Memoria sobre la teoría de los determinantes (1868), primera obra en España sobre este tema.
  • Aplicación de los determinantes (1869), donde introdujo la actual regla de Cramer.
  • Tratado elemental de termodinámica (1868), sobre una disciplina emergente en su época.
  • Teoría matemática de la luz (1871).
  • Resolución de ecuaciones y teoría de Galois (1897-1898, 1902), en dos volúmenes.
  • Observaciones y teorías sobre la afinidad química (1901).
  • Ciencia popular; Vulgarización científica (1905).
  • Conferencias sobre Física Matemática, recopiladas en 10 volúmenes.

En el ámbito de la ingeniería, destacó su Memoria sobre los trabajos de perforación del túnel de los Alpes (1860), un estudio técnico sobre una de las grandes obras de ingeniería de su tiempo.

La figura de José Echegaray representa la unión entre ciencia y humanidades, y es un ejemplo de erudición y polimatía en una época de profundos cambios. Su legado perdura tanto en las matemáticas como en la literatura y nos recuerda la importancia del conocimiento multidisciplinar para el progreso de la sociedad.

Le tocó vivir en la situación de la ciencia hispana en el siglo XIX, que sin duda fue precaria. Para ilustrarlo, veamos lo que él mismo escribió en sus memorias entre 1913 y 1915:

“Las Matemáticas fueron, y son, una de las grandes preocupaciones de mi vida; y si yo hubiera sido rico o lo fuera hoy, si no tuviera que ganar el pan de cada día con el trabajo diario, probablemente me hubiera marchado a una casa de campo muy alegre y muy confortable, y me hubiera dedicado exclusivamente al cultivo de las Ciencias Matemáticas. Ni más dramas, ni más argumentos terribles, ni más adulterios, ni más suicidios, ni más duelos, ni más pasiones desencadenadas, ni, sobre todo, más críticos; otras incógnitas y otras ecuaciones me hubieran preocupado.

Pero el cultivo de las Altas Matemáticas no da lo bastante para vivir. El drama más desdichado, el crimen teatral más modesto, proporciona mucho más dinero que el más alto problema de cálculo integral; y la obligación es antes que la devoción, y la realidad se impone, y hay que dejar las Matemáticas para ir rellenando con ellas los huecos de descanso que el trabajo productivo deja de tiempo en tiempo”.

Echegaray hablaba específicamente de las matemáticas, pero la realidad no difería mucho en el resto de las ciencias.

Resalto la cita de Santiago Ramón y Cajal que aparece al final del libro sobre Echegaray: “Era incuestionablemente el cerebro más fino y exquisitamente organizado de la España del siglo XIX. Él lo fue todo, porque podía serlo todo“.

Os dejo un pequeño vídeo sobre su figura.

Carlo Alberto Castigliano

Carlo Alberto Castigliano (1847-1884) https://commons.wikimedia.org/w/index.php?curid=4911407

Carlo Alberto Castigliano (Asti, 8 de noviembre de 1847 – Milán, 25 de octubre de 1884) fue un destacado ingeniero y matemático italiano, cuya labor se centró en la teoría matemática de la elasticidad y la mecánica de estructuras deformables. Su legado más reconocido son los teoremas que llevan su nombre, los cuales establecen una relación fundamental entre la fuerza aplicada y el desplazamiento experimentado por los cuerpos elásticos. Estos teoremas han sido pilares esenciales en el desarrollo de la teoría de estructuras y se utilizan ampliamente en el análisis y diseño de sistemas estructurales.

Nació en el seno de una familia de escasos recursos, siendo hijo de Giovanni Castigliano y Orsola Cerrato. Su padrastro respaldó su vocación académica al reconocer las excepcionales aptitudes del joven, y lo matriculó en el cuarto curso del Instituto Industrial de Turín. Sin embargo, debido a las difíciles circunstancias económicas familiares, Castigliano tuvo que compaginar sus estudios con trabajos esporádicos para ayudar con los ingresos del hogar. En julio de 1866, tras obtener el título de perito mecánico, realizó un curso en el Real Museo Industrial de Turín, lo que le permitió obtener la habilitación como profesor. El 10 de diciembre de ese mismo año fue nombrado profesor de construcción y mecánica aplicada en el Real Instituto Técnico de Terni, en la región de Umbría. Durante los cuatro años que permaneció en dicho cargo, se dedicó de manera incansable al estudio autodidacta de las matemáticas.

Tras obtener una excedencia en su puesto docente, Castigliano regresó a Turín en 1870, donde aprobó con distinción el examen de ingreso en la Facultad de Ciencias Matemáticas, Físicas y Naturales de la Universidad de Turín. Apenas se matriculó, escribió al rector de la universidad para solicitarle permiso para presentarse a todos los exámenes de la carrera de Matemáticas al finalizar el primer año. En marzo de 1871, recibió una respuesta favorable por parte del Ministerio de Educación y, en pocos meses, superó con éxito todos los exámenes.

Una vez licenciado, en noviembre de 1871 solicitó su inscripción en la Escuela de Aplicación para Ingenieros, actualmente conocida como Politécnico de Turín. En 1873, a pesar de las dificultades que atravesaba en su vida personal, se graduó con honores en ingeniería civil con una tesis titulada Intorno ai sistemi elastici (sobre sistemas elásticos), en la que demostraba el principio de elasticidad o teorema del trabajo mínimo, previamente enunciado por el general Luigi Federico Menabrea (1809–1896) en 1858. Durante una disputa legal con Menabrea, provocada por su tesis, Castigliano publicó en la Academia de Ciencias de Turín su memoria Nuova teoria intorno all’equilibrio dei sistemi elastici (1875), en la que formuló los teoremas sobre las derivadas del trabajo de deformación, hoy conocidos como teoremas de Castigliano, los cuales constituyen principios fundamentales de la estática estructural. Más tarde, este ensayo se convertiría en el núcleo de su principal obra Théorie de l’Équilibre des Systèmes Élastiques et ses Applications (1879).

Después de finalizar sus estudios, fue contratado como ingeniero por la compañía de ferrocarriles del norte de Italia, Strade Ferrate Alta Italia (S.F.A.I.), donde desarrolló toda su carrera profesional. Inicialmente destinado a Alba, en 1874 fue trasladado a la oficina de proyectos en Turín, y en febrero de 1875 fue designado a la sede central de la empresa en Milán. Allí se encargó del diseño y la supervisión técnica de las principales obras de la red ferroviaria del norte de Italia. Como miembro de la junta directiva, reorganizó el fondo de pensiones de la empresa. Lamentablemente, no pudo culminar su ambicioso proyecto de un Manuale pratico per gli ingegneri (manual práctico para ingenieros) antes de su prematura muerte.

Los últimos años de su vida fueron especialmente dolorosos. Tras la muerte de dos de sus hijos —Carlo en 1883, a los pocos meses de nacer, y Emilia en 1884, a los tres años—, Castigliano contrajo una neumonía de la que falleció en octubre de 1884.

Además de su obra Manuale pratico per gli ingegneri, que dejó incompleta y fue publicada parcialmente de manera póstuma (en cuatro volúmenes, entre 1882 y 1888), sus contribuciones más significativas fueron sus trabajos sobre el equilibrio de las estructuras elásticas. En 1879 y 1880, publicó los dos volúmenes de su estudio fundamental sobre este tema: Théorie de l’équilibre des systèmes élastiques et ses applications.

Poco después de su fallecimiento, Emil Winkler rindió homenaje a Castigliano en una presentación en la Sociedad de Arquitectos de Berlín (1884), donde destacó la relevancia del segundo teorema de Castigliano para los fundamentos de la teoría de estructuras. Este teorema sería, años más tarde, el centro de una controversia académica entre Mohr y Müller-Breslau.

Principales contribuciones a la teoría de estructuras:

  • Intorno ai sistemi elastici [1875/1]
  • Intorno all’equilibrio dei sistemi elastici [1875/2]
  • Nuova teoria intorno all’equilibrio dei sistemi elastici [1875/3]
  • Théorie de l’Équilibre des Systèmes Élastiques et ses Applications [1879]
  • Intorno ad una proprietà dei sistemi elastici [1882]
  • Theorie des Gleichgewichtes elastischer Systeme und deren Anwendung [1886]
  • The Theory of Equilibrium of Elastic Systems and its Applications [1966]

Os dejo un par de vídeos sobre el teorema de Castigliano. Espero que os sea de interés.

Innovación en la enseñanza de la ingeniería: uso de la nomografía y software abierto para la representación gráfica de ecuaciones

Acaban de publicar nuestro artículo en la revista Plos One, del primer cuartil del JCR. El artículo presenta una propuesta innovadora para la enseñanza de la ingeniería mediante la aplicación de la nomografía, una técnica matemática que se utiliza para representar gráficamente ecuaciones complejas. Su principal contribución es la introducción del software Nomogen, una herramienta basada en Python que permite generar nomogramas de tres variables de manera rápida y precisa, sin necesidad de manipular determinantes ni realizar dibujos manuales.

El estudio también demuestra la viabilidad de la nomografía como recurso didáctico en la enseñanza de la ingeniería, ya que facilita la interpretación de ecuaciones multivariables y reduce los errores en cálculos repetitivos. A través de una metodología experimental aplicada a estudiantes de ingeniería de diferentes niveles, los autores confirman que existe un renovado interés en el uso de nomogramas en entornos educativos, puesto que destacan su utilidad como complemento a los métodos digitales convencionales.

Los resultados del estudio revelan que, aunque el 78,4 % de los estudiantes encuestados nunca habían utilizado nomogramas, el 86,5 % reconoció su capacidad para interpretar fenómenos con múltiples variables de manera clara. Esta percepción constituye un argumento sólido a favor de la integración de la nomografía en los programas de ingeniería.

El uso del software Nomogen permitió superar las limitaciones tradicionales de la nomografía, ya que elimina la complejidad matemática inherente a su construcción manual. La posibilidad de generar gráficos precisos y adaptables a diferentes contextos hace que la herramienta sea accesible para estudiantes y docentes.

El análisis de las respuestas de la encuesta también reveló diferencias en la valoración de los nomogramas según el nivel formativo de los estudiantes. Los estudiantes en etapas avanzadas de sus estudios mostraron una mayor valoración de su utilidad en cuanto a la comprensión de fenómenos con múltiples variables.

El estudio abre diversas oportunidades de desarrollo futuro en los campos de la ingeniería y la educación. Algunas áreas que podrían explorarse son:

  1. Ampliación del uso de nomogramas en otras disciplinas: Evaluar su aplicabilidad en áreas como la mecánica de suelos, hidráulica y estructuras, donde la representación gráfica de ecuaciones puede simplificar análisis complejos.
  2. Integración de inteligencia artificial: Incorporar algoritmos de aprendizaje automático para optimizar la generación de nomogramas y mejorar su precisión en función de patrones detectados en bases de datos de ingeniería.
  3. Desarrollo de herramientas interactivas: Explorar la posibilidad de crear versiones digitales interactivas de los nomogramas, que permitan una manipulación dinámica de las variables en tiempo real.
  4. Evaluación longitudinal de su impacto educativo: Realizar estudios a largo plazo para analizar la retención del conocimiento y la eficacia del aprendizaje cuando se incorporan nomogramas en la enseñanza de la ingeniería.
  5. Comparación con otros métodos gráficos: Investigar la efectividad de la nomografía frente a otras técnicas de visualización de datos, como los diagramas de contorno o los gráficos tridimensionales en programas informáticos especializados.

Este artículo representa un avance significativo en la enseñanza de la ingeniería, rescatando una herramienta histórica y adaptándola a las nuevas tecnologías con el objetivo de mejorar la comprensión y aplicación de conceptos matemáticos complejos.

Referencia:

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

Como se ha publicado de forma abierta, os dejo el artículo completo a continuación. Espero que sea de interés para vosotros.

Descargar (PDF, 3.93MB)

El concepto de patrimonio cultural

La presa de Aldeadávila es un bien patrimonial público, destacando por su impresionante belleza y majestuosidad, tanto por sí misma como por el paisaje que la rodea. En este lugar se filmaron el inicio y el final de la película Doctor Zhivago. https://commons.m.wikimedia.org/

El concepto de patrimonio cultural abarca un conjunto de bienes con valores diferentes pero relacionados en cierta medida en cuanto a su importancia histórica, artística, social o científica que se hereda de generaciones anteriores, e incluye también los valores, creencias, prácticas y modos de expresión artística que caracterizan a una comunidad o sociedad. Este concepto destaca por su papel fundamental en la preservación de las identidades y el fomento del sentimiento de pertenencia, lo que lo convierte en un aspecto esencial de la experiencia humana y de la diversidad cultural en todo el mundo.

Este patrimonio se divide en dos categorías principales: el patrimonio material, que incluye bienes tangibles como edificios, monumentos y obras de arte, y el patrimonio inmaterial, que comprende tradiciones, costumbres y expresiones culturales que identifican a una comunidad. La distinción entre estas dos categorías es esencial para comprender cómo se preserva y valora el patrimonio en diferentes contextos (UNESCO, 2003).

El patrimonio cultural material se refiere a las obras y productos de la creatividad humana a lo largo de la historia que constituyen un testimonio de la cultura intelectual, espiritual y material de las sociedades pasadas. Esto incluye no solo monumentos y obras arquitectónicas, sino también infraestructuras como puentes, caminos y presas, que evidencian la evolución técnica de una civilización, así como su carácter social. La conservación de estos bienes es esencial, ya que representan la memoria colectiva de una comunidad y constituyen un recurso invaluable para la educación y la investigación (Mason, 2008).

Por otro lado, el patrimonio cultural inmaterial se refiere a las prácticas, representaciones, expresiones, conocimientos y técnicas que las comunidades reconocen como parte de su patrimonio cultural. Este tipo de patrimonio incluye tradiciones orales, danzas, rituales y festividades que se transmiten de generación en generación. La protección de este patrimonio es igualmente importante, ya que contribuye a la cohesión social y a la identidad cultural de las comunidades, y permite que las nuevas generaciones se conecten con sus raíces (Hernández, 2015).

La clasificación del patrimonio cultural también puede realizarse en función de si es público o privado. Los bienes patrimoniales públicos son aquellos que pertenecen a la colectividad y son administrados por entidades gubernamentales, mientras que los bienes privados son de propiedad individual y pueden ser expropiados por el bien común, siempre que se compense adecuadamente a sus propietarios. Esta distinción es relevante en el ámbito de la conservación, ya que los bienes públicos suelen recibir más atención y recursos para su preservación (González, 2017).

El Viaducto de Requejo sobre el río Duero, diseñado por José Eugenio Ribera en 1914, es un puente de impresionante belleza ubicado en un entorno espectacular. Es una obra histórica que debe ser protegida y conservada para las generaciones futuras. https://es.wikipedia.org/wiki/Puente_de_Requejo#/

La conservación del patrimonio cultural se enfrenta a numerosos desafíos, como la urbanización, el cambio climático y la falta de recursos. La presión del desarrollo urbano a menudo provoca la destrucción de bienes patrimoniales, mientras que el cambio climático puede poner en riesgo la integridad de estructuras históricas. Por lo tanto, es esencial implementar políticas de conservación sostenibles que tengan en cuenta la protección del patrimonio y las necesidades de las comunidades contemporáneas (Smith, 2012).

Para garantizar el éxito de la conservación del patrimonio cultural, es crucial la participación de la comunidad. Involucrar a los ciudadanos en la identificación, protección y promoción de su patrimonio puede generar un mayor compromiso y aprecio por estos bienes. La educación y la sensibilización sobre la relevancia del patrimonio cultural son esenciales para fomentar una cultura de conservación que perdure en el tiempo (Bennett, 2014).

El patrimonio cultural también desempeña un papel importante en la investigación y el estudio de la historia. Los bienes patrimoniales son fuentes de información que permiten a los investigadores comprender mejor las sociedades pasadas y sus interacciones. Gracias al análisis de estos bienes, es posible obtener conocimientos sobre las técnicas de construcción, los estilos artísticos y las prácticas sociales de diferentes épocas, lo que enriquece nuestra comprensión de la historia humana (Lowenthal, 1998).

Para garantizar su conservación, son necesarias la legislación y las políticas de protección del patrimonio cultural. Existen convenios internacionales, como la Convención de la UNESCO sobre la Protección del Patrimonio Mundial, que establecen directrices y principios globales para su conservación. Estas normativas ayudan a sensibilizar a los gobiernos y a las comunidades sobre la importancia de proteger su patrimonio y fomentan la cooperación internacional para su conservación (UNESCO, 1972).

En conclusión, el concepto de patrimonio cultural es amplio y multifacético, y abarca tanto bienes materiales como inmateriales que son esenciales para la identidad y la memoria de las comunidades. La conservación del patrimonio cultural no solo implica la protección de objetos y edificios, sino también la promoción de prácticas y tradiciones que enriquecen la vida social y cultural. Para desarrollar estrategias efectivas que garanticen la preservación de estos bienes para las generaciones futuras, es necesaria la colaboración entre diferentes disciplinas y la participación activa de la comunidad. Al reconocer el valor del patrimonio cultural, se fomenta una responsabilidad compartida que puede dar lugar a un compromiso colectivo en su conservación. Este enfoque integral no solo protege el legado del pasado, sino que también contribuye al desarrollo sostenible y a la cohesión social en el presente, garantizando que el patrimonio cultural siga siendo una fuente de identidad y orgullo para las comunidades en el futuro.

Dejo a continuación un mapa mental sobre el concepto de patrimonio cultural.

 

 

Referencias:

  • Bennett, T. (2014). The Birth of the Museum: History, Theory, Politics. Routledge.

  • González, A. (2017). Cultural Heritage and the Challenge of Sustainability. Journal of Cultural Heritage Management and Sustainable Development, 7(1), 1-15.

  • Hernández, M. (2015). Intangible Cultural Heritage: A New Approach to Cultural Heritage Management. International Journal of Heritage Studies, 21(3), 245-261.

  • Lowenthal, D. (1998). The Heritage Crusade and the Spoils of History. The Historical Journal, 41(3), 877-897.

  • Mason, R. (2008). The Value of Heritage. In Cultural Heritage and the Challenge of Sustainability (pp. 1-15). Routledge.

  • Smith, L. (2012). Uses of Heritage. Routledge.

  • UNESCO. (1972). Convention Concerning the Protection of the World Cultural and Natural Heritage. Retrieved from https://whc.unesco.org/en/conventiontext/ 

  • UNESCO. (2003). Convention for the Safeguarding of the Intangible Cultural Heritage. Retrieved from https://ich.unesco.org/en/convention-for-the-safeguarding-of-the-intangible-cultural-heritage-2003-00444

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería

El artículo presenta un análisis exhaustivo sobre la integración de la realidad aumentada en la enseñanza superior de las ingenierías y de las ciencias de la Tierra. Una de las contribuciones más significativas es la propuesta de una metodología estructurada, denominada SEBAS, que guía la incorporación de esta tecnología enriquecedora en el aula. Esta metodología no solo proporciona un marco claro para el desarrollo de actividades educativas, sino que también fomenta un enfoque activo y participativo en el aprendizaje. La investigación destaca cómo esta tecnología puede transformar la enseñanza tradicional, ya que facilita la visualización de conceptos complejos y abstractos, lo que resulta en una experiencia de aprendizaje más interactiva y efectiva.

Además, el estudio resalta la importancia de la formación docente en el uso de tecnologías emergentes, lo que puede mejorar la calidad de la enseñanza y la preparación del alumnado para afrontar los desafíos del mundo profesional. La inclusión de la realidad aumentada en el currículo de ingeniería civil no solo enriquece el proceso educativo, sino que también responde a las necesidades de una generación de nativos digitales que demanda métodos de enseñanza más dinámicos.

Los resultados de la investigación indican que los estudiantes recibieron positivamente la implantación de esta tecnología en su formación. Se observó un aumento en la comprensión de los contenidos teóricos y una mejora en la motivación y el compromiso con el aprendizaje. La encuesta realizada a los participantes mostró que la mayoría considera que la realidad aumentada es un complemento valioso para las actividades prácticas y teóricas, lo que sugiere que esta herramienta puede ser un recurso eficaz para abordar las limitaciones de la educación tradicional.

Estos hallazgos tienen implicaciones significativas para la práctica profesional en ingeniería civil. La capacidad de visualizar y manipular modelos tridimensionales permite a los futuros profesionales desarrollar habilidades críticas esenciales para su campo. Además, la investigación recomienda que esta tecnología puede utilizarse para simular situaciones reales en el entorno laboral, lo que prepara a los futuros ingenieros para enfrentar desafíos prácticos de manera más efectiva. Este enfoque no solo mejora la formación académica, sino que también aumenta la empleabilidad de los graduados.

A partir de los resultados del artículo, se pueden identificar varias áreas de estudio que merecen una exploración más a fondo. Una posible línea de investigación podría centrarse en evaluar a largo plazo el impacto de la realidad aumentada en el rendimiento y la retención del conocimiento del alumnado de ingeniería civil. Esto permitiría determinar la efectividad de esta tecnología en diferentes contextos educativos y su capacidad para adaptarse a diversas metodologías de enseñanza.

Otra área de interés podría ser el desarrollo de recursos digitales específicos que complementen la enseñanza de otras disciplinas dentro de la ingeniería, como la ingeniería estructural o la ingeniería ambiental. La creación de aplicaciones que aborden temas específicos podría enriquecer aún más el aprendizaje y proporcionar herramientas prácticas a los estudiantes.

Finalmente, se sugiere investigar la percepción y aceptación de la realidad aumentada entre el profesorado, así como su disposición para integrar estas tecnologías en su práctica docente. Comprender las barreras y facilitadores en la adopción de esta herramienta por parte de los docentes puede resultar clave para su implementación exitosa en el aula.

La investigación sobre la realidad aumentada en la enseñanza superior de ingeniería civil ofrece perspectivas valiosas para mejorar el proceso de enseñanza-aprendizaje. La metodología SEBAS y los resultados positivos en la percepción del alumnado ponen de manifiesto el potencial de esta tecnología como herramienta educativa. Las futuras investigaciones en este campo pueden contribuir significativamente al avance del conocimiento y la práctica en esta disciplina, promoviendo una educación más interactiva y adaptada a las necesidades del entorno profesional actual.

Referencia:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. Doi: https://doi.org/10.4995/INRED2024.2024.18365

A continuación, os dejo el artículo completo, pues se encuentra en acceso libre.

Descargar (PDF, 1.53MB)


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precipitación en ingeniería hidráulica: conceptos, medición y análisis

El cambio climático está transformando los patrones de precipitación en todo el mundo, y está aumentando tanto la frecuencia como la intensidad de los eventos extremos. Esto supone un gran desafío para la ingeniería y la gestión de los recursos hídricos, ya que las estructuras e infraestructuras se diseñan, por lo general, en función de periodos de retorno determinados, que son intervalos estimados de recurrencia de eventos como tormentas intensas o inundaciones. Estos periodos de retorno se calculan a partir de registros históricos, asumiendo que el clima permanece constante. Sin embargo, el cambio climático altera esa estabilidad histórica, lo que implica que las proyecciones de precipitaciones basadas en periodos de retorno tradicionales podrían ser insuficientes o imprecisas.

Es importante recordar que el periodo de retorno no es una predicción exacta de cuándo ocurrirá un evento, sino una probabilidad de ocurrencia. Un evento con un periodo de retorno de 100 años no significa que ocurrirá exactamente cada 100 años, sino que tiene una probabilidad del 1 % de suceder en cualquier año dado. En el contexto de un clima cambiante, esta probabilidad podría aumentar si los eventos extremos se vuelven más frecuentes y desafían los márgenes de seguridad para los que están diseñadas muchas infraestructuras.

Todo esto nos plantea la necesidad de adaptar los métodos de cálculo y planificación de periodos de retorno, incorporando datos actualizados y modelos que contemplen escenarios futuros, en vez de depender únicamente de registros pasados. Veamos, a continuación, qué es la precipitación en ingeniería hidráulica: conceptos, medición y análisis.

La precipitación es un fenómeno meteorológico esencial que alimenta los recursos hídricos y afecta directamente al diseño de obras civiles, especialmente a las relacionadas con el drenaje y el control de inundaciones. El objetivo de este artículo es explicar detalladamente qué es la precipitación, cómo se mide y analiza, y cómo se utiliza el concepto de periodo de retorno para planificar y mitigar los riesgos en las infraestructuras.

1. ¿Qué es la precipitación?

La precipitación se define como cualquier tipo de agua que cae desde la atmósfera a la superficie terrestre, incluyendo la lluvia, la nieve, el granizo y la llovizna. La medida de precipitación se suele expresar en milímetros (mm), lo que indica la altura de agua que se acumularía si no hubiese escorrentía ni infiltración en el suelo. Un valor de 1 mm de precipitación equivale a un litro de agua sobre un metro cuadrado de superficie.

La precipitación es crucial para el ciclo hidrológico y afecta a numerosos sistemas naturales y humanos, incluido el abastecimiento de agua potable, la agricultura y el diseño de infraestructuras de transporte y drenaje.

2. Métodos de medición de la precipitación

2.1. Pluviómetros

El pluviómetro es un dispositivo común para medir la cantidad de lluvia en un lugar específico. Se instala en el exterior y captura el agua de lluvia, midiendo la cantidad en milímetros. Los pluviómetros son esenciales para generar registros continuos de precipitación y permiten estimar los patrones anuales y mensuales, entre otros datos útiles para el análisis de lluvias extremas.

2.2. Pluviogramas y hietogramas

  • Pluviograma: Es un gráfico que muestra la acumulación de precipitaciones en función del tiempo. El eje vertical representa la altura de la precipitación acumulada, mientras que el horizontal muestra el tiempo. Esto permite visualizar cómo se acumula la lluvia durante un evento particular, como una tormenta.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.
  • Hietograma: Es un gráfico que representa la intensidad de la precipitación en un intervalo de tiempo determinado. A diferencia del pluviograma, el hietograma se centra en la tasa de precipitación (en mm/h). Esta información es crucial en ingeniería para analizar eventos de precipitación intensos y de corta duración, como las tormentas, que pueden provocar inundaciones y desbordes.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.

2.3. Redes de pluviometría y densidad de medición

Una red de estaciones pluviométricas permite recoger datos de precipitación en múltiples puntos de una región. La densidad de esta red es importante para obtener una representación precisa de la distribución espacial de la precipitación. Cuantas más estaciones pluviométricas haya, mayor será la precisión en la interpolación de datos y en el análisis de la variabilidad de la precipitación en áreas amplias.

3. Análisis de la distribución temporal de la precipitación

La distribución temporal de la precipitación se refiere a cómo cambia la intensidad de la lluvia a lo largo del tiempo. Para comprender estos cambios, en ingeniería se utilizan herramientas y modelos que ayudan a prever el comportamiento de la lluvia y su potencial impacto en las infraestructuras.

3.1. Curvas IDF: Intensidad-Duración-Frecuencia

Las curvas IDF (Intensidad-Duración-Frecuencia) son representaciones estadísticas que relacionan tres factores clave de la precipitación:

  • Intensidad (I): Cantidad de lluvia por unidad de tiempo (mm/h).
  • Duración (D): Tiempo durante el cual se mide la precipitación.
  • Frecuencia (F): Probabilidad de que se repita un evento similar en un periodo determinado.
Fuente: Eduardo Albentosa, Departamento de Ingeniería Hidráulica y Medioambiente, UPV.

Estas curvas se desarrollan a partir del análisis estadístico de eventos pasados de lluvia. En general, la probabilidad de que ocurra un evento de alta intensidad disminuye conforme aumenta la duración y el intervalo de retorno. Por ejemplo, una lluvia de alta intensidad en un periodo de retorno de 100 años es mucho menos frecuente que una lluvia moderada en el mismo intervalo.

3.2. Hietogramas de diseño

Los hietogramas de diseño son modelos simplificados que representan cómo se distribuye la intensidad de la precipitación durante un evento de diseño. En ingeniería, estos diagramas permiten estimar el volumen total de precipitación en un evento y prever el comportamiento de los sistemas de drenaje y almacenamiento de agua.

Algunos tipos de hietogramas de diseño son:

  • Hietograma rectangular: Representa una intensidad de precipitación constante durante toda la duración del evento.
  • Hietograma triangular: Muestra una distribución con un pico de intensidad en un momento específico, lo cual es más realista para muchas tormentas naturales.
  • Hietograma de bloques alternos: Descompone el evento en bloques de intensidad variable, alternando entre períodos de intensidad alta y baja, proporcionando una representación más detallada.

3.3. Importancia de las curvas IDF en el diseño de infraestructuras

Las curvas IDF son fundamentales para el diseño de infraestructuras de drenaje, canales y presas. Permiten calcular la capacidad de estas obras para gestionar caudales generados por eventos de lluvia extremos. Si no se realiza un análisis adecuado de estas curvas, las infraestructuras pueden ser vulnerables a desbordes y fallos durante eventos de precipitación intensa.

4. Análisis de la distribución espacial de la precipitación

La precipitación varía de un lugar a otro, especialmente en regiones con condiciones topográficas complejas, como montañas y valles. Para representar adecuadamente esta variabilidad en proyectos de ingeniería, se utilizan métodos de interpolación espacial para estimar la precipitación en puntos donde no hay mediciones directas.

4.1. Métodos de interpolación y promediación

  • Método de Thiessen: Divide el área de estudio en polígonos de influencia basados en la proximidad de las estaciones pluviométricas. Este método permite asignar una estimación de la precipitación a cualquier punto dentro de un polígono en función de los valores registrados en la estación más cercana.
  • Inverso de la Distancia: Calcula la precipitación en puntos no medidos al asignar mayor peso a las estaciones más cercanas. Este método es especialmente útil cuando la densidad de estaciones es baja, aunque no considera variaciones topográficas.

4.2. Factor de reducción areal

Para grandes áreas, como cuencas hidrográficas, es improbable que las precipitaciones se distribuyan uniformemente en toda la región. Por esta razón, se emplea un factor de reducción areal que disminuye la intensidad de la precipitación puntual al extrapolarla a áreas mayores. Este factor depende del tamaño de la cuenca y de las características meteorológicas de la región.

5. El periodo de retorno y su importancia en hidrología e ingeniería

El periodo de retorno es un concepto estadístico que define el tiempo promedio entre eventos extremos de una magnitud específica. En hidrología, este concepto es fundamental para evaluar la frecuencia y probabilidad de eventos como tormentas intensas o inundaciones.

5.1. Definición y cálculo del periodo de retorno

El periodo de retorno se define como:

donde P[X>x] es la probabilidad anual de que un evento de precipitación exceda un valor umbral x. Por ejemplo, si una tormenta tiene un periodo de retorno de 50 años, esto significa que hay un 2% de probabilidad de que ocurra en cualquier año específico.

5.2. Uso del periodo de retorno en el diseño de infraestructuras

En la práctica, los ingenieros diseñan infraestructuras de drenaje y almacenamiento de agua basándose en periodos de retorno específicos. Por ejemplo, una presa de retención puede construirse para soportar eventos de 100 años, lo que implica una probabilidad de fallo del 1 % cada año.

Este cálculo se ajusta a los requisitos de seguridad y tolerancia al riesgo de cada infraestructura, con el fin de minimizar las probabilidades de fallo, especialmente en áreas densamente pobladas o con activos económicos significativos.

5.3. Riesgo a largo plazo y el periodo de retorno

Aunque un periodo de retorno largo (como 100 años) sugiere una baja probabilidad de ocurrencia anual, es importante entender que, en periodos de tiempo prolongados, la probabilidad acumulada de que el evento ocurra aumenta. Para calcular el riesgo acumulado durante un periodo de N años, se usa la siguiente fórmula:

donde p=1/T  es la probabilidad anual del evento y es el periodo en años. Esto permite estimar la probabilidad de que un evento supere la capacidad de una infraestructura en un número de años especificado. Por ejemplo, el riesgo de que una estructura diseñada para un periodo de retorno de 100 años falle al menos una vez en un periodo de 50 años es de aproximadamente un 40 %. En la gráfica que dejo a continuación tenéis la probabilidad de que ocurra un evento en función del número de años y del periodo de retorno.

Riesgo y periodo de retorno. Elaboración propia.

Nota importante: Una infraestructura no falla exactamente a los 100 años si está diseñada para un periodo de retorno de 100 años. De hecho, su probabilidad es del 63 %. Incluso existe una probabilidad del 10 % de que falle a los 10 años de su construcción. Que te toque la Lotería de Navidad tiene una probabilidad del 0,001 %, pero de hecho, hay gente que le ha tocado la lotería varias veces seguidas. Por tanto, hay que ser cautos con la estadística.

6. Aplicación de la precipitación en el contexto del cambio climático

El cambio climático está afectando a los patrones de precipitación en todo el mundo, incrementando la frecuencia e intensidad de los eventos extremos. Este fenómeno plantea nuevos retos a los ingenieros, ya que las estructuras diseñadas en condiciones climáticas históricas pueden no ser adecuadas para las condiciones futuras.

Adaptar las infraestructuras al cambio climático implica revisar los periodos de retorno y los valores de las curvas IDF para tener en cuenta eventos más intensos o frecuentes. En este contexto, es fundamental contar con bases de datos a largo plazo y modelos predictivos que ayuden a simular condiciones futuras.

Conclusión

El análisis de la precipitación es crucial en la ingeniería hidráulica para prevenir y mitigar riesgos. Desde los métodos de medición y los análisis temporal y espacial, hasta el uso del periodo de retorno, estos conceptos permiten a los ingenieros diseñar infraestructuras resilientes. Dado el impacto creciente del cambio climático, la actualización y adaptación de estos métodos será cada vez más importante para garantizar la seguridad y la sostenibilidad de las infraestructuras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Finalista a la divulgación científica en la Universitat Politècnica de València

Me llena de alegría y gratitud compartir con ustedes que este año soy finalista al Premio a la Divulgación Científica de la Universitat Politècnica de València en la edición de los Premios de Investigación de 2023. Este reconocimiento es muy especial para mí, ya que en mi labor de divulgación busco acercar el fascinante mundo de la ingeniería y la construcción a un público cada vez más amplio y curioso.

El año pasado, tuve el privilegio de recibir dos de los máximos galardones de la UPV: el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación. Estos premios, que reconocen no solo el trabajo en investigación, sino también el impacto y el compromiso de una carrera dedicada a la ingeniería, se otorgan una sola vez cada 5 años. Esto ha supuesto un gran alivio al saber que, aunque fui nominado este año de nuevo, no soy finalista en ambas categorías al haber recibido ya estos honores en la edición anterior. Además, en 2023 también fui galardonado con el Premio Excelencia Docente del Consejo Social de la Universidad Politécnica de Valencia, un premio que igualmente solo se puede recibir una vez en la trayectoria profesional.

La entrega de premios de este año tendrá lugar el próximo 12 de noviembre a las 18:00 horas en el edificio Nexus del campus de Vera, y la gala estará repleta de ciencia, música y teatro, un evento con el inconfundible sello de la UPV. Desde aquí quiero felicitar a todos los finalistas de este año por su destacada labor en investigación y divulgación.

Aprovecho para agradecer a cada uno de ustedes, quienes han hecho posible que esta labor de divulgación científica sea una realidad. ¡Nos vemos en el camino, y gracias por su apoyo constante!

Los nominados a este premio en esta edición han sido los siguientes 18 investigadores:

• COS GAYÓN, Fernando
• ESCOBAR RAMÓN, Santiago
• ESTEBAN GONZÁLEZ, Héctor
• GARCÍA MARTÍNEZ, Antonio
• GARCÍA SEGOVIA, Purificación
• HERNÁNDEZ FRANCO, Carlos
• HOYAS CALVO, Sergio
• LÓPEZ PÉREZ, Miguel
• MONSORIU SERRA, Juan Antonio
• MULET SALORT, José Miguel
• PEDROCHE Sánchez, Francisco
• PINILLA CIENFUEGOS, Elena
• PORCEL ROLDÁN, Rosa
• REMIRO BUENAMAÑANA, Sonia
• ROJAS BRIALES, Eduardo
• SERRANO CRUZ, José Ramón
• SOLER ALEIXANDRE, Salvador
• YEPES PIQUERAS, Víctor

De entre los nominados, tengo el gran honor de compartir ser finalista con dos grandes en el mundo de la divulgación científica. Para que os hagáis una idea del calibre, tanto de José Miguel Mulet como de Rosa Porcel, os dejo un breve resumen de sus méritos en el ámbito de la divulgación. Este año estoy más que satisfecho de saber que me he rodeado de compañeros de esta relevancia. Para mí es mi mayor premio estar con ellos.

José Miguel Mulet Salort: destacado divulgador científico en el ámbito nacional, ha publicado nueve libros en los últimos 12 años. Este curso ha participado en numerosas charlas y jornadas de divulgación y ha sido invitado al Parlamento Europeo y por el gobierno de México para hablar sobre nuevas herramientas de edición genética. Su labor se extiende a una activa presencia en redes sociales y colaboraciones constantes con medios de comunicación, como su columna de ciencia en El País. Además, es miembro del comité de asesoramiento científico de Mercadona.

Rosa Porcel Roldán: divulgadora especializada en biotecnología vegetal desde 2011 y autora del blog La Ciencia de Amara. Su ensayo Eso no estaba en mi libro de Botánica fue galardonado con el Premio Prismas en 2021 al mejor libro de divulgación científica editado. Recientemente, publicó su segundo libro, Plantas que nos ayudan. Ganadora del Premio Antama de Divulgación Científica, este año ha organizado y participado en diversas conferencias y eventos de divulgación científica, como la Noche Europea de la Investigación, el proyecto Mednight y el Día Internacional de la Mujer y la Niña en la Ciencia.

Víctor Yepes Piqueras: su blog, enfocado en la ingeniería de la construcción, es un referente en el sector tanto en España como en Latinoamérica. Creado en 2012, ha alcanzado casi dos millones de visitas solo en el último año. Cuenta con aproximadamente 34,000 seguidores en X y más de 22,000 en LinkedIn. Su labor divulgativa también incluye colaboraciones en medios de comunicación. Durante el curso 2023/24, ha participado en iniciativas como el podcast UPV Revisado por pares y ha publicado en medios como TechXplore, Apunt, Valencia Plaza y El Confidencial, entre otros.

 

Curso en línea de “Fabricación y puesta en obra del hormigón”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso en línea sobre “Fabricación y puesta en obra del hormigón”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-fabricacion-y-puesta-en-obra-del-hormigon/

 

 

Acerca de este curso

Este curso ofrece una visión completa sobre la fabricación y la puesta en obra del hormigón. No se requieren conocimientos previos específicos, ya que está diseñado para beneficiar a un amplio espectro de profesionales, tanto con experiencia como sin ella, así como a estudiantes de disciplinas relacionadas con la construcción, tanto en el ámbito universitario como en la formación profesional. El proceso de aprendizaje está estructurado de manera gradual, lo que permite a los participantes profundizar en los aspectos que más les interesen, apoyándose en material complementario y enlaces a recursos en línea, como vídeos y catálogos.

En este curso, adquirirás conocimientos fundamentales sobre la fabricación de hormigones y el uso de maquinaria relacionada, incluyendo centrales de hormigonado, transporte y bombeo de hormigón, cintas transportadoras, gunitado, colocación de hormigón bajo el agua y en condiciones de frío o calor, así como grandes vertidos, compactación por vibrado, hormigón al vacío, curado, juntas de construcción, hormigón precolocado y tipos de hormigón como el de fibra de vidrio, autocompactantes, compactados con rodillo y ligeros.

El enfoque principal del programa es comprender los principios que rigen la fabricación y la puesta en obra del hormigón, tanto prefabricado como ejecutado en obra, prestando atención a sus características más importantes y a los aspectos constructivos relevantes en ingeniería civil y edificación. El curso abarca un amplio espectro y profundiza en los fundamentos de la ingeniería de la construcción, además de destacar la importancia de fomentar el pensamiento crítico de los estudiantes, especialmente en relación con la selección de métodos, técnicas y maquinaria que se deben aplicar en situaciones concretas. Además, este curso trata de llenar el vacío que a menudo deja la bibliografía habitual y está diseñado para que los estudiantes puedan profundizar en los conocimientos adquiridos y adaptarlos a su experiencia previa o a sus objetivos personales y empresariales.

El contenido del curso se organiza en 50 lecciones, cada una de las cuales constituye una secuencia de aprendizaje completa. Además, se ofrece un amplio conjunto de problemas resueltos que complementan la teoría presentada en cada lección. Se estima que se necesitan entre dos y tres horas para completar cada lección, en función del interés del estudiante por profundizar en los temas mediante el material adicional proporcionado.

Al finalizar cada unidad didáctica, el estudiante se enfrenta a una serie de preguntas diseñadas para consolidar los conceptos fundamentales y fomentar la curiosidad sobre aspectos relacionados con el tema tratado. También se han diseñado tres unidades adicionales para reforzar los conocimientos adquiridos a través del desarrollo de casos prácticos, en los que se fomenta el pensamiento crítico y la capacidad para resolver problemas reales. Finalmente, al concluir el curso, se llevará a cabo un conjunto de preguntas tipo test con el objetivo de evaluar el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está diseñado para una dedicación total de 75 horas por parte del estudiante. Se busca mantener un ritmo moderado, con una dedicación semanal de aproximadamente 10 a 15 horas, en función del nivel de profundidad que cada estudiante desee alcanzar. La duración total del curso es de seis semanas de aprendizaje.

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria empleada en la fabricación del hormigón, tanto prefabricado como elaborado en obra
  2. Evaluar y seleccionar los procedimientos constructivos para la colocación del hormigón, atendiendo a criterios económicos y técnicos
  3. Conocer las buenas prácticas y los aspectos de seguridad implicados en el transporte, vertido, compactación y curado del hormigón
  4. Analizar las características específicas en la fabricación y colocación de hormigones especiales como los autocompactantes, ligeros, con fibras, precolocados, compactados con rodillo y otros.

Programa del curso

  • Lección 1. Fabricación de hormigones
  • Lección 2. Homogeneidad en la fabricación del hormigón
  • Lección 3. Amasado del hormigón
  • Lección 4. Amasadoras de hormigón
  • Lección 5. Centrales de fabricación de hormigón
  • Lección 6. Hormigoneras
  • Lección 7. Cálculo de la temperatura de fabricación del hormigón
  • Lección 8. Almacenamiento de áridos
  • Lección 9. Corrección de humedad de los áridos
  • Lección 10. Transporte del cemento
  • Lección 11. Silos fijos de cemento
  • Lección 12. Cemento para hormigones resistentes a sulfatos en cimentaciones
  • Lección 13. Carretillas manuales o a motor para el transporte del hormigón
  • Lección 14. Hormigonado con cubilote
  • Lección 15. Transporte del hormigón mediante cintas transportadoras
  • Lección 16. Colocación del hormigón mediante bombeo
  • Lección 17. Torres distribuidoras de hormigón
  • Lección 18. Problemas de bombeo de hormigón
  • Lección 19. Hormigón proyectado: gunitado
  • Lección 20. Recomendaciones para el vertido de hormigón
  • Lección 21. Trompas de elefante para la colocación del hormigón
  • Lección 22. Hormigonado con tubería Tremie
  • Lección 23. Técnicas de colocación del hormigón bajo el agua
  • Lección 24. Fabricación y colocación del hormigón en tiempo caluroso
  • Lección 25. Fabricación y colocación del hormigón en tiempo frío
  • Lección 26. Hormigonado en condiciones de viento
  • Lección 27. Vertido y compactación de hormigón en soportes de sección reducida
  • Lección 28. Grandes vertidos de hormigón
  • Lección 29. Razones para compactar el hormigón
  • Lección 30. Compactación manual del hormigón: picado y apisonado
  • Lección 31. Compactación del hormigón por vibrado
  • Lección 32. Vibradores de aguja para compactar el hormigón
  • Lección 33. Vibradores externos para encofrados de hormigón
  • Lección 34. Mesa vibrante de hormigón
  • Lección 35. Compactación del hormigón con regla vibrante
  • Lección 36. Compactación del hormigón por centrifugación
  • Lección 37. Hormigón al vacío
  • Lección 38. Alisadoras rotativas o fratasadoras
  • Lección 39. Revibrado del hormigón
  • Lección 40. Agrietamiento plástico durante el fraguado del hormigón: Nomograma de Menzel
  • Lección 41. Necesidad y fases del curado del hormigón
  • Lección 42. Curado de pavimentos y otras losas de hormigón sobre tierra
  • Lección 43. Curado al vapor del hormigón e índice de madurez
  • Lección 44. Hormigón de limpieza en fondos de excavación
  • Lección 45. Las juntas de construcción en el hormigón
  • Lección 46. Hormigón precolocado: Prepakt y Colcrete
  • Lección 47. Hormigón reforzado con fibra de vidrio
  • Lección 48. Hormigón autocompactante
  • Lección 49. Hormigones compactados con rodillo
  • Lección 50. Hormigones ligeros
  • Supuesto práctico 1.
  • Supuesto práctico 2.
  • Supuesto práctico 3.
  • Batería de preguntas final

Conozca a los profesores

Víctor Yepes Piqueras

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de 175  artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 17 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Lorena Yepes Bellver es Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.