Optimización de muros de contrafuertes mediante algoritmo híbrido de enjambre de partículas y clustering

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo se presenta un algoritmo híbrido de enjambre de partículas y clustering para optimizar el coste y las emisiones de CO2 de un muro de contrafuertes. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El diseño de los muros de contrafuertes es un problema de optimización combinatoria de interés debido a las aplicaciones prácticas relativas al ahorro de costos que implica el diseño y la optimización en la cantidad de emisiones de CO2 generadas en su construcción. Por otro lado, este problema presenta importantes retos en cuanto a complejidad computacional, pues involucra 32 variables de diseño, por lo que tenemos en el orden de 10^20 combinaciones posibles. En este artículo proponemos un algoritmo híbrido en el que se integra el método de optimización del enjambre de partículas que resuelve los problemas de optimización en espacios continuos con la técnica de clustering db-scan. Este algoritmo optimiza dos funciones objetivo: las emisiones de carbono y el costo económico de los muros de hormigón armado. Para evaluar la contribución del operador del db-scan en el proceso de optimización, se diseñó un operador aleatorio. Se comparan las mejores soluciones, los promedios y los rangos intercuartílicos de las distribuciones obtenidas. A continuación se comparó el algoritmo db-scan con una versión híbrida que utiliza k-means como método de discretización y con una implementación discreta del algoritmo de búsqueda de armonía. Los resultados indican que el operador db-scan mejora significativamente la calidad de las soluciones y que la metaheurística propuesta muestra resultados competitivos con respecto al algoritmo de búsqueda de armonía.

Abstract:

The design of reinforced earth retaining walls is a combinatorial optimization problem of interest due to practical applications regarding the cost savings involved in the design and the optimization in the amount of CO2 emissions generated in its construction. On the other hand, this problem presents important challenges in computational complexity since it involves 32 design variables; therefore we have in the order of 10^20 possible combinations. In this article, we propose a hybrid algorithm in which the particle swarm optimization method is integrated that solves optimization problems in continuous spaces with the db-scan clustering technique, with the aim of addressing the combinatorial problem of the design of reinforced earth retaining walls. This algorithm optimizes two objective functions: the carbon emissions embedded and the economic cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization process, a random operator was designed. The best solutions, the averages, and the interquartile ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a hybrid version that uses k-means as the discretization method and with a discrete implementation of the harmony search algorithm. The results indicate that the db-scan operator significantly improves the quality of the solutions and that the proposed metaheuristic shows competitive results with respect to the harmony search algorithm.

Keywords:

CO2 emission; earth-retaining walls; optimization; db-scan; particle swarm optimization

Reference:

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6):862. https://doi.org/10.3390/math8060862

Descargar (PDF, 847KB)

El profesor José Antonio García Conejeros de estancia con nosotros en la Universitat Politècnica de València

Dr. José Antonio García Conejeros

Nuestro grupo de investigación está muy orgulloso y es muy afortunado de contar con visitas y estancias de otros profesores, de gran prestigio internacional, que vienen a trabajar y compartir experiencias en la Universitat Politècnica de València. Si en entradas anteriores hablé de la estancia del profesor Dan M. Frangopol, de la visita del profesor Gizo Parskhaladze, y de la estancia de investigación del profesor Moacir Kripka , ahora me toca hablar de la estancia que ha tenido con nosotros el profesor José Antonio García Conejeros en el ICITECH. Estuvo con nosotros durante su “verano” austral, y se fue justo antes de que se declarara el estado de alarma en España por el coronavirus.

Tuve la ocasión de conocer a José Antonio con motivo de mi visita a la Pontificia Universidad Católica de Valparaíso (Chile), en mayor de 2019. Allí tuve la ocasión de impartir varias conferencias sobre optimización y toma de decisiones en puentes e infraestructuras viarias.  Fruto de esta colaboración, a parte de los relacionados con la investigación, se extienden al futuro intercambio de estudiantes y profesorado entre nuestras respectivas universidades y en la participación conjunta en proyectos de investigación y de transferencia tecnológica. En las referencias os dejo tres artículos que hemos publicado como consecuencia de su estancia. Seguro que vendrán muchos más. Todo un verdadero placer.

También os dejo parte de la entrevista que le hicieron en su universidad con motivo de la estancia. La entrevista completa la tenéis aquí: http://icc.pucv.cl/noticias/profesor-jose-antonio-garcia-realiza-estadia-de-investigacion-en-espana

¿Cuáles fueron los motivos de su estadía académica en la ciudad de Valencia?

El principal motivo fue realizar una colaboración con el equipo de investigación de Ingeniero de Caminos, Canales y Puertos, de la Universidad Politécnica de Valencia. Este equipo encabezado por el Dr. Víctor Yepes, tiene una gran experiencia en todo lo que es estructuras de caminos, canales y puentes. Y por mi lado yo tengo una experiencia académica e industrial en el área de inteligencia artificial. Entonces el objetivo es integrar ambos mundos, para resolver un problema complejo.

¿Podría detallarnos las actividades académicas o de investigación realizadas allá?

Las actividades académicas en la primera semana fueron de reuniones donde definimos un problema a trabajar. Posteriormente yo realicé una propuesta de cómo utilizar métodos de optimización para abordar un problema de sustentabilidad. Las semanas siguientes fueron de trabajo técnico donde se resolvió el problema obtuve los resultados y los discutimos par ver la calidad y la pertinencia de publicarlos.

¿De qué manera continuará el trabajo realizado allá?

El trabajo continúa en dos líneas. La primera es generar publicaciones en conjunto, la escuela de ingeniería en construcción PUCV y el grupo de Víctor. La segunda es potenciar el capital Humano avanzado, tanto con académicos o alumnos de allá que vengan a realizar estadías acá, y alumnos de la PUCV que vayan a potencias sus capacidades al grupo de Victor.

¿Algo más que desee agregar?

La estadía fue bastante constructiva ya que me permitió entrar en una nueva línea de investigación en sustentabilidad y también decir que nos aprobaron el articulo de investigación “Black hole algorithm for sustainable design of counterfort retaining walls.” en Sustainability, que es una revista ISI-SCIE.

Referencias:

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, (in press)

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Diseño de experimentos factorial completo aplicado al proyecto de muros de contención

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Diseño de experimentos factorial completo aplicado al proyecto de muros de contención“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, el diseño factorial completo, para determinar las variables significativas y las interacciones entre las variables cuando se trata de calcular una estructura. En este caso, se trata de analizar las emisiones de CO2 en la construcción de un muro de contención de tierras. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto.

Referencia:

MARTÍNEZ-MUÑOZ, D.; YEPES, V.; MARTÍ, J.V. (2019). Diseño de experimentos factorial completo aplicado al proyecto de muros de contención. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 201-213. ISBN: 978–84–17924–58–4

Descargar (PDF, 281KB)

 

Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)

Optimización de muros de hormigón mediante la metodología de la superficie de respuesta

En el congreso CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering), celebrado en Alicante del 23 al 25 de octubre de 2019, tuvimos la ocasión de presentar varias comunicaciones. A continuación os paso una denominada “Optimización de muros de hormigón mediante la metodología de la superficie de respuesta“.

En este caso, se trataba aplicar una técnica estadística procedente del diseño de experimentos, la metodología de la superficie de respuesta, a un cálculo estructural, en este caso, un muro. La optimización de procesos mediante la superficie de respuesta es habitual en el campo de la experimentación. La idea es considerar que el cálculo de una estructura se puede considerar también un experimento, donde los datos de entrada son las variables y parámetros que definen dicha estructura y el resultado final es el coste. En este caso, se trata de minimizar el coste. Esta metodología es muy interesante para los estudiantes de máster. Ya hemos publicado algún artículo sobre el mismo tema aplicado a puentes pretensados. Os dejo el artículo en abierto. En este caso se han optimizado las emisiones de CO2.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain, pp. 603-615. ISBN: 978–84–17924–58–4

Descargar (PDF, 369KB)

Optimización del diseño robusto de puentes en cajón

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo tratamos de solucionar uno de los problemas que presentan las estructuras óptimas, que es su cercanía a los estados límite y demás restricciones. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En efecto, el diseño de una estructura se lleva a cabo generalmente según un enfoque determinista. Sin embargo, todos los problemas estructurales tienen asociados parámetros iniciales inciertos que pueden diferir del valor de diseño. Esto se vuelve importante cuando el objetivo es alcanzar estructuras optimizadas, pues una pequeña variación de estos parámetros inciertos iniciales puede tener una gran influencia en el comportamiento estructural. El objetivo de la optimización de un diseño robusto es obtener un diseño óptimo con la menor variación posible de las funciones objetivas. Para ello, es necesaria una optimización probabilística para obtener los parámetros estadísticos que representen el valor medio y la variación de la función objetivo considerada. Sin embargo, una de las desventajas del diseño robusto óptimo es su alto costo de cálculo. En el presente artículo, la optimización del diseño robusto se aplica al diseño de un puente peatonal continuo de sección en cajón  que sea óptimo en cuanto a su costo y robusto en cuanto a la estabilidad estructural. Además, se utiliza el muestreo de hipercubo latino y el metamodelo de kriging para hacer frente al alto costo computacional. Los resultados muestran que las principales variables que controlan el comportamiento estructural son la profundidad de la sección transversal y la resistencia a la compresión del hormigón y que se puede llegar a una solución de compromiso entre el coste óptimo y la robustez del diseño.

Abstract

The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached.

Keywords

Robust design optimization; RDO; post-tensioned concrete; box-girder bridge; structural optimization; metamodel; kriging

Reference:

Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust Design Optimization for Low-Cost Concrete Box-Girder BridgeMathematics 20208, 398.

Descargar (PDF, 1.11MB)

 

La geometría fractal en la ingeniería: las estructuras de Voronoi y el diseño paramétrico

Figura 1. Rascacielos Voronoi. https://naukas.com/2011/12/23/cada-uno-en-su-region-y-voronoi-en-la-de-todos/

La naturaleza siempre ha servido de inspiración para arquitectos, ingenieros y diseñadores. La tecnología informática ha facilitado las herramientas para analizar y simular la complejidad observada en la naturaleza y aplicarla a formas estructurales de construcción y los mecanismos de organización urbana. Entre ellas destacamos la geometría fractal y el diagrama de Voronoi.

La geometría fractal no ha dejado de evolucionar desde las investigaciones del matemático polaco nacionalizado francés y estadounidense, Benoît Mandelbrot en los años 70 del siglo pasado. Un fractal es un objeto geométrico cuya estructura básica, fragmentada o aparentemente irregular, se repite a diferentes escalas. Lo interesante es que la forma de los fractales parecen describir la Naturaleza y encuentra su geometría una gran variedad de aplicaciones en urbanismo, arquitectura, computación o ingeniería estructural (Figura 1).

El diagrama de Voronoi (nombre que se debe al matemático ruso Gueorgui Voronói) se crea al unir los puntos entre sí, trazando las mediatrices de los segmentos de unión (Figura 2). Las intersecciones de estas mediatrices determinan una serie de polígonos en un espacio bidimensional alrededor de un conjunto de puntos de control, de manera que el perímetro de los polígonos generados sea equidistante a los puntos vecinos y designan su área de influencia.

Figura 2. Diagrama de Voronoi. https://es.wikipedia.org/wiki/Pol%C3%ADgonos_de_Thiessen#/media/Archivo:Euclidean_Voronoi_diagram.svg

Hasta mediados de los ochenta, la mayoría de las implementaciones para computar el diagrama de Voronoi usaban el algoritmo incremental cuadrático, admitiendo su mayor lentitud para evitar la complejidad del código divide y vencerás (Figura 3). En 1985 Fortune inventó un inteligente algoritmo de barrido plano que resulta tan simple como el incremental, pero en tiempo O(n log n). Para los más curiosos, podéis utilizar MATLAB para realizar ejemplos sobre los diagramas de Voronoi utilizando la funciónvoronoin. El enlace lo tenéis aquí: https://es.mathworks.com/help/matlab/math/voronoi-diagrams.html

Figura 3. Pasos fundamentales del algoritmo “divide y vencerás” para construir el diagrama de Voroni. http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm

La profesora de la Universidad de Sevilla, Clara Grima, nos describe en un artículo de divulgación, “El diagrama de Voronoi, la forma matemática de dividir el mundo“, algunas aplicaciones del diagrama de Voronoi, que van desde la distribución de farmacias en una ciudad, a el mapa del cólera de John Snow o a la ventaja posicional de un equipo de fútbol.

Pero aquí lo interesante es saber que, basándose en este diagrama, se pueden diseñar estructuras y espacios urbanos de gran interés. En la Figura 4 podemos ver la oficina central de Alibaba. Este tipo de estructuras resultan agradables, estáticamente eficientes y adecuadas para trabajar como un sistema estructural espacial. Además, la estructura se puede modelar por un conjunto de puntos y admite el diseño paramétrico. Se denomina diseño paramétrico a un proceso de diseño basado en un esquema algorítmico que permite expresar parámetros y reglas que definen, codifican y aclaran la relación entre los requerimientos del diseño y el diseño resultante.

Figura 4. Oficina central de Alibaba. https://www.idealista.com/news/finanzas/emprendedores/2014/04/16/727627-asi-es-la-cueva-de-alibaba-el-tesoro-mejor-guardado-de-china

En la Figura 5 se observa la posibilidad de estos diagramas en el caso de pantallas arquitectónicas. Como vemos, las posibilidades estructurales son de un gran interés.

Figura 5. Ejemplo de uso arquitectónico de los diagramas Voronoi. https://www.carroceriasibiza.com/

Aquí tenemos una explicación de los diagramas de Voronoi. También el vídeo explica cómo construir a partir de una serie de puntos generadores los famosos Polígonos de Thiessen que conforman el diagrama antes mencionado.

En el presente vídeo se explican los fractales.

Os dejo también un artículo sobre el diagrama de Voronoi como herramienta de diseño, de María Loreto Flores. Espero que os sea de interés

Descargar (PDF, 527KB)

Special Issue “Trends in Sustainable Buildings and Infrastructure”

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 2.468 (2018)

Special Issue “Trends in Sustainable Buildings and Infrastructure”

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 31 October 2020.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multi-objective optimization; life-cycle assessment; decision-making; sustainability; concrete structures; CO2 emissions; construction management

Guest Editor

Dr. Ignacio J. Navarro
Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multicriteria decision making; reliability-based maintenance optimization; sustainability of infrastructures; social impacts of infrastructures

Special Issue Information

Dear Colleagues,

The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

DIMALIFE: Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos

 

 

DIMALIFE: Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos

Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges under restrictive budgets

 

Víctor Yepes*, a, Eugenio Pellicer b, José V. Martí c, Moacir Kripka d

a Dr. Ingeniero de Caminos. Catedrático de Universidad. ICITECH, Universitat Politècnica de València.

b Dr. Ingeniero de Caminos. Catedrático de Universidad. Universitat Politècnica de València.

c Dr. Ingeniero de Caminos. Profesor Titular de Universidad. ICITECH, Universitat Politècnica de València.

d Dr. Ingeniero Civil. Catedrático de Universidad. Universidade de Passo Fundo, Brasil.

* Persona de contacto / Corresponding author

RESUMEN

El artículo expone los resultados alcanzados dentro del proyecto de investigación DIMALIFE. Se desarrolla una metodología que incorpora la variabilidad en los procesos de toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, de forma que se contemplen las necesidades e intereses sociales y ambientales con presupuestos restrictivos. La variabilidad inherente a los parámetros, variables y restricciones del problema resulta crítica si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad. Se precisa introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos.

ABSTRACT

The article presents the results achieved within the DIMALIFE research project. It develops a methodology that incorporates variability in decision-making processes during the whole life cycle of bridges and highway infrastructures, so that social and environmental needs and interests are taken into account with restrictive budgets. The variability inherent in the parameters, variables and constraints of the problem is critical if they are given by good optimized solutions, which can be on the verge of infactibility. Multi-objective optimisation based on reliability needs to be introduced into the analysis and robust optimal designs achieved.

PALABRAS CLAVE: puentes, sostenibilidad, ciclo de vida, optimización multiobjetivo, fiabilidad.

KEYWORDS: bridges, sustainability, life cycle, multi-objective optimisation, reliability

 

INTRODUCCIÓN

Las vías de comunicación terrestre, y en especial los puentes, son infraestructuras básicas en el desarrollo económico, en el equilibrio territorial y en el bienestar social, cuya construcción, diseño, conservación y desmantelamiento se ven afectados significativamente cuando los presupuestos son restrictivos. Su deterioro y su incidencia en la seguridad son objeto de gran alarma social. Si además el mantenimiento es ineficiente, la reparación conlleva costes mayores. El objetivo principal del proyecto DIMALIFE consiste en desarrollar una metodología que permita incorporar la variabilidad en los procesos analíticos en la toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, incluyendo la licitación de proyectos de obra nueva y de mantenimiento de activos existentes, de forma que se contemplen las necesidades e intereses sociales y ambientales.

Una alternativa al proyecto secuencial de infraestructuras y del mantenimiento de las existentes es el diseño totalmente automático utilizando técnicas de optimización, capaces de incorporar múltiples funciones objetivo y cuyo resultado es la generación de un conjunto de soluciones eficientes. No obstante, esta metodología presenta limitaciones que el proyecto DIMALIFE pretende superar.

El empleo de técnicas de análisis del valor y toma de decisiones ha supuesto un gran avance en la definición de un indicador de sostenibilidad. Este enfoque se amplió en anteriores proyectos de investigación al considerar el ciclo completo de la vida de una estructura o el uso de hormigones de baja huella de carbono, incluyendo, asimismo en el proceso los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio tanto de forma previa a los procesos de optimización multiobjetivo, como posteriormente en la priorización de las soluciones eficientes. Sin embargo, en el mundo real, las infraestructuras presentan una variabilidad inherente a los parámetros, variables y restricciones del problema. Este aspecto resulta crítico si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad en cuanto se altera mínimamente alguno de los valores que definen el problema. Se precisa, por ello, introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos, tanto de infraestructuras nuevas como del mantenimiento de las existentes, considerando el ciclo de vida hasta su desmantelamiento. Para que este procedimiento sea abordable en tiempos de cálculo razonable se precisa el uso de metamodelos (redes neuronales, modelos Kriging, superficie de respuesta, etc.) dentro de las técnicas de optimización.

Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad. En este sentido, un aspecto importante consiste en determinar los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias.

ANTECEDENTES Y JUSTIFICACIÓN DEL PROYECTO

La sostenibilidad económica y social depende directamente del comportamiento fiable y duradero de sus infraestructuras [1]. La construcción y mantenimiento de las infraestructuras viarias y puentes afectan fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, estas actividades impactan en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras que maximicen su beneficio social sin comprometer su sostenibilidad [2].

Por otra parte, el envejecimiento de las infraestructuras, la mayor demanda en su desempeño (aumento de tráfico, por ejemplo) o los riesgos naturales extremos afectan a su al rendimiento [3]. Si a ello añadimos la crisis financiera que ha afectado la economía de nuestro país, el panorama se complica. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que hacer un esfuerzo adicional para actualizar los requisitos de seguridad y funcionalidad a su nivel de servicio previsto [4].

Existen dificultades cuando se emprende un análisis de ciclo de vida de una infraestructura debido a las incertidumbres presentes en la definición de las entradas y salidas del sistema. El reto implica un proceso de toma de decisiones que minimice los impactos sociales y medioambientales al coste más bajo posible [5]. Varios trabajos han tratado de cuantificar la sostenibilidad en los proyectos de puentes [6-8].

Con todo, la línea de investigación no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. El proyecto DIMALIFE pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, los proyectos anteriores se centraban en la fase de diseño [9-12]. Sin embargo, este es un aspecto muy específico, siendo necesario abordar en mayor profundidad el análisis dual sobre la necesidad de nuevas infraestructuras o la mejora de las existentes para el mejor aprovechamiento del parque actual. En efecto, todo parece indicar que en una situación de restricción presupuestaria como la actual va a ser difícil que el grueso del presupuesto se dedique a nueva construcción, siendo razonable su empleo en el mantenimiento y rehabilitación [13]. En segundo lugar, las infraestructuras viarias incluyen no solo puentes: el abanico estructural contiene incluso el mantenimiento del pavimento; en este sentido, algunos trabajos afrontados recientemente por el grupo han abordado este aspecto con restricciones presupuestarias [14,15]. En tercer lugar, y aunque se han utilizado técnicas de decisión multicriterio para tratar aspectos complejos de sostenibilidad social y medioambiental [5,8] en el ámbito de las infraestructuras, existen limitaciones que se deben superar. Éstas tienen que ver con la sensibilidad que presentan las soluciones óptimas respecto a la variabilidad intrínseca de las variables y parámetros de los problemas estructurales, así como la influencia que presenta esta variabilidad en los resultados de los procesos de toma de decisiones. Por último, la toma de decisiones y la optimización multiobjetivo de los problemas reales conlleva un trabajo muy laborioso de programación de software propio que, en ocasiones, presenta tiempos de cálculo elevados que obliga a replantear las metodologías empleadas hasta el momento, a pesar de que las capacidades de cálculo de los ordenadores son cada vez mayores. Es el campo propicio para integrar metamodelos en los procesos de optimización, tal y como se ha empezado a realizar en algunos trabajos muy recientes del grupo en el caso de las redes neuronales [11].

En efecto, a pesar de que se ha avanzado fuertemente en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los valores de los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). De hecho, los códigos estructurales consideran las incertidumbres de forma simplificada definiendo los valores característicos para las variables aleatorias como percentiles de sus distribuciones y especifican unos coeficientes parciales de seguridad. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que cualquier pequeña variación puede hacer que la estructura no cumpla con algunos de los estados límites previstos. La necesidad de incorporar las incertidumbres ha estimulado el interés por procedimientos capaces de proporcionar diseños más robustos y fiables [16]. De todas formas, se diferencian dos enfoques que consideran la respuesta probabilista en el proceso de diseño óptimo: el diseño basado en fiabilidad y el diseño óptimo robusto. En el primero se incluyen los efectos de la incertidumbre por medio de probabilidades de fallo y de valores esperados [17], mientras que el segundo trata de determinar un diseño menos sensible a las incertidumbres de las variables y de los parámetros que intervienen en la respuesta estructural [18,19].

Uno de los grandes problemas de la optimización multiobjetivo al incorporar las incertidumbres es su elevado coste computacional. Este inconveniente ya se detectó en el caso de la optimización multiobjetivo basada en fiabilidad del mantenimiento de puentes [20] donde se tuvieron que emplear redes neuronales como metamodelos [11]. Los metamodelos, también llamados modelos subrogados, proporcionan una relación aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Estas aproximaciones se utilizan para reemplazar los análisis informáticos costosos facilitando la optimización multiobjetivo. Entre otros, podemos distinguir el diseño de experimentos, la metodología de la superficie de respuesta, los métodos Taguchi, las redes neuronales, las funciones de base radial o los modelos Kriging [21,22].

Por último, un aspecto no tratado que se incorpora al proyecto es aprovechar las conclusiones de los análisis de optimización para incluir criterios y recomendaciones que mejoren la contratación pública sostenible de las infraestructuras, dado que se considera que este aspecto posee el potencial de influir fuertemente en las políticas futuras [23]. Es por ello que DIMALIFE pretende determinar, dentro de sus objetivos, criterios e indicadores clave que garanticen una integración efectiva de la sostenibilidad en la licitación de proyectos. Dichos desarrollos pretenden ser la base para la definición de una guía que facilite a las Administraciones incorporar la sostenibilidad en los procedimientos de licitación de una manera efectiva; de modo que se influya sobre las tres etapas clave del procedimiento de licitación: definición de criterios de selección, definición de criterios de adjudicación y definición de especificaciones técnicas y cláusulas de desempeño.

OBJETIVOS GENERALES DEL PROYECTO

La metodología habitual, tanto en el diseño como en el mantenimiento óptimo de puentes e infraestructuras viarias, puede conducir a soluciones cercanas a la infactibilidad. Por tanto, las incertidumbres deben considerarse en el diseño y el mantenimiento óptimo de infraestructuras basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida, contemplando las fluctuaciones tanto de los parámetros como de los escenarios, especialmente en el caso de restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos capaces de acelerar los complejos procesos de cálculo. Además, se contempla la hipótesis adicional que establece que la contratación pública de las infraestructuras públicas debe incluir criterios de sostenibilidad por su fuerte influencia potencial en los mercados.

El objetivo general perseguido en este proyecto se basa en afrontar el reto social que supone la creación y la conservación de las infraestructuras viarias en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas (puentes de hormigón pretensado prefabricados o “in situ”, puentes mixtos, puentes de acero, tipologías de muros, bóvedas y marcos de paso inferior). Para ello se precisa un salto científico que integre a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, aplicadas no solo al proyecto de nuevas infraestructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporciona conocimiento no trivial sobre las mejores prácticas. Esta metodología se aplica también a otro tipo de infraestructuras del transporte.

Los objetivos generales se desarrollan mediante los siguientes objetivos específicos:

  • Análisis de funciones de distribución para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio
  • Determinación de los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias
  • Identificación de estrategias de mantenimiento robusto óptimo de puentes e infraestructuras viarias ya construidos
  • Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de los puentes e infraestructuras viarias mediante metamodelos
  • Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida

Para alcanzar estos objetivos, se ha colaborado con los grupos de investigación de los profesores Frangopol y Moleenar (EE.UU.), del profesor Haukaas (Canadá), del profesor Kripka (Brasil), del profesor Partskhaladze (Georgia) y del profesor Sierra (Chile).

METODOLOGÍA

La investigación combina técnicas y disciplinas diversas tales como el análisis estructural, la toma de decisiones multicriterio, la optimización heurística multiobjetivo, el análisis del ciclo de vida, el análisis basado en fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales. Los trabajos desarrollados en proyectos anteriores se centraron en la optimización con múltiples objetivos, empleando técnicas sin información a priori del decisor. En este caso, la optimización proporciona alternativas eficientes al decisor. También ha utilizado técnicas con información a priori, donde el decisor informa sobre las preferencias al analista, que optimiza su modelo. En la metodología propuesta (Figura 1) se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el decisor debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 1. Esquema metodológico diseñado para la realización del proyecto DIMALIFE

 

RESULTADOS

Aunque el proyecto de investigación empezó en el año 2018 y termina a finales del 2020, las aportaciones realizadas hasta el momento son significativas. La principal contribución es la incorporación de la variabilidad de los parámetros y restricciones del problema de optimización multiobjetivo basado en criterios de sostenibilidad social y medioambiental. Los resultados obtenidos se pueden clasificar en:

  1.  Formulación de una metodología de participación social que definan un proceso de decisión multicriterio, que integre aspectos objetivos y subjetivos, así como la aplicación de técnicas analíticas sistémicas (ANP) y análisis de valor, con inclusión expresa de la incertidumbre (técnicas fuzzy, modelos bayesianos, teoría neutrosófica) [24-37].
  2.  Propuesta de nuevas técnicas de optimización multiobjetivo basada en fiabilidad que integran metamodelos para acelerar la convergencia de cálculo considerando el ciclo de vida [38-50].
  3. Definición del tipo de política presupuestaria que perjudica en mayor medida la sostenibilidad social y ambiental a lo largo del ciclo de vida de puentes e infraestructuras viarias [51-53].
  4. Desarrollo de criterios para la Administración que potencie la incorporación de criterios sostenibles en los procedimientos de licitación de manera efectiva [54,55].

Como resultado del proyecto, también se menciona la culminación de cinco tesis doctorales [56-60], estando en marcha tres más.

CONCLUSIONES

El proyecto de investigación DIMALIFE ha profundizado en la optimización multiobjetivo en fase de diseño y construcción que incorporaban la visión social y el análisis completo del ciclo de vida. El objetivo ha sido incorporar a distintos actores y grupos de expertos en la toma de decisiones la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se han aplicado técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, al proyecto y mantenimiento de puentes e infraestructuras viarias.

El motivo de este planteamiento también constituye una necesidad social. En efecto, las incertidumbres relacionadas con la toma de decisiones, no solo en el diseño de nuevas infraestructuras, sino especialmente en el mantenimiento, que contemplen aspectos de sostenibilidad social y ambiental en situaciones extremas de restricciones presupuestarias, es un problema que afecta directamente a las infraestructuras viarias. El problema es altamente complejo cuando se realizan análisis basados en la fiabilidad. Se ha profundizado en el diseño robusto y el uso de metamodelos para asegurar que las soluciones optimizadas sean poco sensibles ante la variabilidad intrínseca de los parámetros. Se ha agregado la contratación pública sostenible, tanto de nuevas infraestructuras como de su mantenimiento, debido a su elevada influencia en el sector, con el fin de proponer políticas de actuación: las exigencias de las administraciones públicas serán de gran importancia futura para el diseño, construcción y mantenimiento de las infraestructuras, teniendo en cuenta las restricciones presupuestarias existentes.

Sin haber terminado el proyecto, de los resultados obtenidos y publicados hasta el momento, se puede concluir que la línea de investigación ofrece una amplia posibilidad de ramificaciones. Ello obliga a profundizar en aspectos complejos que, probablemente requieran de acuerdos de colaboración con otros grupos de investigación para conseguir resultados de mayor alcance.

AGRADECIMIENTOS

Este estudio ha sido financiado por el Ministerio de Economía, Industria y Competitividad, así como por fondos FEDER (BIA2017-85098-R).

REFERENCIAS

[1] D.M. Frangopol, Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges, Structure and Infrastructure Engineering. 7(6) (2011) 389–413.

[2] A. Aguado, A. del Caño, M.P. de la Cruz, D. Gómez, A. Josa, Sustainability assessment of concrete structures within the Spanish structural concrete code, Journal of Construction Engineering and Management. 138(2) (2012) 268–276.

[3] F. Biondini, D.M. Frangopol, Life-cycle of deteriorating structural systems under uncertainty: Review, Journal of Structural Engineering. 142(9) (2016) F4016001.

[4] J.K. Nishijima, D. Straub, M. faber, Ingergenerational distribution of the life-cycle cost of an engineering facility, Journal of Reliability of Structures and Materials. 1(3) (2007) 33–43.

[5] V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, A review of multi-criteria decision making methods applied to the sustainable bridge design, Sustainability. 8(12) (2016) 1295.

[6] P.C. Spencer, C.R. Hendy, R. Petty, Quantification of sustainability principles in bridge projects, Proceedings of the Institution of Civil Engineers – Bridge Engineering. 165(2) (2012) 81–89.

[7] V. Yepes, J.V. Martí, T. García-Segura, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 123–134.

[8] L.A. Sierra, E. Pellicer, V. Yepes, Method for estimating the social sustainability of infrastructure projects, Environmental Impact Assessment Review. 65 (2017) 41–53.

[9] J.V. Martí, V. Yepes, F. González-Vidosa., Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering. 141(2) (2015) 04014114.

[10]      T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325–336.

[11]      T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Structural and Multidisciplinary Optimization. 56(1) (2017) 139–150.

[12]      V. Yepes, J.V. Martí, T. García-Segura, F. González-Vidosa, Heuristics in optimal detailed design of precast road bridges, Archives of Civil and Mechanical Engineering. 17(4) (2017) 738–749.

[13]      M. Sánchez-Silva, D.M. Frangopol, J. Padgett, M. Soliman, Maintenance and operation of infrastructure systems: Review, Journal of Structural Engineering. 142(9) (2016) F4016004.

[14]      V. Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540–550.

[15]      C. Torres-Machí, E. Pellicer, V. Yepes, A. Chamorro, E. Pellicer, Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions, Journal of Cleaner Production. 148 (2017) 90–102.

[16]      J. Martínez-Frutos, P. Martí, Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas, Revista Internacional de Métodos Numéricos en Ingeniería. 30(2) (2014) 97–105.

[17]      Z.L. Huang, C. Jiang, Y.S. Zhou, J. Zheng, X.Y. Long, Reliability-based design optimization for problems with interval distribution parameters, Structural and Multidisciplinary Optimization. 55(2) (2017) 513–528.

[18]      I. Doltsinis, Z. Kang, Robust design of structures using optimization methods, Computer methods in applied mechanics and engineering. 193(23-26) (2004) 2221–2237.

[19]      H. Beyer, B. Sendhoff, Robust optimization – A comprehensive survey, Methods in Applied Mechanics and Engineering. 196(33-34) (2007) 3190–3218.

[20]      T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges, Engineering Structures. 145 (2017) 381–391.

[21]      T.W. Simpson, J.D. Poplinski, P.N. Koch, J.K. Allen, Metamodels for computer-based engineering design: Survey and recommendations, Engineering with Computers. 17(2) (2001) 129–150.

[22]      J.P.C. Kleijnen, Regression and Kriging metamodels with their experimental designs in simulation: A review, European Journal of Operational Research. 256(1) (2017) 1–16.

[23]      A. Sourani, M. Sohail, Barriers to addressing sustainable construction in public procurement strategies, Engineering Sustainability. ES4 (2010) 229–237.

[24]      M. Kripka, V. Yepes, C.J. Milani, Selection of sustainable short-span bridge design in Brazil, Sustainability. 11(5) (2019) 1307.

[25]      R. Martín, V. Yepes, The concept of landscape within marinas: Basis for consideration in the management, Ocean & Coastal Management. 179 (2019) 104815.

[26]      I.J. Navarro, V. Yepes, J.V. Martí, Social life cycle assessment of concrete bridge decks exposed to aggressive environments, Environmental Impact Assessment Review. 72 (2018) 50–63.

[27]      I.J. Navarro, V. Yepes, J.V. Martí, A review of multi-criteria assessment techniques applied to sustainable infrastructures design, Advances in Civil Engineering. (2019) 6134803.

[28]      I.J. Navarro, V. Yepes, J.V. Martí, Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights, Structure and Infrastructure Engineering. (2019) DOI: 10.1080/15732479.2019.1676791.

[29]      V. Penadés-Plà, J.V. Martí, T. García-Segura, V. Yepes, Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges, Sustainability. 9(10) (2017) 1864.

[30]      J.J. Pons, V. Penadés-Plà, V. Yepes, J.V. Martí, Life cycle assessment of earth-retaining walls: An environmental comparison, Journal of Cleaner Production. 192 (2018) 411–420.

[31]      J. Salas, V. Yepes, A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models, Journal of Cleaner Production. 176 (2018) 1231–1244.

[32]      J. Salas, V. Yepes, Urban vulnerability assessment: Advances from the strategic planning outlook, Journal of Cleaner Production. 179 (2018) 544–558.

[33]      J. Salas, V. Yepes, VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain, Sustainability. 11(8) (2019) 2191.

[34]      J. Salas, V. Yepes, MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems, Journal of Cleaner Production. 216 (2019) 607–623.

[35]      L.A. Sierra, V. Yepes, E. Pellicer, Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty, Environmental Impact Assessment Review. 67 (2017) 61–72.

[36]      L.A. Sierra, V. Yepes, T. García-Segura, E. Pellicer, Bayesian network method for decision-making about the social sustainability of infrastructure projects, Journal of Cleaner Production. 176 (2018) 521–534.

[37]      L.A. Sierra, V. Yepes, E. Pellicer, A review of multi-criteria assessment of the social sustainability of infrastructures, Journal of Cleaner Production. 187 (2018) 496–513.

[38]      J. Alcalá, F. González-Vidosa, V. Yepes J.V. Martí, Embodied energy optimization of prestressed concrete slab bridge decks, Technologies. 6(2) (2018) 43.

[39]      J.T. Boscardin, V. Yepes, M. Kripka, Optimization of reinforced concrete building frames with automated grouping of columns, Automation in Construction. 104 (2019) 331–340.

[40]      T. García-Segura, V. Penadés-Plà, V. Yepes, Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty, Journal of Cleaner Production. 202 (2018) 904–915.

[41]      P. Martínez-Fernández, I. Villalba-Sanchís, R. Insa-Franco, V. Yepes, A review of modelling and optimisation methods applied to railways energy consumption, Journal of Cleaner Production. 222 (2019) 153–162.

[42]      F. Molina-Moreno, J.V. Martí, V. Yepes, Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs, Journal of Cleaner Production. 164 (2017) 872–884.

[43]      F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes, Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms, Engineering Structures. 134 (2017) 205–216.

[44]      G. Partskhaladze, I. Mshvenieradze, E. Medzmariashvili, G. Chavleshvili, V. Yepes, J. Alcalá, Buckling Analysis and Stability of Compressed Low Carbon Steel Rods in Elasto-Plastic Region of Material, Advances in Civil Engineering. (2019) 7601260.

[45]      V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, An optimization-LCA of a prestressed concrete precast bridge, Sustainability. 10(3) (2018) 685.

[46]      V. Penadés-Plà, T. García-Segura, V. Yepes, Accelerated optimization method for low-embodied energy concrete box-girder bridge design, Engineering Structures. 179 (2019) 556–565.

[47]      V. Penadés-Plà, V. Yepes, M. Kripka, Optimización de puentes pretensados mediante la metodología de la superficie de respuesta, Revista CIATEC-UPF. 11(2) (2019) 22–35.

[48]      V. Yepes, E. Pérez-López, J. Alcalá, T. García-Segura, Parametric study of concrete box-girder footbridges, Journal of Construction Engineering, Management & Innovation. 1(2) (2018) 67–74.

[49]      V. Yepes, M. Dasí-Gil, D. Martínez-Muñoz, V.J. López-Desfilís, J.V. Martí, Heuristic techniques for the design of steel-concrete composite pedestrian bridges, Applied Sciences. 9 (2019) 3253.

[50]      V. Yepes, E. Pérez-López, T. García-Segura, J. Alcalá, Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges, International Journal of Computational Methods and Experimental Measurements. 7(2) (2019) 118–129.

[51]      I.J. Navarro, V. Yepes, J.V. Martí, Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides, Sustainability. 10(3) (2018) 845.

[52]      I.J. Navarro, V. Yepes, J.V. Martí, Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks, Journal of Cleaner Production. 196 (2018) 698–713.

[53]      I.J. Navarro, J.V. Martí, V. Yepes, Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective, Environmental Impact Assessment Review. 74 (2019) 23–34.

[54]      L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability criteria in public-work procurement: an international perspective, Journal of Cleaner Production. 198 (2018) 1355–1371.

[55]      L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability in delivery and procurement of public construction contracts, Journal of Management in Engineering. 35(2) (2018) 04018065.

[56]      L.A. Sierra, Evaluación multicriterio de la sostenibilidad social para el desarrollo de infraestructuras, Tesis Doctoral, Universitat Politècnica de València, 2017.

[57]      J. Salas, Vulnerabilidad urbana. Nueva caracterización y metodología para el diseño de escenarios óptimos, Tesis Doctoral, Universitat Politècnica de València, 2019.

[58]      L. Montalbán-Domingo, Social sustainability in public-work procurement, Tesis Doctoral, Universitat Politècnica de València, 2019.

[59]      I.J. Navarro, Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environment, Tesis Doctoral, Universitat Politècnica de València, 2019.

[60]      V. Penadés-Plà, Toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos, Tesis Doctoral, Universitat Politècnica de València, 2020.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comunicaciones presentadas al CMMoST 2019. 5th International Conference on Mechanical Models in Structural Engineering

Durante los días 23 a 25 de octubre de 2019 se celebra en la Universidad de Alicante el congreso internacional CMMoST 2019 (5th International Conference on Mechanical Models in Structural Engineering). En la sesión de mañana, a las 12:00 horas, nuestro grupo de investigación presenta en la Sala de Grados, bajo la presidencia de Salvador Ivorra, cuatro comunicaciones.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València. Os dejo aquí las referencias y los resúmenes por si os resulta de interés.

MARTÍNEZ-MUÑOZ, D.; YEPES, V.; MARTÍ, J.V. (2019). Diseño de experimentos factorial completo aplicado al proyecto de muros de contención. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: This paper applies a complete factorial design to a five-meter wall to evaluate which variables most influence the response. This method is used for two target functions, CO2 emissions and the cost of the structure. To do this, 32 evaluations of the structure are performed using a computer program and a statistical analysis is carried out. The results of this analysis show that the most statistically representative factor is the thickness of the wall and the length of the toe is of little importance for both target functions. The result of the models considering only the variables without the interaction results in an R2 greater than 95%, so the interaction between variables, although it is proven to exist, is not relevant to the case study. This methodology allows to reduce the complexity of structural problems, reducing the number of variables.

PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2019). Metodología para valorar la sostenibilidad con baja influencia de los decisores. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: The goal of achieving sustainable structures involves a set of criteria that are usually opposed. This leads to the need to create a decision-making process. In every decision-making process there are subjective assessments that depend on the decision-maker. This is why decision-makers become an important part of the process because of their subjective assessment. This paper proposes a methodology in which the subjective assessment of the decision-maker in the assessment of sustainability in structures is reduced. Different processes are applied to reduce uncertainty in decision-making processes. In the first place the analysis of main components is applied, in the second place the optimization based on kriging, and finally the AHP method. All this is applied to a continuous concrete deck of beams for pedestrian walkways to achieve sustainable designs, reducing the complexity in making decisions on the most sustainable solution.

YEPES, V.; PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T. (2019). Aplicación de optimización Kriging para la búsqueda de estructuras óptimas robustas. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: All the structural problems have an associated variability or uncertainty. In the design of structures there are parameters such as the dimensions of the structure, the mechanical characteristics of the materials or the loads that can have variations with respect to the design value. The goal of the robust design optimization is to obtain the design that is optimum and is less sensitive to variations of these uncertain initial parameters. The main limitation of the robust design optimization is the high computational cost required due to the high number of optimizations that must be made to assess the sensitivity of the objective response of the problem. For this reason, kriging model is applied to carry out the optimization process more efficiently. In this work, it is going to apply the robust design optimization on a continuous pedestrian bridge of prestressed concrete and box section.

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2019). Optimización de muros de hormigón mediante la metodología de la superficie de respuesta. 5th International Conference on Mechanical Models in Structural Engineering, CMMoST 2019, 23-25 oct 2019, Alicante, Spain.

ABSTRACT: This study presents an application of the response surface methodology to optimize a 5 m high concrete wall. The objective of this research work is to obtain a design solution of a concrete wall, using the CO2 emissions as an objective function to reduce its impact. To reach this objective, a factorial experimental design has been carried out to reduce the number of variables. After this, a steepest descent method has been used to look for the optimum neighborhood. Once the region around the optimum has been found, a second order response surface has been adjusted to reach the minimum. The objective function has been modified to allow a penalty for solutions that do not meet the Ultimate Limit States or stability restrictions. With this methodology, a good solution has been obtained, while also allowing the identification of the geometric design variables that mainly affect CO2 emissions.