Gestión de inventarios en obra

Figura 1. Necesidad de gestión de inventarios en una obra. https://www.interempresas.net/Robotica/Articulos/255497-Procesos-de-digitalizacion-en-las-obras-de-construccion.html

Los inventarios son provisiones de artículos en espera de su utilización posterior, cuya utilidad depende de la cantidad, momento y lugar de su necesidad. En el entorno de la maquinaria, los constituyen desde las propias máquinas a las piezas de recambio u otros elementos necesarios para su funcionamiento. En general, los inventarios, existencias o stocks, evitan la escasez cuando la demanda futura del artículo sea incierta, para aprovechar la economía de escala que supone la solicitud de grandes cantidades a costos menores y para mantener el flujo de trabajo en los procesos productivos. No obstante, los artículos ociosos de inventario inmovilizan fondos y precisan de recursos para su almacenaje y mantenimiento, siendo en algún caso perecederos. Ello obliga al compromiso entre las ventajas aportadas por los grandes inventarios y los costes que suponen mantenerlos. La gestión de inventarios será la técnica que ayuda a los gerentes a determinar cuándo deben reabastecerse las existencias actuales y en qué cantidad. La gestión de las máquinas y repuestos, dichas funciones se realizan en los parques de maquinaria.

Componentes del coste de un sistema de inventarios

Una política de inventarios busca el mínimo coste esperado para un período determinado, por tanto, se deben estimar los diversos componentes que lo integran:

  1. El coste del pedido o de organización, se asocia con el reabastecimiento de un inventario, siendo independiente del número de unidades pedidas. Incluye los tiempos de oficina y administrativos, cargos por fax, teléfonos, y otros como los gastos generales de la empresa.
  2. Cada unidad pedida incurre en un coste de compra, que es un coste directo por unidad. Esta cifra puede depender del número de unidades pedidas, debido a los descuentos por cantidad.
  3. El coste de conservación por período de tiempo para cada artículo del inventario incluye los gastos de almacenamiento (almacén, seguro, mermas de existencias, personal, etc.), y los costes de oportunidad del dinero comprometido en las existencias.
  4. El coste de déficit o desabastecimiento es el asociado con la insatisfacción de la demanda. Pueden ser explícitos si existen penalizaciones al proveedor cada vez que exista una ruptura o cuando la venta de un producto se pierde, e implícitos, asociados a la insatisfacción del cliente y pérdidas de futuras ventas y de credibilidad. Cuando los artículos no se surten, además de estos costes fijos, los costes de déficit pueden incluir costes explícitos e implícitos por cada unidad de tiempo que un artículo sigue sin ser suministrado.

Modelos de demanda y gestión de existencias

Se entiende por control de existencias, el abastecimiento de la cantidad y calidad necesarias de elementos dados, en el momento y en el lugar en que se necesita, con la menor inversión posible. La gestión de existencias trata de minimizar los costes, buscando el compromiso entre el ahorro producido por un stock determinado y los gastos producidos al almacenarlo.

La mera posesión de las máquinas supone gastos fijos elevados, así pues, no resulta económico tener los equipos parados. A ello se suman los costes del propio almacén. Todo ello indica que los inventarios deben ser los estrictamente necesarios. La empresa constructora se encuentra presionada por fuerzas de sentido opuesto a la hora de determinar el volumen de existencias conveniente. Se trata de un problema de equilibrio, para cuya resolución se han formulado distintos modelos.

Los modelos de gestión de inventarios permiten dimensionar el almacén minimizando los costes de posesión y renovación de existencias para evitar las rupturas del inventario. En los parques de maquinaria, el volumen de reserva deberá minimizar los costes que por depreciación, mantenimiento y almacenaje de las máquinas, se sumen a los que se incurren si se paralizan o retrasan las obras por falta de suministro. Se recomiendan unos stocks reducidos para disminuir los recursos financieros destinados a los inventarios y sus gastos correspondientes.

La gestión de un almacén con artículos diferentes debe considerar la relación entre la demanda de cualquiera de ellos. La demanda de un artículo es independiente si no afecta a la demanda de los demás, en caso contrario es dependiente. La demanda determinística de un artículo es la que se conoce con certeza, mientras la probabilística está sujeta a la incertidumbre y variabilidad.

Si en un sistema de coordenadas representamos la cantidad de existencias y el tiempo, se obtiene la clásica curva en forma de “dientes de sierra” que representa la evolución temporal de las existencias. En la Figura 2 se representa una evolución de una demanda determinista y constante, fenómeno poco frecuente en la realidad, con un volumen de pedido S durante el periodo de reaprovisionamiento T.

Figura 2. Evolución temporal del stock

Con este modelo determinista y constante, es necesario conocer el punto de pedido Sm, es decir, el número de unidades suficientes para hacer frente a la demanda durante el plazo de entrega l. Cuando el ritmo de salidas del parque y el de entradas son conocidos, no deben producirse rupturas. Sin embargo, como dichas variables son aleatorias, es necesario recurrir al stock de seguridad Se, también llamado stock de protección, de reserva o de acopio. Éste se define como el volumen de existencias que tenemos en almacén por encima de lo que se necesita habitualmente, para afrontar las fluctuaciones en exceso de la demanda, a los retrasos imprevistos en la recepción de los pedidos, o a ambos.

Cuando la demanda es variable existen diversos sistemas de gestión de inventarios o políticas de pedidos:

  • Sistema de la cantidad fija de pedido: El reaprovisionamiento se realiza cuando el inventario llega a un cierto nivel previamente especificado. El tiempo entre pedidos suele ser desigual. Esta política también se denomina revisión continua, pues requiere revisar el inventario frecuentemente para determinar cuándo se alcanza el punto de pedido. En la mayoría de los casos, se deja cierto margen o stock de seguridad.
  • Sistema de restablecimiento del nivel máximo de stock: Cada intervalo fijo de tiempo se reabastece el almacén al nivel máximo previsto de existencias. La cantidad pedida cada vez varía. Esta política también se denomina revisión periódica pues requiere inspeccionar el nivel de inventario cada cierto tiempo. Presenta el inconveniente de inducir mayores niveles de almacenamientos, que puede paliarse en buena parte incrementando la frecuencia de los pedidos y consecuentemente de los aprovisionamientos.
  • Sistema de los dos almacenes o restablecimiento condicional: La diferencia con el anterior consiste en que si al final del período establecido (final de mes, por ejemplo), no se ha bajado de determinado nivel de existencias, no se realiza el pedido. El proceso se repite en los períodos sucesivos, restableciendo o no el stock inicial en función del agotamiento hasta cierto nivel de las existencias iniciales o “primer almacén”.

Cuando la demanda es de un solo producto, podemos aplicar el modelo de Wilson o de la cantidad económica del pedido. Es un modelo matemático usado como base para la gestión de existencias en el que la demanda y el plazo de entrega son determinísticos, no permitiéndose los déficits y abasteciéndose el almacén por lotes. Así se obtiene una cantidad en inventario que hace mínima la suma de los gastos en pedidos (correo, teléfono, recepción de los materiales, inspección y trámites administrativos) y los gastos de mantenimiento de las existencias (almacenamiento, financiero y manejo de materiales). En este caso se demuestra que:

donde:

Q = Cantidad económica a pedir en el periodo considerado.

C = Consumo en el periodo considerado.

S = Coste de pedido por pedido.

I = Coste de mantenimiento por unidad de artículo y unidad de tiempo.

En el siguiente vídeo tenéis un ejercicio resuelto del modelo de Wilson:

Existen otras técnicas interesantes para realizar una gestión de existencias eficaz, y que consideran en mayor o menor medida la complejidad de una planta de producción: la planificación de necesidades de materiales (Materials requirement planning MRP), la planificación de recursos de fabricación y los sistemas de inventarios “justo a tiempo” (Just in time JIT).

  • Planificación de necesidades de materiales: Apropiada cuando las demandas de los artículos individuales dependen de la demanda del producto final en el que se usan como componentes. Proporciona no solo las cantidades de los lotes y los puntos de pedido, sino también un calendario de cuándo se necesita cada artículo y en qué cantidades, durante un proceso de producción, basándose en los costes de organización y de conservación involucrados.
  • Planificación de recursos de fabricación: Es un desarrollo del sistema anterior en el cual no solo se controlan los inventarios, sino que se coordinan todos los recursos y actividades de los distintos departamentos. Se coordina fabricación, ventas, compras, finanzas e ingeniería. En construcciones civiles, integrarían todos los departamentos de una obra concreta, en coordinación con sus proveedores.
  • Sistemas “justo a tiempo”: Ideados con el objeto de reducir a cero los stocks de una empresa, de forma que los suministradores aportan sus productos en el momento que se precisan. Ello supone minimizar los costes relativos a los stocks, para lo cual se precisa que los flujos de producción sean estables, que se simplifiquen los trabajos al máximo, que estén ubicados con corrección en los lugares de producción, y que exista una verdadera coordinación entre todos los integrantes de los procesos productivos.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 156 pp. ISBN: 978-84-9048-301-5. Ref. 402.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Herramienta asistida por ordenador para optimizar puentes de forma automática

En el diseño de puentes, es necesario modelar muchas variables como los materiales, las dimensiones de la sección transversal, las armaduras de refuerzo y el pretensado para evaluar el rendimiento estructural. Se pretende aumentar la eficiencia y satisfacer los estados límite últimos y de servicio impuestos por el código estructural. En este trabajo se presenta una herramienta informática para analizar los puentes de carretera de vigas continuas de sección en cajón de hormigón postesado para minimizar el coste y proporcionar las variables óptimas de diseño. El programa comprende seis módulos para realizar el proceso de optimización, el análisis por elementos finitos y la verificación de los estados límite. La metodología se define y se aplica a un caso práctico. Un algoritmo de búsqueda de armonía (HS) optimiza 33 variables que definen un puente de tres vanos situado en una región costera. Sin embargo, el mismo procedimiento podría aplicarse para optimizar cualquier estructura. Esta herramienta permite definir los parámetros fijos y las variables optimizadas por el algoritmo heurístico. Además el resultado proporciona reglas útiles para guiar a los ingenieros en el diseño de puentes de carretera de sección en cajón.

Referencia:

GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2017). Computer-support tool to optimize bridges automatically. International Journal of Computational Methods and Experimental Measurements, 5(2):171-178.

Descargar (PDF, 141KB)

 

 

 

Aplicación de la metodología de la superficie de respuesta en un curso de postgrado de optimización

Este trabajo describe la introducción de la metodología de superficie de respuesta en un curso de postgrado. Este caso se realiza en la asignatura de “Modelos predictivos y de optimización de estructuras de hormigón“. Esta asignatura se enmarca en el Plan de Estudios del Máster Universitario en Ingeniería del Hormigón. Los estudiantes aprenden aquí conceptos como la optimización de estructuras mediante algoritmos heurísticos, la toma de decisiones multicriterio, técnicas de diseño de experimentos y metamodelos como la superficie de respuesta para obtener resultados óptimos. En este caso de estudio, el objetivo es obtener una solución óptima de un muro de hormigón armado, utilizando las emisiones de CO2 como función objetivo para reducir su impacto. Para aplicar esta metodología, los estudiantes aprovechan programas comerciales. Por un lado, para realizar el análisis estadístico que permita obtener la superficie de respuesta se utiliza Minitab. Por otro lado, los estudiantes comprueban la resistencia de la estructura utilizando el software de cálculo estructural Cype. Como resultado de esta metodología se consigue que los estudiantes alcancen un mejor nivel en competencias transversales, como el diseño y el proyecto, el pensamiento crítico, el análisis y la resolución de problemas o el uso de software específico. En este trabajo se presentan futuros estudios de investigación relacionados con el uso de técnicas de optimización de estructuras por parte de los estudiantes aplicando otras técnicas de optimización diferentes.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V. (2021). Application of the response surface methodology in a postgraduate optimization course. 15th annual International Technology, Education and Development Conference (INTED 2021), 8th-9th March, 2021, pp. 869-878, Valencia, Spain. ISBN: 978-84-09-27666-0

Descargar (PDF, 232KB)

 

 

Optimización energética de muros de contrafuertes

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La importancia de la construcción en el consumo de recursos naturales está llevando a los profesionales del diseño estructural a crear diseños de estructuras más eficientes que reduzcan tanto las emisiones como la energía consumida. En este trabajo se presenta un proceso automatizado para obtener diseños óptimos energéticos de muros de contrafuertes. Se consideraron dos funciones objetivo para comparar la diferencia entre una optimización de costes y una optimización de energía incorporada. Para alcanzar el mejor diseño para cada criterio de optimización, se ajustaron los parámetros del algoritmo. Este estudio utilizó un algoritmo híbrido de optimización simulada para obtener los valores de la geometría, las resistencias del hormigón y las cantidades de hormigón y materiales. La relación entre todas las variables geométricas y la altura del muro se obtuvo ajustando las funciones lineales y parabólicas. Se encontró que la optimización de los costes y de la energía están vinculados. Una reducción de costes de 1 euro lleva asociada una reducción del consumo energético de 4,54 kWh. Para conseguir un diseño de baja energía, se recomienda reducir la distancia entre los contrafuertes con respecto a la optimización económica. Esta disminución permite reducir los refuerzos necesarios para resistir la flexión del alzado. La diferencia entre los resultados de las variables geométricas de la cimentación para los dos objetivos de optimización apenas revela variaciones entre ellos. Este trabajo proporciona a los técnicos algunas reglas prácticas de diseño óptimo. Además, compara los diseños obtenidos mediante estos dos objetivos de optimización con las recomendaciones de diseño tradicionales.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/11/4/1800

ABSTRACT:

The importance of construction in the consumption of natural resources is leading structural design professionals to create more efficient structure designs that reduce emissions as well as the energy consumed. This paper presents an automated process to obtain low embodied energy buttressed earth-retaining wall optimum designs. Two objective functions were considered to compare the difference between a cost optimization and an embodied energy optimization. To reach the best design for every optimization criterion, a tuning of the algorithm parameters was carried out. This study used a hybrid simulated optimization algorithm to obtain the values of the geometry, the concrete resistances, and the amounts of concrete and materials to obtain an optimum buttressed earth-retaining wall low embodied energy design. The relation between all the geometric variables and the wall height was obtained by adjusting the linear and parabolic functions. A relationship was found between the two optimization criteria, and it can be concluded that cost and energy optimization are linked. This allows us to state that a cost reduction of €1 has an associated energy consumption reduction of 4.54 kWh. To achieve a low embodied energy design, it is recommended to reduce the distance between buttresses with respect to economic optimization. This decrease allows a reduction in the reinforcing steel needed to resist stem bending. The difference between the results of the geometric variables of the foundation for the two-optimization objectives reveals hardly any variation between them. This work gives technicians some rules to get optimum cost and embodied energy design. Furthermore, it compares designs obtained through these two optimization objectives with traditional design recommendations.

Keywords:

Heuristic optimization; energy savings; sustainable construction; buttressed earth-retaining walls

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; GARCÍA, J.; YEPES, V. (2021). Embodied energy optimization of buttressed earth-retaining walls with hybrid simulated annealing. Applied Sciences, 11(4):1800. DOI:10.3390/app11041800

Descargar (PDF, 1.02MB)

Terminan los dos primeros estudiantes del Doble Máster en Ingeniería de Caminos e Ingeniería del Hormigón

 

¡Han acabado los dos primeros estudiantes con el Doble Máster de Ingeniería de Caminos, Canales y Puertos e Ingeniería del Hormigón de la Universitat Politècnica de València! En efecto, hoy 10 de diciembre de 2020, Lorena Yepes Bellver y Alejandro Brun Izquierdo han presentado sus Trabajos Final de Máster correspondientes. El TFM de Alejandro Brun fue “Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging”, mientras que el de Lorena Yepes fue “Diseño óptimo de tableros de puentes losa pretensados aligerados frente a emisiones de CO2 utilizando metamodelos”. Ambos obtuvieron la máxima calificación de 10 Matrícula de Honor y fueron tutorados por el profesor Julián Alcalá, de nuestro grupo de investigación. ¡Enhorabuena a todos ellos!

El Máster Universitario en Ingeniería de Caminos, Canales y Puertos (en adelante MUICCP) habilita para ejercer la profesión de Ingeniero de Caminos, Canales y Puertos, mientras que el Máster Universitario en Ingeniería del Hormigón (en adelante MUIH) está orientado al campo de la ingeniería del hormigón, tanto desde el punto de vista de los materiales constituyentes como desde el punto de vista estructural, tanto desde el punto de vista profesional como científico. En este caso concreto un alumno que quiera adquirir las competencias profesionales para ejercer como Ingeniero de Caminos, Canales y Puertos y, además, quiera una especialización profesional o investigadora en ingeniería del hormigón, debería cursar ambos másteres.

En consecuencia, el doble título permite adquirir las competencias de ambos másteres a través de una trayectoria académica integrada. Todo ello con un coste temporal y económico inferior al que representa la obtención de ambos másteres de manera individualizada. De este modo, un estudiante del MUICCP, en lugar de cursar los 120 ECTS del MUICCP y los 90 ECTS del MUIH, cursa únicamente un total de 165 ECTS, representando así un ahorro de 45 ECTS y de un cuatrimestre docente.

Optimización heurística de pórticos de paso de carretera de hormigón armado

A continuación recojo uno de los primeros trabajos que hizo nuestro grupo de investigación en el año 2005 sobre optimización heurística de estructuras de hormigón. Se trata de la optimización mediante varias heurísticas (máximo gradiente, aceptación por umbrales y recocido simulado) de un pórtico de paso de carretera de hormigón armado. En este caso se consideraron 28 variables para definir una solución de pórtico. Este artículo se publicó en la revista Hormigón y Acero. Espero que os sea de interés.

 

Referencia:

CARRERA, J.M.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2005). Optimización heurística de pórticos de paso de carretera de hormigón armado. Hormigón y Acero, 236: 85-95.

Descargar (PDF, 318KB)

Los algoritmos genéticos

Charles Darwin en una fotografía tomada por J.M. Cameron en 1869.

Resulta fascinante comprobar cómo aplicando los mecanismos básicos de la evolución ya descrita por Darwin en su obra fundamental, El origen de las especies por medio de la selección natural, o la preservación de las razas preferidas en la lucha por la vida, publicada en 1859, se pueden generar algoritmos capaces de optimizar problemas complejos. Este tipo de metaheurísticas inspiradas en la Naturaleza ya se comentaron en artículos anteriores cuando hablamos de la optimización por colonias de hormigas o de la cristalización simulada. Aunque es un algoritmo ampliamente conocido por la comunidad científica, voy a intentar dar un par de pinceladas con el único afán de divulgar esta técnica. La verdad es que las implicaciones filosóficas que subyacen tras la teoría de Darwin son de una profundidad difícil de entender cuando se lleva a sus últimos extremos. Pero el caso es que estos algoritmos funcionan perfectamente en la optimización de estructuras de hormigón, problemas de transporte y otros problemas difíciles de optimización combinatoria.

Para aquellos interesados, os paso en las referencias un par de artículos donde hemos aplicado los algoritmos genéticos para optimizar rutas de transporte aéreo o pilas de puente huecas de hormigón armado.

Sin embargo, para aquellos otros que queráis un buen libro para pensar, os recomiendo “La peligrosa idea de Darwin”, de Daniel C. Dennett. A más de uno le hará remover los cimientos más profundos de sus creencias. Os paso la referencia al final.

Básicamente, los algoritmos genéticos “Genetic Algorithms, GA”, simulan el proceso de evolución de las especies que se reproducen sexualmente. De manera muy general, se puede decir que en la evolución de los seres vivos, el problema al que cada individuo se enfrenta diariamente es el de la supervivencia. Para ello cuenta, entre otras, con las habilidades innatas provistas en su material genético. A nivel de los genes, el problema consiste en la búsqueda de aquellas adaptaciones beneficiosas en un medio hostil y cambiante. Debido en parte a la selección natural, cada especie gana cierta “información” que es incorporada a sus cromosomas.

Durante la reproducción sexual, un nuevo individuo, diferente de sus padres, se genera a través de la acción de dos mecanismos fundamentales: El primero es el cruzamiento, que combina parte del patrimonio genético de cada progenitor para elaborar el del nuevo individuo; el segundo es la mutación, que supone una modificación espontánea de esta información genética. La descendencia será diferente de los progenitores, pero mantendrá parte de sus características. Si los hijos heredan buenos atributos de sus padres, su probabilidad de supervivencia será mayor que aquellos otros que no las tengan. De este modo, los mejores tendrán altas probabilidades de reproducirse y diseminar su información genética a sus descendientes.

Holland (1975) estableció por primera vez una metaheurística basada en la analogía genética. Un individuo se puede asociar a una solución factible del problema, de modo que se pueda codificar en forma de un vector binario “string”. Entonces un operador de cruzamiento intercambia cadenas de los padres para producir un hijo. La mutación se configura como un operador secundario que cambia, con una probabilidad pequeña, algunos elementos del vector hijo. La aptitud del nuevo vector creado se evalúa de acuerdo con una función objetivo.

Los pasos a seguir con esta metaheurística serían los siguientes:

  1. Generar una población de vectores (individuos).
  2. Mientras no se encuentre un criterio de parada:
    1. Seleccionar un conjunto de vectores padre, que serán reemplazados de la población.
    2. Emparejar aleatoriamente a los progenitores y cruzarlos para obtener unos vectores hijo.
    3. Aplicar una mutación a cada descendiente.
    4. Evaluar a los hijos.
    5. Introducir a los hijos en la población.
    6. Eliminar a aquellos individuos menos eficaces.

Normalmente este proceso finaliza después de un numero determinado de generaciones o cuando la población ya no puede mejorar. La selección de los padres se elige probabilísticamente hacia los individuos más aptos. Al igual que ocurre con en la Naturaleza, los sujetos con mayor aptitud diseminan sus características en toda la población.

Esta descripción de los GA se adapta a cada situación concreta, siendo habitual la codificación de números enteros en vez de binarios. Del mismo modo se han sofisticado los distintos operadores de cruzamiento y mutación.

Os dejo a continuación un vídeo explicativo que he elaborado para mis clases de “Modelos predictivos y de optimización heurística de estructuras de hormigón“, del Máster Universitario en Ingeniería del Hormigón, de la Universitat Politècnica de València.

Referencias:

DENNETT, D.C. (1999). La peligrosa idea de Darwin. Galaxia Gutenberg. Círculo de Lectores, Barcelona.

HOLLAND, J.H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor.

MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)

MEDINA, J.R.; YEPES, V. (2003). Optimization of touristic distribution networks using genetic algorithms. Statistics and Operations Research Transactions, 27(1): 95-112.  ISSN: 1696-2281.  (pdf)

PONZ-TIENDA, J.L.; YEPES, V.; PELLICER, E.; MORENO-FLORES, J. (2013). The resource leveling problem with multiple resources using an adaptive genetic algorithm. Automation in Construction, 29(1):161-172. DOI:http://dx.doi.org/10.1016/j.autcon.2012.10.003. (link)

YEPES, V. (2003). Apuntes de optimización heurística en ingeniería. Editorial de la Universidad Politécnica de Valencia. Ref. 2003.249. Valencia, 266 pp. Depósito Legal: V-2720-2003.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cuál es el mejor algoritmo para optimizar un problema? “No free lunch”

Figura 1. Desgraciadamente, no existe la comida gratis. https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

Después de años impartiendo docencia en asignaturas relacionadas con la optimización heurística de estructuras de hormigón, y tras muchos artículos científicos publicados y más donde he sido revisor de artículos de otros grupos de investigación, siempre se plantea la misma pregunta: De todos los algoritmos que utilizamos para optimizar, ¿cuál es el mejor? ¿Por qué dice en su artículo que su algoritmo es el mejor para este problema? ¿Por qué no nos ponemos de acuerdo?

Para resolver esta cuestión, dos investigadores norteamericanos, David Wolpert y William Macready, publicaron un artículo en 1997 donde establecieron un teorema denominado “No free lunch“, que traducido sería algo así como “no hay comida gratis”. Dicho teorema establece que, por cada par de algoritmos de búsqueda, hay tantos problemas en el que el primer algoritmo es mejor que el segundo como problemas en el que el segundo algoritmo es mejor que el primero.

Este teorema revolucionó la forma de entender el rendimiento de los algoritmos. Incluso una búsqueda aleatoria en el espacio de soluciones podría dar mejores resultados que cualquier algoritmo de búsqueda. La conclusión es que no existe un algoritmo que sea universalmente mejor que los demás, pues siempre habrá casos donde funcione peor que otros, lo cual significa que todos ellos se comportarán igual de bien (o de mal) en promedio.

De hecho, se podría decir que un experto en algoritmos genéticos podría diseñar un algoritmo genético más eficiente que, por ejemplo, un recocido simulado, y viceversa. Aquí el arte y la experiencia en un problema y en una familia de algoritmos determinados, suele ser decisivo. En la Figura 2 se puede ver cómo un algoritmo muy especializado, que conoce bien el problema, puede mejorar su rendimiento, pero pierde la generalidad de poder usarse en cualquier tipo de problema de optimización que no sea para el que se diseñó.

Figura 2. El uso del conocimiento del problema puede mejorar el rendimiento, a costa de la generalidad. https://medium.com/@LeonFedden/the-no-free-lunch-theorem-62ae2c3ed10c

¿Qué consecuencias obtenemos de este teorema? Lo primero, una gran decepción, pues hay que abandonar la idea del algoritmo inteligente capaz de optimizar cualquier problema. Lo segundo, que es necesario incorporar en el algoritmo cierto conocimiento específico del problema, lo cual equivale a una “carrera armamentística” para cada problema de optimización. Se escriben y escribirán miles de artículos científicos donde un investigador demuestre que su algoritmo es mejor que otro para un determinado problema.

Una forma de resolver este asunto de incorporar conocimiento específico del problema es el uso de la inteligencia artificial en ayuda de las metaheurísticas. Nuestro grupo de investigación está abriendo puertas en este sentido, incorporando “deep learning” en el diseño de los algoritmos (Yepes et al., 2020; García et al., 2020a; 2020b), o bien redes neuronales (García-Segura et al., 2017). Incluso, en este momento, me encuentro como editor de un número especial de la revista Mathematics (primer decil del JCR) denominado: “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications”, al cual os invito a enviar vuestros trabajos de investigación.

Si nos centramos en un tipo de problema determinado, por ejemplo, la optimización de estructuras (puentes, pórticos de edificación, muros, etc.), el teorema nos indica que necesitamos gente formada y creativa para optimizar el problema concreto al que nos enfrentamos. Es por ello que no existen programas comerciales eficientes capaces de adaptarse a cualquier estructura para optimizarla. Tampoco son eficientes las herramientas generales “tools” que ofrecen algunos programas como Matlab para su uso inmediato e indiscriminado.

Por tanto, no se podrá elegir entre dos algoritmos solo basándose en lo bien que trabajaron anteriormente en un problema determinado, pues en el siguiente problema pueden optimizar de forma deficiente. Por tanto, se exige conocimiento intrínseco de cada problema para optimizarlo. Es por ello que, por ejemplo, un experto matemático o informático no puede, sin más, dedicarse a optimizar puentes atirantados.

Referencias:

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020a). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020b). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862.

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

WOLPERT, D.H.; MACREADY, W.G. (1997). No Free Lunch Theorems for Optimization. IEEE Transactions on Evolutionary Computation, 1(1):67-82.

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767.

A continuación os dejo el artículo original “No Free Lunch Theorems for Optimization”. Se ha convertido en un clásico en optimización heurística.

Descargar (PDF, 698KB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La resiliencia de las infraestructuras

Figura 1. https://www.un.org/sustainabledevelopment/es/2015/09/infraestructura-innovacion-e-industrias-inclusivas-claves-para-el-desarrollo/

La resiliencia es un concepto que viene del mundo de la psicología y representa la capacidad para adaptarse de forma positiva frente a situaciones adversas. Proviene del latín resilio, “volver atrás, volver de un salto, resaltar, rebotar”. En el campo de la mecánica, la resiliencia sería la capacidad de un material para recuperar su forma inicial después de haber sido deformado por una fuerza. En la ecología, un sistema es resiliente si puede tolerar una perturbación sin colapsar a un estado completamente distinto, controlado por otro conjunto de procesos. En un entorno tecnológico, este término se relaciona con la capacidad de un sistema de soportar y recuperarse ante desastres y perturbaciones. En este artículo vamos a indagar en el concepto de resiliencia de las infraestructuras.

Así, dentro de los objetivos de desarrollo sostenible de Naciones Unidas (Figura 1), encontramos el Objetivo 9: Construir infraestructuras resilientes, provomer la industrialización sostenible y fomentar la innovación. En efecto, las infraestructuras deben hacer frente al crecimiento de la población, pero también a los crecientes peligros físicos (cinéticos) como el terrorismo, o los asociados al clima extremo y los desastres naturales. La frecuencia y gravedad de estos eventos extremos se prevén crecientes, y por tanto, es más que previsible un aumento en los costes e impacto humano. Además, debido a la cada vez más informatización y digitalización de las infraestructuras, el riesgo de ataques informáticos a las infraestructuras es más que evidente.

La resiliencia puede asociarse con cuatro atributos: robustez, que es la capacidad para resistir un evento extremo sin que el fracaso en la funcionalidad sea completo; rapidez, que sería la capacidad de recuperarse de forma eficiente y efectiva; la redundancia, que sería la reserva de componentes o de sistemas estructurales sustitutivos; y el ingenio, que sería la eficiencia en la identificación de problemas, priorizando soluciones y movilizando recursos para su solución (Bruneau et al., 2003).

Matemáticamente se puede evaluar la resiliencia integrando la curva de funcionalidad a lo largo del tiempo (ver Figura 2).

donde Q(t) es la funcionalidad; t0 es el momento en el que ocurre el evento extremo y Tr es el horizonte hasta donde se estudia la funcionalidad.

Figura 2. Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)

En la Figura 2 se pueden observar los tres estados correspondientes con la funcionalidad. En la situación de fiabilidad, la infraestructura se encuentra con la funcionalidad de referencia, previo al evento extremo. La situación de recuperación comienza tras la ocurrencia del evento extremo, con una pérdida de funcionalidad dependiente de la robustez de la infraestructura, y con una recuperación que depende de los esfuerzos realizados en la reparación, que puede ser rápida o lenta en función del ingenio o la creatividad en las soluciones propuestas, así como de la redundancia de los sistemas previstos. Por último, la situación recuperada es la que ocurre cuando la funcionalidad vuelve a ser la de referencia.

Se comprueba en la Figura 2 cómo una infraestructura pasa de una funcionalidad de referencia a una residual tras el evento extremo. Tras el evento, puede darse una demora en la recuperación de la funcionalidad debido a las tareas de inspección, rediseño, financiación, contratación, permisos, etc.). La recuperación completa de la funcionalidad depende de la forma en la que se han abordado las tareas de reparación. Es fácil comprobar que la resiliencia se puede calcular integrando la curva de recuperación de la funcionalidad desde la ocurrencia del evento extremo hasta la completa recuperación, dividiendo dicho valor por el tiempo empleado en dicha recuperación.

Este modelo simplificado permite establecer las pautas para mejorar la resiliencia de una infraestructura:

a) Incrementando la robustez de la infraestructura, es decir, maximizar su funcionalidad residual tras un evento extremo.

b) Acelerando las actividades de recuperación de la funcionalidad de la infraestructura.

En ambos casos, es necesario concebir la infraestructura desde el principio con diseños robustos, con sistemas redundantes y con una previsión de las tareas de reparación necesarias.

Con todo, la capacidad de recuperación comprende cuatro dimensiones interrelacionadas: técnica, organizativa, social y económica (Bruneau et al., 2003). La dimensión técnica de la resiliencia se refiere a la capacidad de los sistemas físicos (incluidos los componentes, sus interconexiones e interacciones, y los sistemas enteros) para funcionar a niveles aceptables o deseables cuando están sujetos a los eventos extremos. La dimensión organizativa de la resiliencia se refiere a la capacidad de las organizaciones que gestionan infraestructuras críticas y tienen la responsabilidad de tomar decisiones y adoptar medidas que contribuyan a lograr la resiliencia descritas anteriormente, es decir, que ayuden a lograr una mayor solidez, redundancia, ingenio y rapidez. La dimensión social de la resiliencia consiste en medidas específicamente diseñadas para disminuir los efectos de los eventos extremos por parte de la población debido a la pérdida de infraestructuras críticas. Análogamente, la dimensión económica de la resiliencia se refiere a la capacidad de reducir tanto las pérdidas directas e indirectas de los eventos extremos.

El problema de estas cuatro dimensiones se pueden sumar de forma homogénea, con interrelaciones entre ellas. El reto consiste en cuantificar y medir la resiliencia en todas sus dimensiones, así como sus interrelaciones. Se trata de un problema de investigación de gran trascendencia y complejidad, que afecta al ciclo de vida de las infraestructuras desde el inicio de la planificación (Salas y Yepes, 2020).

Referencias:

ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.

BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

El aprendizaje profundo (deep learning) en la optimización de estructuras

Figura 1. Relación de pertenencia entre la inteligencia artificial, el aprendizaje automático y el aprendizaje profundo

En este artículo vamos a esbozar las posibilidades de la inteligencia artificial en la optimización de estructuras, en particular, el uso del aprendizaje profundo. El aprendizaje profundo (deep learning, DL) constituye un subconjunto del aprendizaje automático (machine learning, ML), que a su vez lo es de la inteligencia artificial (ver Figura 1). Si la inteligencia artificial empezó sobre los años 50, el aprendizaje automático surgió sobre los 80, mientras que el aprendizaje profundo nació en este siglo XXI, a partir del 2010, con la aparición de grandes superordenadores y por el aumento de los datos accesibles. Como curiosidad, uno de los grandes hitos del DL se produjo en 2012, cuando Google fue capaz de reconocer un gato entre los más de 10 millones de vídeos de Youtube, utilizando para ello 16000 ordenadores. Ahora serían necesarios muchos menos medios.

En cualquiera de estos tres casos, estamos hablando de sistemas informáticos capaces de analizar grandes cantidades de datos (big data), identificar patrones y tendencias y, por tanto, predecir de forma automática, rápida y precisa. De la inteligencia artificial y su aplicabilidad a la ingeniería civil ya hablamos en un artículo anterior.

Figura 2. Cronología en la aparición de los distintos tipos de algoritmos de inteligencia artificial. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Si pensamos en el cálculo estructural, utilizamos modelos, más o menos sofistificados, que permiten, si se conocen con suficiente precisión las acciones, averiguar los esfuerzos a los que se encuentran sometidos cada uno de los elementos en los que hemos dividido una estructura. Con dichos esfuerzos se identifican una serie de estados límite, que son un conjunto de situaciones potencialmente peligrosas para la estructura y comparar si la capacidad estructural del elemento analizado, dependiente de las propiedades geométricas y de sus materiales constituyentes, supera el valor último de la solicitación a la que, bajo cierta probabilidad, puede llegar a alcanzar el elemento estructural analizado.

Estos métodos tradicionales emplean desde hipótesis de elasticidad y comportamiento lineal, a otros modelos con comportamiento plástico o no lineales más complejos. Suele utilizarse, con mayor o menos sofisticación, el método de los elementos finitos (MEF) y el método matricial de la rigidez. En definitiva, en determinados casos, suelen emplearse los ordenadores para resolver de forma aproximada, ecuaciones diferenciales parciales muy complejas, habituales en la ingeniería estructural, pero también en otros campos de la ingeniería y la física. Para que estos sistemas de cálculo resulten precisos, es necesario alimentar los modelos con datos sobre materiales, condiciones de contorno, acciones, etc., lo más reales posibles. Para eso se comprueban y calibran estos modelos en ensayos reales de laboratorio (Friswell y Mottershead, 1995). De alguna forma, estamos retroalimentando de información al modelo, y por tanto “aprende”.

Figura 2. Malla 2D de elementos finitos, más densa alrededor de la zona de mayor interés. Wikipedia.

Si analizamos bien lo que hacemos, estamos utilizando un modelo, más o menos complicado, para predecir cómo se va a comportar la estructura. Pues bien, si tuviésemos una cantidad suficiente de datos procedentes de laboratorio y de casos reales, un sistema inteligente extraería información y sería capaz de predecir el resultado final. Mientras que la inteligencia artificial debería alimentarse de una ingente cantidad de datos (big data), el método de los elementos finitos precisa menor cantidad de información bruta (smart data), pues ha habido una labor previa muy concienzuda y rigurosa, para intentar comprender el fenómeno subyacente y modelizarlo adecuadamente. Pero, en definitiva, son dos procedimientos diferentes que nos llevan a un mismo objetivo: diseñar estructuras seguras. Otro tema será si éstas estructuras son óptimas desde algún punto de vista (economía, sostenibilidad, etc.).

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas. Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables.

Una de las características de la optimización mediante metaheurísticas es el elevado número de iteraciones en el espacio de soluciones, lo cual permite generar una inmensa cantidad de datos para el conjunto de estructuras visitadas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación.

Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). Se trata ahora de dar un paso más allá. Se trata de que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Tanto la inteligencia artificial como el aprendizaje automático no son una ciencia nueva. El problema es que sus aplicaciones eran limitadas por la falta de datos y de tecnologías para procesarlas de forma rápida y eficiente. Hoy en día se ha dado un salto cualitativo y se puede utilizar el DL, que como ya hemos dicho es una parte del ML, pero que utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. Digamos que el DL (redes neuronales) utiliza algoritmos distintos al ML (algoritmos de regresión, árboles de decisión, entre otros). En ambos casos, los algoritmos pueden aprender de forma supervisada o no supervisada. En las no supervisadas se facilitan los datos de entrada, no los de salida. La razón por la que se llama aprendizaje profundo hace referencia a las redes neuronales profundas, que utilizan un número elevado de capas en la red, digamos, por ejemplo, 1000 capas. De hecho, el DL también se le conoce a menudo como “redes neuronales profundas”. Esta técnica de redes artificiales de neuronas es una de las técnicas más comunes del DL.

Figura. Esquema explicativo de diferencia entre ML y DL. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Una de las redes neuronales utilizadas en DL son las redes neuronales convolucionales, que es una variación del perceptrón multicapa, pero donde su aplicación se realiza en matrices bidimensionales, y por tanto, son muy efectivas en las tareas de visión artificial, como en la clasificación y segmentación de imágenes. En ingeniería, por ejemplo, se puede utilizar para la monitorización de la condición estructural, por ejemplo, para el análisis del deterioro. Habría que imaginar hasta dónde se podría llegar grabando en imágenes digitales la rotura en laboratorio de estructuras de hormigón y ver la capacidad predictiva de este tipo de herramientas si contaran con suficiente cantidad de datos. Todo se andará. Aquí os dejo una aplicación tradicional típica (Antoni Cladera, de la Universitat de les Illes Balears), donde se explica el modelo de rotura de una viga a flexión en la pizarra y luego se rompe la viga en el laboratorio. ¡Cuántos datos estamos perdiendo en la grabación! Un ejemplo muy reciente del uso del DL y Digital Image Correlation (DIC) aplicado a roturas de probetas en laboratorio es el trabajo de Gulgec et al. (2020).

Sin embargo, aquí nos interesa detenernos en la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Un ejemplo de este camino novedoso en la investigación es la aplicabilidad de algoritmos que hibriden DL y metaheurísticas. Ya hemos publicado algunos artículos en este sentido aplicados a la optimización de muros de contrafuertes (Yepes et al., 2020; García et al., 2020a, 2020b). Además, hemos propuesto como editor invitado, un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“.

Dejo a continuación un pequeño vídeo explicativo de las diferencias entre la inteligencia artificial, machine learning y deep learning.

Referencias:

FRISWELL, M.; MOTTERSHEAD, J. E. (1995). Finite element model updating in structural dynamics (Vol. 38). Dordrecht, Netherlands: Springer Science & Business Media.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020a). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020b). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0

GULGEC, N.S.; TAKAC, M., PAKZAD S.N. (2020). Uncertainty quantification in digital image correlation for experimental evaluation of deep learning based damage diagnostic. Structure and Infrastructure Engineering, https://doi.org/10.1080/15732479.2020.1815224

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.