¿Por qué es tan difícil asignar recursos a la conservación de las carreteras?

Figura 1. Conservación de carretera Guayaquil-Santa Elena.

En muchos foros se repite, a modo de mantra, que la falta de conservación de nuestras carreteras (y calles, en el caso de las ciudades) se debe fundamentalmente a un problema de orden económico. Por algún u otro motivo (crisis económica, dificultad en aprobar presupuestos, falta de voluntad política, etc.), la falta aparente de recursos obliga a realizar una conservación correctiva o reactiva de las carreteras que, como ya se justificó en un artículo anterior, provoca estados sub-óptimos en la infraestructura y tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Conviene insistir en este punto, una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico. La justificación económica de las restricciones presupuestarias queda en entredicho cuando se consideran los costes totales del transporte.

Sin embargo, en nuestro grupo de investigación hemos desarrollado modelos que, incluso en el caso de disponer presupuestos restrictivos, pueden maximizar el estado o condición, no de una carretera, sino de una red completa, considerando, además, distintas funciones objetivo (costes económicos, sociales y medioambientales). Pero para entender mejor el problema, expongo a continuación la dificultad intrínseca de este tipo de problemas y justificaré las razones por las que muchos gestores del mantenimiento de carreteras toman decisiones que se alejan de ser óptimas.

La clave para entender la magnitud del problema radica en la dificultad que tienen los gestores de la red de carreteras en la toma de decisiones debido a la explosión combinatoria de las soluciones posibles cuando se tienen en cuenta distintos tipos de tratamientos de preservación, mantenimiento y rehabilitación (P+M+R) y los periodos de aplicación. Dicho de otra forma, en una red de carreteras se trata de decidir en qué tramo de la red se aplica un tratamiento de los múltiples posibles y cuándo se debe realizar. Las decisiones tomadas conforman el programa de conservación de la red de carreteras.

En la Figura 2 se representan las variables fundamentales que conforman el problema. En una red de carreteras tenemos N activos (tramos considerados), S posibles tratamientos cada uno de los cuales se aplicará en el instante t en los T años considerados en el programa de conservación.

Figura 2. Programa de conservación (Torres-Machí, 2015)

El programa de conservación resultante de las decisiones tomadas para un horizonte de T años nos dirá para cada uno de los años dónde actuar y qué tipo de tratamiento se deberá realizar. En la Figura 3 queda representada un posible programa fruto de las decisiones tomadas.

Figura 3. Ejemplo de programa de conservación (Torres-Machí, 2015)

Lo difícil de este problema, como hemos dicho anteriormente, es acertar con el mejor programa de conservación. No hay más remedio que aplicar técnicas de optimización para resolver el problema si los presupuestos son escasos. Caben dos enfoques, el secuencial y el holístico. El primero se centra en un activo (tramo de carretera, calle en una ciudad) y se decide qué tratamientos y cuándo se van a aplicar. En este caso el problema tiene N·S^T soluciones. En cambio, el enfoque holístico considera toda la red: se trata de elegir qué activo tiene prioridad en la red y luego decidir qué tratamiento y cuándo se aplica. Aquí se dispara el número de posibles soluciones a S^(N·T). A modo de ejemplo, teniendo en cuenta solo dos tratamientos (S=2), un horizonte de 10 años (T=10) y 7 tramos diferentes de carretera (N=7), el número de posibles soluciones es de 1,18E+21.

La única forma de abordar este problema es con algoritmos heurísticos de optimización multiobjetivo. Os dejo algunas referencias de cómo hemos resuelto en nuestro grupo de investigación este problema y en un artículo posterior os explico cómo formular el problema de optimización (funciones objetivo, restricciones, etc.). Como ya dije en artículos anteriores, la puerta está abierta a quien quiera participar en nuestro grupo.

Referencias:

  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Indicadores de estado y de prestaciones de las infraestructuras

En una entrada anterior vimos las distintas estrategias de conservación de las infraestructuras y cómo éstas influían en el coste que debían pagar los usuarios. Estas estrategias podían modificar el estado o las prestaciones de la infraestructura, que de forma irremediable, se degradan con el tiempo. Llegado a este punto, conviene diferenciar los conceptos de estado y de prestaciones de una infraestructura.

La gestión de las infraestructuras (carreteras, puentes, etc.) supone un proceso por el cual se debe asignar de forma eficiente los recursos limitados en la dirección marcada por los objetivos estratégicos de la organización responsable de dicha gestión. Para ello se hacen necesarios una serie de indicadores que permitan medir de forma cuantitativa o cualitativa los resultados procedentes de las acciones realizadas sobre dichos activos respecto a los objetivos.

Dichos indicadores pueden ser de estado o de prestaciones. El estado o condición de una infraestructura se define como su estado físico, que puede afectar o no a sus prestaciones. En cambio, la prestación o rendimiento se define como la capacidad de la infraestructura para proveer un determinado nivel de servicio a los usuarios. Se pueden llamar también prestaciones funcionales, pues indican el nivel de habilitación de una infraestructura para desarrollar su función principal, que es la prestación del servicio, aunque también podrían incluir otras características o efectos no directamente relacionados con el servicio a los usuarios.

Saber diferenciar ambos conceptos es básico para cualquier organización responsable de la gestión de una infraestructura. Así, por ejemplo, las prestaciones de un puente pueden no verse afectadas por el estado hasta que se produzca un fallo. Es fácil encontrar un puente de hormigón con defectos superficiales (corrosión de armaduras, desconchados, etc.) que mantiene intacta su funcionalidad e integridad estructural. También podría darse el caso de un puente en muy buen estado que no sea capaz de soportar determinadas cargas de tráfico o que impone restricciones de gálibo que afectan al tráfico.

Puente “traga camiones” de Leganés. https://www.lavanguardia.com

Pero, ¿cuáles son las razones para disponer de indicadores en la gestión de las infraestructuras? Pues son imprescindibles para tomar decisiones que afectan a estos activos. Permiten identificar las necesidades de intervención, proporcionan la guía de los procesos y criterios en la toma de decisiones y son los elementos que permiten controlar el progreso hacia los objetivos y metas trazados por la organización responsable de la gestión.

En el caso de una carretera, los indicadores utilizados en su gestión se suelen agrupar en diferentes categorías que corresponden con los objetivos de la organización responsable de dicha gestión. Se podrían considerar, entre otros, los siguientes: conservación de la carretera, seguridad vial, movilidad y accesibilidad, medioambiente, operaciones y mantenimiento y eficiencia económica.

Si se disponen de mediciones de dichos indicadores, éstos permiten comparar sus valores con determinados estándares, umbrales o niveles mínimos. Esta información es determinante en la identificación de las necesidades de intervención y, por tanto, catalizan todo el proceso posterior de selección de intervenciones y asignación de recursos económico.

En artículos posteriores hablaremos de cómo podremos utilizar estos índices para el caso particular de las carreteras y utilizar técnicas procedentes de la optimización multiobjetivo y de la toma de decisiones multicriterio para asignar los presupuestos restrictivos de los que dispone una organización para que la condición de las carreteras sea la máxima posible. Ya adelantamos que el problema no es sencillo, pero afortunadamente nuestro grupo de investigación ya dispone de las herramientas necesarias para planificar el mantenimiento y la conservación de una red de carreteras o de calles en una ciudad con presupuestos muy restrictivos.

 

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Cómo influyen las estrategias de conservación y el coste que pagan los usuarios de las carreteras?

Figura 1. Las generaciones futuras tendrán que pagar por unas infraestructuras deterioradas

En esta entrada vamos a justificar cómo determinadas estrategias de gestión del mantenimiento y conservación de las carreteras disparan los costes que tienen los usuarios. Por tanto, en primer lugar vamos a definir las distintas estrategias posibles y posteriormente analizaremos cuál de ellas influye negativamente en el coste de los usuarios.

Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, no menos cierto es que una parte significativa de dicha infraestructura está empezando a notar el paso del tiempo; es más, parece que podemos vivir dentro de un horizonte no tan lejano, un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación (Figura 1) se va a encontrar con la sorpresa de tener que pagar por unas infraestructuras con pésimos niveles de servicio. Es lo que en otro artículo califiqué como la “crisis de las infraestructuras“. Todo ello nos lleva a la cuestión central del problema: la urgente necesidad de tener un plan racional con recursos suficientes para mantener las infraestructuras básicas de un país.

En la Figura 2 podemos ver una gráfica donde se representa no solo la degradación del estado o de las prestaciones de la carretera, sino las distintas estrategias que se tienen al alcance para modificar dicho deterioro.

Figura 2. Estrategias de conservación (Clemente, 2012)

Así, la estrategia preventiva o proactiva tiene como objetivo mantener en el tiempo el estado físico del elemento en un nivel adecuado, evitando que alcance elevados niveles de deterioro que puedan afectar a su funcionalidad y disparar los costes de reparación. Estas actuaciones son normalmente de alcance y coste limitado y se realizan con cierta periodicidad en función de la evolución observada o incluso de manera programada antes de que el defecto se llegue a manifestar. La estrategia correctiva o reactiva es la que deja al elemento que se deteriore al límite, en cuyo momento se realizan intervenciones de gran calado, como por ejemplo grandes rehabilitaciones integrales o estructurales, que lo devuelven, o lo intentan devolver, a su estado original. Sin embargo, son actuaciones de mayor coste, aunque más separadas en el tiempo. Por último, se podría optar por un deterioro controlado hasta la retirada. En este caso se pasa directamente a retirar el elemento cuando se ha alcanzado su vida útil de servicio y se sustituye por otro similar. Durante este periodo no se interviene, o se hace mínimamente para no afectar la funcionalidad.

Por tanto, la estrategia óptima no es evidente, pues depende tanto de factores endógenos (características constructivas de la carretera, edad, etc.) y exógenos (condiciones del clima, nivel de tráfico, etc.) y por tanto no se pueden generalizar las conclusiones. Este problema, por consiguiente, es uno de los focos más importantes de nuestro grupo de investigación. Os he puesto referencias de algunas de nuestras publicaciones.

Pero el problema se hace más complejo cuando se tienen en cuenta los costes de los usuarios. En efecto, las características de la carretera y el nivel y la composición de la demanda de tráfico influyen en los costes de los usuarios. Un mal estado del pavimento, incrementa claramente el coste soportado por el usuario. Y lo que es peor, un estado sub-óptimo de la infraestructura debido a una estrategia de conservación reactiva, tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Insisto en este punto. Una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico.

En la Figura 3 se puede ver que existe un hipotético nivel de conservación óptimo que minimiza los costes totales del transporte, teniendo en cuenta el coste del usuario, el coste de conservación y el coste de construcción. Sin una estrategia clara de conservación, los responsables de una red de carreteras suelen realizar una conservación correctiva, que tiene un aparente ahorro económico en el corto plazo, pero que traslada al futuro unos costes que pueden ser muy elevados tanto para los contribuyentes que sufragan la inversión como para los usuarios.

Figura 3. Costes totales del transporte

A continuación os dejo algunas de las referencias y de los trabajos que se han publicado al respecto. Todo lo que estamos haciendo ahora se encuentra dentro de un proyecto de investigación competitivo al que hemos denominado DIMALIFE (BIA2017-85098-R): Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Si alguien se anima trabajar en estos temas de investigación con nosotros o hacer una tesis doctoral, tiene las puertas abiertas.

Además, igual os interesa leer los enlaces que publicamos en una entrada anterior: ¿Qué hemos hecho para conservar nuestras carreteras?

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Esto me suena… ¿Son seguros nuestros puentes?

Puente de la Constitución de 1812, Cádiz, en agosto de 2015. TCadizwiki [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Os dejo en esta presentación una nueva entrevista que me ha realizado el periodista José Antonio García Muñoz, conocido como Ciudadano García, sobre temas de ingeniería. Como ya he comentado en alguna entrada anterior, la labor de divulgación de las ciencias, y en particular de la ingeniería, resulta una tarea agradable y enriquecedora.

La entrevista, en este caso, se ha centrado en la seguridad y el mantenimiento de nuestros puentes. En efecto, una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras.

Tener la oportunidad de comunicar aspectos de nuestra profesión a más de 300.000 oyentes supone todo un reto, más si lo que se busca es transmitir de forma sencilla y para todo el mundo, aspectos técnicos que, a veces, solo somos capaces de hacerlo con colegas o estudiantes. Insisto, todo un reto y una oportunidad que se agradece.

Pues de todo ello hablamos el pasado viernes 14 de diciembre de 2018. Os dejo la entrevista, realizada en directo. Espero que os guste.

Cuantificación del estado de conservación de los puentes: índices de estado o condición

Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado. Ministerio de Fomento (2012)

Una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras. Además, este desasosiego se acentúa cuando, por una parte, la grave crisis económica que ha sufrido nuestro país ha reducido significativamente los presupuestos dedicados al mantenimiento de las infraestructuras y cuando, además, los datos que el Ministerio de Fomento dispone sobre el estado de los puentes, extraídos de su Sistema de Gestión de Puentes (SGP), no es suficientemente transparente, a diferencia de otros países, como Alemania. La que he denominado como “crisis de las infraestructuras“, en efecto, no es un problema solo de España, sino que afecta de forma generalizada a muchos países de nuestro entorno.

Pues bien, la noticia del 9 de diciembre nos decía que 66 puentes presentan graves problemas de seguridad. La justificación es que, tras la valoración de su estado por expertos, se calculan unos índices (extensión, gravedad y evolución) a los que se aplican algoritmos para obtener una clasificación final que va de 0 a 100. Esos 66 puentes obtenían más de 81 puntos, lo cual significa que presentan “patologías potencialmente graves que pueden afectar a su comportamiento resistente” y son objeto de un seguimiento especial. Teniendo en cuenta que el parque de las obras de paso en España son de casi 23000 puentes, ello supone que un 0,28% de ellos superan el umbral de los 81 puntos. Parecerían pocos puentes, pero bastaría el colapso de uno solo de ellos para que se pudiese reproducir una tragedia como la ocurrida en Génova este verano. Por tanto, no debemos restar importancia a estas cifras. De hecho, nuestro grupo de investigación, a través del proyecto DIMALIFE, está muy preocupado por investigar estos tema.

¿Significa esto que en España nuestros puentes no son seguros? En absoluto. No hay que alarmarse, pero hay que tomar medidas. Lo que le ocurre a cualquier infraestructura (puente, presa, puerto, túnel, hospital, etc.) es que todas ellas, sin excepción, presentan una disminución de sus prestaciones y funcionalidades que, pasado cierto umbral, hace que dejen de ser útiles, finalizando su vida útil. La vida de las infraestructuras se puede prolongar con un adecuado mantenimiento y acometiendo reparaciones, pero llega un momento que el coste de alargar la vida útil puede ser insostenible. Por tanto, los puentes “envejecen”.

Todo el mundo está de acuerdo en que los aviones deben someterse a exámenes periódicos y revisiones profundas, realizadas por expertos, que garanticen la seguridad en vuelo de estos aparatos. Asimismo, también resulta evidente que todas las personas deberíamos someternos a chequeos médicos periódicos para detectar a tiempo enfermedades que, sin una detección precoz, son inevitablemente mortales. Pues lo mismo le pasa a las infraestructuras, que deben acudir de vez en cuando al “médico de cabecera”, que si detecta algún problema grave, manda al paciente al “médico especialista” y éste, en caso necesario, opera al paciente o le somete al tratamiento correspondiente. Pues lo mismo le ocurre a los puentes, donde existen inspecciones básicas o rutinarias, inspecciones principales e inspecciones especiales. De ello ya hablamos en una entrada anterior. Siguiendo con la analogía médica, la “analítica” realizada a los puentes ha mostrado que su “colesterol” está por encima de 250. Ello no significa la muerte inmediata del paciente, pero sí que es necesario un cambio de hábitos (ejercicio físico, dieta alimentaria, etc.) o medicación para reducir dicho índice. En caso de no hacer nada, nuestro puente puede tener un “problema coronario” que puede acabar en un “ataque al corazón”. Por tanto, la buena noticia es que hemos detectado los problemas y ahora se trata de poner a nuestros puentes bajo un “tratamiento médico” estricto.

Para aclarar alguno de los conceptos sobre los que se ha basado la noticia de El País, voy a recoger aquí los aspectos básicos. Están basados en una monografía del Ministerio de Fomento denominada “Guía para la realización de inspecciones principales de obras de paso en la Red de Carreteras del Estado“. Tal y como indica la guía, para cada uno de los daños que existan en un determinado elemento de un puente, se recogen en campo los índices de extensión, gravedad y evolución (apartado 4.5.3). Con estos datos se obtiene, en primer lugar, un Índice de Deterioro para cada daño, que puede tomar un valor entre 0 y 100. Con todos los índices de los deterioros existentes en un puente, se puede valorar el estado de conservación con el Índice de Estado o Condición de la Estructura, que también tiene un valor entre 0 y 100. Existen también índices intermedios para valorar los elementos, componentes y zonas de la estructura, de esta forma se puede localizar rápidamente el origen de la causa de determinado índice en la condición de la estructura.

Los índices de deterioro se dividen en cinco intervalos, con los significados siguientes:

  • Índice entre 0 y 20: Deterioro sin consecuencias importantes “a priori”
  • Índice entre 21 y 40: Deterioro que puede tener una evolución patológica o reducir las condiciones de servicio o de durabilidad del elemento si no se repara en el tiempo adecuado.
  • Índice entre 41 y 60: Deterioro que indica una patología que supone una reducción de las condiciones de servicio o de la durabilidad del elemento.
  • Índice entre 61 y 80: Deterioro que se puede traducir en una modificación del comportamiento resistente o funcional.
  • Índice entre 81 y 100: Deterioro que compromete la seguridad del elemento.

De la misma forma, el Índice de Estado de la Estructura se divide en cinco intervalos:

  • Índice entre 0 y 20: Estructura sin patologías evidentes o con deterioros sin consecuencias relevantes para la durabilidad, condiciones de servicio o seguridad de la estructura.
  • Índice entre 21 y 40: Estructura con deterioros que pueden tener una evolución patológica que afecte a la durabilidad o a las condiciones de servicio de la estructura. Es conveniente seguir su evolución temporal para su determinación objetiva.
  • Índice entre 41 y 60: Estructura con deterioros que evidencian una patología que puede suponer una reducción de las condiciones de servicio o de la durabilidad de la estructura. Será necesario seguir la evolución de la patología en las posteriores inspecciones. Puede requerir una actuación a medio plazo para mejorar la durabilidad de la estructura.
  • Índice entre 61 y 80: Estructura con deterioros o patologías que se pueden traducir en una modificación del comportamiento resistente o una reducción importante de los niveles de servicio. Requiere una actuación a corto-medio plazo. En función de la naturaleza del daño puede requerir una inspección especial.
  • Índice entre 81 y 100: Estructura con deterioros o patologías que comprometen la seguridad del elemento/estructura. Requiere una inspección especial y una actuación urgente. En algunos casos puede ser necesario una limitación del uso.

Como vemos, los índices establecen pautas para que el gestor decida intervenir en una estructura, realizar estudios especiales, programar actuaciones a medio plazo o asignar presupuestos. Con todo, los inspectores tiene capacidad de ir más allá de esta cuantificación cuando detectan problemas o imponderables difíciles de cuantificar, como por ejemplo, el grado de “actualización” de la estructura a las normas vigentes.

La conclusión es clara. Al igual que los aviones requieren inspecciones periódicas minuciosas para garantizar la seguridad en el vuelo y las personas debemos realizar chequeos médicos periódicos, las infraestructuras (puentes, presas, túneles, puertos, hospitales, estadios de fútbol, etc.) deben someterse a inspecciones programadas y, sobre todo, se debe disponer de un presupuesto suficiente que garantice el mantenimiento y la rehabilitación si fuera necesario. Todo lo que no sea eso, será poner en riesgo no solo la seguridad de las personas, sino el estado de bienestar.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mantenimiento de puentes

Imagen del “Silver Bridge” tras el colapso (1967). Public Domain, https://commons.wikimedia.org/w/index.php?curid=2500886

En general, las necesidades de los trabajos de mantenimiento y conservación han ido creciendo en todos los países desarrollados con redes de infraestructuras importantes. En principio, estas labores estaban enfocadas desde el punto de vista de resolver problemas de la estructura ya deteriorada, mediante reparaciones y acciones puntuales, para pasar, actualmente, en los sistemas de gestión más desarrollados, a tratarse de labores preventivas que eviten llegar a la situación de degradación última de la estructura, en la cual se disparan los costes de adecuación.

Mapa conceptual sobre sistemas de gestión de puentes. Elaborado por V. Yepes

Os dejo a continuación la presentación de una clase sobre mantenimiento de puentes que impartí recientemente en la asignatura “Gestión del mantenimiento de infraestructuras”, del Grado en Ingeniería Civil de la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Valencia.

Descargar (PDF, 1.59MB)

¿Cómo afectan los costes al mantenimiento de un puente cuando se consideran aspectos sociales?

https://www.ailladearousa.com

Pocas veces se incorporan en los proyectos de puentes actuales las variables sociales como factores determinantes de su diseño. Tampoco se dedica la atención suficiente al análisis del coste del ciclo de vida para evaluar la mejor alternativa posible de diseño. Considerar en nuestros proyectos este tipo de variables podría reducir, por ejemplo, en un 60% los costes de mantenimiento. También se constataría el hecho de que incrementar solamente 5 mm el recubrimiento de las armaduras de las estructuras de hormigón podría reducir el coste del mantenimiento en un 40%. Un ejemplo de la aplicación de este tipo de metodologías es la que nos acaban de publicar en la revista Sustainability. Allí se ha analizado el coste del ciclo de vida de las medidas de prevención aplicado a un puente de hormigón postesado expuesto al ataque de clorhídricos. Para ello se ha elegido el puente de la Isla de Arosa, en Galicia (España). Os dejo el artículo completo y la referencia.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 .

Descargar (PDF, 1.87MB)

¿Qué es una recicladora de asfalto?

 

descargaQuizás sea pertinente insistir en la necesidad que tenemos de conservar nuestras infraestructuras. De este tema ya hablamos en su momento en un post denominado “la crisis de las infraestructuras“. Hoy vamos a seguir la línea abierta comentando el reciclaje de firmes. Se trata de una simple pincelada de lo que nuestros alumnos aprenden con mayor profundidad en la asignatura de Procedimientos de Construcción en nuestra escuela de ingenieros de caminos de Valencia.

El reciclado del asfalto no es algo nuevo. El pavimento de una carretera está sujeto a un envejecimiento progresivo debido a la acción del tráfico, la meteorología y del propio material. Sin embargo, volver a calentar el asfalto para regenerarlo producía un  material seco y grumoso que conservaba poco de los aceites del hormigón asfáltico original. A menudo, el asfalto se volvía a calentar de forma estática, sin agitarlo ni mezclarlo durante el proceso. Esto daba como resultado temperaturas desiguales que producían resultados dispares; una parte estaba muy caliente, otra parte estaba demasiado fría y otra a la temperatura justa. Hoy día, donde los costos del petróleo crecen y los presupuestos son escasos, la recicladora de asfalto es una forma económica de mantener las superficies asfaltadas sin dañar el medioambiente, reciclando los productos de hidrocarburos en lugar de desecharlos y utilizar material nuevo en reemplazo. El reciclaje de asfalto tiene numerosas ventajas. Una de ellas es que permite utilizar el 100% del pavimento dañado, lo que  disminuye los costos de mantenimiento vial en más de 40%.

blog_16

Para reciclar el asfalto, se pueden usar diversas técnicas.  Todas ellas se basan en la reutilización de los materiales del firme defectuoso, a los que se pueden añadir otros materiales. Los tipos habituales, sin considerar el reciclado en planta, son los siguientes:

  • Reciclado “in situ” en caliente: Se reutilizan todos los materiales del firme mediante una aportación de calor que se realiza en la misma obra. El firme se calienta con unos quemadores y se fresa en un grosor determinado. A este material se añaden agentes rejuvenecedores. La nueva mezcla se extiende y compacta mediante medios convencionales.
  • Reciclado templado “in situ”: En este caso la temperatura de fabricación se menor a la anterior, lo cual presenta ventajas desde el punto de vista medioambiental. Se utilizan para ello emulsiones bituminosas.
  • Reciclado “in situ” en frío con cemento: Se fresa en frío un cierto espesor del firme y se mezcla con un conglomerante hidráulico (normalmente cemento). La mezcla se extiende y compacta.
  • Reciclado “in situ” en frío con emulsiones bituminosas (RFSE):  Tras el fresado, se mezcla el material envejecido con emulsiones y otros aditivos. Se extiende, compacta y cura la capa

 

Si queréis ampliar información, os dejo el enlace a la página de ANTER (Asociación Nacional Técnica de Estabilizados de Suelos y Reciclado de Firmes): http://www.anter.es/. A continuación os dejo varios vídeos para que veáis la maquinaria y la forma de realizar el reciclado de asfalto. Espero que os gusten.

En este vídeo podemos ver cómo se utiliza la técnica del reciclado en frío.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

La “crisis” de las infraestructuras

Preservar las infraestructuras en un estado mínimamente adecuado de conservación y mantenimiento es una necesidad de primer orden en cualquier sociedad. Sin embargo, por motivos que a veces son estructurales y otras coyunturales, los responsables de esta tarea no prestan la atención y los recursos necesarios para este cometido. Parece que la inversión en conservación de los activos siempre ha sido insuficiente incluso en países desarrollados.

En efecto, parece evidente que el desarrollo económico que tuvo lugar en países como el nuestro en la última parte del siglo XX se centró, en el caso por ejemplo de las carreteras, en ampliar la red para apoyar dicho desarrollo. Si bien es cierto que estas nuevas infraestructuras nacen con un periodo de vida relativamente largo, también es cierto que una parte nada desdeñable de dicha infraestructura está empezando a notar el paso del tiempo, y lo que es peor, parece que podemos vivir dentro de un horizonte no tan lejano, a un verdadero colapso en los niveles de servicio prestados por estos activos. Lo peor de todo ello es que estas infraestructuras se financiaron a largo plazo y la siguiente generación se va a encontrar con la sorpresa de tener que pagar Continue reading “La “crisis” de las infraestructuras”

Premio Abertis Chile a la tesis doctoral de Cristina Torres Machí

2015-03-30-12.16.50Acabamos de recibir la agradable noticia de que nuestra compañera Cristina Torres Machí ha sido elegida como ganadora de la categoría Tesis Doctoral del Premio Abertis Chile, patrocinada por la Cátedra Abertis de la Pontificia Universidad Católica de Chile. La tesis, denominada “Optimización heurística multiobjetivo para la gestión de activos de infraestructura de transporte terrestre” se defendió el 30 de marzo de 2015, optando brillantemente a la doble titulación de doctorado, tanto de la Universitat Politècnica de València (UPV) como de la Pontificia Universidad Católica de Chile (PUC). Los directores de tesis han sido la doctora Marcela Alondra Chamorro Gine (PUC), Eugenio Pellicer Armiñana (UPV) y Víctor Yepes Piqueras (UPV). La calificación fue la máxima posible, de sobresaliente “cum laude” por unanimidad.

En el siguiente enlace: http://victoryepes.blogs.upv.es/2015/03/30/tesis-doctoral-sobre-optimizacion-en-la-gestion-de-activos-de-infraestructuras-de-transporte-terrestre/ encontraréis un resumen de la tesis y de su defensa.

¡Enhorabuena por el trabajo bien hecho!

Referencias:

  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages, http://dx.doi.org/10.1155/2014/524329  (link)
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770