Algunas preguntas sobre la gestión y el mantenimiento de la maquinaria empleada en la construcción

¿Cuáles son los objetivos principales del mantenimiento de la maquinaria y cómo se clasifica?

El mantenimiento de la maquinaria de construcción tiene como objetivos fundamentales maximizar su disponibilidad al mínimo coste, optimizar su rendimiento y garantizar unas condiciones óptimas de operatividad y seguridad. Esto se traduce en la reducción de costes debidos a paradas accidentales, minimizando las pérdidas de producción y los gastos propios del mantenimiento, así como en la limitación del deterioro de la maquinaria para evitar la disminución de la calidad del producto.

Las tareas de mantenimiento se clasifican en niveles según la importancia de la obra y sus misiones específicas. Por ejemplo, en una empresa constructora típica, el primer escalón (conductoras y conductores) se encarga del mantenimiento diario, semanal o quincenal (limpieza, repostaje, engrase y reparaciones de urgencia). El segundo escalón (equipos de obra) se encarga del mantenimiento mensual, trimestral o semestral, que incluye revisiones, ajustes ligeros y localización de averías. Los escalones superiores (el tercero y el cuarto, talleres móviles y fijos) se dedican a reparaciones más complejas, a la sustitución de piezas y a grandes reconstrucciones.

¿Qué tipos de políticas de mantenimiento existen y cuál es el más beneficioso a largo plazo?

No existe una clasificación rígida de los sistemas de mantenimiento y cada empresa debe elegir el más adecuado para cada máquina. Sin embargo, pueden clasificarse principalmente en:

  • Corrección por avería: Se permite que los equipos funcionen hasta que fallen, y luego se reparan lo antes posible. Aunque a corto plazo puede parecer económico, a medio y largo plazo puede generar costes elevados debido a la imposibilidad de programar las paradas y al riesgo de fallos graves, lo que disminuye la eficiencia del servicio. Solo se justifica en contadas ocasiones o cuando se trata de muchas máquinas iguales y hay capacidad de sobra.
  • Mantenimiento rutinario: Se establecen instrucciones generales para el mantenimiento de grupos homogéneos de máquinas, basado en la experiencia, para prevenir fallos. Es de bajo costo y puede resolver muchas averías antes de que ocurran.
  • Mantenimiento preventivo planificado: Se establecen ciclos de revisiones y sustituciones de componentes importantes según las instrucciones del fabricante y el uso de la máquina. Esto permite registrar averías y prever la vida útil de los elementos. Aunque es más costoso a corto plazo, resulta más ventajoso a medio y largo plazo, ya que permite programar los tiempos de inactividad y evitar fallos catastróficos, lo que aumenta la eficacia general. El objetivo es reparar antes de que se produzca una avería importante, lo que resulta más rápido y económico.

En resumen, el mantenimiento preventivo planificado es el más ventajoso a medio y largo plazo, ya que permite anticiparse a los problemas, reducir los costes y los tiempos de reparación, y aumentar la eficacia del servicio.

¿Cómo se distribuye el tiempo de permanencia de una máquina en obra y qué implicaciones tiene para los costos?

El tiempo que una máquina permanece en obra se divide en varias categorías, lo que afecta directamente el costo horario y la producción.

  • Tiempo de calendario laborable (fondo horario bruto): Horas reconocidas por la legislación laboral y la organización para trabajar.
  • Tiempo laborable real (fondo horario operacional): Horas de presencia efectiva de la máquina en obra, descontando circunstancias fortuitas como fenómenos atmosféricos, huelgas o catástrofes. Incluye horas extraordinarias.
  • Tiempo de máquina en disposición (fondo horario de explotación): Horas en las que la máquina está operativa y lista para trabajar, excluyendo paradas menores a 15 minutos.
  • Tiempo fuera de disposición: Horas en las que la máquina no está operativa, divididas en:
  • Mantenimiento: Tareas previsibles.
  • Averías: Reparaciones imprevisibles.
  • Parada por organización de obra: Tiempo de inactividad por causas ajenas a la máquina (falta de tajo, suministros, averías de otras máquinas, etc.).
  • Tiempo de trabajo útil: Horas netas donde la máquina produce, incluyendo trabajo productivo y trabajo no productivo o complementario.

Esta distribución temporal implica que el coste horario de una máquina varía en función de la referencia. Para el propietario, el coste se evalúa en relación con la hora de utilización, mientras que, en el caso de un alquiler, se refiere a la hora laborable real. Ampliar la jornada laboral para aumentar las horas útiles puede disminuir el coste horario fijo y acortar los plazos, pero hay que sopesarlo con inconvenientes como el aumento de costes por horas extra del operario, su fatiga y la dilución de responsabilidades si hay varios conductores, lo que puede incrementar las averías.

¿Cómo se calcula la fiabilidad de un equipo de construcción y cuáles son las fases de su vida útil según la “curva de la bañera”?

La fiabilidad se define como la probabilidad de que una unidad funcione correctamente en un intervalo de tiempo determinado sin interrupciones debidas a fallos de sus componentes, en condiciones establecidas. Está relacionada con el tiempo medio entre fallos (TMEF), que es la relación entre las horas de funcionamiento y el número de averías sufridas en ese período.

La «curva de la bañera» describe la evolución de la tasa de fallos de una máquina a lo largo del tiempo y se divide en tres fases:

  1. Período de mortalidad infantil o fallos prematuros: Caracterizado por una alta tasa de fallos que disminuye rápidamente. Las causas suelen ser errores de diseño, fabricación o uso. Estos fallos ocurren en la fase de rodaje y, una vez resueltos, no suelen repetirse.
  2. Período de tasa de fallos constante o vida útil: Los fallos aparecen de forma aleatoria y accidental, debidos a limitaciones de diseño, percances por uso o mal mantenimiento. Es el período ideal de utilización de la máquina.
  3. Período de desgaste: La tasa de fallos aumenta con el tiempo debido a la vejez y el fin de la vida útil. En esta fase, se recomienda el reemplazo preventivo de componentes o incluso la renovación completa del equipo para evitar incidentes catastróficos.
Figura 2. Curva de fiabilidad de una máquina

Para alargar su vida útil, se puede aplicar el envejecimiento preventivo (funcionamiento preliminar para detectar fallos prematuros) y la sustitución preventiva (reemplazo de unidades al finalizar su vida útil para evitar fallos).

¿Cómo se modela la fiabilidad de una máquina y qué técnicas de prevención de fallos se utilizan en el diseño?

La fiabilidad de una máquina puede modelarse mediante la distribución exponencial cuando la tasa de fallos es constante durante el período de vida útil. Esto implica que la ocurrencia de un fallo es imprevisible e independiente de la vida útil del equipo. Una generalización de este modelo es la función de Weibull, que se utiliza cuando la tasa de fallos es variable y permite tener en cuenta las fases de fallos precoces y de envejecimiento.

En lo que respecta a las técnicas de prevención de fallos en el diseño de equipos, las empresas se centran en maximizar la fiabilidad del producto. Algunas metodologías clave son:

  • Despliegue de la Función de Calidad (QFD): Permite traducir los requisitos de calidad del cliente en características técnicas del producto, utilizando matrices para analizar necesidades, competencia y nichos de mercado.
  • Análisis Modal de Fallos y Efectos (AMFE): Una metodología estructurada para identificar y prevenir modos de fallo potenciales y sus causas en un producto o sistema.
  • Análisis del valor: Busca reducir el coste del producto sin eliminar las características esenciales demandadas por los clientes, identificando cambios que aumenten el valor sin un incremento desproporcionado del coste.

¿Cómo influyen las condiciones climáticas y otros imprevistos en la planificación del tiempo de trabajo en una obra de construcción?

Las condiciones climáticas y otros imprevistos son factores cruciales que influyen en el plazo de ejecución de una obra. La planificación del tiempo de trabajo disponible se basa en datos históricos del clima y en el calendario laboral.

El método de la Dirección General de Carreteras, por ejemplo, utiliza coeficientes de reducción aplicados al número de días laborables de cada mes para estimar los días efectivamente trabajados. Estos coeficientes tienen en cuenta:

  • Temperatura límite: Por debajo de la cual no se pueden ejecutar ciertas unidades de obra (ej., 10 ºC para riegos bituminosos, 5 ºC para mezclas bituminosas, 0 ºC para manipulación de materiales húmedos).
  • Precipitación límite diaria: Se definen valores como 1 mm/día para trabajos sensibles a lluvia ligera y 10 mm/día para la mayoría de los trabajos, donde una protección especial sería necesaria.

Los días utilizables netos de cada mes se calculan multiplicando los días laborables por los coeficientes reductores por climatología adversa y por los días no laborables, que dependen de festivos y convenios laborales. La reducción de días representa la probabilidad de que un día del mes sea favorable desde el punto de vista climático y laborable. Estos cálculos permiten elaborar un plan de obra lo más ajustado posible, minimizando las desviaciones de plazo, aunque la evolución del tiempo atmosférico es impredecible en la práctica.

¿Qué se entiende por “disponibilidad” de una máquina en obra y cómo se calcula?

La disponibilidad de una máquina se refiere a su estado operativo, es decir, al tiempo en el que se encuentra disponible. Se pueden distinguir dos tipos principales de disponibilidad:

  • Disponibilidad en obra o factor de disponibilidad: Se define como el cociente entre el tiempo en que una máquina se encuentra en estado operativo y el tiempo laborable real. En otras palabras, es la relación entre las horas brutas de disponibilidad y las horas que la máquina ha estado presente en la obra. Valores bajos de este factor pueden indicar una mala conservación, reparaciones lentas o falta de repuestos.
  • Disponibilidad intrínseca: Se define como el cociente entre el tiempo de utilización y el tiempo laborable real, sin tener en cuenta las paradas ajenas a la máquina por tiempo disponible no utilizado (mala organización de la obra, etc.). Estadísticamente, se define como la probabilidad de que una máquina funcione correctamente en un momento determinado o de que no presente averías irreparables en un tiempo máximo.

Las máquinas se clasifican en «principales» (se requiere alta disponibilidad, ya que su fallo paraliza la producción de un conjunto de máquinas) y «secundarias» o «de producción trabajando solas».

¿Cómo se calcula la disponibilidad de un conjunto de máquinas trabajando en cadena y en paralelo?

La disponibilidad de un sistema de máquinas varía significativamente en función de si trabajan en serie o en paralelo.

  • Máquinas trabajando en cadena (serie): Si n máquinas trabajan en cadena, y el fallo de una paraliza a las demás, la disponibilidad intrínseca del conjunto es el producto de las disponibilidades individuales. Esto significa que la disponibilidad general disminuye rápidamente al aumentar el número de máquinas en serie. Si se admiten acopios intermedios suficientemente grandes, la disponibilidad del equipo sería el mínimo de las disponibilidades individuales, lo que amplía la disponibilidad respecto a no tener acopios.
  • Máquinas trabajando en paralelo: Si n máquinas iguales trabajan en paralelo y la inoperatividad de una no detiene completamente el proceso (ya que otras pueden seguir trabajando), la probabilidad de que x máquinas se encuentren en disposición sigue una distribución binomial. En este caso, la disponibilidad del conjunto aumenta al tener más unidades en paralelo, ya que el sistema puede continuar operando incluso si algunas máquinas fallan.

En un caso general de máquinas principales en paralelo y auxiliares en paralelo que luego trabajan en serie, la disponibilidad del conjunto se calcula combinando las fórmulas de disponibilidad en serie y en paralelo.

 

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Durabilidad de las estructuras de acero

https://estructuramex.com/que-provoca-la-oxidacion-en-las-estructuras-metalicas/

La durabilidad de las estructuras de acero depende de factores como la calidad del material, el diseño estructural, las medidas de protección contra la corrosión y el mantenimiento planificado. Una estrategia efectiva en cada una de estas áreas permite alcanzar la vida útil deseada, minimizar el deterioro y reducir la necesidad de intervenciones costosas.

Factores que afectan a la durabilidad del acero

La exposición ambiental es una de las principales causas del deterioro del acero estructural. La agresividad del medio se clasifica en diferentes niveles, desde ambientes de corrosividad muy baja (C1) hasta ambientes de corrosividad muy alta (C5). En zonas con alta humedad, presencia de iones cloruro, exposición constante a la lluvia o a contaminantes industriales con alto contenido en SO₃, la velocidad de corrosión aumenta, por lo que es necesario adoptar medidas adicionales para proteger la estructura.

Las uniones estructurales pueden constituir puntos de alta vulnerabilidad si no se diseñan y ejecutan adecuadamente. Las soldaduras deben estar libres de fisuras, cráteres y proyecciones, ya que estas imperfecciones dificultan la adherencia de los sistemas de protección superficial. En uniones atornilladas, los pernos, las tuercas y las arandelas deben tener la misma durabilidad que el resto de la estructura para evitar deterioros diferenciales y la formación de pares galvánicos entre metales de diferente potencial electroquímico.

Diseño estructural y estrategias para mejorar la durabilidad

El diseño debe evitar configuraciones que favorezcan la acumulación de agua o suciedad, ya que estas condiciones pueden acelerar la corrosión. Para ello, se recomienda evitar superficies horizontales expuestas y secciones abiertas en la parte superior de los elementos estructurales, ya que pueden retener humedad. Además, las cavidades y huecos deben eliminarse o diseñarse de manera que permitan un drenaje eficiente. En el caso de elementos con interiores accesibles, deben incorporarse sistemas adecuados de ventilación y drenaje, mientras que los interiores inaccesibles deben sellarse completamente mediante soldaduras continuas para evitar la entrada de humedad.

Las uniones estructurales deben recibir especial atención en lo que a protección se refiere. En elementos soldados, se recomienda que la intersección entre refuerzos y elementos principales sea continua para permitir la correcta aplicación de recubrimientos. En el caso de entallas en almas o refuerzos, se deben disponer radios mínimos de 50 mm para facilitar la aplicación de los sistemas de protección.

Selección de materiales y protección contra la corrosión

En entornos agresivos, se pueden emplear aceros con resistencia mejorada a la corrosión atmosférica, aceros inoxidables o aceros galvanizados en caliente. En el caso de los aceros resistentes a la corrosión atmosférica, su uso sin recubrimiento de pintura está limitado a ambientes que no presenten una exposición significativa a iones cloruro. En estos casos, el espesor nominal de los elementos expuestos al ambiente exterior debe incrementarse en 1 mm. Para superficies interiores de secciones cerradas e inaccesibles se requiere la aplicación de un sistema de protección adecuado o un sobreespesor adicional.

La protección superficial es uno de los métodos más utilizados para garantizar la durabilidad de los elementos de acero. Al seleccionar el sistema de protección, se debe tener en cuenta el grado de preparación de la superficie, el tipo de imprimación, el número y el espesor de las capas de recubrimiento y la frecuencia de reposición durante la vida útil de la estructura. En función de la agresividad ambiental, los espesores de recubrimiento y la durabilidad del sistema deben ajustarse para proporcionar la protección requerida.

En algunas condiciones, el sobreespesor puede utilizarse como alternativa a los recubrimientos superficiales. Para ambientes de corrosividad alta (C4) o muy alta (C5), se recomienda un sobreespesor de 1,5 mm por cada 30 años de vida útil prevista, mientras que en ambientes de corrosividad media (C3) este valor se reduce a 1 mm. En ambientes de baja corrosividad (C2), el sobreespesor mínimo es de 0,5 mm, y en ambientes de corrosividad muy baja (C1) no es necesario aumentar el espesor. En elementos inaccesibles de puentes metálicos, el espesor total de las secciones cerradas no debe ser inferior a 8 mm.

La protección catódica es otra opción para reducir la corrosión en estructuras de acero, especialmente en entornos con exposición prolongada a la humedad o ambientes marinos. Este sistema requiere un diseño detallado y un plan de mantenimiento que garantice su efectividad a largo plazo. El proyecto debe justificar técnicamente la aplicación de la protección catódica y definir los procedimientos de instalación y seguimiento conforme a la norma UNE-EN ISO 12499.

Mantenimiento y conservación

El mantenimiento de las estructuras de acero es una parte esencial de la estrategia de durabilidad. Los sistemas de protección superficial deben reemplazarse periódicamente, ya que su vida útil suele ser inferior a la de la estructura. Para facilitar estas intervenciones, es necesario que las estructuras cuenten con accesos adecuados a las zonas cerradas. En los cajones metálicos, por ejemplo, las aberturas deben ser lo suficientemente amplias para permitir el paso de personal y equipos de mantenimiento. Se recomienda que las dimensiones mínimas sean de 500 x 700 mm en accesos rectangulares u ovales y de 600 mm de diámetro en accesos circulares.

Conclusión

La durabilidad de los elementos de acero en estructuras civiles depende de una combinación de factores, como el diseño estructural, la selección de materiales, la aplicación de sistemas de protección adecuados y un mantenimiento planificado. La implementación de estrategias de prevención permite garantizar el buen funcionamiento de la estructura a lo largo de su vida útil, reducir la necesidad de intervenciones correctivas y asegurar su seguridad y funcionalidad en diferentes condiciones de exposición.

A continuación, podéis ver algunos vídeos al respecto.

Os dejo a continuación el capítulo 19 del Código Estructural para que lo consultéis.

Descargar (PDF, 317KB)


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Durabilidad y rediseño de un puente de hormigón en ambiente costero mediante un método no destructivo de detección de daños

Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso la primera de las comunicaciones presentadas. Cabe destacar que este trabajo recibió el accésit del Premio “Jaume Blasco” a la innovación, por lo que hay que felicitar al doctorando Mehrdad Hadizadeh-Bazaz por el extraordinario trabajo realizado. A ello hay que sumar el Premio que recibió al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del VIII Encuentro de Estudiantes de Doctorado.

Durante algún tiempo, los expertos y los gobiernos han estado enfocados en reducir los costos de reparación y mantenimiento de estructuras cruciales como los puentes a través de un enfoque continuo en el mantenimiento y la reparación. En este estudio, se investiga la rentabilidad de dos métodos de predicción de daños: el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños a través del rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado.

El estudio evalúa el impacto de los iones cloruro en la ubicación y extensión de los daños a lo largo de la vida útil del puente, y compara los costos totales de mantenimiento y reparación. Los resultados revelan que si bien el método PSD es efectivo para estructuras con recubrimientos de hormigón bajos, aumentar el espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Palabras clave:

Evaluación del costo del ciclo de vida, métodos no destructivos de detección de daños, puente costero de hormigón, corrosión del acero, corrosión por cloruros, técnicas de mantenimiento y reparación.

Agradecimientos:

This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.

Referencia:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 386-401. DOI:10.61547/3371

A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.

Os dejo la comunicación completa, pues está editada en abierto. Espero que os sea de interés.

Descargar (PDF, 2.38MB)

Gestión del mantenimiento de carreteras con presupuesto limitado

Tengo el placer de anunciar una conferencia invitada que impartiré el próximo día 3 de marzo de 2023, a las 17:00 h, denominada: “Gestión del mantenimiento de carreteras con presupuesto limitado”.

Esta charla está auspiciada por el Instituto Tecnológico de la Construcción. Se trata de una institución de educación superior de habla hispana, radicada en México, especializada en el ramo de la construcción, logrando una formación teórica-práctica de sus alumnos y es reconocida por el liderazgo y calidad de sus egresados.

Este instituto, tal y como se puede ver en su página web, nace en 1983 como respuesta de la Cámara Mexicana de la Industria de la Construcción a las necesidades de sus afiliados por tener profesionales especializados en materia de construcción. Se logra, así, que el proceso de vinculación escuela-industria de la construcción sea total, pues gracias a los estudios universitarios que se imparten, se ha logrado formar a ejecutivos y gestores de empresas constructoras.

Existe un formulario para aquellos de vosotros que queráis participar en este evento. El enlace es el siguiente: https://t.co/oHzVxz6iQ6

 

¿Es rentable contratar un servicio de mantenimiento para el parque de maquinaria?

El mantenimiento y la reparación de los equipos supone un coste importante para los parques de maquinaria de las empresas constructoras. Una posibilidad que tienen los parques es acordar un acuerdo con un proveedor que realice las labores de mantenimiento.

Sin embargo, para que ello sea rentable, el parque deber hacer sus números. Este es uno de los casos estudiados en el “Curso de gestión de costes y producción de la maquinaria empleada en la construcción”.

Os paso un ejemplo de problema donde se puede ver cómo se puede ejecutar dicho cálculo. Espero que os sea de interés.

Descargar (PDF, 151KB)

Referencias:

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Conferencia en el JSAEE 2022: Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida

Con motivo de la celebración del XXXIX Congreso Sudamericano de Ingeniería Estructural JSAEE 2022, fui invitado a impartir una conferencia denominada “Diseño y mantenimiento sostenible de estructuras y puentes considerando su ciclo de vida“. En esta conferencia explico lo que está realizando nuestro grupo de investigación con proyectos como DIMALIFEHYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València. Espero que os sea de interés.

La conferencia del profesor Víctor Yepes aborda la integración de la sostenibilidad en el diseño y mantenimiento de estructuras y puentes, enfatizando la necesidad de considerar todo el ciclo de vida. Yepes, catedrático en Ingeniería de la Construcción en la Universitat Politècnica de València, argumenta que se requiere un cambio de paradigma respecto a las prácticas tradicionales. Destaca la importancia económica, social y ambiental del sector de la construcción y presenta la optimización, especialmente a través de la Inteligencia Artificial (IA) y las metaheurísticas, como una herramienta clave para lograr diseños más eficientes y sostenibles. Explora la complejidad de la optimización combinatoria en ingeniería estructural y las limitaciones de los métodos de resolución exactos. Presenta la optimización multiobjetivo y la frontera de Pareto como herramientas para evaluar soluciones que consideran múltiples criterios (coste, sostenibilidad, fiabilidad, etc.). Introduce el concepto de metamodelos y Smart Data como alternativas para optimizar con menos datos y recursos computacionales. Finalmente, enfatiza la necesidad de integrar el análisis del ciclo de vida y la toma de decisiones multicriterio para una gestión sostenible de los activos, señalando los desafíos en la evaluación social y la variabilidad.

Glosario de términos clave:

  • Sostenibilidad: En el contexto de la ingeniería, se refiere a la capacidad de diseñar, construir y mantener estructuras de manera que se satisfagan las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, considerando dimensiones económicas, sociales y ambientales.
  • Ciclo de Vida (Life Cycle): El período completo desde la concepción de una estructura hasta su demolición y disposición final, incluyendo diseño, construcción, uso, mantenimiento, reparación y fin de vida útil.
  • Optimización: Proceso de encontrar la mejor solución posible a un problema, generalmente minimizando o maximizando una función objetivo (como coste, emisiones, etc.) sujeto a un conjunto de restricciones (como requisitos estructurales o geométricos).
  • Inteligencia Artificial (IA): Sistemas informáticos diseñados para realizar tareas que normalmente requieren inteligencia humana, como aprendizaje, resolución de problemas y toma de decisiones.
  • Metaheurística: Algoritmo o técnica que guía un proceso de búsqueda para encontrar soluciones aproximadamente óptimas a problemas complejos, a menudo inspirados en procesos naturales o biológicos (ej: algoritmos genéticos).
  • Optimización Combinatoria: Tipo de optimización donde las variables de decisión son discretas (toman valores de un conjunto finito), lo que a menudo resulta en un gran número de posibles soluciones.
  • Función Objetivo: La medida de rendimiento o criterio que se busca optimizar en un problema de optimización (ej: minimizar coste, maximizar durabilidad).
  • Restricciones: Condiciones o limitaciones que deben cumplirse en un problema de optimización (ej: límites de deformación, resistencia mínima).
  • Frontera de Pareto: En optimización multiobjetivo, es el conjunto de soluciones óptimas no dominadas, donde no es posible mejorar un objetivo sin empeorar al menos otro.
  • Metamodelo (o Modelo Subrogado): Un modelo simplificado (a menudo una función matemática o un modelo de aprendizaje automático) que aproxima la relación entre las variables de entrada y salida de un modelo más complejo, utilizado para acelerar la optimización o el análisis.
  • Smart Data: En contraste con Big Data, se refiere a la extracción de información útil y patrones a partir de conjuntos de datos más pequeños o selectivos, a menudo utilizando técnicas estadísticas o de modelado avanzado (como Kriging).
  • Análisis del Ciclo de Vida (ACV o LCA): Metodología para evaluar los impactos ambientales, sociales y económicos asociados con todas las etapas del ciclo de vida de un producto o servicio.
  • Toma de Decisión Multicriterio (MCDM): Conjunto de técnicas para evaluar y seleccionar entre alternativas que involucran múltiples criterios de evaluación, a menudo contrapuestos.
  • Gestión de Activos: En el contexto de infraestructuras, es el enfoque sistemático y estratégico para gestionar el ciclo de vida completo de los activos (como puentes o carreteras) con el objetivo de optimizar su rendimiento, coste y riesgo.
  • Fiabilidad: La probabilidad de que una estructura cumpla con sus requisitos de rendimiento bajo condiciones específicas durante un período de tiempo determinado.
  • Gemelo Digital (Digital Twin): Una representación virtual de una estructura o sistema físico que se actualiza con datos en tiempo real de sensores, permitiendo monitorización, análisis y predicción de su comportamiento a lo largo del tiempo.

Entrevista en El Confidencial sobre la importancia de invertir en el mantenimiento de infraestructuras

Uno de los dos tramos del viaducto desplomado en el A-6. (EFE/Ana Maria Fernández Barredo))

Con motivo del VIII Congreso de la Asociación Española de Ingeniería Estructural celebrado en Santander, me solicitaron una entrevista para El Confidencial sobre el problema del viaducto de la A-6 en el municipio leonés de Vega de Valcarce. Los que ya me conocéis, sabéis que nunca comento este tipo de problemas concretos, a no ser que tenga todos los datos disponibles. Pero aproveché para insistir en la importancia del mantenimiento de nuestras infraestructuras. Os paso en pdf el contenido de la entrevista que me realizó el periodista José Pichel, por si os resulta de interés.

También la podéis ver completa aquí: https://www.elconfidencial.com/tecnologia/ciencia/2022-06-23/ingeniero-avisa-derrumbe-invertir_3448284/

Descargar (PDF, 436KB)

Conferencia magistral sobre optimización sostenible del mantenimiento de carreteras

Os dejo a continuación la grabación de la Conferencia Magistral que tuve la ocasión de presentar en el Congreso Nacional de Ingeniería Civil 2021. Dicho evento tuvo lugar en la modalidad virtual del 28 de junio al 02 de julio del 2021. El Congreso Nacional de Ingeniería Civil es el evento que reúne a profesionales, docentes, investigadores y empresarios del sector de la construcción en una jornada de capacitación acerca de las últimas innovaciones producto de las actividades de investigación  en el sector de la construcción. Agradezco, una vez más, al Consejo Departamental de ICA del Colegio de Ingenieros del Perú – Capítulo de Ingeniería Civil, la deferencia que tuvo conmigo al invitarme a participar en su Congreso.

Dejar una estructura de hormigón sin reparación alguna: “El Elogio” de Chillida

Elogio del horizonte, de Eduardo Chillida (Gijón). Imagen: V. Yepes (2021)

Este verano tuve la ocasión de volver a visitar Gijón. En el Cerro de Santa Catalina se encuentra una obra escultórica de hormigón armado de grandes dimensiones denominada “Elogio del horizonte“, de Eduardo Chillida. Se trata de una obra de 10 metros de alto y 500 toneladas que se erigió en el año 1990.

Se trata de un lugar icónico de la ciudad, muy visitado y fotografiado por los numerosos visitantes que llegan de todas partes.

Lo curioso de todo esto es que me fijé que la estructura, que ya tiene 31 años de edad, empieza a sufrir el deterioro habitual de cualquier estructura de hormigón situada en ambiente marino. Se dejan ver las armaduras al aire oxidadas. Lo normal en estos casos, sería emprender una labor de mantenimiento para alargar la vida útil de la escultura.

Pero ahí está lo curioso de este asunto. Leyendo la prensa al respecto (La Nueva España, 03/08/17), pude ver que Chillida manifestó su voluntad en el contrato firmado con el municipio que “la integridad de la obra habrá de ser escrupulosamente respetada, quedando expresamente prohibida su transformación o mutilación”. Además, en el contrato se hace referencia al mantenimiento de la escultura de esta forma: “El Ayuntamiento se obliga a mantener la obra y su entorno en perfecto estado de conservación y mantenimiento, debiendo realizar las obras necesarias para tal menester, así como las de reparación para subsanar el deterioro que pudiera sufrir la obra, bien por el simple transcurso del tiempo, o la acción de terceros, lo que deberá hacerse siguiendo las instrucciones e indicaciones que señale el autor”. Eduardo Chillida falleció en 2002 y la familia Chillida, según el gobierno de Foro, indica que no se puede actuar para reparar “daños estructurales por el salitre” dado que “el autor quería que tuviese un envejecimiento natural”.

Detalle del inicio del deterioro de la escultura de Chillida. Imagen: V. Yepes (2021)

Y aquí viene lo curioso de este dilema. El autor, o al menos su familia así lo interpreta, parece que deseaba que la estructura fuera envejeciendo hasta su deterioro total como parte de su idea artística. No obstante, sin un mantenimiento, cualquier estructura se deteriorará irremediablemente. Los daños personales van a ser difícil que se den en un futuro, pues bastaría impedir el paso a la escultura, pero las generaciones futuras solo podrán ver la escultura original a través de fotografías o vídeos.

Supongo que se tendrá que respetar la voluntad de su autor. Si esto fuera así, será un buen ejemplo, a escala real, de cómo se va a deteriorar una estructura de hormigón, en este caso, muy masiva y sometida a su propio peso. No obstante, también es verdad que la escultura se financió con cargo a los vecinos de Gijón, por lo que algo tendrían que opinar.

En fin, tengo aquí un buen ejemplo para fomentar el debate en clase sobre los derechos de autor en la arquitectura y la ingeniería, así como la obligatoriedad, o no, de mantener las estructuras e incluso transformarlas si fuera necesario. Otro caso del que hablé en su momento es la falta de respeto a la voluntad de los autores del puente de Fernando Reig, en Alcoy: https://victoryepes.blogs.upv.es/2018/05/17/el-derecho-de-autor-en-las-obras-de-ingenieria-el-puente-fernando-reig-en-alcoy/.

Ahí dejo el debate.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Uso y mantenimiento de los neumáticos en maquinaria de construcción

Figura 1. Neumático de dúmper. https://www.casajgomez.com.py/consejos-utiles/precauciones-al-cambiar-neumaticos-para-maquinaria-pesada/

Supuesta una correcta selección del neumático para las condiciones en las que va a trabajar y dejando aparte factores externos como pinchazos, cortes profundos y fuertes impactos, la vida del neumático viene limitada fundamentalmente por la generación de calor que se produce en la cubierta, que a su vez depende de diferentes factores:

      1. Temperatura exterior ambiente, que permite una mayor o menor refrigeración del neumático. Si la temperatura se sitúa entre 40 y 45ºC, se neutraliza con un aumento de la presión del 10%.
      2. Sobrecargas constantes del equipo.
      3. Velocidad y longitud del ciclo de trabajo.
      4. Continuidad o discontinuidad de la operación.
      5. Diseño (pendientes, curvas) y conservación de pistas.
      6. Presión de inflado del neumático.

Como precaución adicional, los fabricantes han introducido un procedimiento para relacionar el calentamiento y la seguridad del neumático: el índice TKPH (toneladas-kilómetro por hora). Se define el índice como el producto de las toneladas medias transportadas por la velocidad media y por los kilómetros recorridos. Si las exigencias del trabajo son superiores, habrá que reducir la velocidad, la carga o usar neumáticos con mayor TKPH.

Figura 2. Alineación de las ruedas y tipos de desgaste

Excepto la temperatura ambiente, el resto de factores pueden minorarse con una adecuada planificación y mantenimiento. En la Figura 2 se muestran diversos tipos de desgaste en los neumáticos de un automóvil. En caso contrario, la vida real del neumático puede disminuir en un 80% respecto a la teórica.

Para hacer los neumáticos más duraderos y evitar un desgaste prematuro (canteras de roca fuertemente abrasiva), se utilizan protecciones de cadenas, para trabajos en malos terrenos, constituidas por un mallazo metálico de anillos y eslabones de acero al manganeso.

Los consejos de buen mantenimiento y conservación de los neumáticos se hacen evidentes cuando para máquinas de movimiento de tierras, como las mototraíllas, el coste de los mismos puede alcanzar el 30% del total de los costes de inversión y operación de la máquina.

Os dejo a continuación algunos vídeos respecto al mantenimiento de los neumáticos.

Referencias:

DAY, D.A. (1978). Maquinaria para construcción. Editorial Limusa. 1ª Edición. México. 616 pp.

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.