Algunas preguntas sobre la gestión y el mantenimiento de la maquinaria empleada en la construcción

¿Cuáles son los objetivos principales del mantenimiento de la maquinaria y cómo se clasifica?

El mantenimiento de la maquinaria de construcción tiene como objetivos fundamentales maximizar su disponibilidad al mínimo coste, optimizar su rendimiento y garantizar unas condiciones óptimas de operatividad y seguridad. Esto se traduce en la reducción de costes debidos a paradas accidentales, minimizando las pérdidas de producción y los gastos propios del mantenimiento, así como en la limitación del deterioro de la maquinaria para evitar la disminución de la calidad del producto.

Las tareas de mantenimiento se clasifican en niveles según la importancia de la obra y sus misiones específicas. Por ejemplo, en una empresa constructora típica, el primer escalón (conductoras y conductores) se encarga del mantenimiento diario, semanal o quincenal (limpieza, repostaje, engrase y reparaciones de urgencia). El segundo escalón (equipos de obra) se encarga del mantenimiento mensual, trimestral o semestral, que incluye revisiones, ajustes ligeros y localización de averías. Los escalones superiores (el tercero y el cuarto, talleres móviles y fijos) se dedican a reparaciones más complejas, a la sustitución de piezas y a grandes reconstrucciones.

¿Qué tipos de políticas de mantenimiento existen y cuál es el más beneficioso a largo plazo?

No existe una clasificación rígida de los sistemas de mantenimiento y cada empresa debe elegir el más adecuado para cada máquina. Sin embargo, pueden clasificarse principalmente en:

  • Corrección por avería: Se permite que los equipos funcionen hasta que fallen, y luego se reparan lo antes posible. Aunque a corto plazo puede parecer económico, a medio y largo plazo puede generar costes elevados debido a la imposibilidad de programar las paradas y al riesgo de fallos graves, lo que disminuye la eficiencia del servicio. Solo se justifica en contadas ocasiones o cuando se trata de muchas máquinas iguales y hay capacidad de sobra.
  • Mantenimiento rutinario: Se establecen instrucciones generales para el mantenimiento de grupos homogéneos de máquinas, basado en la experiencia, para prevenir fallos. Es de bajo costo y puede resolver muchas averías antes de que ocurran.
  • Mantenimiento preventivo planificado: Se establecen ciclos de revisiones y sustituciones de componentes importantes según las instrucciones del fabricante y el uso de la máquina. Esto permite registrar averías y prever la vida útil de los elementos. Aunque es más costoso a corto plazo, resulta más ventajoso a medio y largo plazo, ya que permite programar los tiempos de inactividad y evitar fallos catastróficos, lo que aumenta la eficacia general. El objetivo es reparar antes de que se produzca una avería importante, lo que resulta más rápido y económico.

En resumen, el mantenimiento preventivo planificado es el más ventajoso a medio y largo plazo, ya que permite anticiparse a los problemas, reducir los costes y los tiempos de reparación, y aumentar la eficacia del servicio.

¿Cómo se distribuye el tiempo de permanencia de una máquina en obra y qué implicaciones tiene para los costos?

El tiempo que una máquina permanece en obra se divide en varias categorías, lo que afecta directamente el costo horario y la producción.

  • Tiempo de calendario laborable (fondo horario bruto): Horas reconocidas por la legislación laboral y la organización para trabajar.
  • Tiempo laborable real (fondo horario operacional): Horas de presencia efectiva de la máquina en obra, descontando circunstancias fortuitas como fenómenos atmosféricos, huelgas o catástrofes. Incluye horas extraordinarias.
  • Tiempo de máquina en disposición (fondo horario de explotación): Horas en las que la máquina está operativa y lista para trabajar, excluyendo paradas menores a 15 minutos.
  • Tiempo fuera de disposición: Horas en las que la máquina no está operativa, divididas en:
  • Mantenimiento: Tareas previsibles.
  • Averías: Reparaciones imprevisibles.
  • Parada por organización de obra: Tiempo de inactividad por causas ajenas a la máquina (falta de tajo, suministros, averías de otras máquinas, etc.).
  • Tiempo de trabajo útil: Horas netas donde la máquina produce, incluyendo trabajo productivo y trabajo no productivo o complementario.

Esta distribución temporal implica que el coste horario de una máquina varía en función de la referencia. Para el propietario, el coste se evalúa en relación con la hora de utilización, mientras que, en el caso de un alquiler, se refiere a la hora laborable real. Ampliar la jornada laboral para aumentar las horas útiles puede disminuir el coste horario fijo y acortar los plazos, pero hay que sopesarlo con inconvenientes como el aumento de costes por horas extra del operario, su fatiga y la dilución de responsabilidades si hay varios conductores, lo que puede incrementar las averías.

¿Cómo se calcula la fiabilidad de un equipo de construcción y cuáles son las fases de su vida útil según la “curva de la bañera”?

La fiabilidad se define como la probabilidad de que una unidad funcione correctamente en un intervalo de tiempo determinado sin interrupciones debidas a fallos de sus componentes, en condiciones establecidas. Está relacionada con el tiempo medio entre fallos (TMEF), que es la relación entre las horas de funcionamiento y el número de averías sufridas en ese período.

La «curva de la bañera» describe la evolución de la tasa de fallos de una máquina a lo largo del tiempo y se divide en tres fases:

  1. Período de mortalidad infantil o fallos prematuros: Caracterizado por una alta tasa de fallos que disminuye rápidamente. Las causas suelen ser errores de diseño, fabricación o uso. Estos fallos ocurren en la fase de rodaje y, una vez resueltos, no suelen repetirse.
  2. Período de tasa de fallos constante o vida útil: Los fallos aparecen de forma aleatoria y accidental, debidos a limitaciones de diseño, percances por uso o mal mantenimiento. Es el período ideal de utilización de la máquina.
  3. Período de desgaste: La tasa de fallos aumenta con el tiempo debido a la vejez y el fin de la vida útil. En esta fase, se recomienda el reemplazo preventivo de componentes o incluso la renovación completa del equipo para evitar incidentes catastróficos.
Figura 2. Curva de fiabilidad de una máquina

Para alargar su vida útil, se puede aplicar el envejecimiento preventivo (funcionamiento preliminar para detectar fallos prematuros) y la sustitución preventiva (reemplazo de unidades al finalizar su vida útil para evitar fallos).

¿Cómo se modela la fiabilidad de una máquina y qué técnicas de prevención de fallos se utilizan en el diseño?

La fiabilidad de una máquina puede modelarse mediante la distribución exponencial cuando la tasa de fallos es constante durante el período de vida útil. Esto implica que la ocurrencia de un fallo es imprevisible e independiente de la vida útil del equipo. Una generalización de este modelo es la función de Weibull, que se utiliza cuando la tasa de fallos es variable y permite tener en cuenta las fases de fallos precoces y de envejecimiento.

En lo que respecta a las técnicas de prevención de fallos en el diseño de equipos, las empresas se centran en maximizar la fiabilidad del producto. Algunas metodologías clave son:

  • Despliegue de la Función de Calidad (QFD): Permite traducir los requisitos de calidad del cliente en características técnicas del producto, utilizando matrices para analizar necesidades, competencia y nichos de mercado.
  • Análisis Modal de Fallos y Efectos (AMFE): Una metodología estructurada para identificar y prevenir modos de fallo potenciales y sus causas en un producto o sistema.
  • Análisis del valor: Busca reducir el coste del producto sin eliminar las características esenciales demandadas por los clientes, identificando cambios que aumenten el valor sin un incremento desproporcionado del coste.

¿Cómo influyen las condiciones climáticas y otros imprevistos en la planificación del tiempo de trabajo en una obra de construcción?

Las condiciones climáticas y otros imprevistos son factores cruciales que influyen en el plazo de ejecución de una obra. La planificación del tiempo de trabajo disponible se basa en datos históricos del clima y en el calendario laboral.

El método de la Dirección General de Carreteras, por ejemplo, utiliza coeficientes de reducción aplicados al número de días laborables de cada mes para estimar los días efectivamente trabajados. Estos coeficientes tienen en cuenta:

  • Temperatura límite: Por debajo de la cual no se pueden ejecutar ciertas unidades de obra (ej., 10 ºC para riegos bituminosos, 5 ºC para mezclas bituminosas, 0 ºC para manipulación de materiales húmedos).
  • Precipitación límite diaria: Se definen valores como 1 mm/día para trabajos sensibles a lluvia ligera y 10 mm/día para la mayoría de los trabajos, donde una protección especial sería necesaria.

Los días utilizables netos de cada mes se calculan multiplicando los días laborables por los coeficientes reductores por climatología adversa y por los días no laborables, que dependen de festivos y convenios laborales. La reducción de días representa la probabilidad de que un día del mes sea favorable desde el punto de vista climático y laborable. Estos cálculos permiten elaborar un plan de obra lo más ajustado posible, minimizando las desviaciones de plazo, aunque la evolución del tiempo atmosférico es impredecible en la práctica.

¿Qué se entiende por “disponibilidad” de una máquina en obra y cómo se calcula?

La disponibilidad de una máquina se refiere a su estado operativo, es decir, al tiempo en el que se encuentra disponible. Se pueden distinguir dos tipos principales de disponibilidad:

  • Disponibilidad en obra o factor de disponibilidad: Se define como el cociente entre el tiempo en que una máquina se encuentra en estado operativo y el tiempo laborable real. En otras palabras, es la relación entre las horas brutas de disponibilidad y las horas que la máquina ha estado presente en la obra. Valores bajos de este factor pueden indicar una mala conservación, reparaciones lentas o falta de repuestos.
  • Disponibilidad intrínseca: Se define como el cociente entre el tiempo de utilización y el tiempo laborable real, sin tener en cuenta las paradas ajenas a la máquina por tiempo disponible no utilizado (mala organización de la obra, etc.). Estadísticamente, se define como la probabilidad de que una máquina funcione correctamente en un momento determinado o de que no presente averías irreparables en un tiempo máximo.

Las máquinas se clasifican en «principales» (se requiere alta disponibilidad, ya que su fallo paraliza la producción de un conjunto de máquinas) y «secundarias» o «de producción trabajando solas».

¿Cómo se calcula la disponibilidad de un conjunto de máquinas trabajando en cadena y en paralelo?

La disponibilidad de un sistema de máquinas varía significativamente en función de si trabajan en serie o en paralelo.

  • Máquinas trabajando en cadena (serie): Si n máquinas trabajan en cadena, y el fallo de una paraliza a las demás, la disponibilidad intrínseca del conjunto es el producto de las disponibilidades individuales. Esto significa que la disponibilidad general disminuye rápidamente al aumentar el número de máquinas en serie. Si se admiten acopios intermedios suficientemente grandes, la disponibilidad del equipo sería el mínimo de las disponibilidades individuales, lo que amplía la disponibilidad respecto a no tener acopios.
  • Máquinas trabajando en paralelo: Si n máquinas iguales trabajan en paralelo y la inoperatividad de una no detiene completamente el proceso (ya que otras pueden seguir trabajando), la probabilidad de que x máquinas se encuentren en disposición sigue una distribución binomial. En este caso, la disponibilidad del conjunto aumenta al tener más unidades en paralelo, ya que el sistema puede continuar operando incluso si algunas máquinas fallan.

En un caso general de máquinas principales en paralelo y auxiliares en paralelo que luego trabajan en serie, la disponibilidad del conjunto se calcula combinando las fórmulas de disponibilidad en serie y en paralelo.

 

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Robustez estructural y colapso progresivo: claves para entender y proteger nuestras construcciones

Colapso de una torre de viviendas en Ronan Point (Reino Unido). By Derek Voller, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=59931718

La robustez estructural es la cualidad que permite a un edificio o puente soportar eventos inesperados —un fallo aislado, un impacto, una explosión—sin que ello provoque un colapso generalizado. Con el fin de aclarar el tema, se plantea la siguiente hipótesis: ¿qué ocurriría si un edificio perdiera de forma repentina uno de sus pilares portantes? En caso de que el diseño del edificio sea adecuado, las cargas que anteriormente transmitía dicho pilar se distribuirán de manera alternativa entre los elementos restantes, evitando así su colapso total. La capacidad de «resistir a contracorriente» ante situaciones inusuales se denomina robustez, constituyendo una línea de defensa fundamental para garantizar la seguridad de las personas y la continuidad del uso de la infraestructura.

El concepto puede resultar abstracto, pero es suficiente con considerar ejemplos dramáticos del pasado: en 1968, el colapso de una torre de viviendas en Ronan Point (Reino Unido) se originó por la explosión de una bombona de gas en un piso. Un fallo local aparentemente limitado desencadenó la caída de varias plantas, debido a la falta de mecanismos suficientes para redirigir las cargas. Por el contrario, un diseño sólido y bien fundamentado prevé esa posibilidad y mantiene la estructura del edificio en pie incluso tras el daño inicial, minimizando el número de víctimas y la magnitud del desastre.

Dentro de la robustez, se identifican diversas cualidades fundamentales. La redundancia implica la disposición de múltiples vías para garantizar la llegada de las cargas al terreno. En caso de una interrupción en una de las vías, las otras están preparadas para asumir la carga de manera inmediata. La ductilidad se define como la capacidad de los materiales —como el acero, el hormigón armado o la madera— para deformarse sin quebrarse de forma brusca. Esta «flexibilidad» les permite absorber la energía generada por impactos o terremotos, evitando así roturas instantáneas. La integridad estructural se define como la continuidad de todos los elementos conectados, de modo que las vigas, columnas y losas formen un conjunto que trabaje armónicamente y no se separe ante un esfuerzo puntual.

El colapso progresivo es un proceso en el que un fallo inicial genera otros a su alrededor, extendiéndose como una fiebre que consume toda la estructura. Analogía: el desplome de la primera ficha de dominó puede desencadenar la caída de todas las demás. En el ámbito de la ingeniería estructural, se busca evitar dicha reacción en cadena. Para ello, se implementan técnicas de «atado» o «conexión reforzada», mediante las cuales se une las vigas y columnas con armaduras continuas o refuerzos en puntos críticos. De esta manera, en caso de fallo de un elemento, el resto del sistema no se ve comprometido.

En el ámbito de la ingeniería, la incorporación de la robustez en los proyectos se aborda mediante la aplicación de diversas estrategias. Una de las metodologías más eficaces consiste en anticipar los posibles escenarios de daño, tales como impactos de vehículos, explosiones accidentales o errores de construcción. Posteriormente, se verifica mediante modelos simplificados que la estructura mantiene su estabilidad incluso cuando falta un pilar o una viga. Otra estrategia prescriptiva implica el refuerzo de elementos clave, tales como las columnas exteriores o los núcleos de las escaleras, mediante la incorporación de armaduras o perfiles metálicos de mayor sección, con el fin de actuar como «pilares de reserva» que soporten las cargas críticas.

La normativa europea, establecida en los Eurocódigos, ha establecido durante años la exigencia de que los edificios posean la capacidad de resistir sin colapsar de manera desproporcionada ante acciones accidentales. Es importante destacar que esta medida no implica la necesidad de afrontar situaciones de alto riesgo, como bombardeos o terremotos de gran intensidad. En cambio, se refiere a la capacidad del edificio para resistir eventos menos probables pero potencialmente significativos, tales como la explosión de una tubería de gas o el choque de un camión contra un pilar. Para ello, se establecen diversos niveles de severidad del daño y se implementan criterios de diseño más o menos rigurosos, en función del riesgo para las personas y el entorno.

En la práctica, estos requisitos se traducen en aspectos constructivos específicos, tales como la unión de las vigas de forjado a las vigas principales y a los muros de cerramiento, la instalación de estribos continuos en las columnas para mejorar su comportamiento ante daños localizados o la previsión de refuerzos metálicos en los puntos de unión más expuestos. Asimismo, se recomienda el empleo de materiales con suficiente ductilidad, como aceros estructurales de alta deformabilidad, y técnicas de construcción que garanticen conexiones firmes, tales como soldaduras completas, atornillados de alta resistencia o conectores especiales en estructuras de madera.

Estos principios, además de aplicarse en la obra nueva, también se emplean en el refuerzo de edificios existentes. En el proceso de rehabilitación de estructuras antiguas, con frecuencia se implementa la adición de pórticos metálicos interiores o el refuerzo de las conexiones de hormigón armado con fibras de carbono, con el propósito de incrementar su ductilidad. En el caso de los puentes, se procede a la instalación de amortiguadores o cables adicionales que permitan la redistribución de esfuerzos en caso de rotura de un tirante. El objetivo principal es la integración de elementos de seguridad en el sistema portante.

En resumen, la robustez estructural es un enfoque global que integra el diseño conceptual, el análisis de riesgos, la definición de escenarios y los detalles constructivos, con el objetivo de prevenir que un fallo puntual derive en un colapso mayor. Es imperativo comprender el colapso progresivo y aplicar medidas de redundancia, ductilidad e integridad —junto a estrategias prescriptivas y de análisis directo—. De esta manera, nuestros edificios y puentes se convierten en sistemas más seguros, preparados para afrontar lo imprevisto y reducir al máximo las consecuencias de cualquier incidente.

Tómese un momento para consultar el siguiente texto, el cual contiene información adicional relevante para su referencia. El presente informe, elaborado por la EU Science Hub, en consonancia con los Eurocódigos, aborda el tema de la resistencia estructural, con el propósito de prevenir colapsos progresivos y desproporcionados en estructuras tales como edificios y puentes. Por favor, proceda a analizar las directrices de diseño existentes en Europa y otros lugares, identificando fortalezas y debilidades en las normativas actuales. El documento propone nuevas estrategias de diseño, como métodos mejorados de fuerza de atado horizontal y consideraciones de rutas de carga alternativas, y aborda la importancia de tener en cuenta el envejecimiento, el deterioro y el diseño multi-riesgo. Se presentan ejemplos ilustrativos de aplicación para diversas estructuras.

Descargar (PDF, 3.34MB)

Glosario de términos clave

  • Robustez (estructural): Capacidad/propiedad de un sistema para evitar una variación del rendimiento estructural (rendimiento del sistema) desproporcionadamente mayor con respecto al daño correspondiente (perturbación del sistema).
  • Vulnerabilidad: Describe el grado de susceptibilidad de un sistema estructural a alcanzar un determinado nivel de consecuencias, para un evento peligroso dado.
  • Daño admisible (damage tolerance): Capacidad de un sistema estructural para soportar un determinado nivel de daño manteniendo el equilibrio con las cargas aplicadas.
  • Continuidad: Conexión continua de los miembros de un sistema estructural.
  • Ductilidad: Capacidad de un sistema estructural para soportar las cargas aplicadas disipando energía plástica.
  • Integridad: Condición de un sistema estructural para permitir la transferencia de fuerzas entre los miembros en caso de eventos accidentales.
  • Incertidumbres: Estado de información deficiente, por ejemplo, relacionada con la comprensión o el conocimiento de un evento, su consecuencia o probabilidad.
  • Probabilidad: Expresión matemática del grado de confianza en una predicción.
  • Fiabilidad (reliability): Medida probabilística de la capacidad de un sistema estructural para cumplir requisitos de diseño específicos. La fiabilidad se expresa comúnmente como el complemento de la probabilidad de falla.
  • Seguridad estructural: Calidad de un sistema estructural, referida a la resistencia, estabilidad e integridad de una estructura para soportar los peligros a los que es probable que esté expuesta durante su vida útil.
  • Riesgo: Una medida de la combinación (generalmente el producto) de la probabilidad o frecuencia de ocurrencia de un peligro definido y la magnitud de las consecuencias de la ocurrencia.
  • Redundancia: La capacidad del sistema para redistribuir entre sus miembros la carga que ya no puede ser soportada por algunos elementos dañados y/o deteriorados.
  • Peligro: Amenaza excepcionalmente inusual y severa, por ejemplo, una posible acción anormal o influencia ambiental, resistencia o rigidez insuficiente, o desviación perjudicial excesiva de las dimensiones previstas.
  • Escenario peligroso: Serie de situaciones, transitorias en el tiempo, que un sistema podría experimentar y que pueden poner en peligro el propio sistema, a las personas y al medio ambiente.
  • Consecuencias del fallo: Los resultados o impactos de un fallo estructural, que pueden ser directos (daño a elementos afectados directamente) o indirectos (fallo parcial o total del sistema subsiguiente).
  • Análisis por presión-impulso (pressure–impulse analysis): Método utilizado para evaluar el rendimiento y el daño de elementos estructurales individuales bajo carga dinámica, definido por curvas iso-daño que relacionan la presión y el impulso.
  • Capacidad de diseño (capacity design): Un principio de diseño sísmico que establece una jerarquía de resistencias de los miembros para garantizar que las rótulas plásticas se formen en ubicaciones deseadas, típicamente en las vigas en lugar de en las columnas (regla columna débil-viga fuerte – SCWB).
  • Factor de robustez R(𝜌, Δ): Un factor propuesto para cuantificar la robustez estructural relacionando el indicador de rendimiento residual (𝜌) con el índice de daño (Δ), a menudo con un parámetro de forma (𝛼).
  • Atados (ties): Elementos o disposiciones utilizados en el diseño estructural para proporcionar resistencia a la tracción y mejorar la robustez, especialmente en caso de pérdida de un elemento vertical de soporte de carga. Pueden ser horizontales o verticales.

Referencias:

MAKOOND, N.; SETIAWAN, A.; BUITRAGO, M., ADAM, J.M. (2024). Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). DOI:10.1038/s41586-024-07268-5

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Metamodel-assisted design optimization of robust-to-progressive-collapse RC frame buildings considering the impact of floor slabs, infill walls, and SSI implementationEngineering Structures, 325:119487. DOI:10.1016/j.engstruct.2024.119487

Algunas reflexiones sobre el impacto del cambio climático en el comportamiento de las infraestructuras

El diseño estructural de infraestructuras, como edificios y puentes, se basa en códigos que establecen los criterios necesarios para garantizar su resistencia a diversas condiciones climáticas y ambientales. Estos códigos se actualizan periódicamente para reflejar los avances científicos y tecnológicos. Sin embargo, el cambio climático plantea un desafío disruptivo, ya que altera las condiciones climáticas de manera impredecible, lo que cuestiona la suposición de que las cargas climáticas son estacionarias.

En estas líneas se aborda cómo la transición del diseño estructural basado en estados límites ha influido en la forma en que se tienen en cuenta las variables climáticas. También aborda las dificultades que surgen al integrar el cambio climático en los modelos de riesgo estructural y analiza la necesidad de ajustar los métodos de estimación y diseño para tener en cuenta la creciente incertidumbre sobre el futuro climático.

Estas reflexiones se enmarcan dentro del proyecto RESILIFE, que actualmente desarrollo como investigador principal, y se han basado en algunas ideas desarrolladas en el trabajo reciente de Ellingwood et al. (2024).

Los códigos estructurales establecen los criterios necesarios para diseñar edificios, puentes y otras infraestructuras capaces de resistir las demandas de uso y los eventos ambientales o climáticos, como la nieve, el hielo, las lluvias, las tormentas de viento e inundaciones fluviales y costeras. Para garantizar que reflejen los últimos avances en ciencia e ingeniería, estos códigos se actualizan periódicamente, generalmente cada 5 o 10 años.

En las últimas cuatro décadas, los códigos estructurales de todo el mundo, como el “Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE 7-22)”, las “LRFD Bridge Design Specifications (AASHTO)”, el “International Building Code“, el “National Building Code of Canada” y los Eurocódigos, han adoptado los principios del diseño basado en estados límite. Durante este tiempo, los ingenieros estructurales y la normativa han reconocido la importancia de las herramientas de análisis de fiabilidad estructural y gestión del riesgo para modelar las incertidumbres asociadas a las cargas estructurales y la respuesta de las estructuras, y así garantizar un rendimiento adecuado en servicio (García-Segura et al., 2017). Con la transición del diseño basado en tensiones admisibles al diseño por estados límite, los criterios para las cargas climáticas han evolucionado gradualmente. Hasta ahora, estos criterios, basados en registros climáticos históricos y en evaluaciones de fiabilidad estructural, han tratado las cargas operativas y climáticas como estacionarias, asumiendo que el pasado es representativo del futuro.

El cambio climático plantea un desafío disruptivo y significativo para la evolución gradual de los códigos basados en el riesgo, así como para las prácticas de diseño estructural (ASCE, 2015a, 2018). La suposición de estacionariedad en el análisis de riesgos naturales deja de ser válida al tener en cuenta los efectos del cambio climático. Además, las incertidumbres asociadas a las proyecciones climáticas para el resto del siglo XXI son considerables, especialmente en lo que respecta a las cargas de viento, hielo y nieve (Tye et al., 2021). Las condiciones climáticas más agresivas podrían acelerar el deterioro estructural en ciertos casos, así como aumentar la intensidad y duración de los peligros. El cambio climático también ha suscitado controversia desde el punto de vista económico y político. Lograr consenso en los comités encargados de los códigos sobre el impacto del cambio climático en las infraestructuras requerirá una gestión técnica eficaz y una separación clara entre los aspectos políticos, como las causas del cambio climático, y los aspectos técnicos, como su impacto en las estructuras. Asimismo, podría haber oposición pública ante los costes adicionales que conlleven las modificaciones en los códigos climáticos. No obstante, ignorar los efectos del cambio climático en el comportamiento a largo plazo de las estructuras e infraestructuras podría incrementar el riesgo de daños y fallos, aumentar los costes de diseño, construcción y mantenimiento, agravar problemas de salud y seguridad públicas, interrumpir servicios esenciales y generar impactos socioeconómicos y ambientales negativos a nivel nacional.

Es fundamental abordar varias preguntas clave para considerar las exigencias del cambio climático en el desarrollo de los códigos estructurales. Entre ellas se encuentran (Ellingwood et al., 2024) :

  • ¿Cómo se debe modelar la no estacionariedad en la ocurrencia e intensidad de los eventos climáticos extremos provocados por el cambio climático?
  • ¿Cómo se deben integrar estas incertidumbres en un análisis de fiabilidad estructural dependiente del tiempo, con el fin de estimar el comportamiento futuro y demostrar el cumplimiento de los objetivos de rendimiento expresados en términos de fiabilidad?
  • ¿Cómo se puede convencer a los ingenieros estructurales y al público en general de la necesidad de aceptar estos cambios en interés nacional (Cooke, 2015), incluso si en algunos casos los costes de los sistemas de infraestructura aumentan?

Problemas y desafíos en el análisis de datos climáticos para el diseño estructural

Las variables climáticas empleadas en los códigos estructurales se basan principalmente en datos históricos. Los vientos extratropicales, la nieve, la temperatura y las precipitaciones se analizan exclusivamente a partir de estos datos. En el caso de los huracanes, se integran datos históricos en un marco que modela su génesis en la cuenca del Atlántico Norte, su desarrollo hasta convertirse en huracanes plenamente formados que impactan en infraestructuras costeras y su disipación tras tocar tierra. Estos análisis suponen que las variables climáticas pueden evaluarse como si fueran estacionarias, es decir, que el pasado es representativo del futuro y que sus intensidades pueden determinarse en función de sus periodos de retorno. Los datos se han recopilado para fines distintos al diseño de edificaciones, como la aviación comercial, la hidrología local, la gestión de recursos hídricos y la agricultura, y generalmente abarcan menos de 100 años.

La mayoría de las variables climáticas incluidas en los códigos se suelen determinar ajustando el parámetro extremo anual a una distribución de probabilidad. Entre las distribuciones más comunes utilizadas para este propósito se encuentran la distribución Tipo I de valores máximos y la distribución generalizada de valores extremos. El periodo de retorno o intervalo medio de recurrencia de una carga se calcula como el recíproco de la probabilidad anual de que dicha carga se supere. El error de muestreo en la estimación de los eventos base de diseño en una secuencia estacionaria para periodos de retorno superiores a 100 años puede ser considerable. Sin embargo, las estimaciones de las medias de las muestras suelen ser razonablemente estables cuando se actualizan en intervalos típicos de 10 años con datos climáticos adicionales.

La suposición de estacionariedad en los datos no puede justificarse en un contexto de cambio climático (Pandey y Lounis, 2023), y el concepto de un evento asociado a un periodo de retorno específico no es aplicable en sentido estricto. El aumento (o disminución) de las variables climáticas, junto con la creciente incertidumbre en los modelos de predicción climática, especialmente a partir del año 2060, afectará a la forma de analizar y especificar los datos para fines de diseño estructural. Quizás lo más relevante sea el impacto que tendrá sobre la forma en que se comunicarán los peligros de diseño a la comunidad profesional de la ingeniería y a sus clientes (Cooke, 2015).  Ellingwood et al. (2024) recuerdan claramente la confusión generada por el concepto de periodo de retorno cuando se introdujo a finales de la década de 1960. El periodo de retorno se concibió como una herramienta para reconocer que el parámetro de carga es aleatorio y para definir indirectamente la probabilidad anual de que se supere su intensidad de diseño, sin necesidad de recurrir a probabilidades pequeñas que no eran habituales entre los ingenieros estructurales de esa época. Esto podría explicar por qué algunos investigadores climáticos han intentado presentar sus estimaciones de parámetros utilizando el concepto de periodo de retorno (Ribereau et al., 2008; Salas y Obeysekera, 2014). Este problema requiere una reflexión cuidadosa al tratar con un clima cambiante, donde las probabilidades anuales no son constantes a lo largo de la vida útil de una estructura.

El crecimiento proyectado de las variables climáticas y sus incertidumbres más allá del año 2060 indica que será necesario desarrollar métodos para gestionar la incertidumbre epistémica -se refiere a la incertidumbre del modelo- en la estimación de parámetros, un aspecto que no se había tenido en cuenta previamente al estimar las variables climáticas para desarrollar códigos estructurales. Aunque la precisión de las técnicas generales de pronóstico climático ha mejorado gracias a la recopilación continua de datos, los modelos climáticos actuales son más capaces de predecir el impacto del cambio climático sobre la temperatura y las precipitaciones que sobre fenómenos como inundaciones, nevadas y vientos. Esto resulta problemático a la hora de considerar los niveles de probabilidad apropiados para el análisis de seguridad estructural.

Las futuras investigaciones podrían centrarse en el desarrollo de modelos más precisos para cargas climáticas específicas, como ciclones tropicales o sequías prolongadas, que aún presentan elevadas incertidumbres en sus proyecciones. Además, sería valioso explorar la aplicación de estos principios a sistemas de infraestructura emergentes, como redes de energía renovable o tecnologías de transporte resilientes. Por último, se sugiere investigar métodos para integrar datos climáticos en tiempo real en el diseño y seguimiento de infraestructuras, fomentando un enfoque dinámico y adaptable al cambio climático.

En resumen, los códigos estructurales establecen los criterios necesarios para diseñar infraestructuras capaces de resistir eventos climáticos como tormentas, nieve e inundaciones, y se actualizan periódicamente para reflejar los avances científicos y tecnológicos. Sin embargo, el cambio climático plantea un reto significativo, ya que altera las condiciones climáticas de manera impredecible, lo que hace que la suposición de estacionariedad que hasta ahora ha guiado el diseño estructural sea obsoleta. Este artículo explora cómo los códigos estructurales han evolucionado hacia un diseño basado en estados límite y la necesidad urgente de ajustar los métodos de análisis de riesgos ante la creciente incertidumbre climática. Además, se analizan los problemas derivados del uso exclusivo de datos históricos para modelar cargas climáticas y las dificultades que plantea el cambio climático a la hora de predecir eventos extremos. Finalmente, se destaca la necesidad de desarrollar nuevos modelos y enfoques analíticos que garanticen la seguridad de las infraestructuras en un entorno climático en constante cambio.

Os dejo un mapa conceptual sobre las reflexiones anteriores.

Referencias:

ASCE (2015). Adapting infrastructure and civil engineering practice to a changing climate. Committee on Adaptation to a Changing Climate. American Society of Civil Engineers.

ASCE (2018). Climate-resilient infrastructure: Adaptive design and risk management. Reston, VA: Committee on Adaptation to a Changing Climate. American Society of Civil Engineers.

Cooke, R. M. (2015). Messaging climate change uncertainty. Nature Climate Change5(1), 8-10.

Ellingwood, B. R., Bocchini, P., Lounis, Z., Ghosn, M., Liu, M., Yang, D., Capacci, L., Diniz, S., Lin, N., Tsiatas, G., Biondini, F., de Lindt, J., Frangopol, D.M., Akiyama, M., Li, Y., Barbato, M., Hong, H., McAllister, T., Tsampras, G. & Vahedifard, F. (2024). Impact of Climate Change on Infrastructure Performance. In Effects of Climate Change on Life-Cycle Performance of Structures and Infrastructure Systems: Safety, Reliability, and Risk (pp. 115-206). Reston, VA: American Society of Civil Engineers.

García-Segura, T., Yepes, V., Frangopol, D. M., & Yang, D. Y. (2017). Lifetime reliability-based optimization of post-tensioned box-girder bridges. Engineering Structures145, 381-391.

Pandey, M. D., & Lounis, Z. (2023). Stochastic modelling of non-stationary environmental loads for reliability analysis under the changing climate. Structural Safety103, 102348.

Ribereau, P., Guillou, A., & Naveau, P. (2008). Estimating return levels from maxima of non-stationary random sequences using the Generalized PWM method. Nonlinear Processes in Geophysics15(6), 1033-1039.

Salas, J. D., & Obeysekera, J. (2014). Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events. Journal of hydrologic engineering19(3), 554-568.

Tye, M. R., & Giovannettone, J. P. (2021, October). Impacts of future weather and climate extremes on United States infrastructure: Assessing and prioritizing adaptation actions. Reston, VA: American Society of Civil Engineers.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Seguridad estructural, los estados límites y los métodos semiprobabilísticos

El concepto de seguridad de una estructura en cumplir un conjunto de funciones para las que ha sido proyectada es un término relacionado con el grado de certeza o fiabilidad de que no alcance un conjunto de estados no deseables que todavía no han acontecido.

La seguridad se representa por consiguiente como un aspecto antagónico al aspecto económico del dimensionamiento: una estructura proyectada para un coste pequeño puede resultar poco segura y, por el contrario, una estructura proyectada para ser muy segura puede resultar antieconómica. La solución debe quedar en un término adecuado.

El concepto de seguridad en una estructura se refiere a su capacidad para cumplir con las funciones previstas, garantizando un nivel de fiabilidad que evite la ocurrencia de estados no deseados. La seguridad se contrapone al aspecto económico del diseño: una estructura económica puede ser menos segura, mientras que una estructura altamente segura puede resultar costosa. Por lo tanto, es necesario encontrar un equilibrio adecuado entre ambos aspectos.

El objetivo principal del Proyecto de Ingeniería Estructural consiste en garantizar que la estructura cumpla satisfactoriamente con su función original. El mantenimiento de esta funcionalidad a lo largo de su vida útil depende de diversos factores o parámetros que tradicionalmente se han considerado como cantidades deterministas.

Sin embargo, evaluar la seguridad en ingeniería es complicado debido a varios factores. En primer lugar, los accidentes pueden ocurrir por causas no relacionadas con los cálculos realizados, como erosiones o modelos inadecuados. Además, tratar el problema de forma aleatoria puede llevar a considerar la probabilidad como medida universal e invariable de seguridad. Sin embargo, la probabilidad solo es significativa en relación con un conjunto coherente de conocimientos, como los estados de falla no ocurridos, difíciles de definir. Además, existen incertidumbres que no pueden ser objetivamente cuantificadas mediante probabilidades. Por lo tanto, las probabilidades solo pueden ser definidas dentro de un contexto específico y los cálculos de probabilidad son meramente convencionales. Además, si bien medir el margen de seguridad a través de una magnitud física puede ser útil en un problema particular, no todas las magnitudes son adecuadas en todos los casos generales. Por ejemplo, las tensiones no son una magnitud adecuada para el estudio del equilibrio estático, y evaluar el margen de seguridad basándose en las tensiones puede ser incorrecto en problemas no lineales.

En el contexto de la Teoría de la Fiabilidad Estructural, Armen Der Kiureghian presenta los siguientes tipos de incertidumbres. En primer lugar, están las incertidumbres físicas, que surgen debido a la inherente variabilidad de las magnitudes físicas involucradas en el problema, como dimensiones, propiedades del material, cargas y resistencia. En segundo lugar, encontramos las incertidumbres estadísticas, que se originan a partir de los modelos probabilísticos utilizados para caracterizar las Variables Básicas del problema. Estas incertidumbres se deben a las aproximaciones necesarias para seleccionar las Funciones de Distribución y estimar sus parámetros, debido a la falta de información disponible. En tercer lugar, se presentan las incertidumbres del modelo, que son generadas por las hipótesis simplificativas realizadas en los modelos matemáticos empleados para describir la respuesta de un sistema estructural. Estas simplificaciones incluyen aspectos como la homogeneidad, el comportamiento elástico o elastoplástico, las pequeñas deformaciones y las condiciones de contorno. Aunque la variabilidad de los dos últimos tipos de incertidumbres puede reducirse a través del estudio e investigación, las incertidumbres físicas del primer tipo son inevitables.

En el pasado, las construcciones se basaban en métodos empíricos, confiando en la experiencia y la intuición del constructor para garantizar la seguridad. Sin embargo, en la actualidad, la experiencia debe complementarse con los resultados obtenidos, ya que la rápida evolución técnica puede presentar situaciones no experimentadas previamente. Con el surgimiento de la construcción metálica en el siglo XIX y el enfoque en la Resistencia de Materiales, se introdujo el método de tensiones admisibles. Este método implica un enfoque determinista en las variables utilizadas, donde la seguridad se basa en el margen establecido por las tensiones admisibles. Estas tensiones se obtienen mediante el cociente entre la resistencia del material y un coeficiente de seguridad, mientras que las cargas variables se establecen de manera empírica y arbitraria.

El desarrollo de la Teoría de la Elasticidad permitió aplicar este método en la construcción de hormigón armado, pero presenta desafíos. Cuando el comportamiento no es lineal debido a los materiales o la geometría de la estructura, las tensiones admisibles no reflejan el margen real de seguridad. Además, el comportamiento del hormigón y el acero dificulta definir el fallo en términos de tensiones. No se consideran los efectos de la adaptación plástica del hormigón, donde la tensión en un punto no determina la confiabilidad estructural si hay una fase de adaptación plástica que redistribuye los esfuerzos. Además, no se distinguen los diferentes tipos de acciones cuya influencia en la seguridad es distinta. No obstante, este método ha sido utilizado con profusión durante la primera mitad del siglo XX.

La Teoría de la Fiabilidad, que inicialmente se aplicaba a procesos industriales de producción en serie, se adaptó en 1960 al campo de la Ingeniería Estructural. El objetivo era desarrollar métodos que permitieran determinar los niveles de seguridad de los Sistemas Estructurales, mediante un enfoque racional de las incertidumbres presentes en ellos. Desde entonces, esta área de investigación ha experimentado un notable impulso, y los fundamentos teóricos desarrollados han dejado de ser exclusivamente un tema de investigación académica para convertirse en un conjunto de metodologías con una amplia gama de aplicaciones prácticas.

No obstante, los avances tecnológicos y los métodos de análisis han permitido realizar estudios de seguridad más precisos en las estructuras mediante la incorporación de modelos estadísticos y de probabilidad en los cálculos. Desde los primeros intentos, como el de Max Mayer en 1926, numerosos autores han contribuido al desarrollo del enfoque probabilístico y a su aplicación práctica. Para emplear la probabilidad en los cálculos, es necesario definir un conjunto coherente de eventos no deseados, denominados “estados límite”. Estos estados límite representan condiciones en las que una estructura o uno de sus elementos deja de cumplir su función de manera inmediata o progresiva. La seguridad se caracteriza por la probabilidad o conjunto de probabilidades de que los estados límite no sean superados. Al elegir la probabilidad de ocurrencia de un estado límite como medida convencional de la seguridad, es necesario establecer los valores aplicables en la práctica.

A primera vista, podría parecer que el uso de probabilidades resuelve por completo el problema de medir la seguridad. Sin embargo, su implementación enfrenta dos dificultades. Por un lado, están los datos que no se pueden cuantificar de manera probabilística debido a su naturaleza. Por otro lado, resulta prácticamente imposible conocer con precisión la probabilidad real de alcanzar un estado límite. Estas limitaciones dificultan la aplicación práctica de las probabilidades en la evaluación de la seguridad.

La seguridad puede tratarse en tres niveles, según el grado de simplificación en el abordaje del problema:

  • Nivel 3: Utiliza el cálculo de probabilidades sin restricciones en la representación de las incertidumbres.
  • Nivel 2: Representa las acciones, resistencias de materiales y secciones mediante distribuciones conocidas o asumidas, definidas por su tipo, media y desviación típica. La fiabilidad se expresa con el “índice de seguridad” (β).
  • Nivel 1: Establece niveles de fiabilidad estructural aplicando factores parciales de seguridad a valores nominales preestablecidos de las variables fundamentales.

Los métodos de nivel 2 y 3 emplean probabilidades que están vinculadas a hipótesis apriorísticas sobre las distribuciones de los datos.

En cambio, el método de nivel 1, conocido como método semiprobabilístico, considera solo ciertos elementos que se pueden cuantificar de manera probabilística, mientras que las demás incertidumbres se abordan mediante factores empíricos que poseen un significado físico específico. Este método es el más simple y ampliamente reconocido en la actualidad.

Os paso un vídeo explicativo sobre conceptos de fiabilidad estructural de Juan Carlos López Agüí, que espero os sea de interés.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Resultados finales del proyecto DIMALIFE: Diseño y mantenimiento robusto y basado en fiabilidad de puentes

Figura 1. Mapa mental del proyecto de investigación DIMALIFE

En el pasado Congreso ACHE 2022, celebrado recientemente en Santander, tuve la oportunidad de presentar los resultados del proyecto de DIMALIFE. Este proyecto fue anterior al actual HYDELIFE y supone una línea de investigación de alta productividad para nuestro grupo de investigación. En el periodo comprendido entre 2018 y 2021, tuvimos la ocasión de publicar 50 artículos indexados de alto impacto en el JCR, defender 5 tesis doctorales, 10 trabajos fin de máster y 25 comunicaciones a congresos. A ello hay que añadir la irrupción de la pandemia, que impidió una mayor presencia física en los congresos para diseminar los resultados alcanzados. Pero para eso está internet y las redes sociales.

Os paso, por tanto, el artículo completo donde se recogen los resultados. Lo más interesante son las referencias. Si alguien tiene interés por alguna de ellas, me las puede solicitar. También os paso un enlace a los resultados del grupo en este y otros proyectos de investigación: https://victoryepes.blogs.upv.es/publicaciones/articulos-jcr/

Referencia:

YEPES, V.; PELLICER, E.; MARTÍ, J.V.; KRIPKA, J. (2022). Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

Descargar (PDF, 373KB)

Comunicaciones presentadas al VIII Congreso Internacional de Estructuras de ACHE

Durante los días 20-22 de junio de 2022 tendrá lugar el VIII Congreso Trienal de la Asociación Española de Ingeniería Estructural (ACHE), un excelente encuentro internacional de profesionales y especialistas en el campo de las estructuras, cuyo nivel técnico lo avalan las anteriores ediciones. Los objetivos fundamentales de este Congreso Internacional de Estructuras son, por un lado, dar a conocer los avances, estudios y realizaciones recientemente alcanzados en el ámbito estructural (en Edificación y en Ingeniería Civil e Industrial), y, por otro, exponer las actividades de la Asociación a sus miembros, amigos, y a toda la sociedad a cuyo servicio se encuentra ACHE realizando una labor de difusión técnica sin ánimo de lucro.

Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes. Además, tendré el honor de ser Presidente de Sala en la Sesión Técnica 5 de Gestión de Estructuras, el martes 21 de junio de 2022, en el Aula 5. Nos veremos pronto en el Congreso.

MARTÍ, J.V.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Diseño de experimentos para la calibración de la heurística de optimización de muros de contrafuertes. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

En la actualidad, los técnicos se enfrentan al desafío de encontrar soluciones estructurales más eficientes, cumpliendo con todas las restricciones de seguridad y funcionalidad. Como ayuda a este reto, surgen las técnicas de optimización heurísticas. El algoritmo aplicado en este artículo es el Recocido Simulado o Simulated Annealing (SA). La estructura sobre la que se emplea esta metodología es un muro de contrafuertes de hormigón armado de 11 metros de altura. La eficiencia del algoritmo depende de la elección de los parámetros más adecuados que lo definen. Para ello, se realiza un diseño de experimentos factorial fraccionado que permite, a través de un análisis estadístico, detectar aquellos parámetros de la heurística que más afectan al resultado de la solución obtenida.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2022). Aplicación del análisis del valor MIVES a la estructura de una vivienda unifamiliar de autopromoción con criterios de sostenibilidad. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

En este trabajo se estudia el óptimo diseño de la estructura y cerramiento entre tres alternativas dispares aplicadas a una vivienda unifamiliar adosada, para la toma de decisión de un autopromotor, apoyándose en métodos multicriterio y teniendo en cuenta parámetros de sostenibilidad. Se obtiene así la validación del método para una alternativa “convencional”, “prefabricada” y “tecnológica”, consiguiendo esta última la mejor valoración. Esta información permitiría a cualquier gestor conocer desde el inicio del proyecto los aspectos fundamentales que marcarán el equilibrio medioambiental, económico y social del futuro edificio a lo largo de su ciclo de vida para hacerlo, en definitiva, más sostenible.

YEPES, V.; PELLICER, E.; MARTÍ, J.V.; KRIPKA, J. (2022). Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos. VIII Congreso de la Asociación Española de Ingeniería Estructural ACHE. Santander, 2022.

El artículo expone los resultados alcanzados dentro del proyecto de investigación DIMALIFE. Se desarrolla una metodología que incorpora la variabilidad en los procesos de toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, de forma que se contemplen las necesidades e intereses sociales y ambientales con presupuestos restrictivos. La variabilidad inherente a los parámetros, variables y restricciones del problema resulta crítica si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad. Se precisa introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos.

Curso en línea de “Gestión de costes y producción de la maquinaria empleada en la construcción”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Gestión de costes y producción de la maquinaria empleada en la construcción”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-gestion-de-costes-y-produccion-de-la-maquinaria-empleada-en-la-construccion/

Os paso un vídeo explicativo y os doy algo de información tras el vídeo.

Este es un curso básico sobre la gestión de los costes y la producción de los equipos y maquinaria empleada en la construcción, tanto en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado para que el estudiante pueda profundizar en aquellos aspectos que les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás los conceptos básicos sobre la gestión de la producción, la selección económica de los bienes de equipo, los costes de propiedad y operación de la maquinaria, su amortización, la disponibilidad y fiabilidad de los equipos, el mantenimiento y reparación, los parques de maquinaria y la gestión de instalaciones, almacenes e inventarios, el estudio del trabajo y la productividad, las políticas de incentivos, métodos de medición del trabajo y la producción de equipos de máquinas. El curso se centra especialmente en la comprensión de los fundamentos básicos que gobiernan la gestión de los costes y la producción de los equipos, mostrando especial atención a la maquinaria pesada de movimientos de tierras y compactación. Es un curso de espectro amplio que incide en el conocimiento de los fundamentos de la ingeniería de la producción. Resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de los métodos y técnicas empleadas en la gestión de los costes y el rendimiento de la maquinaria en casos concretos. El curso trata llenar el hueco que deja la bibliografía habitual, donde no se profundiza en el coste y la producción de conjuntos de equipos. Además, el curso está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso se organiza en 30 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. Además, se entregan 75 problemas resueltos que complementan la teoría estudiada en cada lección. La dedicación aproximada para cada lección se estima en 2-3 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Al finalizar cada unidad didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos del tema abordado. Al final se han diseñado tres unidades adicionales para afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y su capacidad para resolver problemas reales. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está programado para 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de las técnicas actuales para la gestión de costes y producción de los equipos de máquinas empleados para la construcción
  2. Evaluar y seleccionar la maquinaria atendiendo a criterios económicos y técnicos
  3. Conocer la gestión de los sistemas de almacenamiento de materiales en obra y los parques de maquinaria
  4. Aplicar las técnicas de estudios de métodos y medición del trabajo para mejorar la eficiencia de los equipos
  5. Aplicar técnicas de aprendizaje e incentivos a la producción para mejorar la productividad

Programa

  • – Lección 1. Mecanización de las obras
  • – Lección 2. Adquisición y renovación de la maquinaria
  • – Lección 3. La depreciación de los equipos y su vida económica
  • – Lección 4. Selección de máquinas y equipos
  • – Lección 5. La estructura del coste
  • – Lección 6. Costes de propiedad de las máquinas
  • – Lección 7. Costes de operación de las máquinas
  • – Lección 8. Fondo horario y disponibilidad de los equipos
  • – Lección 9. Fiabilidad de los equipos
  • – Lección 10. Mantenimiento y reparación de los equipos
  • – Lección 11. Instalación y organización interna de la obra
  • – Lección 12. Parques de maquinaria y gestión de inventarios
  • – Lección 13. Constructividad y constructibilidad
  • – Lección 14. Estudio del trabajo y productividad
  • – Lección 15. Los incentivos a la productividad en la construcción
  • – Lección 16. Estudio de métodos
  • – Lección 17. Medición del trabajo
  • – Lección 18. La curva de aprendizaje en la construcción
  • – Lección 19. Ciclo de trabajo y factor de acoplamiento
  • – Lección 20. Producción de los equipos
  • – Lección 21. Composición y clasificación de suelos
  • – Lección 22. Movimiento de tierras y factor de esponjamiento
  • – Lección 23. Producción de los buldóceres
  • – Lección 24. Producción de las cargadoras
  • – Lección 25. Producción de las motoniveladoras
  • – Lección 26. Producción de las mototraíllas
  • – Lección 27. Producción de las retroexcavadoras
  • – Lección 28. Producción de las dragalinas
  • – Lección 29. Producción de los equipos de acarreo
  • – Lección 30. Producción de los compactadores
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 160 artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 16 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Universitat Politècnica de València.

Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.

Referencias:

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

 

Técnicas de prevención de fallos en el diseño de productos

Las empresas dedicadas al diseño de productos deberían focalizar sus esfuerzos en que dicho producto tenga una elevada fiabilidad, es decir, que su probabilidad de fallo se reduzca al mínimo posible. Para asegurarse de que el diseño satisface las necesidades del cliente a un coste proporcionado al valor añadido, es posible utilizar diversas técnicas como son, entre otras, el despliegue de la función de calidad (QFD, Quality Function Deployment), el análisis modal de fallos y efectos (AMFE) y el análisis del valor.

  • El despliegue de la función de calidad, QFD, permite traducir los requerimientos de calidad del cliente en características técnicas del producto. Se trata de una metodología simple y lógica que involucra un conjunto de matrices, las cuales permiten determinar las necesidades del cliente, analizar a la competencia y descubrir los nichos de mercado no explotados.
  • El análisis modal de fallos y efectos, AMFE, es una metodología analítica estructurada que permite tener en cuenta y se han resuelto los modos de fallo potencial de un producto o sistema y sus causas, para evitarlos.
  • El análisis del valor trata de reducir el coste de un producto sin eliminar las características demandadas por los clientes. También permite detectar los cambios que deberían realizarse para dar mayor al producto sin que el incremento de coste sea superior al aumento de precio.

A continuación os dejo algunos vídeos explicativos de estas técnicas de prevención de fallos en los productos.

Referencias:

HARRIS, F.; McCAFFER, R. (1999). Construction Management. Manual de gestión de proyecto y dirección de obra. Ed. Gustavo Gili, S.A., Barcelona, 337 pp. ISBN: 84-252-1714-8.

JORDAN, M.; BALBONTIN, E. (1986). Organización, planificación y control. Escuela de la Edificación, UNED, Madrid. ISBN: 84-86957-39-7.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

VELASCO, J. (2014). Organización de la producción. Distribuciones en planta y mejora de los métodos y los tiempos. 3ª edición, Ed. Pirámide, Madrid. ISBN: 978-84-368-3018-7.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipos de ensayos de fiabilidad para la distribución exponencial

Figura 1. Los ensayos de fiabilidad permiten estimar el tiempo medio entre fallos de la maquinaria en una obra

En obra pueden estimarse el tiempo medio entre fallos de una máquina mediante los denominados como ensayos de fiabilidad, basándose para ello en la distribución exponencial. Los tipos de ensayos posibles son los siguientes:

  • Ensayos completos: Se realizan hasta el fallo de todas las unidades. 
  • Ensayos censurados: Un ensayo de fiabilidad se llama censurado de orden k si la experiencia se detiene al producirse el fallo k-ésimo. También se llama test limitado por fallos. Puede ser con o sin reemplazamiento de las unidades averiadas. 
  • Ensayos truncados: Un ensayo de fiabilidad se llama truncado cuando la experiencia se detiene al cabo de una cierta duración. También se llama test limitado por tiempo. También pueden ser con o sin reemplazamiento.

La estimación del tiempo medio entre fallos (MTBF) se obtiene repartiendo la duración del ensayo por en número de fallos:

donde

T = tiempo total acumulado del test

r = número de fallos

En los ensayos censurados, si se conoce el valor de q se puede obtener la duración esperada para el ensayo.

  • En ensayo sin reemplazamiento:

  • En ensayo con reemplazamiento:

siendo r el número de fallos y n el de unidades

Asimismo, si se conoce el valor de q se puede obtener el número esperado de fallos en un ensayo trucado de duración T:

  • En ensayo sin reemplazamiento:

  • En ensayo con reemplazamiento:

donde n es el número de unidades ensayadas y T la duración prefijada del ensayo.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curva de fiabilidad de una máquina

Figura 1. La fiabilidad de la maquinaria garantiza su productividad. Imagen: V. Yepes

En determinadas condiciones, una unidad simple o compuesta puede no completar la misión para la que fue diseñada y, por lo tanto, dar lugar a un fallo. Los mecanismos que llevan al fracaso se deben a deterioros por desgaste, al medio ambiente o al azar. Los fallos pueden clasificarse en dos categorías:

  • Fallo de parada o avería: causa el cese de una función.
  • Fallo de deterioro: afecta a la calidad o causa deterioro funcional. El equipo sigue trabajando, pero las imprecisiones y otros tipos de degradación funcional crean defectos en el producto acabado o afecta a su productividad.

El concepto de fiabilidad está relacionado con los de disponibilidad y mantenimiento. En efecto, las máquinas no son infalibles, por lo que, para aumentar su tiempo disponible en las obras, es necesaria una correcta política de reparación y mantenimiento (Figura 1).

Se define la fiabilidad como la probabilidad de que una unidad funcione satisfactoriamente en un intervalo de tiempo determinado, sin que sufra interrupciones de su trabajo por fallo de alguno de sus componentes, siempre que dicho dispositivo se emplee en condiciones establecidas.

La fiabilidad se relaciona con el promedio de horas entre averías, o tiempo medio entre fallos (TMEF), definiéndose para un equipo reparable como la relación del número de horas trabajadas en un intervalo de tiempo y el número de averías sufridas en ese mismo período.

Los equipos siguen a menudo un modelo de fallo similar. La curva de fiabilidad de una máquina representa la evolución de la tasa de fallos de una máquina a lo largo del tiempo. También recibe el nombre de “curva de la bañera”, por su forma. En dicha curva aparecen tres zonas que se diferencian por la frecuencia de los fallos y su causa (ver Figura 2):

1.- Período de mortalidad infantil o de fallos prematuros. Caracterizada por una tasa de fallos elevada que disminuye rápidamente con el tiempo. Las causas de los fallos normalmente se deben a errores de diseño, de fabricación, de utilización u otras causas identificables, que una vez resueltas no suelen repetirse. Los fallos precoces ocurren durante la fase de rodaje de la máquina.

2.- Período de tasa de fallos constante o vida útil. Los fallos aparecen de forma aleatoria y accidental debido a limitaciones del diseño más los percances causados por el uso o por un mal mantenimiento. Es aconsejable limitar la utilización de las máquinas a este período. Para reducir la cuota de fallos durante la vida útil, se debería rediseñar el equipo.

3.- Período de desgaste. Caracterizado por deterioros crecientes con el tiempo, debidos a la vejez y terminación de la vida útil del equipo. Para reducir la tasa de fallos se requiere el reemplazamiento preventivo de los componentes gastados, antes de un incidente catastrófico, llegando incluso a la renovación completa del equipo.

Figura 2. Curva de fiabilidad de una máquina

Se podría alargar al máximo la vida útil de un equipo:

  1. Mediante un envejecimiento preventivo de las máquinas o sus componentes. Al someter a una unidad a un funcionamiento preliminar se eliminan los fallos prematuros. Constituye la “purga” de un elemento antes de instalarlo en un sistema.
  2. Mediante la sustitución preventiva, reemplazando las unidades o componentes al acabar su vida útil, sin esperar a su avería, evitando que se produzcan fenómenos masivos de mortalidad por envejecimiento.

Cuando la tasa de fallos es constante, la ocurrencia de un fallo es imprevisible, es decir, independiente de la vida acumulada de la unidad. En este caso, el tiempo libre de fallos se distribuye exponencialmente, siendo la fiabilidad únicamente dependiente de la duración de la misión del elemento. Estas hipótesis sustentan el denominado modelo exponencial de la fiabilidad que, si bien no es estrictamente exacto para las máquinas, debido a sus desgastes, es un modelo muy utilizado por su sencillez:

donde

R(t) = Probabilidad de funcionamiento libre de fallos durante un período de tiempo igual o mayor que t.

e = 2.718

t = Un período especificado de funcionamiento libre de fallos.

θ  = Tiempo medio entre fallos o “vida media”.

λ = Tasa de fallos (la inversa de q).

Se comprueba que la vida media es superada solo por el 36,8% de las unidades del mismo tipo en funcionamiento, pues R(1/λ)=0,368.

Una generalización del modelo exponencial es la función de Weibull, para situaciones con tasa de fallo variable, siendo adecuado en fases de fallos precoces y de envejecimiento:

donde

δ = vida mínima (>= 0)

θ = vida característica (> δ)

β = parámetro de forma (> 0)

con frecuencia se toma δ = 0, con lo cual:

β = 1 con una cuota de fallos constante. Si β <1 la tasa de fallos disminuye con el tiempo, correspondiendo con la etapa de mortalidad infantil. Si β >1, la tasa de fallos aumenta con el tiempo, recayendo con el período de desgaste. Para β =3,5 la distribución de Weibull se aproxima mucho a la normal.

Figura 3. Representación de la función de Weibull en función del parámetro de forma

La vida media adquiere con el modelo de Weibull la siguiente expresión:

donde

De la función de distribución de Weibull resulta, por desarrollo matemático, que la tasa de fallos sería:

donde λ(t) indicaría qué porcentaje de unidades sobreviven hasta la duración t, se avería en el intervalo siguiente (t+dt).

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.