DIMALIFE: Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos

 

 

DIMALIFE: Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes de alta eficiencia social y medioambiental bajo presupuestos restrictivos

Reliability-based robust optimum design and maintenance of high social and environmental efficiency of bridges under restrictive budgets

 

Víctor Yepes*, a, Eugenio Pellicer b, José V. Martí c, Moacir Kripka d

a Dr. Ingeniero de Caminos. Catedrático de Universidad. ICITECH, Universitat Politècnica de València.

b Dr. Ingeniero de Caminos. Catedrático de Universidad. Universitat Politècnica de València.

c Dr. Ingeniero de Caminos. Profesor Titular de Universidad. ICITECH, Universitat Politècnica de València.

d Dr. Ingeniero Civil. Catedrático de Universidad. Universidade de Passo Fundo, Brasil.

* Persona de contacto / Corresponding author

RESUMEN

El artículo expone los resultados alcanzados dentro del proyecto de investigación DIMALIFE. Se desarrolla una metodología que incorpora la variabilidad en los procesos de toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, de forma que se contemplen las necesidades e intereses sociales y ambientales con presupuestos restrictivos. La variabilidad inherente a los parámetros, variables y restricciones del problema resulta crítica si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad. Se precisa introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos.

ABSTRACT

The article presents the results achieved within the DIMALIFE research project. It develops a methodology that incorporates variability in decision-making processes during the whole life cycle of bridges and highway infrastructures, so that social and environmental needs and interests are taken into account with restrictive budgets. The variability inherent in the parameters, variables and constraints of the problem is critical if they are given by good optimized solutions, which can be on the verge of infactibility. Multi-objective optimisation based on reliability needs to be introduced into the analysis and robust optimal designs achieved.

PALABRAS CLAVE: puentes, sostenibilidad, ciclo de vida, optimización multiobjetivo, fiabilidad.

KEYWORDS: bridges, sustainability, life cycle, multi-objective optimisation, reliability

 

INTRODUCCIÓN

Las vías de comunicación terrestre, y en especial los puentes, son infraestructuras básicas en el desarrollo económico, en el equilibrio territorial y en el bienestar social, cuya construcción, diseño, conservación y desmantelamiento se ven afectados significativamente cuando los presupuestos son restrictivos. Su deterioro y su incidencia en la seguridad son objeto de gran alarma social. Si además el mantenimiento es ineficiente, la reparación conlleva costes mayores. El objetivo principal del proyecto DIMALIFE consiste en desarrollar una metodología que permita incorporar la variabilidad en los procesos analíticos en la toma de decisiones en el ciclo completo de vida de puentes e infraestructuras viarias, incluyendo la licitación de proyectos de obra nueva y de mantenimiento de activos existentes, de forma que se contemplen las necesidades e intereses sociales y ambientales.

Una alternativa al proyecto secuencial de infraestructuras y del mantenimiento de las existentes es el diseño totalmente automático utilizando técnicas de optimización, capaces de incorporar múltiples funciones objetivo y cuyo resultado es la generación de un conjunto de soluciones eficientes. No obstante, esta metodología presenta limitaciones que el proyecto DIMALIFE pretende superar.

El empleo de técnicas de análisis del valor y toma de decisiones ha supuesto un gran avance en la definición de un indicador de sostenibilidad. Este enfoque se amplió en anteriores proyectos de investigación al considerar el ciclo completo de la vida de una estructura o el uso de hormigones de baja huella de carbono, incluyendo, asimismo en el proceso los aspectos sociales y medioambientales mediante técnicas analíticas de toma de decisiones multicriterio tanto de forma previa a los procesos de optimización multiobjetivo, como posteriormente en la priorización de las soluciones eficientes. Sin embargo, en el mundo real, las infraestructuras presentan una variabilidad inherente a los parámetros, variables y restricciones del problema. Este aspecto resulta crítico si se dan por buenas soluciones optimizadas, que pueden encontrarse al borde de la infactibilidad en cuanto se altera mínimamente alguno de los valores que definen el problema. Se precisa, por ello, introducir en el análisis la optimización multiobjetivo basada en fiabilidad y conseguir diseños óptimos robustos, tanto de infraestructuras nuevas como del mantenimiento de las existentes, considerando el ciclo de vida hasta su desmantelamiento. Para que este procedimiento sea abordable en tiempos de cálculo razonable se precisa el uso de metamodelos (redes neuronales, modelos Kriging, superficie de respuesta, etc.) dentro de las técnicas de optimización.

Por otra parte, la fuerte limitación presupuestaria presente en momentos de crisis compromete seriamente las políticas de creación y conservación de las infraestructuras. Los resultados esperados, tras un análisis de sensibilidad de distintas políticas presupuestarias asociadas a un horizonte temporal, pretenden detallar qué tipologías, actuaciones concretas de conservación y alternativas de demolición y reutilización son adecuadas para minimizar los impactos ambientales y sociales considerando la variabilidad. En este sentido, un aspecto importante consiste en determinar los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias.

ANTECEDENTES Y JUSTIFICACIÓN DEL PROYECTO

La sostenibilidad económica y social depende directamente del comportamiento fiable y duradero de sus infraestructuras [1]. La construcción y mantenimiento de las infraestructuras viarias y puentes afectan fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, estas actividades impactan en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras que maximicen su beneficio social sin comprometer su sostenibilidad [2].

Por otra parte, el envejecimiento de las infraestructuras, la mayor demanda en su desempeño (aumento de tráfico, por ejemplo) o los riesgos naturales extremos afectan a su al rendimiento [3]. Si a ello añadimos la crisis financiera que ha afectado la economía de nuestro país, el panorama se complica. Las infraestructuras que se crearon con una financiación a largo plazo presentan actualmente déficits de conservación y es posible que las generaciones futuras tengan que hacer un esfuerzo adicional para actualizar los requisitos de seguridad y funcionalidad a su nivel de servicio previsto [4].

Existen dificultades cuando se emprende un análisis de ciclo de vida de una infraestructura debido a las incertidumbres presentes en la definición de las entradas y salidas del sistema. El reto implica un proceso de toma de decisiones que minimice los impactos sociales y medioambientales al coste más bajo posible [5]. Varios trabajos han tratado de cuantificar la sostenibilidad en los proyectos de puentes [6-8].

Con todo, la línea de investigación no puede quedarse en la mera optimización económica del hormigón estructural, que podría ser un objetivo a corto plazo de interés evidente para las empresas constructoras o de prefabricados. El proyecto DIMALIFE pretende superar algunas limitaciones en cuanto al alcance planteado hasta ahora. En primer lugar, los proyectos anteriores se centraban en la fase de diseño [9-12]. Sin embargo, este es un aspecto muy específico, siendo necesario abordar en mayor profundidad el análisis dual sobre la necesidad de nuevas infraestructuras o la mejora de las existentes para el mejor aprovechamiento del parque actual. En efecto, todo parece indicar que en una situación de restricción presupuestaria como la actual va a ser difícil que el grueso del presupuesto se dedique a nueva construcción, siendo razonable su empleo en el mantenimiento y rehabilitación [13]. En segundo lugar, las infraestructuras viarias incluyen no solo puentes: el abanico estructural contiene incluso el mantenimiento del pavimento; en este sentido, algunos trabajos afrontados recientemente por el grupo han abordado este aspecto con restricciones presupuestarias [14,15]. En tercer lugar, y aunque se han utilizado técnicas de decisión multicriterio para tratar aspectos complejos de sostenibilidad social y medioambiental [5,8] en el ámbito de las infraestructuras, existen limitaciones que se deben superar. Éstas tienen que ver con la sensibilidad que presentan las soluciones óptimas respecto a la variabilidad intrínseca de las variables y parámetros de los problemas estructurales, así como la influencia que presenta esta variabilidad en los resultados de los procesos de toma de decisiones. Por último, la toma de decisiones y la optimización multiobjetivo de los problemas reales conlleva un trabajo muy laborioso de programación de software propio que, en ocasiones, presenta tiempos de cálculo elevados que obliga a replantear las metodologías empleadas hasta el momento, a pesar de que las capacidades de cálculo de los ordenadores son cada vez mayores. Es el campo propicio para integrar metamodelos en los procesos de optimización, tal y como se ha empezado a realizar en algunos trabajos muy recientes del grupo en el caso de las redes neuronales [11].

En efecto, a pesar de que se ha avanzado fuertemente en la optimización multiobjetivo de las estructuras, en el mundo real existen incertidumbres, imperfecciones o desviaciones respecto a los valores de los parámetros utilizados en los códigos (propiedades del material, geometría, cargas, etc.). De hecho, los códigos estructurales consideran las incertidumbres de forma simplificada definiendo los valores característicos para las variables aleatorias como percentiles de sus distribuciones y especifican unos coeficientes parciales de seguridad. Una estructura óptima se encuentra cercana a la región de infactibilidad, por lo que cualquier pequeña variación puede hacer que la estructura no cumpla con algunos de los estados límites previstos. La necesidad de incorporar las incertidumbres ha estimulado el interés por procedimientos capaces de proporcionar diseños más robustos y fiables [16]. De todas formas, se diferencian dos enfoques que consideran la respuesta probabilista en el proceso de diseño óptimo: el diseño basado en fiabilidad y el diseño óptimo robusto. En el primero se incluyen los efectos de la incertidumbre por medio de probabilidades de fallo y de valores esperados [17], mientras que el segundo trata de determinar un diseño menos sensible a las incertidumbres de las variables y de los parámetros que intervienen en la respuesta estructural [18,19].

Uno de los grandes problemas de la optimización multiobjetivo al incorporar las incertidumbres es su elevado coste computacional. Este inconveniente ya se detectó en el caso de la optimización multiobjetivo basada en fiabilidad del mantenimiento de puentes [20] donde se tuvieron que emplear redes neuronales como metamodelos [11]. Los metamodelos, también llamados modelos subrogados, proporcionan una relación aproximada de las variables de diseño respecto a sus respuestas con un número moderado de análisis completos. Estas aproximaciones se utilizan para reemplazar los análisis informáticos costosos facilitando la optimización multiobjetivo. Entre otros, podemos distinguir el diseño de experimentos, la metodología de la superficie de respuesta, los métodos Taguchi, las redes neuronales, las funciones de base radial o los modelos Kriging [21,22].

Por último, un aspecto no tratado que se incorpora al proyecto es aprovechar las conclusiones de los análisis de optimización para incluir criterios y recomendaciones que mejoren la contratación pública sostenible de las infraestructuras, dado que se considera que este aspecto posee el potencial de influir fuertemente en las políticas futuras [23]. Es por ello que DIMALIFE pretende determinar, dentro de sus objetivos, criterios e indicadores clave que garanticen una integración efectiva de la sostenibilidad en la licitación de proyectos. Dichos desarrollos pretenden ser la base para la definición de una guía que facilite a las Administraciones incorporar la sostenibilidad en los procedimientos de licitación de una manera efectiva; de modo que se influya sobre las tres etapas clave del procedimiento de licitación: definición de criterios de selección, definición de criterios de adjudicación y definición de especificaciones técnicas y cláusulas de desempeño.

OBJETIVOS GENERALES DEL PROYECTO

La metodología habitual, tanto en el diseño como en el mantenimiento óptimo de puentes e infraestructuras viarias, puede conducir a soluciones cercanas a la infactibilidad. Por tanto, las incertidumbres deben considerarse en el diseño y el mantenimiento óptimo de infraestructuras basándose en la fiabilidad y en diseños robustos. Esta hipótesis debe extenderse a los procesos de toma de decisión multicriterio que atienda a la sostenibilidad social y ambiental del ciclo de vida, contemplando las fluctuaciones tanto de los parámetros como de los escenarios, especialmente en el caso de restricciones presupuestarias. Esta metodología presenta, no obstante, serias dificultades, por lo que se deben explorar metamodelos capaces de acelerar los complejos procesos de cálculo. Además, se contempla la hipótesis adicional que establece que la contratación pública de las infraestructuras públicas debe incluir criterios de sostenibilidad por su fuerte influencia potencial en los mercados.

El objetivo general perseguido en este proyecto se basa en afrontar el reto social que supone la creación y la conservación de las infraestructuras viarias en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas (puentes de hormigón pretensado prefabricados o “in situ”, puentes mixtos, puentes de acero, tipologías de muros, bóvedas y marcos de paso inferior). Para ello se precisa un salto científico que integre a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, aplicadas no solo al proyecto de nuevas infraestructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporciona conocimiento no trivial sobre las mejores prácticas. Esta metodología se aplica también a otro tipo de infraestructuras del transporte.

Los objetivos generales se desarrollan mediante los siguientes objetivos específicos:

  • Análisis de funciones de distribución para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio
  • Determinación de los criterios e indicadores clave para garantizar una efectiva integración de la sostenibilidad en la licitación de proyectos de obra y de mantenimiento de infraestructuras viarias
  • Identificación de estrategias de mantenimiento robusto óptimo de puentes e infraestructuras viarias ya construidos
  • Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de los puentes e infraestructuras viarias mediante metamodelos
  • Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida

Para alcanzar estos objetivos, se ha colaborado con los grupos de investigación de los profesores Frangopol y Moleenar (EE.UU.), del profesor Haukaas (Canadá), del profesor Kripka (Brasil), del profesor Partskhaladze (Georgia) y del profesor Sierra (Chile).

METODOLOGÍA

La investigación combina técnicas y disciplinas diversas tales como el análisis estructural, la toma de decisiones multicriterio, la optimización heurística multiobjetivo, el análisis del ciclo de vida, el análisis basado en fiabilidad, el diseño óptimo robusto, los metamodelos y las técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales. Los trabajos desarrollados en proyectos anteriores se centraron en la optimización con múltiples objetivos, empleando técnicas sin información a priori del decisor. En este caso, la optimización proporciona alternativas eficientes al decisor. También ha utilizado técnicas con información a priori, donde el decisor informa sobre las preferencias al analista, que optimiza su modelo. En la metodología propuesta (Figura 1) se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el decisor debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.

Figura 1. Esquema metodológico diseñado para la realización del proyecto DIMALIFE

 

RESULTADOS

Aunque el proyecto de investigación empezó en el año 2018 y termina a finales del 2020, las aportaciones realizadas hasta el momento son significativas. La principal contribución es la incorporación de la variabilidad de los parámetros y restricciones del problema de optimización multiobjetivo basado en criterios de sostenibilidad social y medioambiental. Los resultados obtenidos se pueden clasificar en:

  1.  Formulación de una metodología de participación social que definan un proceso de decisión multicriterio, que integre aspectos objetivos y subjetivos, así como la aplicación de técnicas analíticas sistémicas (ANP) y análisis de valor, con inclusión expresa de la incertidumbre (técnicas fuzzy, modelos bayesianos, teoría neutrosófica) [24-37].
  2.  Propuesta de nuevas técnicas de optimización multiobjetivo basada en fiabilidad que integran metamodelos para acelerar la convergencia de cálculo considerando el ciclo de vida [38-50].
  3. Definición del tipo de política presupuestaria que perjudica en mayor medida la sostenibilidad social y ambiental a lo largo del ciclo de vida de puentes e infraestructuras viarias [51-53].
  4. Desarrollo de criterios para la Administración que potencie la incorporación de criterios sostenibles en los procedimientos de licitación de manera efectiva [54,55].

Como resultado del proyecto, también se menciona la culminación de cinco tesis doctorales [56-60], estando en marcha tres más.

CONCLUSIONES

El proyecto de investigación DIMALIFE ha profundizado en la optimización multiobjetivo en fase de diseño y construcción que incorporaban la visión social y el análisis completo del ciclo de vida. El objetivo ha sido incorporar a distintos actores y grupos de expertos en la toma de decisiones la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se han aplicado técnicas de optimización multiobjetivo basadas en fiabilidad, junto el empleo de metamodelos, al proyecto y mantenimiento de puentes e infraestructuras viarias.

El motivo de este planteamiento también constituye una necesidad social. En efecto, las incertidumbres relacionadas con la toma de decisiones, no solo en el diseño de nuevas infraestructuras, sino especialmente en el mantenimiento, que contemplen aspectos de sostenibilidad social y ambiental en situaciones extremas de restricciones presupuestarias, es un problema que afecta directamente a las infraestructuras viarias. El problema es altamente complejo cuando se realizan análisis basados en la fiabilidad. Se ha profundizado en el diseño robusto y el uso de metamodelos para asegurar que las soluciones optimizadas sean poco sensibles ante la variabilidad intrínseca de los parámetros. Se ha agregado la contratación pública sostenible, tanto de nuevas infraestructuras como de su mantenimiento, debido a su elevada influencia en el sector, con el fin de proponer políticas de actuación: las exigencias de las administraciones públicas serán de gran importancia futura para el diseño, construcción y mantenimiento de las infraestructuras, teniendo en cuenta las restricciones presupuestarias existentes.

Sin haber terminado el proyecto, de los resultados obtenidos y publicados hasta el momento, se puede concluir que la línea de investigación ofrece una amplia posibilidad de ramificaciones. Ello obliga a profundizar en aspectos complejos que, probablemente requieran de acuerdos de colaboración con otros grupos de investigación para conseguir resultados de mayor alcance.

AGRADECIMIENTOS

Este estudio ha sido financiado por el Ministerio de Economía, Industria y Competitividad, así como por fondos FEDER (BIA2017-85098-R).

REFERENCIAS

[1] D.M. Frangopol, Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges, Structure and Infrastructure Engineering. 7(6) (2011) 389–413.

[2] A. Aguado, A. del Caño, M.P. de la Cruz, D. Gómez, A. Josa, Sustainability assessment of concrete structures within the Spanish structural concrete code, Journal of Construction Engineering and Management. 138(2) (2012) 268–276.

[3] F. Biondini, D.M. Frangopol, Life-cycle of deteriorating structural systems under uncertainty: Review, Journal of Structural Engineering. 142(9) (2016) F4016001.

[4] J.K. Nishijima, D. Straub, M. faber, Ingergenerational distribution of the life-cycle cost of an engineering facility, Journal of Reliability of Structures and Materials. 1(3) (2007) 33–43.

[5] V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, A review of multi-criteria decision making methods applied to the sustainable bridge design, Sustainability. 8(12) (2016) 1295.

[6] P.C. Spencer, C.R. Hendy, R. Petty, Quantification of sustainability principles in bridge projects, Proceedings of the Institution of Civil Engineers – Bridge Engineering. 165(2) (2012) 81–89.

[7] V. Yepes, J.V. Martí, T. García-Segura, A cognitive approach for the multi-objective optimization of RC structural problems, Archives of Civil and Mechanical Engineering. 15(4) (2015) 123–134.

[8] L.A. Sierra, E. Pellicer, V. Yepes, Method for estimating the social sustainability of infrastructure projects, Environmental Impact Assessment Review. 65 (2017) 41–53.

[9] J.V. Martí, V. Yepes, F. González-Vidosa., Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement, Journal of Structural Engineering. 141(2) (2015) 04014114.

[10]      T. García-Segura, V. Yepes, Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety, Engineering Structures. 125 (2016) 325–336.

[11]      T. García-Segura, V. Yepes, D.M. Frangopol, Multi-objective design of post-tensioned concrete road bridges using artificial neural networks, Structural and Multidisciplinary Optimization. 56(1) (2017) 139–150.

[12]      V. Yepes, J.V. Martí, T. García-Segura, F. González-Vidosa, Heuristics in optimal detailed design of precast road bridges, Archives of Civil and Mechanical Engineering. 17(4) (2017) 738–749.

[13]      M. Sánchez-Silva, D.M. Frangopol, J. Padgett, M. Soliman, Maintenance and operation of infrastructure systems: Review, Journal of Structural Engineering. 142(9) (2016) F4016004.

[14]      V. Yepes, C. Torres-Machí, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management. 22(4) (2016) 540–550.

[15]      C. Torres-Machí, E. Pellicer, V. Yepes, A. Chamorro, E. Pellicer, Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions, Journal of Cleaner Production. 148 (2017) 90–102.

[16]      J. Martínez-Frutos, P. Martí, Diseño óptimo robusto utilizando modelos Kriging: aplicación al diseño óptimo robusto de estructuras articuladas, Revista Internacional de Métodos Numéricos en Ingeniería. 30(2) (2014) 97–105.

[17]      Z.L. Huang, C. Jiang, Y.S. Zhou, J. Zheng, X.Y. Long, Reliability-based design optimization for problems with interval distribution parameters, Structural and Multidisciplinary Optimization. 55(2) (2017) 513–528.

[18]      I. Doltsinis, Z. Kang, Robust design of structures using optimization methods, Computer methods in applied mechanics and engineering. 193(23-26) (2004) 2221–2237.

[19]      H. Beyer, B. Sendhoff, Robust optimization – A comprehensive survey, Methods in Applied Mechanics and Engineering. 196(33-34) (2007) 3190–3218.

[20]      T. García-Segura, V. Yepes, D.M. Frangopol, D.Y. Yang, Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges, Engineering Structures. 145 (2017) 381–391.

[21]      T.W. Simpson, J.D. Poplinski, P.N. Koch, J.K. Allen, Metamodels for computer-based engineering design: Survey and recommendations, Engineering with Computers. 17(2) (2001) 129–150.

[22]      J.P.C. Kleijnen, Regression and Kriging metamodels with their experimental designs in simulation: A review, European Journal of Operational Research. 256(1) (2017) 1–16.

[23]      A. Sourani, M. Sohail, Barriers to addressing sustainable construction in public procurement strategies, Engineering Sustainability. ES4 (2010) 229–237.

[24]      M. Kripka, V. Yepes, C.J. Milani, Selection of sustainable short-span bridge design in Brazil, Sustainability. 11(5) (2019) 1307.

[25]      R. Martín, V. Yepes, The concept of landscape within marinas: Basis for consideration in the management, Ocean & Coastal Management. 179 (2019) 104815.

[26]      I.J. Navarro, V. Yepes, J.V. Martí, Social life cycle assessment of concrete bridge decks exposed to aggressive environments, Environmental Impact Assessment Review. 72 (2018) 50–63.

[27]      I.J. Navarro, V. Yepes, J.V. Martí, A review of multi-criteria assessment techniques applied to sustainable infrastructures design, Advances in Civil Engineering. (2019) 6134803.

[28]      I.J. Navarro, V. Yepes, J.V. Martí, Sustainability assessment of concrete bridge deck designs in coastal environments using neutrosophic criteria weights, Structure and Infrastructure Engineering. (2019) DOI: 10.1080/15732479.2019.1676791.

[29]      V. Penadés-Plà, J.V. Martí, T. García-Segura, V. Yepes, Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges, Sustainability. 9(10) (2017) 1864.

[30]      J.J. Pons, V. Penadés-Plà, V. Yepes, J.V. Martí, Life cycle assessment of earth-retaining walls: An environmental comparison, Journal of Cleaner Production. 192 (2018) 411–420.

[31]      J. Salas, V. Yepes, A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models, Journal of Cleaner Production. 176 (2018) 1231–1244.

[32]      J. Salas, V. Yepes, Urban vulnerability assessment: Advances from the strategic planning outlook, Journal of Cleaner Production. 179 (2018) 544–558.

[33]      J. Salas, V. Yepes, VisualUVAM: A Decision Support System Addressing the Curse of Dimensionality for the Multi-Scale Assessment of Urban Vulnerability in Spain, Sustainability. 11(8) (2019) 2191.

[34]      J. Salas, V. Yepes, MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems, Journal of Cleaner Production. 216 (2019) 607–623.

[35]      L.A. Sierra, V. Yepes, E. Pellicer, Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty, Environmental Impact Assessment Review. 67 (2017) 61–72.

[36]      L.A. Sierra, V. Yepes, T. García-Segura, E. Pellicer, Bayesian network method for decision-making about the social sustainability of infrastructure projects, Journal of Cleaner Production. 176 (2018) 521–534.

[37]      L.A. Sierra, V. Yepes, E. Pellicer, A review of multi-criteria assessment of the social sustainability of infrastructures, Journal of Cleaner Production. 187 (2018) 496–513.

[38]      J. Alcalá, F. González-Vidosa, V. Yepes J.V. Martí, Embodied energy optimization of prestressed concrete slab bridge decks, Technologies. 6(2) (2018) 43.

[39]      J.T. Boscardin, V. Yepes, M. Kripka, Optimization of reinforced concrete building frames with automated grouping of columns, Automation in Construction. 104 (2019) 331–340.

[40]      T. García-Segura, V. Penadés-Plà, V. Yepes, Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty, Journal of Cleaner Production. 202 (2018) 904–915.

[41]      P. Martínez-Fernández, I. Villalba-Sanchís, R. Insa-Franco, V. Yepes, A review of modelling and optimisation methods applied to railways energy consumption, Journal of Cleaner Production. 222 (2019) 153–162.

[42]      F. Molina-Moreno, J.V. Martí, V. Yepes, Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs, Journal of Cleaner Production. 164 (2017) 872–884.

[43]      F. Molina-Moreno, T. García-Segura, J.V. Martí, V. Yepes, Optimization of buttressed earth-retaining walls using hybrid harmony search algorithms, Engineering Structures. 134 (2017) 205–216.

[44]      G. Partskhaladze, I. Mshvenieradze, E. Medzmariashvili, G. Chavleshvili, V. Yepes, J. Alcalá, Buckling Analysis and Stability of Compressed Low Carbon Steel Rods in Elasto-Plastic Region of Material, Advances in Civil Engineering. (2019) 7601260.

[45]      V. Penadés-Plà, T. García-Segura, J.V. Martí, V. Yepes, An optimization-LCA of a prestressed concrete precast bridge, Sustainability. 10(3) (2018) 685.

[46]      V. Penadés-Plà, T. García-Segura, V. Yepes, Accelerated optimization method for low-embodied energy concrete box-girder bridge design, Engineering Structures. 179 (2019) 556–565.

[47]      V. Penadés-Plà, V. Yepes, M. Kripka, Optimización de puentes pretensados mediante la metodología de la superficie de respuesta, Revista CIATEC-UPF. 11(2) (2019) 22–35.

[48]      V. Yepes, E. Pérez-López, J. Alcalá, T. García-Segura, Parametric study of concrete box-girder footbridges, Journal of Construction Engineering, Management & Innovation. 1(2) (2018) 67–74.

[49]      V. Yepes, M. Dasí-Gil, D. Martínez-Muñoz, V.J. López-Desfilís, J.V. Martí, Heuristic techniques for the design of steel-concrete composite pedestrian bridges, Applied Sciences. 9 (2019) 3253.

[50]      V. Yepes, E. Pérez-López, T. García-Segura, J. Alcalá, Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges, International Journal of Computational Methods and Experimental Measurements. 7(2) (2019) 118–129.

[51]      I.J. Navarro, V. Yepes, J.V. Martí, Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides, Sustainability. 10(3) (2018) 845.

[52]      I.J. Navarro, V. Yepes, J.V. Martí, Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks, Journal of Cleaner Production. 196 (2018) 698–713.

[53]      I.J. Navarro, J.V. Martí, V. Yepes, Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective, Environmental Impact Assessment Review. 74 (2019) 23–34.

[54]      L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability criteria in public-work procurement: an international perspective, Journal of Cleaner Production. 198 (2018) 1355–1371.

[55]      L. Montalbán-Domingo, T. García-Segura, M.A. Sanz, E. Pellicer, Social sustainability in delivery and procurement of public construction contracts, Journal of Management in Engineering. 35(2) (2018) 04018065.

[56]      L.A. Sierra, Evaluación multicriterio de la sostenibilidad social para el desarrollo de infraestructuras, Tesis Doctoral, Universitat Politècnica de València, 2017.

[57]      J. Salas, Vulnerabilidad urbana. Nueva caracterización y metodología para el diseño de escenarios óptimos, Tesis Doctoral, Universitat Politècnica de València, 2019.

[58]      L. Montalbán-Domingo, Social sustainability in public-work procurement, Tesis Doctoral, Universitat Politècnica de València, 2019.

[59]      I.J. Navarro, Life cycle assessment applied to the sustainable design of prestressed bridges in coastal environment, Tesis Doctoral, Universitat Politècnica de València, 2019.

[60]      V. Penadés-Plà, Toma de decisiones en la gestión del ciclo de vida de puentes pretensados de alta eficiencia social y medioambiental bajo presupuestos restrictivos, Tesis Doctoral, Universitat Politècnica de València, 2020.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)

Hoy 2 de enero de 2018 empezamos oficialmente el proyecto de investigación DIMALIFE (BIA2017-85098-R): “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. Se trata de un proyecto trianual (2018-2020) financiado por el Ministerio de Economía, Industria y Competitividad, así como por el Fondo Europeo de Desarrollo Regional (FEDER). La entidad solicitante es la Universitat Politècnica de València y el Centro el ICITECH (Instituto de Ciencia y Tecnología del Hormigón). Los investigadores principales son Víctor Yepes (IP1) y Eugenio Pellicer (IP2). Al proyecto también se le ha asignado un Contrato Predoctoral, que sacaremos a concurso próximamente. Con las restricciones presupuestarias tan fuertes en materia de I+D+i y con la alta competencia existente por conseguir proyectos de investigación, lo cierto es que estamos muy satisfechos por haber conseguido financiación. Además, estamos abiertos a cualquier tipo de colaboración tanto desde el mundo empresarial o universitario para reforzar este reto. Por tanto, lo primero que vamos a hacer es explicar los antecedentes y la motivación del proyecto.

La sostenibilidad económica y el desarrollo social de la mayoría de los países dependen directamente del comportamiento fiable y duradero de sus infraestructuras (Frangopol, 2011). Las infraestructuras del transporte presentan una especial relevancia, especialmente sus infraestructuras viarias y puentes, cuya construcción y mantenimiento influyen fuertemente en la actividad económica, el crecimiento y el empleo. Sin embargo, tal y como indica Marí (2007), estas actividades impactan significativamente en el medio ambiente, presentan efectos irreversibles y pueden comprometer el presente y el futuro de la sociedad. El gran reto, por tanto, será disponer de infraestructuras capaces de maximizar su beneficio social sin comprometer su sostenibilidad (Aguado et al., 2012). La sostenibilidad, de hecho, constituye un enfoque que ha dado un giro radical a la forma de afrontar nuestra existencia. El calentamiento global, las tensiones sociales derivadas de la presión demográfica y del reparto desequilibrado de la riqueza son, entre otros, los grandes retos que debe afrontar esta generación. Continue reading “Antecedentes y motivación del proyecto de investigación DIMALIFE (2018-2020)”