Encofrados de madera

Figura 1. Detalle construcción de tablero de puente con encofrado de madera. Imagen: V. Yepes

La madera es el material más antiguo para la construcción de encofrados. En líneas generales, este material sigue siendo predominante en la construcción de encofrados, destacando tanto la madera aserrada como los tableros contrachapados. Los componentes de un encofrado de madera se cortan a medida en obra. No obstante, en los últimos años, ha aumentado significativamente la utilización de elementos metálicos, plásticos y otros materiales en esta área.

La madera constituye uno de los principales materiales que dará forma al hormigón, gracias a su notable flexibilidad. No obstante, es importante que la madera sea adecuada. Debe ser resistente a las cargas para evitar roturas, rígida para no deformarse frente a la presión del hormigón, estanca para asegurar que el hormigón permanezca dentro del molde, y no adherente para facilitar la extracción del molde una vez concluido el encofrado. La madera para encofrados será preferiblemente de especies resinosas y de fibra recta. La madera aserrada se ajustará, como mínimo, a la clase I/80, según la Norma UNE 56 525. Dependiendo de la calidad requerida para la superficie del hormigón, las tablas destinadas al forro o tablero del encofrado pueden ser machihembradas o escuadradas con aristas vivas y llenas, cepilladas y en bruto. Únicamente se emplearán tablas cuya naturaleza, calidad, tratamiento o revestimiento aseguren la ausencia de alabeos o hinchamientos que puedan provocar filtraciones de material fino en el hormigón fresco o generar imperfecciones en los paramentos. Además, las tablas destinadas a forros o tableros de encofrados estarán exentas de sustancias perjudiciales para el hormigón en sus estados fresco y endurecido, así como de elementos que puedan manchar o alterar el color de los paramentos. Con frecuencia se utilizan tablillas de 2 cm de grosor y planchas (cepilladas o no) de 2,7 a 4 cm de espesor.

Los tipos de madera más comúnmente empleados en la actualidad para encofrar son los siguientes:

  • Madera aserrada: Se trata de maderas generalmente de baja calidad y no aptas para carpintería, sin embargo, su elevada resistencia las convierte en una opción aprovechable en el encofrado. Aunque su acabado visual puede no ser el más estético debido a su propensión a degradarse fácilmente en la parte que entra en contacto con el hormigón, estas maderas se presentan en tres formatos diferentes, dependiendo de sus dimensiones, que las hacen adaptables a diferentes situaciones de construcción: tabla, tablón y tabloncillo.
  • Madera en rollo: Está conformado por piezas o troncos de diámetro reducido, sin cortezas ni ramas, actualmente ha caído en desuso como material de encofrado.
  • Tableros de madera: son el sistema más eficiente y ampliamente utilizado en la actualidad para encofrar. Destacan por cumplir de manera óptima con los requisitos para lograr acabados superiores en el encofrado gracias a su textura menos rugosa. Además, son ligeros y altamente resistentes. Los dos tipos principales de tableros de madera utilizados son los contrachapados, obtenidos a partir de maderas como abedul, eucalipto, chopo, pino o abeto, y los tableros tricapa, conformados por tres capas encoladas entre sí, con las fibras de las maderas en las capas exteriores dispuestas longitudinalmente y en dirección transversal en la capa interior, todas provenientes de coníferas.
Figura 2. Encofrado de madera para pilares. Fuente: https://www.alsina.com/es-es/4-conceptos-fundamentales-a-la-hora-de-encofrar-columnas-o-pilares

El artículo 286 del PG-3/75 establece que la madera destinada para entibaciones, apeos, cimbras, andamios, y demás medios auxiliares, así como para la carpintería de armar, debe provenir de troncos sanos que hayan sido apeados en la estación adecuada. Además, debe haber sido desecada al aire, resguardada del sol y la lluvia, durante un período no inferior a dos días. Es esencial que la madera no muestre signos de putrefacción, atronaduras, carcomas o ataques de hongos, y esté exenta de grietas, lupias, verrugas, manchas u otros defectos que puedan comprometer su solidez y resistencia. Se requiere especialmente que contenga el menor número posible de nudos, los cuales, en todo caso, deberán tener un espesor inferior a la séptima parte (1/7) de la menor dimensión de la pieza. Además, la madera debe presentar fibras rectas y no reviradas ni entrelazadas, manteniéndose paralelas a la mayor dimensión de la pieza. Debe exhibir anillos anuales con aproximada regularidad, sin excentricidad de corazón ni entrecorteza, y al ser golpeada, debe producir un sonido claro.

La capacidad de la madera para succionar y absorber agua o desencofrante depende de factores como su densidad y la dirección de las fibras. Por lo tanto, es fundamental asegurar la homogeneidad de todas las tablas y que tengan un número similar de usos. La experiencia revela que las diferencias de tono en la superficie del hormigón, derivadas de las distintas capacidades de succión o absorción de las tablas, desaparecen con el tiempo.

Para evitar cambios de tono, la aplicación del desencofrante debe ser lo más uniforme posible. Sin embargo, en zonas ricas en resinas, como los nudos, se absorberá menos desencofrante, y la concentración mayor en estos puntos puede generar manchas en la superficie del hormigón.

Es importante considerar que las tablas nuevas tienen una mayor capacidad de absorción en comparación con las ya usadas, que, al entrar en contacto con la lechada del hormigón, han experimentado cierta mineralización superficial. Por esta razón, resulta aconsejable impregnar los encofrados nuevos con desencofrante al menos dos veces.

Si se quiere reflejar la huella de la tabla en el hormigón, es recomendable utilizar tablas de sierra sin cepillar. La utilización de berenjenos, ya sean triangulares o trapezoidales, se presenta como una opción efectiva para disimular posibles defectos visibles en las juntas de hormigonado. Asimismo, con el propósito de prevenir deformaciones ocasionadas por el peso o la presión del hormigón, se aconseja emplear tablas con un espesor mínimo de 25 mm.

En líneas generales, al emplear encofrados de madera, es importante asegurar que los encofrados sean rígidos para absorber los esfuerzos generados durante el hormigonado y la puesta en obra. Se debe prestar especial atención al cuidado de las aristas, puntos más susceptibles a daños. Es relevante extremar el control de planos, niveles y alineaciones de tablas y tablero, así como limpiar exhaustivamente los encofrados y saturarlos con agua o aplicar desencofrante justo antes de verter el hormigón.

Es esencial desencofrar con precaución para evitar desconchones, y en caso de encofrados demasiado secos, conviene humedecerlos ligeramente antes de proceder al desencofrado. Antes de la colocación del hormigón, se recomienda humedecer los encofrados para evitar que absorban agua de este. No obstante, el exceso de humedad en las maderas de los encofrados disminuye la resistencia y rigidez de estos elementos. Además, se debe disponer de las tablas y juntas de manera que permitan su libre hinchamiento, sin generar esfuerzos o deformaciones anormales, y sin permitir la salida de la pasta de cemento.

Figura 2. Detalle construcción de tablero de puente con encofrado de madera. Imagen: V. Yepes

El consumo por unidad de superficie de encofrado variará en función de la cantidad de reusos y la estructura necesaria para resistir el empuje durante el hormigonado. En proyectos repetitivos, la madera en buenas condiciones puede reutilizarse de 10 a 15 veces, mientras que en obras no repetitivas, el uso se limita a unas 8 veces, con un promedio de 4 o 5 veces debido a pérdidas en recortes y desencofrado.

En la Tabla 1 se especifican, de forma indicativa, los usos de la madera, su utilidad y los kilogramos de clavos y ataduras según el tipo de encofrado. En la estimación de costos, se aconseja distinguir entre la madera de tabla y largueros y la de puntales, siendo esta última más económica. El costo de la madera debe incrementarse en un rango del 10 al 20 % para cubrir pérdidas, recortes y cuñas.

El equipo de trabajo está compuesto por un oficial de primera (carpintero) y un peón especializado encargados ambos de la fabricación, montaje y desmontaje. Se sugiere un aumento del 15 al 20 % del tiempo empleado por el equipo, que incluye las horas de trabajo del peón ordinario destinadas a la limpieza y almacenamiento de la madera.

Tabla 1. Rendimientos de la mano de obra en encofrados de madera y consumos de materiales (Bendicho, 1983)

Os dejo un vídeo de Enrique Alario donde se utiliza madera entablillada. Espero que os interese.

Aquí os dejo otro vídeo de encofrado de madera.

Referencias:

BENDICHO, J. P. (1983). Manual de planificación y programación para obras públicas y construcción. Segunda parte: programación y control. Editorial Rueda, Madrid.

PEURIFOY, R.L. (1967). Encofrados para estructuras de hormigón. McGraw-Hill y Ediciones Castillo, Madrid, 344 pp.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ajuste de la proporción de ligante en plantas asfálticas continuas y discontinuas

Planta asfáltica. https://senorconstruccion.com/senor-sectores-de-actividad

En entradas anteriores hemos descrito en este blog cómo se elaboran las mezclas asfálticas. Esta vez vamos a resolver un par de problemas sobre el ajuste de la proporción de ligante en las plantas asfálticas continuas y discontinuas. Una vez se ha determinado la fórmula de trabajo, es sencillo ajustar la proporción de ligante. Pero para eso deberemos tener en cuenta el tipo de instalación disponible.

En el caso de plantas discontinuas, se suelen pesar los áridos acumulados según un orden preestablecido. La pesada del polvo mineral y la del ligante se realizan de forma independiente. Si el ligante se mide en volumen, entonces se debe proceder como el caso de las instalaciones continuas, pues allí se mide en volumen. En efecto, las instalaciones continuas dosifican generalmente el ligante por volumen, auxiliándose por una bomba rotativa o de engranajes.

Os dejo, por tanto, un par de problemas resueltos: uno para una planta asfáltica discontinua y otra continua. Espero que os sean útiles.

Descargar (PDF, 161KB)

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes Universitat Politècnica de València.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales de construcción

Un material de construcción es una materia prima o con más frecuencia un producto manufacturado, empleado en la construcción de edificios u obras de ingeniería civil. El tema es muy amplio y es objeto de asignaturas específicas. Sin embargo, en la medida que los materiales de construcción son de gran importancia por su incidencia en los procedimientos de construcción, hemos creído interesante dejaros un vídeo docente que espero sea de vuestro interés.

Os dejo también el enlace a un canal de Youtube sobre materiales de construcción que creo os puede interesar: https://www.youtube.com/c/MATERIALESDECONSTRUCCI%C3%93N

Estudio del layout o de la distribución en planta de los almacenes en obra

Figura 1. Aspecto de una instalación de obra y acopios de material al aire libre. https://es.dreamstime.com/foto-de-archivo-editorial-kaliningrado-rusia-almac%C3%A9n-temporal-del-almacenamiento-de-los-productos-y-de-los-materiales-de-la-construcci%C3%B3n-image58934568

Los almacenes de materiales y maquinaria, tanto en una obra como en los parques de maquinaria, deben considerar una gran variedad de problemas interrelacionados relacionados con la sistematización física y contable. Es por ello que un almacén debería diseñarse para reducir costes y retrasos, así como interferir lo menos posible en el proceso productivo. Para ello, un sistema de almacenamiento debería cumplir los siguientes requisitos:

  • Posibilidad de una recepción cómoda de los materiales.
  • Instalaciones adecuadas al tipo de material almacenado y a sus exigencias de manipulación.
  • Posibilidad de una fácil distribución.
  • Minimizar los registros contables correspondientes a los movimientos físicos.

Para proyectar correctamente un almacén, deberíamos realizar un estudio del layout o de la distribución en planta, siendo los elementos de inventario y el espacio disponible los factores más importantes a tener en cuenta.

En la asignación del espacio de almacenamiento se deben considerar una serie de criterios relacionados con el tipo de existencias y el movimiento de materiales o maquinaria:

  1. Separar las áreas destinadas a los materiales que, por su naturaleza, vayan a ser manipulados en grandes lotes o con gran frecuencia, de los que se mueven con poca frecuencia o en pequeños lotes, aunque de forma reiterada.
  2. Reservar las zonas más accesibles o más próximas a los puntos de carga y descarga para el almacenamiento de los elementos de desplazamiento más frecuente.
  3. Considerar qué elementos pueden almacenarse al aire libre, con o sin cobertura protectora.
Figura 2. Almacenamiento mediante estantes, con pasillos para transporte. https://www.ohra.es/sectores/materiales-de-construccion

Un buen estudio planimétrico debe considerar, entre otros, los siguientes objetivos:

  • Las instalaciones deben proyectarse para asegurar su máxima utilización.
  • Debe minimizarse los tiempos muertos y reducir la congensión del flujo de trabajo.
  • Debe preverse un mantenimiento eficiente de las áreas e instalaciones del almacén, que no obstaculice el desarrollo de los trabajos.
  • Debe garantizarse la mayor velocidad del flujo de materiales y la reducción de los tiempos de trabajo.
  • Se deben considerar las condiciones del trabajo del personal, respetando las exigencias de seguridad e higiene, así como la ergonomía.

Los almacenes de materiales en obra o en el parque de maquinaria normalmente utilizan sistemas con silos y cisternas, sistemas de estanterías de diversas clases (Figura 2) o sistemas paletizados (Figura 3). Sin embargo, también son habituales los almacenes al aire libre o en áreas no provistas de edificios. En este último caso, en las obras encontramos depósitos desordenados o a granel de materiales tales como los áridos.

Figura 3. Almacenamiento paletizados de sacos de cemento. https://www.cuevadelcivil.com/2013/03/almacenamiento-de-materiales.html

Para realizar un almacenamiento adecuado se debe planificar la distribución o layout incluyendo las actividades que se indican en la Figura 4 (Serpell, 2002). De esta forma, se conseguirá una distribución eficiente de los sistemas de almacenaje que contribuirá a la mejora de la productividad en la ejecución de la obra.

Figura 4. Diseño de la distribución en obra de los materiales (Serpell, 2002).

Analicemos brevemente cada uno de los elementos indicados en la Figura 3 (Serpell, 2002):

  1. Materiales necesarios para la ejecución de la obra: la naturaleza de los materiales influye en el espacio requerido en el almacén.
  2. Formas de almacenamiento y otras exigencias: el material que entra en un almacén pasa por varios movimientos que van desde el envío y descarga en la obra hasta el despacho y carga para llevarlo al tajo correspondiente. Por tanto se pueden usar tres tipos de almacenes en obra: un área temporal que minimice la distancia al tajo, un área de acopio de materiales, de mayores dimensiones y para materiales a granel no afectados por las condiciones ambientales, y almacenes cerrados o bodegas. A parte también se encuentran en obra otras instalaciones como talleres de fabricación (ferralla, encofrados, prefabricados, etc.).
  3. Cantidad a almacenar y tamaño de la instalación: la cantidad de materiales a almacenar determinará el tamaño del almacén. Sin embargo, la planificación de la obra lamina el volumen necesario. En el layout, deberá minimizarse las áreas dedicadas a acceso, manipulación y otras actividades complementarias al propio almacenaje.
  4. Calidad de las instalaciones: las características, y por tanto, el coste del almacén será función, entre otros factores, del tipo y duración de la obra, de las condiciones ambientales, de la protección contra el fuego, disponibilidad de material, reutilización de la instalación, la protección de los materiales o las exigencias de la propiedad.
  5. Cercanía relativa: Se refiere a la proximidad de la instalación a los tajos y a la facilidad para recibir los materiales que llegan a obra.
  6. Relaciones entre áreas de almacenamiento: Se trata de reducir al máximo el movimiento de operarios, materiales y equipos entre las distintas instalaciones.
  7. Consideraciones varias: la flexibilidad de las instalaciones y la seguridad ante el robo como las correspondientes a los operarios, deberá considerarse en la planificación de los almacenes.

Os dejo un vídeo donde se explica el diseño de layout orientado al proceso.

Referencias:

PÉREZ GOROSTEGUI, E. (2021). Dirección de empresas. Editorial Universitaria Ramón Areces, 754 pp.

YEPES, V. (2008). Productivity and Performance, in Pellicer, E. et al.: Construction Management. Construction Managers’ Library Leonardo da Vinci: PL/06/B/F/PP/174014. Ed. Warsaw University of Technology, pp. 87-101. ISBN: 83-89780-48-8.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, Ediciones Universidad Católica de Chile, Colombia.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las resinas epoxi en la reparación del hormigón estructural

Solución de anclajes con resina epoxi. https://teoriadeconstruccion.net/blog/resinas-epoxy-solucion-de-anclajes/

Las resinas epoxi constituyen uno de los materiales de base orgánica más utilizados en la construcción. Se han empleado en pavimentos industriales desde los años 60, sobre todo en Europa. Con este nombre se hace referencia tanto a los componentes como al producto final, ya curado. Se trata de un fuerte adhesivo termoplástico resultante de la mezcla de un polímero termoestable y un agente catalizador. Pero también puede llevar otros componentes que modifiquen su comportamiento antes o después del endurecimiento como diluyentes, agentes de curado y otros aditivos. Sin embargo, la composición más simple es la resina epoxi y un endurecedor. El curado de las resinas epoxi tiene lugar a temperatura ambiente, durante el cual se forman enlaces cruzados lo que da como resultado que su peso molecular sea elevado.

Las resinas epoxi pueden usarse puras o en forma de morteros y hormigones si presentan árido fino o fino y grueso. Normalmente se utilizan en trabajos de reparación, refuerzo, sellado de juntas y protección de estructuras de hormigón que se vean atacadas por agentes químicos, físicos o biológicos. La resistencia de la resina epoxi puede ser tan alta como la del hormigón, o incluso duplicarla, con la ventaja de que no presenta fisuras y es impermeable. No obstante, la resistencia aumenta si se añaden compuestos químicos específicos.

En el ámbito de la reparación estructural, las principales aplicaciones de las resinas epoxi serían las siguientes (Pelufo, 2003): reparación de grietas en el hormigón por inyección; unión de hormigón nuevo con el existente para reparar estructuras dañadas; unión de bandas metálicas de acero en refuerzos en hormigón estructural; mortero para relleno de grietas y coqueras, parcheos; hormigón para rellenos de grandes oquedades. Sin embargo, también se pueden utilizar como protección de revestimientos de superficies

En cuanto a sus propiedades, las que destacan por su aplicabilidad a la construcción son las siguientes: retracción despreciable; adherencia a piedra, fábrica de ladrillo, hormigón y acero; resistencia a tracción de hasta 90 MPa, y a compresión entre 120 y 210 MPa; resistencia a productos químicos (excepto al ácido nítrico); comportamiento regular frente a algunos disolventes orgánicos; buen comportamiento frente a cloruros. Como problema podemos destacar su alta sensibilidad a temperaturas superiores a 80ºC, y por tanto, nula resistencia al fuego.

En el caso del uso de las resinas epoxi como material de reparación en hormigón, no hay que olvidar que su coeficiente de dilatación térmica (de 2 a 6 x 10-6 m/mºC), que puede ser muy diferente al del hormigón. Además, si la temperatura varía mucho, se puede producir un fallo de la reparación en la superficie de adherencia del hormigón base.

Tampoco se recomienda la reparación de un hormigón dañado por la corrosión de sus armaduras con un mortero u hormigón de epoxi, pues se pueden crear diferentes zonas de potencial eléctrico, formar pilas galvánicas y acelerar la corrosión en los perímetros de la reparación.

Os dejo algunos vídeos sobre la utilización de la resina epoxi en la construcción.

Os dejo a continuación, por su interés, un artículo de Fernández Cánovas donde se realiza una breve exposición de lo que son estas resinas, nada menos que del año 1964.

Descargar (PDF, 5.31MB)

Referencias:

Fernández Cánovas, M. (1964). Las resinas epoxi en la construcción. Informes De La Construcción16(159), 101–104. https://doi.org/10.3989/ic.1964.v16.i159.4570

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales de reparación del hormigón estructural

Deterioro prematuro del hormigón. Imagen: V. Yepes

No es extraño encontrar en medios de prensa noticias relacionadas con las costosas reparaciones de estructuras de hormigón de todo tipo. Lejos quedó la consideración del hormigón armado como un material resistente a cualquier tipo de ataque. La alcalinidad del hormigón y el recubrimiento de sus armaduras parecían suficientes para asegurar una larga vida útil para estas estructuras. Pues no, la vida útil de las estructuras de hormigón es una realidad que obliga a reparaciones si lo que se pretende es alcanzar una vida prevista suficientemente holgada. Sobre este tema ya hemos hablado en artículos anteriores. Por ejemplo, cuando poníamos en entredicho una vida útil de 100 años para los puentes; cuando exponíamos los métodos matemáticos para estimar la vida útil de los puentes; o cuando definíamos la durabilidad y la vida útil de las infraestructuras, entre otros muchos más artículos, a los que remitimos al lector dentro de este mismo blog.

En este artículo nos centramos en resumir, de forma breve, los materiales que se utilizan en la reparación del hormigón estructural. Estos materiales deben resistir acciones químicas, físicas o mecánicas que afecten a la durabilidad de la estructura y que requieran a su reparación. Fernández Cánovas (1994) indicaba que las condiciones que debe cumplir un material de reparación deberían ser, entre otras, las siguientes: mayor durabilidad que el material estructural existente; protección del acero al mejorar la alcalinidad del medio y aumentar la impermeabilidad; buena estabilidad dimensional con una mínima retracción y fluencia; y una buena adherencia tanto en acero como en hormigón. Además, como cualquier material de construcción, se debe exigir a estos productos requisitos relativos a la funcionalidad, seguridad, durabilidad, estética y economía.

Aunque es posible encontrar diversas clasificaciones de los materiales empleados en la reparación del hormigón estructural, la literatura europea los clasifica en tres grupos atendiendo al ligante que sirve de cohesión. Pueden ser estos ligantes hidráulicos, como el cemento; orgánicos, como las resinas sintéticas, o mixtos, es decir, que sean a la vez ligantes hidráulicos y orgánicos. Los ligantes hidráulicos pueden estar modificados o no por un polímero orgánico. Los productos basados en resinas sintéticas varían según la estructura del polímero resultante. Los materiales de base mixta se benefician tanto de las propiedades debidas al endurecimiento de los ligantes hidráulicos como de la reticulación del polímero.

Desde el 1 de Enero de 2009, es de obligado cumplimiento en toda la Unión Europea la Norma UNE-EN 1504, que especifica los requisitos para la identificación, comportamiento y seguridad de los productos y sistemas a utilizar para la reparación y protección estructural y no estructural del hormigón.

Veamos una pequeña clasificación de dichos materiales (Pelufo, 2003):

Materiales de base inorgánica

Se trata de productos basados en el cemento. Pueden ser de base inorgánica tradicional como los cementos portland (lechadas, morteros, microhormigones y hormigones). Las no tradicionales pueden emplear cemento portland, aluminoso, sin retracción, cementos basados en fosfato de magnesio, etc. Estos últimos son materiales de reparación con propiedades especiales: retracción compensada, endurecimiento rápido, altas resistencias, etc.

Materiales de base orgánica

Se basan en un aglomerante de resinas o polímeros, normalmente termoestables, como las resinas epoxídicas, los poliuretanos o los poliésteres. Estos ligantes polimerizan con un endurecedor. En el mercado existe una gran variedad de este tipo de materiales.

Materiales de base mixta

Hay quien opina que si el producto está compuesto por un conglomerante hidráulico y un polímero que se disuelve de forma estable en agua, éste producto pertenece al grupo de materiales de base inorgánica. No obstante, otros autores como Fernández Cánovas (1994) los consideran como materiales de base mixta. Estos productos de base mixta suelen tener por base cemento portland y polímeros termoplásticos. Las resinas que lo componen suelen ser acrílicas, estireno-butadieno, polivinilo y archilamidas. Como no podía ser de otra forma, las propiedades variarán en función de los componentes y proporciones utilizadas.

Os dejo algunos vídeos sobre este tema de la reparación de estructuras de hormigón. Espero que os gusten.

Referencias:

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales que se pueden emplear en un terraplén

Figura 1. Terraplén de acceso a paso superior

Las dos condiciones esenciales que tiene que cumplir un suelo para que sea utilizable son:

  • Que sea posible su puesta en obra en las debidas condiciones.
  • Que la obra sea estable y las deformaciones que se produzcan durante su vida resulten tolerables.

Estas dos condiciones dependen, por un lado, de las características intrínsecas del material y por otro, del estado natural en que se encuentre, influido primordialmente por su contenido de humedad.

Los materiales a utilizar en un terraplén son aquellos fáciles de apisonar y que una vez compactados son resistentes a la deformación y poco sensibles a los cambios de humedad o a las heladas.

En España, el Pliego de Prescripciones Técnicas Generales establece, en su artículo 330 “Terraplenes”, distintos tipos de suelos, en función de su granulometría, plasticidad, capacidad de soporte o resistencia a la deformación, posibilidad de entumecimiento, densidad máxima Proctor y contenidos de materia orgánica. Se dividen en suelos intolerables, tolerables, adecuados y seleccionados.

El Pliego distingue en los terraplenes cuatro zonas: cimiento, núcleo, espaldón y coronación. El cimiento lo define “la parte inferior de un terraplén en contacto con la superficie de apoyo, siendo su espesor mínimo de un metro” y la coronación sería la “la parte superior del relleno tipo terraplén, sobre la que se apoya el firme, con un espesor mínimo de dos tongadas y siempre mayor de cincuenta centímetros”. El espaldón es “la parte exterior de relleno tipo terraplén que, ocasionalmente, formará parte de los taludes del mismo. No se considerarán parte del espaldón los revestimientos tipo vegetal, encachados, protecciones antierosión, etc.” El núcleo es la “parte del terraplén comprendida entre el cimiento y la coronación”. Se nombra explanada al nivel del asiento del firme.

Figura 2. Zonificación bajo la explanada de una carretera

Sin embargo, hay que matizar al respecto que, una vez eliminada la cobertura vegetal, puede existir una zona, en contacto con el firme, —que es la parte superior del terraplén, y, por tanto, debería ser coronación—, pese a “estar por debajo de la superficie original del terreno”, y en segundo lugar, que si hay que hacer excavación adicional por presencia de material inadecuado, se ejecuta un “cajeado de desmonte”, que es una unidad de obra que debe cumplir especificaciones distintas a las exigidas al cimiento, por lo que deberemos diferenciarla. Por tanto, se propone definir el cimiento como “aquella parte del terraplén por debajo de la superficie original del terreno, que no corresponde a coronación ni a cajeado de desmonte”.

Los suelos inadecuados no cumplen las condiciones mínimas exigidas a los tolerables, y no pueden usarse en ninguna zona del terraplén. En núcleos y cimientos pueden emplearse los tolerables, adecuados o seleccionados. Los núcleos sujetos a inundación se formarán solo con suelos granulares (adecuados o seleccionados). En coronación deberán utilizarse suelos adecuados o seleccionados, aunque se pueden admitir los tolerables mejorados o estabilizados con cemento o cal.

Figura 3. Uso de suelos en función de la zonificación del terraplén, según PG-3

A efectos del artículo 330 del PG-3, los rellenos tipo terraplén estarán constituidos por materiales que cumplan alguna de las dos condiciones granulométricas siguientes:

  • Cernido, o material que pasa por el tamiz de 20 mm mayor del 70%
  • Cernido por el tamiz 0,080 mm mayor o igual al 35%

Se considerarán como suelos seleccionados aquellos que cumplen las siguientes condiciones:

  • Contenido en materia orgánica inferior al cero con dos por ciento (MO < 0,2%), según UNE 103204.
  • Contenido en sales solubles en agua, incluido el yeso, inferior al cero con dos por ciento (SS < 0,2%), según NLT 114.
  • Tamaño máximo no superior a cien milímetros (Dmax # 100 mm).
  • Cernido por el tamiz 0,40 UNE menor o igual que el quince por ciento (# 0,40 ≤ 15%) o que en caso contrario cumpla todas y cada una de las condiciones siguientes:
    • Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
    • Cernido por el tamiz 0,40 UNE, menor del setenta y cinco por ciento (# 0,40 < 75%).
    • Cernido por el tamiz 0,080 UNE inferior al veinticinco por ciento (# 0,080 < 25%).
    • Límite líquido menor de treinta (LL < 30), según UNE 103103.
    • Índice de plasticidad menor de diez (IP < 10), según UNE 103103 y UNE 103104.

Se considerarán como suelos adecuados los que, no pudiendo ser clasificados como suelos seleccionados, cumplan las condiciones siguientes:

  • Contenido en materia orgánica inferior al uno por ciento (MO < 1%), según UNE 103204.
  • Contenido en sales solubles, incluido el yeso, inferior al cero con dos por ciento (SS < 0,2%), según NLT 114.
  • Tamaño máximo no superior a cien milímetros (Dmax ≤ 100 mm).
  • Cernido por el tamiz 2 UNE, menor del ochenta por ciento (# 2 < 80%).
  • Cernido por el tamiz 0,080 UNE inferior al treinta y cinco por ciento (# 0,080 < 35%).
  • Límite líquido inferior a cuarenta (LL < 40), según UNE 103103.
  • Si el límite líquido es superior a treinta (LL > 30) el índice de plasticidad será superior a cuatro (IP > 4), según UNE 103103 y UNE 103104.

Se considerarán como suelos tolerables los que, no pudiendo ser clasificados como suelos seleccionados ni adecuados, cumplen las condiciones siguientes:

  • Contenido en materia orgánica inferior al dos por ciento (MO < 2%), según UNE 103204.
  • Contenido en yeso inferior al cinco por ciento (yeso < 5%), según NLT 115.
  • Contenido en otras sales solubles distintas del yeso inferior al uno por ciento (SS < 1%), según NLT 114.
  • Límite líquido inferior a sesenta y cinco (LL < 65), según UNE 103103.
  • Si el límite líquido es superior a cuarenta (LL > 40) el índice de plasticidad será mayor del setenta y tres por ciento del valor que resulta de restar veinte al límite líquido (IP > 0,73 (LL-20)).
  • Asiento en ensayo de colapso inferior al uno por ciento (1%), según NLT 254, para muestra remoldeada según el ensayo Proctor normal UNE 103500, y presión de ensayo de dos décimas de megapascal (0,2 MPa).
  • Hinchamiento libre según UNE 103601 inferior al tres por ciento (3%), para muestra remoldeada según el ensayo Proctor normal UNE 103500.

Se considerarán como suelos marginales los que no pudiendo ser clasificados como suelos seleccionados, ni adecuados, ni tampoco como suelos tolerables, por el incumplimiento de alguna de las condiciones indicadas para estos, cumplan las siguientes condiciones:

  • Contenido en materia orgánica inferior al cinco por ciento (MO < 5%), según UNE 103204.
  • Hinchamiento libre según UNE 103601 inferior al cinco por ciento (5%), para muestra remoldeada según el ensayo Proctor normal UNE 103500.
  • Si el límite líquido es superior a noventa (LL > 90) el índice de plasticidad será inferior al setenta y tres por ciento del valor que resulta de restar veinte al límite líquido (IP < 0,73 (LL-20)).

Se considerarán suelos inadecuados:

  • Los que no se puedan incluir en las categorías anteriores.
  • Las turbas y otros suelos que contengan materiales perecederos u orgánicos tales como tocones, ramas, etc.
  • Los que puedan resultar insalubres para las actividades que sobre los mismos se desarrollen.

Referencias:

ABECASIS, J. y ROCCI, S. (1987). Sistematización de los medios de compactación y su control. Vol. 19 Tecnología carreteras MOPU. Ed. Secretaría General Técnica MOPU. Madrid, diciembre.

ROJO, J. (1988): Teoría y práctica de la compactación. (I) Suelos. Ed. Dynapac. Impresión Sanmartín. Madrid.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Composición y propiedades del acero

Histórico horno Bessemer. Wikipedia

El término acero sirve comúnmente para denominar, en ingeniería metalúrgica, a una aleación de hierro con una cantidad de carbono variable entre el 0,03% y el 1,075% en peso de su composición, dependiendo del grado. Si la aleación posee una concentración de carbono mayor al 2,0% se producen fundiciones que, en oposición al acero, son mucho más frágiles y no es posible forjarlas sino que deben ser moldeadas. El acero conserva las características metálicas del hierro en estado puro, pero la adición de carbono y de otros elementos tanto metálicos como no metálicos mejora sus propiedades físico-químicas.

A continuación os voy a pasar unos vídeos al respecto que espero os sean útiles.

Composición del acero. Tipos más comunes, Comercialización de algunos materiales hechos con acero

https://www.youtube.com/watch?v=k_0I42LI4C0

Propiedades físicas, térmicas y ópticas del acero.

https://www.youtube.com/watch?v=e1DGwUCBiKM

Propiedades mecánicas y tecnológicas del acero, corrosión.

https://www.youtube.com/watch?v=TAmyydAfWb4

¿Cuáles son los coeficientes de seguridad de los materiales de un encofrado?

https://pl.m.wikipedia.org/wiki/Plik:Cassaforma_rampante_Destil.jpg

Los encofrados están formados por una composición de distintos materiales que, trabajando de forma conjunta, sirven como molde para el hormigón en estado fresco. En la Norma UNE 180201:2016 “Encofrados. Diseño general, requisitos de comportamiento y verificaciones“, se recogen los requisitos que deben cumplir dichos materiales.

Tanto el fabricante del material, como el fabricante de los elementos constitutivos de los encofrados, deben garantizar, mediante los ensayos correspondientes, las características mecánicas que expresan características resistentes de dichos materiales y del propio encofrado en su conjunto, mediante valores característicos obtenidos con un percentil del 5%.

Esos valores característicos se minoran con coeficientes (γM) de ponderación, para cada uno de los materiales, cuando se realizan los cálculos correspondientes al dimensionado de los elementos constitutivos de los encofrados.

  • En el caso del acero, se debe cumplir con la Norma UNE-EN 1993-1-1: “Proyecto de estructuras de acero. Reglas generales y reglas para edificios” (Eurocódigo 3). Para la comprobación en rotura, estado límite último, γM=1,05, salvo en tirantes y uniones, donde γM=1,25. Estos coeficientes se pueden ajustar con el nivel de constatación de la calidad de las características del material. Para la comprobación de la deformación en servicio, estado límite de servicio, γM=1,00.
  • En el caso del aluminio, se debe cumplir con la Norma UNE-EN 1999-1-1: “Proyecto de estructuras de aluminio. Reglas generales y reglas para edificios” (Eurocódigo 9). Para la comprobación en rotura, estado límite último, γM=1,10, salvo en tirantes y uniones, donde γM=1,25. Estos coeficientes se pueden ajustar con el nivel de constatación de la calidad de las características del material. Para la comprobación de la deformación en servicio, estado límite de servicio, γM=1,00.
  • En el caso de la madera, se debe cumplir con la Norma UNE-EN 1995-1-1: “Proyecto de estructuras de madera. Reglas generales y reglas para edificios” (Eurocódigo 5). La madera debe cumplir con una clase de duración corta y una clase de servicio 3. Para la comprobación en rotura, estado límite último, γM=1,30, sobre el que hay que aplicar el coeficiente  kmod con el valor indicado en dicha norma según el tipo y condiciones de madera utilizada. Para la comprobación de la deformación en servicio, estado límite de servicio, el valor del módulo de elasticidad a emplear es el valor medio Emedio sin ponderar, es decir,  γM=1,00.

 

En el caso de materiales compuestos, no existen normas disponibles. En este caso, el fabricante debe garantizar las características mecánicas del material compuesto, obtenidas mediante ensayos, mediante valores característicos obtenidos con un percentil del 5%.