Evaluación aproximada de caudales de bombeo en excavación de solares

Figura 1. Vaciado de solar en recinto apantallado bajo nivel freático. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

Resulta muy habitual en edificación excavar sótanos que se encuentran bajo nivel freático. Esta excavación suele realizarse al abrigo de un recinto de muros o pantallas y se hace necesario drenar el agua que queda al fondo de la excavación. Para un estudio en detalle del flujo hidráulico en un medio poroso deberíamos acudir a la ecuación de Laplace y realizar la integración de este tipo de ecuación en derivadas parciales atendiendo a las condiciones de contorno. Sin embargo, vamos a dar aquí una solución aproximada que puede servir en obra para realizar una previsión de las bombas de achique necesarias o tomar decisiones tales como prolongar las pantallas lo suficiente como para empotrarlas en un sustrato impermeable. Como siempre, cada caso es particular y requiere de un estudio económico para ver la mejor opción.

Vamos a suponer que se va a excavar un solar, de dimensiones “a·b” en presencia de nivel freático en un terreno poroso con un coeficiente de permeabilidad “k“.  Las pantallas se encuentran empotradas una longitud “L“, el fondo de excavación se encuentra a una profundidad “H” respecto al nivel freático y existe un estrato impermeable a una distancia “h‘” respecto a la pantalla (ver Figura 2). Se pretende calcular el caudal de achique de forma que el agua no se encharque en el fondo de la excavación. Se supone que se ha realizado una evaluación previa para evitar el sifonamiento, el levantamiento de la excavación y el cálculo mecánico de las pantallas, entre otros aspectos.

Figura 2. Flujo de agua bajo un recinto apantallado

Para resolver el problema emplearemos la Ley de Darcy, que establece que la velocidad de un fluido en medio poroso es proporcional al gradiente hidráulico. Multiplicando esa velocidad por la sección que atraviesa el flujo, tendremos la evaluación del caudal según la siguiente expresión, donde “Q” es el caudal, “k” es el coeficiente de permeabilidad”, “i” es el gradiente hidráulico y “S” es la sección atravesada por el flujo.

En el problema que nos ocupa, el caudal puede atravesar dos secciones, una lateral determinada por el estrato impermeable y el fondo de la pantalla “S1”, y la formada por el fondo de la excavación del solar “S2”. Calculemos en ambos casos el caudal. Es posible realizar una estimación aproximada considerando el flujo del agua próximo a la pantalla, puesto que es la línea de flujo más corta y la que supone un mayor gradiente crítico. En este caso, i=H/(H+2L).

Para la sección “S1″, el caudal “Q1″ tendrá el siguiente valor:

 

Análogamente, para la sección”S2″, el caudal “Q2″ tendrá el siguiente valor:

El caudal estimado será el menor ambas dos estimaciones: Q=min(Q1, Q2).

Igualando ambos caudales se puede determinar la distancia del sustrato impermeable al fondo de la pantalla a partir de la cual dicho sustrato no influye en la estimación del caudal:

En el caso de un solar cuadrado, si el sustrato impermeable se encuentra a una distancia superior a la cuarta parte del lado del solar, todo el flujo pasa por el fondo de la excavación.

A todo caso, de las expresiones anteriores se deduce que el caudal máximo que puede entrar en la excavación se da cuando el sustrato impermeable se encuentra a una distancia del fondo de la pantalla superior al cociente entre el área y el perímetro del recinto. Si la capa impermeable se encuentra más cerca, el caudal baja proporcionalmente hasta anularse teóricamente cuando llega a tocar a la pantalla.

Referencias:

PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat. Colegio Oficial de Arquitectos de Galicia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción al movimiento de tierras

La mecanización de las obras públicas es cada vez mayor, y la repercusión en el precio de las diferentes unidades de obra está muy influenciada por los rendimientos de los equipos empleados, por sus precios horarios y por la eficacia de su utilización. Los costes de la maquinaria acaparan un 42% del coste de todas las unidades de obra en una carretera. Las unidades que componen el movimiento de tierras en una obra suponen porcentajes importantes del presupuesto total de dichas obras. En una autovía puede suponer entre el 20 y 30% del coste mientras que en una presa de materiales sueltos, este porcentaje puede subir del 45 al 75%, según los casos.

Se entiende por movimiento de tierras al conjunto de actuaciones a realizarse en un terreno para la ejecución de una obra. Se denomina excavación a la separación o extracción de determinadas partes de dicho volumen, una vez superadas las fuerzas internas que lo mantenían unido: cohesión, adherencia, capilaridad, etc. Llamamos carga a la acción de depositar los productos de excavación en un determinado medio de transporte. Genéricamente, se puede clasificar la maquinaria utilizada en el movimiento de tierras en los siguientes grupos:

  •            Equipos de excavación y empuje:  son equipos de arranque tales como tractores con palas empujadoras: bulldozers.
  •            Equipos de excavación y carga: excavadoras de pala frontal, retroexcavadoras, etc.
  •            Equipos cargadores: palas cargadoras.
  •            Equipos de excavación y refino: Motoniveladoras, traíllas y mototraíllas.
  •            Equipos de acarreo: Camiones volquete, autovolquetes, remolques, camiones góndola, dumpers y motovagones.
  •            Equipos de compactación: Compactadores de ruedas neumáticas, rodillos de “pata de cabra”, compactadores vibratorios.
  •            Otro tipo de equipos: Cucharas bivalvas, dragalinas, topos, dragas, bombas de succión, etc.

Los equipos y medios empleados para la excavación de tierras pueden clasificarse de diversas formas: las que atienden a la traslación de la maquinaria, las que contemplan la resistencia a compresión de los terrenos y las que se refieren a su excavabilidad.

Según el modo de trasladarse, se clasifican en:

  •            Máquinas que excavan y trasladan la carga: tractores con hoja empujadora o con escarificador, motoniveladoras, mototraíllas y palas cargadoras. Efectúan la excavación al desplazarse, o bien, como la pala cargadora, excava y luego traslada la carga.
  •            Máquinas que excavan situadas fijas, sin desplazarse: palas excavadoras hidráulicas o de cables, dragalinas, excavadoras de rueda frontal o de cangilones, dragas de rosario y rozadoras. Cuando la excavación a realizar sale de su alcance, se debe trasladar a una nueva posición de trabajo, si bien no excava durante el desplazamiento.
  •            Máquinas especiales: topos, dragas y bombas de succión, dardos y chorros de agua y fusión térmica. La excavación se realiza mediante otros procedimientos distintos a los anteriores.

Os dejo un vídeo explicativo que sirve de introducción al tema. Espero que os sea útil.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Apertura de zanja en la instalación de tuberías

Figura 1. Zanjadora. https://riusa.net/alquiler-de-zanjadoras-en-cantabria/

Las zanjas constituyen excavaciones abiertas y asentadas en el terreno, accesibles a los operarios, y realizadas con medios manuales o mecánicos. La excavación debe hacerse con sumo cuidado para que la alteración de las características mecánicas del suelo sea la mínima inevitable. Su anchura no suele ser mayor a 2 m ni su profundidad superior a 7 m, en cuyo caso se consideraría la excavación un vaciado.

La apertura de una zanja tiene dos fases: una de excavación y otra de entibación, pudiendo presentarse o no esta última en función de las características del terreno, y el tiempo estimado en el que la zanja va a estar abierta. Cuando la excavación de la zanja se realice por medios mecánicos, además, será necesario que el terreno admita talud en corte vertical para esa profundidad y que la separación entre el tajo de la máquina y la entibación no sea mayor de vez y media la profundidad de la zanja en ese punto. Los productos de excavación de la zanja, aprovechables para su relleno posterior, se podrán depositar en caballeros situados a un solo lado de la zanja, y a una separación del borde de la misma de un mínimo de 0,60 m. De emplearse entibación, distancias entre 0,50 y 0,90 m suelen ser suficientes para facilitar la circulación del personal de montaje y reducir la posibilidad de caída de piedras sobre la tubería.

Si bien las zanjas pueden abrirse manualmente, hoy en día la excavación se realiza con maquinaria, fundamentalmente con palas retroexcavadoras de tipo universal y con zanjadoras, máquinas diseñadas exclusivamente para excavar zanjas (Figura 1). De algunos de estos tipos ya hemos hablado en entradas anteriores: zanjadora de brazo inclinable, zanjadora de ruedas de cangilones, incluso cortadora de disco con picas para zanjas estrechas. Estas máquinas proporcionan buenos rendimientos, siempre que se den las condiciones adecuadas. Así, las zanjadoras, cuyos rendimientos son realmente elevados, presentan el inconveniente de que para su utilización es preciso que el terreno sea adecuado, es decir, cuando es tierra franca o terreno de tránsito y no hay demasiados obstáculos. Las retroexcavadoras, aunque obtienen menores rendimientos que las zanjadoras, se pueden utilizar en terrenos más variados, permitiendo su utilización en la carga, descarga y colocación de los tubos y superando mejor los obstáculos del terreno. En las ciudades, generalmente no se presentan los problemas anteriores, pero aparece el problema de la gran cantidad de conducciones en el subsuelo correspondientes a distintos servicios. Ello implica excavar manualmente las zonas de cruce con la zanja y utilizar maquinaria en el resto de zonas.

La anchura mínima del fondo de la zanja depende del espacio que necesitan los operarios para colocar los tubos, por lo que se considera una anchura mínima de 0,60 m. En los puntos donde deba colocarse una junta, se realizan unos ensanchamientos de la zanja cuyas dimensiones dependen del tipo de junta y de la manipulación necesaria para su montaje. La norma UNE-EN 1610 indica el ancho mínimo de la zanja en función del diámetro nominal de la tubería (Tabla 1) y de la profundidad de zanja (Tabla 2).

Figura 2. Espacio de trabajo mínimo. UNE-EN 1610.

La calidad del fondo de la zanja es fundamental para la buena conservación de las canalizaciones, puesto que la presencia en ella de zonas de distinta dureza hace que la tubería no quede en buenas condiciones de sustentación. Por lo anterior, es conveniente no efectuar nunca excavación de más, así como limpiar el fondo de piedras, realizando el refino final cuidadosamente. Por otra parte, si aparecen materiales de rigidez excesiva, como rocas o cimentaciones en desuso, se deberá excavar por debajo de la rasante y realizar un relleno posterior de unos 10-15 cm perfectamente compactado. Además, no se recomienda utilizar como relleno materiales con alto contenido de componentes orgánicos, ni instalar las tuberías en suelos orgánicos sin tomar precauciones especiales (empleo de geotextiles, etc.)

La profundidad de la zanja debe indicarse en el proyecto, pero en cualquier caso, y habida cuenta tanto del efecto de las cargas del tráfico como de las posibles heladas, la separación entre la generatriz superior del tubo y la superficie del terreno debe de tener un valor mínimo de 0,60 m.

En general, se evitará la entrada de aguas superficiales a las excavaciones, achicándolas lo antes posible cuando se produzcan, y adoptando las soluciones previstas para el saneamiento de las profundas. Debe intentarse que la zanja esté abierta el menor tiempo posible para evitar los peligros de desprendimientos, inundaciones y meteorización del terreno, así como las posibles alteraciones que puede sufrir la tubería ya montada debido a los agentes atmosféricos. Es por ello que es conveniente establecer un programa de ejecución que coordine, por tramos de longitud adecuada, las fases de apertura de zanja, montaje y terraplén. Si fuera preciso mantener la zanja abierta durante algún tiempo, es conveniente, para evitar la meteorización, dejar por lo menos 0,20 m sin excavar, realizando esta excavación poco antes del montaje.

La estabilidad de las paredes de la zanja puede conseguirse dándoles el talud adecuado, pero en algunos casos en que esto no es posible, bien por el coste económico de la excavación, bien por la imposibilidad física de espacio, es preciso la entibación. Las zanjas son especialmente peligrosas para los operarios, por lo que, como regla general, no se debe excavar sin entibación una profundidad mayor a 1,20 m. Si se entiba, la zanja se realiza con paredes verticales, debiendo ser la entibación tanto más compleja cuanto mayor sea la inestabilidad del terreno. Hay que tener presente que existe una altura crítica de una excavación sin entibación. Se realizará la excavación por franjas horizontales de altura no mayor a la separación entre codales más 30 cm, que se entibará a medida que se excava. Además, debe tenerse en cuenta en el diseño de la entibación, que se debe permitir la colocación y el montaje de la tubería. Por último, indicar que mientras se efectúe la consolidación definitiva de las paredes y fondo de la excavación, se conservarán las contenciones, apuntalamientos y apeos realizados para la sujeción de las construcciones y/o terrenos adyacentes, así como de vallas y/o cerramientos.

Os dejo algunos vídeos sobre la excavación de zanjas. Espero que os sean de interés.

Referencias:

AENOR (2000). UNE-EN 805. Abastecimiento de agua. Especificaciones para redes exteriores a los edificios y sus componentes. 

AENOR (2016). UNE-EN 1610. Construcción y ensayos de desagües y redes de alcantarillado.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Altura crítica de una excavación sin entibación

En numerosas ocasiones se plantea en obra la necesidad de entibar una excavación, especialmente cuando la profundidad sobrepasa 1,20 m. Para ello os dejo una formulación basada en la teoría de Rankine donde se calcula la altura crítica anulando el empuje activo del terreno. Como veréis, esta altura solo se puede conseguir con terrenos cohesivos donde no exista nivel freático. También os dejo un par de cuadros donde aparece la resistencia a compresión simple de terrenos cohesivos y una tabla con ángulos de inclinación y pendientes de taludes en función del terreno y de la presencia de agua. Debo advertir que cuando se hace uso de tablas, normalmente se trata de modelos simplificados que, en no pocas veces, sobredimensionan enormemente los fenómenos analizados. Por eso siempre aconsejo realizar un cálculo con datos fiables para contrastar.

Descargar (PDF, 77KB)

Tabla 1. Altura máxima admisible en metros de taludes libres de solicitaciones, en función del tipo de terreno, del ángulo de inclinación de talud no mayor de 60º y de la resistencia a compresión simple del terreno.

 

Tabla 2. Inclinaciones y pendientes de los taludes, dependiendo de la naturaleza y contenido en agua del terreno

Os dejo a continuación un vídeo al respecto:

Referencias:

http://www.osalan.euskadi.eus/contenidos/libro/seguridad_201210/es_doc/adjuntos/Seguridad%20en%20zanjas.pdf

http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/201a300/ntp_278.pdf

http://www.lineaprevencion.com/ProjectMiniSites/Video5/html/cap-2/db-prl-mt/seccion-2-desmonte-y-vaciado-a-cielo-abierto/seccion2desmonteyvaciadoacieloabierto.html

http://www.cepymearagon.es/WebCEPYME%5Cdatos.nsf/0/BB3A397513D24B57C1257DFE0031A982/$FILE/2014-DGA-02.pdf

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Miniexcavadoras

Máquina autopropulsada sobre ruedas o sobre cadenas, metálicas o de goma, con una superestructura capaz de efectuar una rotación al menos de 360º, que excava o carga, eleva, gira y descarga materiales por la acción de una cuchara fijada a un conjunto de pluma y balancín, sin que la estructura portante se desplace y con un peso no superior a los 6.000 kg.

Se emplean en obras de servicios públicos urbanos, demoliciones, acondicionamiento de calles, etc. En la industria se usan en trabajos de desescombro, limpieza, jardinería, etc. Su característica fundamental es el servicio de apoyo que realizan.

Os dejo varios vídeos explicativos sobre esta máquina que espero os gusten.

Algunas de estas máquinas son extremadamente pequeñas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Método alemán de construcción de túneles

metodo-alemanEl método alemán es un procedimiento de construcción de túneles de grandes luces que también se emplea cuando el terreno es muy malo y resulta peligroso descalzar parte de la bóveda para ejecutar los hastiales, como es el caso del método belga. Con este procedimiento se puede reaccionar con mayor rapidez que el método belga en el caso de aparecer agua, en terrenos sueltos o capas arenosas. Además, permite reducir los posibles asientos diferenciales que producirían grietas en la bóveda y asientos en superficie.

El sistema sería conceptualmente parecido al método belga, pero cambiando el orden las fases de ejecución y la propia ejecución de la bóveda. El procedimiento inicia la excavación con dos galerías de avance, fase 1; se hormigonan los hastiales para después proceder a la excavación de las fases 3 y 4, se procede al recubrimiento de la bóveda y, por último se excava la parte central, fase 5, con el fin de facilitar la entibación y el apuntalamiento de la parte superior. El avance de las galerías (fase 1) se suele realizar por tramos de 25 a 30 m, dependiendo del tipo de terreno; sin embargo, si el túnel no es muy largo (menos de 200 m, por ejemplo) se puede excavar de un tirón. Estas galerías son muy útiles si es necesario drenar agua durante la ejecución. El hormigonado de la bóveda no apoya sobre el terreno (método belga), sino sobre los estribos hormigonados. Esta bóveda se ejecuta por costillas, construidas de forma alterna. Es decir, se construye la galería central superior y cada semicostilla se ataca desde la parte superior del hastial antes de verter hormigón. Se hormigona la bóveda una vez excavada a través de la galería superior. Este procedimiento permite la construcción de grandes secciones de túnel sin que el frente abierto supere los 3-5 m2.

Os dejo un par de vídeos donde se explica con mayor detalle el método. Espero que os sean útiles.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

MELIS, M.J.; TRABADA, J.M. (2000). Construcción de una estación en caverna de gran luz. La estación de Guzmán el Bueno. Revista de Obras Públicas, 3485:85-90.

 

Curva de llenado de una mototraílla empujada por buldócer

1ScraperDozerUna mototraílla convencional, empujada por un buldócer, tiene una curva de llenado, función del tiempo de carga “t”: C=C(t). Sabiendo que el ciclo completo de las mototraíllas vale (a+t) y el de las empujadoras (b+d·t), siendo a,b y d constantes, calcular el tiempo de carga óptimo.

Resolución:

Como el material encuentra cada vez mayor resistencia a entrar en la caja de la traílla conforme ésta se va llenando, la curva de carga es creciente, con un valor asintótico superior, que es la mayor capacidad de la traílla, a partir de la cual la misma cantidad de material que entra por abajo es derramado por su parte superior.

La curva C=C(t) tendría una forma como la que sigue:

Figura 1

El tiempo de carga óptimo es el que minimiza el coste unitario de producción U(t):

Figura 2

  • El coste horario del equipo, si éste está formado por “n” traíllas a un costo horario de “T” ptas/h, y “m” topadoras, a un coste horario de “E” euros/h, será:

Coste horario del equipo=n·T+m·E  euros/h

 

  • La productividad horaria del equipo va a depender de si faltan o sobran traíllas.

* Si faltan traíllas, serán éstas las que condicionen la producción total del equipo, que será:

Figura 8

En este caso

Figura 3

para encontrar el mínimo, derivamos e igualamos a cero:

Figura 10

Por consiguiente, para el cálculo del tiempo de carga óptimo basta con buscar la tangente de la curva de carga desde un punto situado a una distancia “a” del origen. “a” es el período del ciclo de la mototraílla que no se emplea en la carga.

Figura 5

* Si sobran traíllas, las topadoras condicionarán la producción total del equipo, que será:

Figura 9

En este caso

Figura 6

para encontrar el mínimo, derivamos e igualamos a cero:

Figura 7

Por tanto, de forma análoga al caso anterior, para el cálculo del tiempo de carga óptimo basta con buscar la tangente de la curva de carga desde un punto situado a una distancia “b/d” del origen.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.  ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Clasificación de Kögler-Scheidig para la excavación de terrenos

Excavaciones-estructuralesLos terrenos considerados en un movimiento de tierras presentan una amplia variabilidad, no sólo en sus componentes sólidos, sino en su humedad, disposición, índice de huecos, etc., de forma que desde una roca sólida, hasta un suelo orgánico, se puede pasar por arcillas, limos, gravas, arenas, o cualquier combinación entre estos materiales, con mayor o menor cantidad de agua. Se tiene, por tanto un conjunto de materiales, más o menos heterogéneos, constituidos por una mezcla en las tres fases, sólida, líquida y gaseosa.

Estos materiales tendrán mayor o menor resistencia de remoción y arranque (penetración y separación) en función del peso específico, de su dureza, rozamiento interno o cohesión. Ello influirá en su facilidad de carga, y por tanto, se observa la estrecha relación que existe entre el tipo de material y la maquinaria elegida para su manipulación.

La clasificación de Kögler-Scheidig se basa en la dificultad con que se pueden arrancar los suelos con utensilios manuales empleados por los geólogos en los reconocimientos de terreno. Esta clasificación agrupa los materiales en una escala de 1 a 8 según su resistencia al arranque (ver Tabla).

Tabla: Clasificación de los suelos en relación a la dificultad de su arranque (según Kögler-Sheidig)
Tabla: Clasificación de los suelos en relación a la dificultad de su arranque (según Kögler-Sheidig)

 

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Palas frontales

Komatsu Pc 1250 7
Komatsu Pc 1250 7

Son máquinas de ataque frontal para la excavación y carga de grandes masas, equipadas para ello de un equipo de excavación de empuje o frontal: cuchara frontal. Surgieron como alternativa a máquinas de arranque y carga (principalmente palas de ruedas), en trabajos en que la dureza del terreno, obligaba para poder utilizar a estas como máquina de carga a la escarificación previa del terreno, para obtener unos rendimientos altos. En terrenos comprendidos por su dureza entre escarificación media y voladura de terrenos blandos la pala frontal, por su mejor aprovechamiento de la fuerza de arrancamiento y su diferente forma de cargar, permitían el arranque directo del material, prescindiendo del tractor de escarificación y aportando por tanto una bajada importante de los costes de explotación.

La cuchara está colocada de forma que los dientes miran hacia el exterior, debido a esto, para cargarla hay que moverla de abajo hacia arriba, cayendo el material arrancado por los dientes dentro del cazo como en las palas cargadoras. A pesar de que las grandes máquinas de este tipo son específicas, existen modelos donde es fácil el cambio de equipo de uno frontal a uno de retroexcavación. Con todo, a una pala frontal se le exige mayor robustez, plumas, balancines y cucharas específicamente diseñadas para su trabajo.

 

Pala frontal

El cucharón frontal puede configurarse con descarga frontal o de fondo. Estos últimos descargan mediante una puerta articulada que se abre mediante una apertura hidráulica que permite la salida del material. También se podrían recoger rocas del suelo utilizando este mecanismo tipo pinza. A pesar de ello el uso normal es la cuchara de descarga frontal, por menor coste y mantenimiento.

La máquina debe realizar esfuerzos de penetración y de excavación para realizar su trabajo. Éste puede ser de excavación y carga de materiales en banco o únicamente carga de materiales sueltos.

Sus posibilidades y aplicaciones son amplias, usándose en canteras de roca volada o de roca blanda, carga y descarga de grandes bloques extraídos de canteras, en bancos de arena o grava, y extracciones de mineral. Realiza cortes en laderas, abre zanjas y cimientos profundos. Su forma de trabajar efectiva es cuando excava el terreno desde el nivel de sustentación hacia arriba. Se utiliza fundamentalmente en excavación con carga directa a las unidades de transporte.

 

Os dejo un vídeo de una pala frontal, la Hitachi EX8000.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Zanjas y entibaciones

090716163558_BOX-2_1En los trabajos ejecutados en zanjas se producen frecuentemente accidentes graves o mortales debidos al desprendimiento de tierras. Podemos considerar, con carácter general, peligrosa toda excavación que, en terrenos corrientes, alcance una profundidad de 0,80 m y 1,30 m en terrenos consistentes.

El Colegio Oficial de Aparejadores y Arquitectos Técnicos de Madrid nos ofrece el siguiente documento (enlace) donde se definen las líneas generales de las medidas de seguridad y procedimientos de trabajo, que garanticen la seguridad de los trabajadores que tienen que llevar a cabo labores en el interior de zanjas y pozos, haciendo hincapié en los sistemas de entibación, como garantes de la estabilidad de las paredes de la excavación. Otro documento de interés es el NTP 278: Zanjas: prevención del desprendimiento de tierras, del Instituto Nacional de Seguridad e Higiene en el Trabajo.

A continuación os presento un vídeo del profesor José Ramón Ruiz, de la UPV, donde se explican los conceptos básicos de las entibaciones y las diferencias entre entibaciones cuajadas, entibaciones semicuajadas y entibaciones ligeras.

En este vídeo podemos ver alguna de las recomendaciones más importantes relacionadas con la seguridad en la ejecución de zanjas y entibaciones.

Igual os sorprende este vídeo sobre entibaciones realizado de forma original.

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.