Drenaje de excavaciones mediante bombeo desde zanjas perimetrales

Figura 1. https://gharpedia.com/blog/dewatering-methods-for-waterlogged-area/

El agotamiento del agua a cielo abierto (open sump pumping) de grandes excavaciones puede realizarse mediante bombeo desde zanjas perimetrales a la excavación (dewatering by constructing drains). Estas zanjas, más profundas que la excavación principal, llevan el agua a unos pozos o sumideros donde una bomba la evacua fuera de la excavación. En el caso de áreas extensas, incluso se pueden disponer zanjas intermedias, además de las perimetrales. Se trata de un sistema de poca complejidad y, normalmente, de menor coste frente a otros sistemas.

Tanto las zanjas como los sumideros se realizan con maquinaria de excavación convencional. Las bombas deben ser suficientemente robustas como para afrontar el manejo de partículas sólidas y finos. Este sistema presenta problemas con suelos granulares, por su poca estabilidad cuando se encuentran saturados. Se trata de un sistema que solo es útil cuando el volumen de agua aportado por el terreno no es muy alto. La zanja drenante se rellena de árido graduado para garantizar su integridad y retener los finos, evitando la erosión del suelo; pero si los suelos son suficientemente estables y cohesivos, no se precisa de dicho relleno.

En el caso de que se deba drenar una cantidad de agua importante, se debe incrementar la sección de la zanja, aumentar la pendiente, e incluso, colocar tuberías horizontales fisuradas dentro de la zanja drenante para favorecer la circulación del agua hacia los sumideros. Antes de disponer los áridos que rodean esta tubería, se coloca una membrana de geotextil para evitar la salida de finos. A este tipo zanja con tubería horizontal fisurada, de unas dimensiones de 0,50 m x 0,50 m (o superior) se le denomina drenaje francés (French drain).

El sistema es adecuado para descensos someros del nivel freático, entre 1 y 2 m, donde el nivel previo al bombeo se encuentre próximo a la superficie del terreno. En efecto, en condiciones de presión atmosférica, el máximo nivel de aspiración real de la bomba se reduce a unos 7,5 m, como mucho. Es por eso que excavaciones a mayor profundidad requeriría de una batería escalonada de bombas o bien utilizar bombas sumergibles.

Figura 2. Sistema de bombeo con zanja perimetral desde pozos abiertos.

La profundidad de las zanjas y sumideros puede aumentarse a medida que avanza la excavación (Figura 3). El fondo de las zanjas debe mantenerse 0,30-0,60 m por debajo del fondo de la excavación. En excavaciones pequeñas, la profundidad de las zanjas puede ser de 0,30 a 0,60 m con un ancho de 0,40 m y una relación de inclinación de 1:1-1:1,5. También se dispone una pequeña pendiente de 0,2-0,5 % para el buen drenaje de la zanja. Los sumideros suelen ser cúbicos, de 1 m de lado. El espaciamiento de centro a centro de los sumideros a lo largo de la línea central de las zanjas puede variar de 20 a  a 30 m. El sumidero final debe ser lo suficientemente profundo como para que, cuando se bombee hacia afuera, se drene toda la excavación. El fondo del sumidero se sitúa entre 0,40 y 1,00 m por debajo de las zanjas. Las paredes del sumidero se pueden reforzar con tablas de madera y otro material. Para evitar el arrastre de partículas finas suele revestirse el sumidero con un material filtrante. El bombeo debe realizarse de forma continua hasta que terminen las operaciones.

Figura 2. Profundización de zanjas perimetrales y sumideros. https://link.springer.com/chapter/10.1007/978-981-10-0669-2_4

Uno de los problemas del sistema es que la corriente subterránea de agua puede arrastrar partículas finas y aumentar la presión intersticial del terreno colindante, con el consiguiente riesgo de subsidencias o asientos indeseados en estructuras colindantes. En casos extremos se podría producir erosión interna, sifonamiento, roturas de fondo o deslizamiento de taludes. Este fenómeno puede producirse cuando las pendientes son pronunciadas o existe un potencial hidráulico elevado. Cuando hay filtración de agua por el talud de la excavación, a veces es suficiente proteger la base del talud (batter protection) con una berma de gravas o sacos de arena para evitar su erosión o fallo por colapso; pero en otros casos, sobre todo en zonas urbanas, el riesgo de inestabilidad de los taludes de la excavación aconseja la construcción de recintos cerrados con muros pantalla o tablestacas y bombear el agua que penetre en el recinto. En este caso resulta imprescindible asegurarse de que no existe levantamiento del fondo, sifonamiento o erosión interna.

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las técnicas de control del nivel freático en excavaciones

Figura. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático.

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua del recinto de la excavación conforme se produce su filtración. Las filtraciones se controlan y evacúan durante la excavación.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación aproximada de caudales de bombeo en excavación de solares

Figura 1. Vaciado de solar en recinto apantallado bajo nivel freático. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

Resulta muy habitual en edificación excavar sótanos que se encuentran bajo nivel freático. Esta excavación suele realizarse al abrigo de un recinto de muros o pantallas y se hace necesario drenar el agua que queda al fondo de la excavación. Para un estudio en detalle del flujo hidráulico en un medio poroso deberíamos acudir a la ecuación de Laplace y realizar la integración de este tipo de ecuación en derivadas parciales atendiendo a las condiciones de contorno. Sin embargo, vamos a dar aquí una solución aproximada que puede servir en obra para realizar una previsión de las bombas de achique necesarias o tomar decisiones tales como prolongar las pantallas lo suficiente como para empotrarlas en un sustrato impermeable. Como siempre, cada caso es particular y requiere de un estudio económico para ver la mejor opción.

Vamos a suponer que se va a excavar un solar, de dimensiones “a·b” en presencia de nivel freático en un terreno poroso con un coeficiente de permeabilidad “k“.  Las pantallas se encuentran empotradas una longitud “L“, el fondo de excavación se encuentra a una profundidad “H” respecto al nivel freático y existe un estrato impermeable a una distancia “h‘” respecto a la pantalla (ver Figura 2). Se pretende calcular el caudal de achique de forma que el agua no se encharque en el fondo de la excavación. Se supone que se ha realizado una evaluación previa para evitar el sifonamiento, el levantamiento de la excavación y el cálculo mecánico de las pantallas, entre otros aspectos.

Figura 2. Flujo de agua bajo un recinto apantallado

Para resolver el problema emplearemos la Ley de Darcy, que establece que la velocidad de un fluido en medio poroso es proporcional al gradiente hidráulico. Multiplicando esa velocidad por la sección que atraviesa el flujo, tendremos la evaluación del caudal según la siguiente expresión, donde “Q” es el caudal, “k” es el coeficiente de permeabilidad”, “i” es el gradiente hidráulico y “S” es la sección atravesada por el flujo.

En el problema que nos ocupa, el caudal puede atravesar dos secciones, una lateral determinada por el estrato impermeable y el fondo de la pantalla “S1”, y la formada por el fondo de la excavación del solar “S2”. Calculemos en ambos casos el caudal. Es posible realizar una estimación aproximada considerando el flujo del agua próximo a la pantalla, puesto que es la línea de flujo más corta y la que supone un mayor gradiente crítico. En este caso, i=H/(H+2L).

Para la sección “S1″, el caudal “Q1″ tendrá el siguiente valor:

 

Análogamente, para la sección”S2″, el caudal “Q2″ tendrá el siguiente valor:

El caudal estimado será el menor ambas dos estimaciones: Q=min(Q1, Q2).

Igualando ambos caudales se puede determinar la distancia del sustrato impermeable al fondo de la pantalla a partir de la cual dicho sustrato no influye en la estimación del caudal:

En el caso de un solar cuadrado, si el sustrato impermeable se encuentra a una distancia superior a la cuarta parte del lado del solar, todo el flujo pasa por el fondo de la excavación.

A todo caso, de las expresiones anteriores se deduce que el caudal máximo que puede entrar en la excavación se da cuando el sustrato impermeable se encuentra a una distancia del fondo de la pantalla superior al cociente entre el área y el perímetro del recinto. Si la capa impermeable se encuentra más cerca, el caudal baja proporcionalmente hasta anularse teóricamente cuando llega a tocar a la pantalla.

Referencias:

PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat. Colegio Oficial de Arquitectos de Galicia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Introducción al movimiento de tierras

La mecanización de las obras públicas es cada vez mayor, y la repercusión en el precio de las diferentes unidades de obra está muy influenciada por los rendimientos de los equipos empleados, por sus precios horarios y por la eficacia de su utilización. Los costes de la maquinaria acaparan un 42% del coste de todas las unidades de obra en una carretera. Las unidades que componen el movimiento de tierras en una obra suponen porcentajes importantes del presupuesto total de dichas obras. En una autovía puede suponer entre el 20 y 30% del coste mientras que en una presa de materiales sueltos, este porcentaje puede subir del 45 al 75%, según los casos.

Se entiende por movimiento de tierras al conjunto de actuaciones a realizarse en un terreno para la ejecución de una obra. Se denomina excavación a la separación o extracción de determinadas partes de dicho volumen, una vez superadas las fuerzas internas que lo mantenían unido: cohesión, adherencia, capilaridad, etc. Llamamos carga a la acción de depositar los productos de excavación en un determinado medio de transporte. Genéricamente, se puede clasificar la maquinaria utilizada en el movimiento de tierras en los siguientes grupos:

  •            Equipos de excavación y empuje:  son equipos de arranque tales como tractores con palas empujadoras: bulldozers.
  •            Equipos de excavación y carga: excavadoras de pala frontal, retroexcavadoras, etc.
  •            Equipos cargadores: palas cargadoras.
  •            Equipos de excavación y refino: Motoniveladoras, traíllas y mototraíllas.
  •            Equipos de acarreo: Camiones volquete, autovolquetes, remolques, camiones góndola, dumpers y motovagones.
  •            Equipos de compactación: Compactadores de ruedas neumáticas, rodillos de “pata de cabra”, compactadores vibratorios.
  •            Otro tipo de equipos: Cucharas bivalvas, dragalinas, topos, dragas, bombas de succión, etc.

Los equipos y medios empleados para la excavación de tierras pueden clasificarse de diversas formas: las que atienden a la traslación de la maquinaria, las que contemplan la resistencia a compresión de los terrenos y las que se refieren a su excavabilidad.

Según el modo de trasladarse, se clasifican en:

  •            Máquinas que excavan y trasladan la carga: tractores con hoja empujadora o con escarificador, motoniveladoras, mototraíllas y palas cargadoras. Efectúan la excavación al desplazarse, o bien, como la pala cargadora, excava y luego traslada la carga.
  •            Máquinas que excavan situadas fijas, sin desplazarse: palas excavadoras hidráulicas o de cables, dragalinas, excavadoras de rueda frontal o de cangilones, dragas de rosario y rozadoras. Cuando la excavación a realizar sale de su alcance, se debe trasladar a una nueva posición de trabajo, si bien no excava durante el desplazamiento.
  •            Máquinas especiales: topos, dragas y bombas de succión, dardos y chorros de agua y fusión térmica. La excavación se realiza mediante otros procedimientos distintos a los anteriores.

Os dejo un vídeo explicativo que sirve de introducción al tema. Espero que os sea útil.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Apertura de zanja en la instalación de tuberías

Figura 1. Zanjadora. https://riusa.net/alquiler-de-zanjadoras-en-cantabria/

Las zanjas constituyen excavaciones abiertas y asentadas en el terreno, accesibles a los operarios, y realizadas con medios manuales o mecánicos. La excavación debe hacerse con sumo cuidado para que la alteración de las características mecánicas del suelo sea la mínima inevitable. Su anchura no suele ser mayor a 2 m ni su profundidad superior a 7 m, en cuyo caso se consideraría la excavación un vaciado.

La apertura de una zanja tiene dos fases: una de excavación y otra de entibación, pudiendo presentarse o no esta última en función de las características del terreno, y el tiempo estimado en el que la zanja va a estar abierta. Cuando la excavación de la zanja se realice por medios mecánicos, además, será necesario que el terreno admita talud en corte vertical para esa profundidad y que la separación entre el tajo de la máquina y la entibación no sea mayor de vez y media la profundidad de la zanja en ese punto. Los productos de excavación de la zanja, aprovechables para su relleno posterior, se podrán depositar en caballeros situados a un solo lado de la zanja, y a una separación del borde de la misma de un mínimo de 0,60 m. De emplearse entibación, distancias entre 0,50 y 0,90 m suelen ser suficientes para facilitar la circulación del personal de montaje y reducir la posibilidad de caída de piedras sobre la tubería.

Si bien las zanjas pueden abrirse manualmente, hoy en día la excavación se realiza con maquinaria, fundamentalmente con palas retroexcavadoras de tipo universal y con zanjadoras, máquinas diseñadas exclusivamente para excavar zanjas (Figura 1). De algunos de estos tipos ya hemos hablado en entradas anteriores: zanjadora de brazo inclinable, zanjadora de ruedas de cangilones, incluso cortadora de disco con picas para zanjas estrechas. Estas máquinas proporcionan buenos rendimientos, siempre que se den las condiciones adecuadas. Así, las zanjadoras, cuyos rendimientos son realmente elevados, presentan el inconveniente de que para su utilización es preciso que el terreno sea adecuado, es decir, cuando es tierra franca o terreno de tránsito y no hay demasiados obstáculos. Las retroexcavadoras, aunque obtienen menores rendimientos que las zanjadoras, se pueden utilizar en terrenos más variados, permitiendo su utilización en la carga, descarga y colocación de los tubos y superando mejor los obstáculos del terreno. En las ciudades, generalmente no se presentan los problemas anteriores, pero aparece el problema de la gran cantidad de conducciones en el subsuelo correspondientes a distintos servicios. Ello implica excavar manualmente las zonas de cruce con la zanja y utilizar maquinaria en el resto de zonas.

La anchura mínima del fondo de la zanja depende del espacio que necesitan los operarios para colocar los tubos, por lo que se considera una anchura mínima de 0,60 m. En los puntos donde deba colocarse una junta, se realizan unos ensanchamientos de la zanja cuyas dimensiones dependen del tipo de junta y de la manipulación necesaria para su montaje. La norma UNE-EN 1610 indica el ancho mínimo de la zanja en función del diámetro nominal de la tubería (Tabla 1) y de la profundidad de zanja (Tabla 2).

Figura 2. Espacio de trabajo mínimo. UNE-EN 1610.

La calidad del fondo de la zanja es fundamental para la buena conservación de las canalizaciones, puesto que la presencia en ella de zonas de distinta dureza hace que la tubería no quede en buenas condiciones de sustentación. Por lo anterior, es conveniente no efectuar nunca excavación de más, así como limpiar el fondo de piedras, realizando el refino final cuidadosamente. Por otra parte, si aparecen materiales de rigidez excesiva, como rocas o cimentaciones en desuso, se deberá excavar por debajo de la rasante y realizar un relleno posterior de unos 10-15 cm perfectamente compactado. Además, no se recomienda utilizar como relleno materiales con alto contenido de componentes orgánicos, ni instalar las tuberías en suelos orgánicos sin tomar precauciones especiales (empleo de geotextiles, etc.)

La profundidad de la zanja debe indicarse en el proyecto, pero en cualquier caso, y habida cuenta tanto del efecto de las cargas del tráfico como de las posibles heladas, la separación entre la generatriz superior del tubo y la superficie del terreno debe de tener un valor mínimo de 0,60 m.

En general, se evitará la entrada de aguas superficiales a las excavaciones, achicándolas lo antes posible cuando se produzcan, y adoptando las soluciones previstas para el saneamiento de las profundas. Debe intentarse que la zanja esté abierta el menor tiempo posible para evitar los peligros de desprendimientos, inundaciones y meteorización del terreno, así como las posibles alteraciones que puede sufrir la tubería ya montada debido a los agentes atmosféricos. Es por ello que es conveniente establecer un programa de ejecución que coordine, por tramos de longitud adecuada, las fases de apertura de zanja, montaje y terraplén. Si fuera preciso mantener la zanja abierta durante algún tiempo, es conveniente, para evitar la meteorización, dejar por lo menos 0,20 m sin excavar, realizando esta excavación poco antes del montaje.

La estabilidad de las paredes de la zanja puede conseguirse dándoles el talud adecuado, pero en algunos casos en que esto no es posible, bien por el coste económico de la excavación, bien por la imposibilidad física de espacio, es preciso la entibación. Las zanjas son especialmente peligrosas para los operarios, por lo que, como regla general, no se debe excavar sin entibación una profundidad mayor a 1,20 m. Si se entiba, la zanja se realiza con paredes verticales, debiendo ser la entibación tanto más compleja cuanto mayor sea la inestabilidad del terreno. Hay que tener presente que existe una altura crítica de una excavación sin entibación. Se realizará la excavación por franjas horizontales de altura no mayor a la separación entre codales más 30 cm, que se entibará a medida que se excava. Además, debe tenerse en cuenta en el diseño de la entibación, que se debe permitir la colocación y el montaje de la tubería. Por último, indicar que mientras se efectúe la consolidación definitiva de las paredes y fondo de la excavación, se conservarán las contenciones, apuntalamientos y apeos realizados para la sujeción de las construcciones y/o terrenos adyacentes, así como de vallas y/o cerramientos.

Os dejo algunos vídeos sobre la excavación de zanjas. Espero que os sean de interés.

Referencias:

AENOR (2000). UNE-EN 805. Abastecimiento de agua. Especificaciones para redes exteriores a los edificios y sus componentes. 

AENOR (2016). UNE-EN 1610. Construcción y ensayos de desagües y redes de alcantarillado.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Altura crítica de una excavación sin entibación

En numerosas ocasiones se plantea en obra la necesidad de entibar una excavación, especialmente cuando la profundidad sobrepasa 1,20 m. Para ello os dejo una formulación basada en la teoría de Rankine donde se calcula la altura crítica anulando el empuje activo del terreno. Como veréis, esta altura solo se puede conseguir con terrenos cohesivos donde no exista nivel freático. También os dejo un par de cuadros donde aparece la resistencia a compresión simple de terrenos cohesivos y una tabla con ángulos de inclinación y pendientes de taludes en función del terreno y de la presencia de agua. Debo advertir que cuando se hace uso de tablas, normalmente se trata de modelos simplificados que, en no pocas veces, sobredimensionan enormemente los fenómenos analizados. Por eso siempre aconsejo realizar un cálculo con datos fiables para contrastar.

Descargar (PDF, 77KB)

Tabla 1. Altura máxima admisible en metros de taludes libres de solicitaciones, en función del tipo de terreno, del ángulo de inclinación de talud no mayor de 60º y de la resistencia a compresión simple del terreno.

 

Tabla 2. Inclinaciones y pendientes de los taludes, dependiendo de la naturaleza y contenido en agua del terreno

Os dejo a continuación un vídeo al respecto:

Referencias:

http://www.osalan.euskadi.eus/contenidos/libro/seguridad_201210/es_doc/adjuntos/Seguridad%20en%20zanjas.pdf

http://www.insht.es/InshtWeb/Contenidos/Documentacion/FichasTecnicas/NTP/Ficheros/201a300/ntp_278.pdf

http://www.lineaprevencion.com/ProjectMiniSites/Video5/html/cap-2/db-prl-mt/seccion-2-desmonte-y-vaciado-a-cielo-abierto/seccion2desmonteyvaciadoacieloabierto.html

http://www.cepymearagon.es/WebCEPYME%5Cdatos.nsf/0/BB3A397513D24B57C1257DFE0031A982/$FILE/2014-DGA-02.pdf

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Miniexcavadoras

Máquina autopropulsada sobre ruedas o sobre cadenas, metálicas o de goma, con una superestructura capaz de efectuar una rotación al menos de 360º, que excava o carga, eleva, gira y descarga materiales por la acción de una cuchara fijada a un conjunto de pluma y balancín, sin que la estructura portante se desplace y con un peso no superior a los 6.000 kg.

Se emplean en obras de servicios públicos urbanos, demoliciones, acondicionamiento de calles, etc. En la industria se usan en trabajos de desescombro, limpieza, jardinería, etc. Su característica fundamental es el servicio de apoyo que realizan.

Os dejo varios vídeos explicativos sobre esta máquina que espero os gusten.

Algunas de estas máquinas son extremadamente pequeñas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Método alemán de construcción de túneles

metodo-alemanEl método alemán es un procedimiento de construcción de túneles de grandes luces que también se emplea cuando el terreno es muy malo y resulta peligroso descalzar parte de la bóveda para ejecutar los hastiales, como es el caso del método belga. Con este procedimiento se puede reaccionar con mayor rapidez que el método belga en el caso de aparecer agua, en terrenos sueltos o capas arenosas. Además, permite reducir los posibles asientos diferenciales que producirían grietas en la bóveda y asientos en superficie.

El sistema sería conceptualmente parecido al método belga, pero cambiando el orden las fases de ejecución y la propia ejecución de la bóveda. El procedimiento inicia la excavación con dos galerías de avance, fase 1; se hormigonan los hastiales para después proceder a la excavación de las fases 3 y 4, se procede al recubrimiento de la bóveda y, por último se excava la parte central, fase 5, con el fin de facilitar la entibación y el apuntalamiento de la parte superior. El avance de las galerías (fase 1) se suele realizar por tramos de 25 a 30 m, dependiendo del tipo de terreno; sin embargo, si el túnel no es muy largo (menos de 200 m, por ejemplo) se puede excavar de un tirón. Estas galerías son muy útiles si es necesario drenar agua durante la ejecución. El hormigonado de la bóveda no apoya sobre el terreno (método belga), sino sobre los estribos hormigonados. Esta bóveda se ejecuta por costillas, construidas de forma alterna. Es decir, se construye la galería central superior y cada semicostilla se ataca desde la parte superior del hastial antes de verter hormigón. Se hormigona la bóveda una vez excavada a través de la galería superior. Este procedimiento permite la construcción de grandes secciones de túnel sin que el frente abierto supere los 3-5 m2.

Os dejo un par de vídeos donde se explica con mayor detalle el método. Espero que os sean útiles.

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

MELIS, M.J.; TRABADA, J.M. (2000). Construcción de una estación en caverna de gran luz. La estación de Guzmán el Bueno. Revista de Obras Públicas, 3485:85-90.

 

Curva de llenado de una mototraílla empujada por buldócer

1ScraperDozerUna mototraílla convencional, empujada por un buldócer, tiene una curva de llenado, función del tiempo de carga “t”: C=C(t). Sabiendo que el ciclo completo de las mototraíllas vale (a+t) y el de las empujadoras (b+d·t), siendo a,b y d constantes, calcular el tiempo de carga óptimo.

Resolución:

Como el material encuentra cada vez mayor resistencia a entrar en la caja de la traílla conforme ésta se va llenando, la curva de carga es creciente, con un valor asintótico superior, que es la mayor capacidad de la traílla, a partir de la cual la misma cantidad de material que entra por abajo es derramado por su parte superior.

La curva C=C(t) tendría una forma como la que sigue:

Figura 1

El tiempo de carga óptimo es el que minimiza el coste unitario de producción U(t):

Figura 2

  • El coste horario del equipo, si éste está formado por “n” traíllas a un costo horario de “T” ptas/h, y “m” topadoras, a un coste horario de “E” euros/h, será:

Coste horario del equipo=n·T+m·E  euros/h

 

  • La productividad horaria del equipo va a depender de si faltan o sobran traíllas.

* Si faltan traíllas, serán éstas las que condicionen la producción total del equipo, que será:

Figura 8

En este caso

Figura 3

para encontrar el mínimo, derivamos e igualamos a cero:

Figura 10

Por consiguiente, para el cálculo del tiempo de carga óptimo basta con buscar la tangente de la curva de carga desde un punto situado a una distancia “a” del origen. “a” es el período del ciclo de la mototraílla que no se emplea en la carga.

Figura 5

* Si sobran traíllas, las topadoras condicionarán la producción total del equipo, que será:

Figura 9

En este caso

Figura 6

para encontrar el mínimo, derivamos e igualamos a cero:

Figura 7

Por tanto, de forma análoga al caso anterior, para el cálculo del tiempo de carga óptimo basta con buscar la tangente de la curva de carga desde un punto situado a una distancia “b/d” del origen.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.  ISBN: 84-7721-551-0.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Clasificación de Kögler-Scheidig para la excavación de terrenos

Excavaciones-estructuralesLos terrenos considerados en un movimiento de tierras presentan una amplia variabilidad, no sólo en sus componentes sólidos, sino en su humedad, disposición, índice de huecos, etc., de forma que desde una roca sólida, hasta un suelo orgánico, se puede pasar por arcillas, limos, gravas, arenas, o cualquier combinación entre estos materiales, con mayor o menor cantidad de agua. Se tiene, por tanto un conjunto de materiales, más o menos heterogéneos, constituidos por una mezcla en las tres fases, sólida, líquida y gaseosa.

Estos materiales tendrán mayor o menor resistencia de remoción y arranque (penetración y separación) en función del peso específico, de su dureza, rozamiento interno o cohesión. Ello influirá en su facilidad de carga, y por tanto, se observa la estrecha relación que existe entre el tipo de material y la maquinaria elegida para su manipulación.

La clasificación de Kögler-Scheidig se basa en la dificultad con que se pueden arrancar los suelos con utensilios manuales empleados por los geólogos en los reconocimientos de terreno. Esta clasificación agrupa los materiales en una escala de 1 a 8 según su resistencia al arranque (ver Tabla).

Tabla: Clasificación de los suelos en relación a la dificultad de su arranque (según Kögler-Sheidig)
Tabla: Clasificación de los suelos en relación a la dificultad de su arranque (según Kögler-Sheidig)

 

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.