Problema resuelto sobre el caudal a bombear en la excavación de un solar

En una entrada anterior a este artículo se utilizó la Ley de Darcy y la línea de flujo más corta (de mayor gradiente crítico) para establecer una aproximación al caudal que habría que evacuar de una excavación en un solar. No obstante, para un estudio en detalle del flujo hidráulico en un medio poroso deberíamos acudir a la ecuación de Laplace y proceder a la integración de este tipo de ecuación en derivadas parciales atendiendo a las condiciones de contorno. En el siguiente vídeo que os he preparado tenéis una breve explicación. Este vídeo pertenece al curso de procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación.

Con todo, lo mejor es presentar un problema resuelto que, espero, os sea de interés.

Descargar (PDF, 217KB)

Referencias:

PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat. Colegio Oficial de Arquitectos de Galicia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Selección del sistema de control del nivel freático

Figura 1. Control del nivel freático. https://www.flickr.com/photos/wsdot/4997287082/

Los trabajos a cielo abierto, donde la cota de excavación se encuentra por debajo del nivel freático requieren emplear procedimientos constructivos diferentes para evitar que dicha excavación se inunde. El agua modifica el estado del terreno, pudiendo provocar desprendimientos, socavaciones, etc., complicando el trabajo de la maquinaria y del personal. Construir en estas condiciones requiere acertar con el procedimiento adecuado.

La elección del sistema de control del nivel freático depende fundamentalmente de la estabilidad y permeabilidad del terreno, del caudal a evacuar y de la geometría (profundidad y extensión del control).

La empresa constructora seleccionará aquel método más rentable que minimice el impacto ambiental y los riesgos asociados, especialmente aquellos relacionados con la seguridad del personal y de terceros. Sin embargo, hay que tener presente que las técnicas no son directamente intercambiables y solo son eficaces bajo determinadas condiciones.

La Figura 2 proporciona una orientación inicial que recoge el rango de aplicación de los sistemas de control del nivel freático en función de la permeabilidad del terreno y de la reducción requerida del nivel de agua. En dicha figura, las áreas sombreadas indican zonas donde los métodos pueden solaparse.

Figura 2.  Rango de aplicación de los sistemas de control del nivel freático (Cashman y Preene, 2012)

En la Figura 3 se muestra cómo el porcentaje de finos frente al tamaño de partícula puede utilizarse como una primera aproximación para decidir el tipo de drenaje a utilizar. La figura también muestra que el flujo por gravedad del agua se reduce cuando el tamaño de las partículas es inferior al de arena muy fina.

Figura 3. Sistemas de drenaje aplicables a diferentes tipos de terrenos (Powers et al., 2007)

En la Tabla 1 se recoge, de forma simplificada respecto a la Figura 2, los rangos de permeabilidad para los cuales es aplicable un sistema de control del nivel freático u otro.

Tabla 1. Aplicabilidad del sistema de control del nivel freático en función de la permeabilidad del terreno (Justo Alpañes y Bauzá, 2010). http://contactoetsa.us.es/descarga/Postgrado—-Doctorado/Curso-Codigo-T%C3%A9cnico/TEMA-10-DB-SE-C—Excavaciones-y-drenajes-[Modo-de-compatibilidad].pdf/
En la Figura 4 tenemos otro procedimiento para seleccionar el sistema de control teniendo en cuenta el diámetro eficaz y la profundidad. El diámetro eficaz, que es el correspondiente al 10% en la curva granulométrica, permite caracterizar la permeabilidad del suelo. En este caso, incorporamos el criterio de profundidad, a diferencia de la Figura 3.

Figura 4. Gráfico de Herth y Arnodits (1973) para seleccionar el sistema de control del nivel freático en función del diámetro eficaz (permeabilidad) y de la profundidad del rebajamiento.

La Tabla 2 resulta de gran interés para valorar qué métodos sería el más adecuado en función de la granulometría del suelo, la hidrogeología, los requerimientos técnicos y la capacidad (Powers, 1992). Según esta tabla, resulta ilustrativo comprobar cómo los drenes horizontales suele ser el método más eficaz ante cualquier naturaleza y condición.

Tabla 2. Aptitud del sistema de control del nivel freático (Powers, 1992). https://www.interempresas.net/Rehabilitacion/Articulos/133892-Innovacion-sistemas-drenaje-elevada-siniestralidad-incidencia-agua-subterranea.html

Se pueden agrupar los suelos en cuatro grupos a efectos del posible rebajamiento del nivel freático (Schulze y Simmer, 1978; Muzas, 2007):

  • Bolos y gravas gruesas: k > 1 cm/s y tamaño del árido mayor de 5 mm. Con grandes caudales es muy costoso el bombeo, por lo que se hace el trabajo sumergido o con aire comprimido. También se puede impermeabilizar el recinto antes de los trabajos con inyecciones o con una pantalla plástica realizada con una mezcla de bentonita-cemento.
  • Arenas gruesas y finas: 1 > k > 10-2 cm/s y tamaño del árido entre 0,1 a 5 mm. Se usan pozos filtrantes y bombeo, al circular el agua por gravedad, con una velocidad de 1 a 0,01 cm/s.
  • Arenas finas y limos: 10-3 > k > 10-5 cm/s y tamaño entre 0,2 y 0,008 mm. El agua no puede circular libremente entre los poros, por lo que se pueden producir sifonamiento si aumenta la presión intersticial que se pueden evitar si se recurre al método de vacío (wellpoints).
  • Limos y arcillas:  10-4 > k > 10-6 cm/s y tamaño entre 0,02 y 0,002 mm. El agua no se puede desplazar por descenso del nivel freático. Con terrenos estables se puede usar el agotamiento ordinario, permitiendo construir taludes sin entibación, excepto en el caso de suelos muy susceptibles, en cuyo caso solo se pueden drenar por electroósmosis.

En el caso de bombeos, para seleccionar el diseño adecuado, siempre es recomendable realizar una prueba de bombeo que determine, entre otras, las siguientes características:

  • Permeabilidad media o transmisividad y radio de influencia
  • Gradiente horizontal probable, cuyo efecto es importante en estructuras vecinas o pozos cercanos
  • Dificultades de instalación de los pozos, para el diseño y selección del procedimiento constructivo
  • El caudal que se puede extraer del pozo
  • Cualquier condición imprevista que pueda afectar al bombeo

Os dejo a continuación un Polimedia explicativo. Espero que os sea de interés.

REFERENCIAS:

  • CASHMAN, P.M.; and PREENE, M. (2012). Groundwater Lowering in Construction: A Practical Guide to Dewatering, 2nd edition. CRC Press, Boca Raton, 645 pp.
  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MUZAS, F. (2007). Mecánica del suelo y cimentaciones, Vol. II. Universidad Nacional de Educación a Distancia, Madrid.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificación de las técnicas de control del agua en excavaciones

Figura 1. Bajo nivel freático. https://www.keller.com.es/experiencia/soluciones/bajo-nivel-freatico

Cuando se realiza una excavación, la presencia de agua subterránea siempre provoca problemas. No solo dificulta el desarrollo de los trabajos, sino que también debilita los taludes o el fondo, comprometiendo su estabilidad.

Las aguas interfieren el desarrollo de los trabajos, por lo que hay que evitar que lleguen a los tajos mediante captaciones locales, ataguía, canaletas, drenajes, etc., evacuándolas por gravedad, y reduciendo el bombeo a lo estrictamente necesario.

El impacto del agua es de tal relevancia que condiciona el diseño de la estructura y del procedimiento constructivo, afectando consecuentemente al coste. Por tanto, no hay más remedio que impedir en lo posible la entrada de agua en la excavación (barreras físicas permanentes o provisionales) y expulsar fuera la que pudiese entrar (bombeos), o bien modificando las propiedades en el terreno y el agua (inyecciones en el terreno, congelación).

Todas las técnicas que permiten excavar en presencia de agua, tanto sea creando barreras impermeables al abrigo de las cuales es posible drenar la excavación, o bien extrayendo el agua con un caudal mayor al que el terreno puede proporcionar, se van a denominar técnicas de control del nivel freático. No obstante, y en términos estrictos, el “control del nivel freático” (dewatering) solo se debería aplicar a acuíferos libres formados por suelos de grano grueso. En acuíferos libres de grano fino o en acuíferos confinados deberíamos hablar de “control de la presión intersticial” (pore water pressure).

Figura 2. Posibilidades de control del nivel freático mediante extracción del agua o por barreras impermeables

Pérez Valcárcel (2004) clasifica las técnicas en (a) sistemas de contención de agua: tablestacas, ataguías, muros pantalla, congelación o inyección del terreno; y (b) sistemas de drenaje de excavaciones: bombeo desde zanjas perimetrales, bombeo desde pozos filtrantes, bombeo con agujas filtrantes (wellpoint) y electroósmosis. Por su parte, García Valcarce et al. (1995), además de los sistemas de contención de agua mencionados, subdivide los sistemas de drenaje en sistemas de drenaje propiamente dichos y sistemas de agotamiento, donde entrarían los drenajes profundos.

No obstante, existen más clasificaciones. Por ejemplo, Powers (1992) clasifica dichas técnicas en cuatro grupos:

  • Sistemas de bombeo abierto (sump pumping): el flujo del agua de una excavación se recoge en zanjas y sumideros y posteriormente se bombea al exterior.
  • Sistemas de predrenaje o drenaje previo del terreno (predrainage): antes de excavar se drena el suelo mediante pozos de bombeo, wellpoints, eyectores o drenes. Se pretende una excavación en seco.
  • Sistemas de diafragmas o de contención del agua (cut off): mediante tablestacas, muros pantalla, pantallas de lodos, congelación del terreno o inyecciones. Suelen usarse en combinación con los sistemas de bombeo.
  • Sistema de exclusión del agua (excluded): mediante aire comprimido, una entibación de lechada o con una entibación de presión de tierras, muy utilizados en la construcción de túneles mediante escudos presurizados.

Se podrían resumir las clasificaciones anteriores en la propuesta de la Figura 3. En esta clasificación, la contención del agua se realiza mediante barreras físicas como ataguías o pantallas, o bien mediante métodos de exclusión; mientras que el drenaje se puede realizar antes o durante la excavación, diferenciando de esta forma el agotamiento del rebajamiento del nivel freático.

Figura 3. Clasificación de las técnicas de control del agua. Elaboración propia.

En el caso de la extracción del agua, tenemos dos posibilidades en función del momento en que realiza en relación con la excavación:

  1. Agotamiento del nivel freático, cuando se evacua el agua que se filtra al recinto de la excavación conduciéndola a una zanja o un sumidero, donde se bombea. Las filtraciones se controlan y evacúan durante la excavación, sin depresión previa del freático.
  2. Rebajamiento del nivel freático, cuando se hace descender el nivel freático por debajo de los taludes y el fondo del recinto de la excavación. Se controla y evacua el agua antes de la excavación.

El procedimiento a utilizar depende de los caudales a bombear, que a su vez dependen de la importancia de los acuíferos y del coeficiente de permeabilidad del terreno. Normalmente el rebajamiento es preferible al agotamiento directo, entre otras, por las siguientes razones:

  • En el caso del agotamiento, el recinto excavado está más o menos blando y encharcado, lo cual dificulta el paso de operarios y maquinaria. Con un rebajamiento previo, la excavación puede realizarse prácticamente en seco e incluso con un terreno ligeramente cohesionado debido a las fuerzas capilares. Además, es más sencillo excavar y transportar un terreno más bien seco que empapado.
  • El agotamiento puede provocar sifonamiento y tubificación, puede descomprimir el terreno o degradarlo por arrastre de finos, convirtiéndolo en colapsable.
  • El rebajamiento contribuye a aumentar la estabilidad de los taludes y disminuye los empujes sobre las estructuras de contención (entibación, pantallas o tablestacas). El rebajamiento puede utilizarse, incluso, para aumentar la presión efectiva y provocar su consolidación.

Pero también existen algunos inconvenientes con el rebajamiento del nivel freático:

  • Si falla el dispositivo que mantiene el rebajamiento, puede entrar en poco tiempo agua en la excavación, desmoronándose taludes o levantando el fondo.
  • Como el rebajamiento no se realiza en un área muy concreta, en los alrededores se producirá un aumento de las tensiones efectivas, y por tanto, asientos que pueden producir daños en estructuras próximas.

Los métodos apropiados de control del nivel freático dependerán de la naturaleza del suelo y de la profundidad de la excavación. Así, en función de la permeabilidad del terreno, la remoción del agua puede hacerse por gravedad, por aplicación de vacío o por electroósmosis. Así, el agotamiento se utilizará en gravas, pues presentan una elevada permeabilidad, con caudales importantes y terrenos poco erosionables. Una permeabilidad entre 10-1 < k < 10 (m/s) permite el agotamiento desde la misma excavación, si ésta penetra menos de 3 m en el nivel freático. Para mayores permeabilidades o mayores profundidades de excavación, habría que recurrir a otros procedimientos constructivos. En cambio, el rebajamiento será útil en arenas o arenas limosas, con una permeabilidad entre 10-6 < k < 10-1 (m/s). En el caso de arcillas y limos, con permeabilidades entre  10-7 < k < 10-6 (m/s), el rebajamiento suele realizarse por vacío o electroósmosis, pues el caudal es bajo y el cono formado por la depresión del nivel freático se realiza lentamente. Para permeabilidades menores, comprendidas entre 10-9 < k < 10-7 (m/s)  basta con hacer algún agotamiento periódico de la excavación. Para permeabilidades menores a 10-9 (m/s), se puede excavar en seco.

Os dejo un Polimedia explicativo sobre este tema. Espero que os sea de interés.

Como complemento, os dejo también, por su interés, un artículo de Ferrer, Davila y Sahuquillo donde se analiza el proceso de drenaje en obra civil ubicada en zona urbana. Espero que os sea útil.

Descargar (PDF, 2.01MB)

REFERENCIAS:

  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat, Colegio Oficial de Arquitectos de Galicia, 419 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenajes horizontales instalados mediante zanjadoras

Figura 1. Zanjadora instalando dren horizontal. https://www.jedipumps.com/dewatering.htm

Si se quiere rebajar el nivel freático en la excavación de un cimiento, sótano de edificio, en obras lineales de poca profundidad como líneas ferroviarias o carreteras, o en zanjas longitudinales para abastecimiento de agua potable, alcantarillado, líneas eléctricas, gaseoductos, oleoductos, etc., se puede realizar mediante la colocación de un dren horizontal (horizontal well dewatering) instalado mediante una zanjadora (dewatering trenchers) (Figura 1).

A diferencia del drenaje desde pozos filtrantes, el drenaje se instala en posición horizontal, justo debajo de la zona a drenar (Figura 2). Los drenes horizontales suelen ser muy efectivos en terrenos granulares.

Figura 2. Esquema del drenaje horizontal y del bombeo. https://www.groundwatereng.com/dewatering-techniques/horizontal-wells

La instalación de este sistema es relativamente sencilla. La zanjadora abre una zanja de unos 30 cm de ancho e instala en primer lugar un tubo sin perforar seguido de un tubo perforado, normalmente de material plástico (Figura 3). El dren se recubre de un geotextil para evitar la entrada de limos y arenas y posteriormente se rellena la zanja. En el caso de que el terreno sea de baja permeabilidad, la zanja se puede rellenar con grava filtrante en lugar del terreno original.

La longitud del dren la determina su diámetro, la naturaleza del terreno y el nivel freático. Normalmente las longitudes de drenaje son de unos 50 m, aunque pueden llegar a 100 m, y los diámetros entre 80 y 100 mm. El dren horizontal se suele instalar a unos 6-7 m de profundidad, pues a mayores distancias el coste se incremente significativamente. Tras instalar la tubería, se conecta la parte del tubo sin perforar a una bomba. Mientras se bombea agua, se puede trabajar en seco.

Figura 3. Esquema de la apertura de zanja para la instalación del dren horizontal. https://www.inter-drain.com/index.php/en/applications/horizontal-dewatering

Además de la facilidad en la instalación del drenaje, una ventaja del sistema es que la maquinaria de la obra puede circular por encima sin restricciones, al tratarse de un drenaje subterráneo. Además, se reduce hasta en un 30% el volumen necesario de agua a extraer, con la consiguiente reducción en el consumo de combustible o electricidad.

Os paso unos vídeos al respecto. Espero que os sean útiles.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/

Un terreno se considera que es malo o inadecuado si no cumple con determinadas condiciones o propiedades que lo hagan apto para los requerimientos de un proyecto. Por ejemplo, para el caso de un terraplén, el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG3), clasifica los materiales que se pueden utilizar como suelos inadecuados, marginales, tolerables o seleccionados. Pero estos requerimientos varían en función del tipo de proyecto del que estemos hablando (edificación, puentes, presas, carreteras, etc.).

Cuando un terreno es inadecuado, se pueden tomar distintas decisiones al respecto (Nicholson, 2015):

  1. Abandonar el proyecto. Esta solución se considera adecuada cuando es posible encontrar otra ubicación a nuestro proyecto o bien cuando es inviable desde el punto de vista económico, social o ambiental.
  2. Extraer y reemplazar el terreno inadecuado. Es una práctica habitual que puede ser inapropiada cuando el coste de la retirada del terreno y la aportación de los materiales seleccionados no es competitivo, no se encuentran disponibles o existen restricciones medioambientales.
  3. Redimensionar o cambiar el proyecto para que sea compatible con las características del terreno. Es el caso del uso de pilotes para trasladar las cargas a un estrato competente.
  4. Modificar el suelo o la roca para mejorar sus propiedades o su comportamiento a través de técnicas de mejora de terrenos.

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata de incrementar la capacidad portante, reducir la deformabilidad, disminuir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que aplicables a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora. Con todo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en los tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden organizar las técnicas de mejora del terreno en función de su temporalidad (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo el refuerzo y la mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

También es posible clasificar las técnicas de mejora del terreno atendiendo a la fase en la que se encuentra un proyecto (Nicholson, 2015):

a) Mejoras previas a la construcción. Se trata de métodos eficientes en cuanto a coste, y por tanto, deseables si son posibles. Se trata de mejorar el emplazamiento de la obra como parte de la planificación de las tareas definidas en el proyecto. Como ejemplos tenemos la compactación, la preconsolidación, el rebajamiento del nivel freático o las inyecciones.

b) Mejoras durante la construcción. Estas técnicas se realizan a la vez que el proyecto y pueden quedar como parte permanente del mismo. Sería el caso de las columnas de grava, tratamientos superficiales del terreno (compactación superficial, estabilización con cal o cemento, etc.), congelación de suelos, geosintéticos, anclajes, claveteado del terreno, etc.

c) Mejora tras la construcción. Se trata normalmente de técnicas de reparación, normalmente caras y que suponen la última alternativa para resolver un problema como pudiera ser la estabilización de una ladera o problemas de filtración de agua. Entre estas técnicas se encontrarían el rebajamiento del nivel freático, micropilotes de refuerzo, etc.

Os dejo a continuación un vídeo explicativo de las clasificaciones de las técnicas de mejora del terreno.

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • NICHOLSON, P.G. (2015). Soil improvement and ground modification methods. Elsevier, Butterworth-Heinemann, 472 pp.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Evaluación aproximada de caudales de bombeo en excavación de solares

Figura 1. Vaciado de solar en recinto apantallado bajo nivel freático. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

Resulta muy habitual en edificación excavar sótanos que se encuentran bajo nivel freático. Esta excavación suele realizarse al abrigo de un recinto de muros o pantallas y se hace necesario drenar el agua que queda al fondo de la excavación. Para un estudio en detalle del flujo hidráulico en un medio poroso deberíamos acudir a la ecuación de Laplace y proceder a la integración de este tipo de ecuación en derivadas parciales atendiendo a las condiciones de contorno. Sin embargo, vamos a dar aquí una solución aproximada que puede servir en obra para efectuar una previsión de las bombas de achique necesarias o tomar decisiones tales como prolongar las pantallas lo suficiente como para empotrarlas en un sustrato impermeable. Como siempre, cada caso es particular y requiere de un estudio económico para ver la mejor opción.

Vamos a suponer que se va a excavar un solar, de dimensiones “a·b” en presencia de nivel freático, en un terreno poroso con un coeficiente de permeabilidad “k“.  Las pantallas se encuentran empotradas una longitud “L“, el fondo de excavación se encuentra a una profundidad “H” respecto al nivel freático y existe un estrato impermeable a una distancia “h‘” respecto a la pantalla (ver Figura 2). Se pretende calcular el caudal de achique de forma que el agua no se encharque en el fondo de la excavación. Se supone que se ha realizado una evaluación previa para evitar el sifonamiento, el levantamiento de la excavación y el cálculo mecánico de las pantallas, entre otros aspectos.

Figura 2. Flujo de agua bajo un recinto apantallado

Para resolver el problema emplearemos la Ley de Darcy, que establece que la velocidad de un fluido en medio poroso es proporcional al gradiente hidráulico. Multiplicando esa velocidad por la sección que atraviesa el flujo, tendremos la evaluación del caudal según la siguiente expresión, donde “Q” es el caudal, “k” es el coeficiente de permeabilidad”, “i” es el gradiente hidráulico y “S” es la sección atravesada por el flujo.

En el problema que nos ocupa, el caudal puede atravesar dos secciones, una lateral determinada por el estrato impermeable y el fondo de la pantalla “S1”, y la formada por el fondo de la excavación del solar “S2”. Calculemos en ambos casos el caudal. Es posible realizar una estimación aproximada considerando el flujo del agua próximo a la pantalla, puesto que es la línea de flujo más corta y la que supone un mayor gradiente crítico. En este caso, i=H/(H+2L).

Para la sección “S1″, el caudal “Q1″ tendrá el siguiente valor:

 

Análogamente, para la sección”S2″, el caudal “Q2″ tendrá el siguiente valor:

El caudal estimado será el menor de ambas dos estimaciones: Q=min(Q1, Q2).

Igualando ambos caudales se puede determinar la distancia del sustrato impermeable al fondo de la pantalla a partir de la cual dicho sustrato no influye en la estimación del caudal:

En el caso de un solar cuadrado, si el sustrato impermeable se encuentra a una distancia superior a la cuarta parte del lado del solar, todo el flujo pasa por el fondo de la excavación.

De todas formas, de las expresiones anteriores se deduce que el caudal máximo que puede entrar en la excavación se da cuando el sustrato impermeable se encuentra a una distancia del fondo de la pantalla superior al cociente entre el área y el perímetro del recinto. Si la capa impermeable se encuentra más cerca, el caudal baja proporcionalmente hasta anularse teóricamente cuando llega a tocar a la pantalla.

Os dejo un vídeo explicativo que espero os sea útil.

Referencias:

PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat. Colegio Oficial de Arquitectos de Galicia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Curso:

Curso de procedimientos de contención y control del agua subterránea en obras de Ingeniería Civil y Edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control del nivel freático mediante lanzas de drenaje (wellpoints)

Figura 1. Disposición de lanzas de drenaje en dos fases. https://www.empresadesatascossevilla.es/2015/08/achiques-de-agua-del-nivel-freatico-en-sevilla.html

El descenso de la capa freática por el método de vacío, también llamado lanzas de drenaje, agujas filtrantes, tubos filtrantes, tubos de achique o pozos-punta, se le conoce comúnmente por su nombre en inglés de “wellpoint”. Se trata de un equipo autoaspirante para el bombeo por vacío del agua. Es un método de control de descenso de agua subterránea, aplicable en terrenos granulares de diversa densidad y graduación. Es un sistema simple, versátil y de costo razonable, especialmente cuando el sitio donde se va a construir es accesible y el estrato saturado que se pretende drenar no es muy profundo.

Este sistema de agotamiento de agua puede resultar de gran eficiencia y utilidad en excavaciones cuya cota se encuentra por debajo del nivel freático. Por ejemplo, en la ejecución de sótanos o zanjas para colectores.

Tiene aplicación en un amplio rango de terrenos, con permeabilidades comprendidas entre 10-3 y 10-5 m/s, aunque su funcionamiento óptimo se produce cuando se instala en arenas de grano medio sin presencia de finos. En otro tipo de terrenos pueden ser necesarias operaciones adicionales de montaje (perforación previa y ejecución de filtro granular). Es especialmente útil en terrenos de baja permeabilidad (arenas finas y limos), donde el agua no puede drenar por gravedad a un sumidero. Además, el efecto de succión hace que la arena fina se mantenga con taludes empinados en excavaciones de altura inferior a 2 m. En terrenos poco permeables la depresión del nivel freático sería muy lenta, con caudales muy pequeños y un tiempo para alcanzar el nivel definitivo que podría durar meses. Es por ello que en estos terrenos no es viable el sistema, no solo por bajo rendimiento, sino porque los finos taponarían el filtro de la lanza, impidiendo el paso del agua.

La aspiración del agua se produce por vacío a través de numerosos puntos de captación, tantos como lanzas colocadas, a través de los filtros existentes en los extremos de las mismas. Consiste básicamente en unas lanzas de 2,5 a 6 m de longitud, de un diámetro entre 1,75 y 2,00 pulgadas, que se hincan separadas entre 1 y 1,5 m de forma paralela a la zanja que se quiere excavar. Estas lanzas se conectan a una bomba de succión. Las lanzas están equipadas en su extremo inferior con una boquilla de inyección, de forma que cuando se hincan se impulsa agua a presión para introducirla con facilidad. Una vez instalada, se succiona el agua para abatir el nivel freático. La limitación se encuentra en la altura de aspiración, de unos 5 a 6 m, por lo que, si se quiere profundizar más, deberán realizarse escalonamientos (Figura 2).

Figura 2. Drenaje mediante wellpoint en etapas (Justo Alpañes y Bauzá, 2010)

El montaje del equipo no es complicado. La hinca de las lanzas se ejecuta mediante inyección de agua a presión a través de las mismas (self-jetting). Una vez colocadas, las lanzas se recogen en su parte superior por una tubería colectora, que a su vez irá conectada a la bomba de vacío, desde donde se conducirá el agua extraída al punto de vertido (con la ayuda de dos bombas incorporadas).  La bomba de vacío, de gran cilindrada, es la que produce la depresión base del sistema. El accionamiento y control del funcionamiento del equipo es muy sencillo. Es necesario garantizar la estanqueidad de toda la conducción para conseguir la aspiración del agua.

Debido a que el agotamiento se produce en numerosos puntos, disminuye el efecto de arrastre de finos, típico de las bombas de fondo.

El sistema funciona como un equipo compacto, que puede ser móvil o estar situado en un punto fijo de la obra, pues no precisa moverse para realizar el trabajo; en efecto, el bombeo se realiza a través de los conductos de aspiración al que concurren las diversas lanzas de drenaje.

Los componentes del sistema son:

  • Bomba de hinca: bombas de agua a presión conectadas a las cabezas de las lanzas, de modo que el agua sale por la punta de la lanza desplazando y arrastrando el terreno allí situado. Este vaciado hace que descienda la lanza.
  • Bomba de vacío: junto con un tanque separador de la mezcla aire-agua y bomba de agua, junto con una unidad de control eléctrico, la bomba de vacío provoca una subpresión que aspire el agua.
  • Manguitos de unión: tubos flexibles que conectan las lanzas con la conducción de aspiración.
  • Lanzas o agujas de drenaje: tubos de acero galvanizado y 50 mm de diámetro, con un filtro de 1 m de longitud en el extremo más profundo. Se hincan en el terreno y aspiran el agua una vez ensambladas a la bomba de vacío.
  • Mangueras de presión
  • Colectores: para la tubería perimetral.
  • Accesorios: codos, tes, tapones, tubos bifurcados, uniones, mangueras flexibles.
  • Cuadro eléctrico: 380 V, 36 A
  • Alargadores
Figura 3. Componentes del sistema. Cortesía de ISCHEBECK. http://www.ischebeck.es/assets/files/agotamiento_agua/Cat%C3%A1logo%20Wellpoint%2016022012.pdf

Una página interesante es la de la empresa ISCHEBECK, os dejo su catálogo a continuación.

Descargar (PDF, 4.58MB)

Os dejo un vídeo explicativo de las lanzas de drenaje.

Os paso algunos vídeos sobre la ejecución de esta técnica.

REFERENCIAS:

  • HERTZ, W.; ARNDTS, E. (1973). Theorie und praxis der grundwasserabsenkung. Ernst & Sohn, Berlin.
  • JUSTO ALPAÑES, J.L.; BAUZÁ, J.D. (2010). Tema 10: Excavaciones y drenajes. Curso de doctorado: El requisito básico de seguridad estructural en la ley orgánica de la edificación. Código Técnico de la Edificación. ETS. de Arquitectura, Universidad de Sevilla.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

CURSO:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.