Celda unidad y área tributaria de una columna de grava

Figura 1. Diámetro equivalente del área tributaria en función de la distribución espacial de las columnas de grava

Al conjunto de una única columna central y el anillo de suelo circundantes se le denomina “celda unidad” o “celda unitaria”. Se transforma la porción de terreno que se encuentra alrededor de la columna por el área de un cilindro de diámetro tal que la sección de ambas sea la misma, según se puede ver en la Figura 1.

Por cierto, la Figura 1 es correcta, aunque en un primer momento pueda generar confusiones.  En efecto, la malla triangular es la encargada de determinar la ubicación de las columnas de grava, formando así un área hexagonal tributaria en torno a dicha columna. De igual manera, la malla hexagonal cumple con una función similar.

Os dejo un problema resuelto donde se calcula el diámetro equivalente del área tributaria en función de la malla donde se disponen las columnas de grava. Espero que os sea de interés.

Descargar (PDF, 281KB)

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas de grava ejecutadas por medios convencionales

Una columna de grava no solo se puede construir con técnicas como la vibrosustitución o el vibrodesplazamiento, sino que también es posible ejecutarlas con medios convencionales propios de los pilotes. En las Figuras 1 y 2 se observan tres procedimientos para ejecutar pilotes de grava mediante la sustitución del terreno.

Si el terreno es estable, la ejecución es similar a la de los pilotes de extracción con barrera sin entubación (pilotes CPI-7, según la nomenclatura de NTE). En este caso, tras la excavación con una barrena, se rellena la perforación con gravas, apisonando cada una de las tongadas.

Si el terreno no es estable, es necesario utilizar una camisa recuperable que sostenga la excavación (similar a la ejecución del pilote CPI-4). En este caso, se va excavando el material a la vez que se introduce la camisa. Tras llegar a la profundidad requerida, se va retirando la entubación conforme se va rellenando y apisonando las gravas por tongadas.

Figura 1. Ejecución de una columna de grava mediante sustitución en terreno estable o con entibación (Uriel, 1985)

En la Figura 2 se muestra un tercer procedimiento similar al anterior. Se trata de introducir la camisa mediante un vibrohincador. Una vez se llega a la profundidad prevista, se rellena la entubación de grava y, una vez llena, se extrae la tubería mediante vibración, que a su vez, compacta las gravas. No obstante, también es posible introducir la entubación mediante empuje, apoyándose en el par de la perforadora.

Figura 2. Ejecución de una columna de grava mediante sustitución con vibrohincador (Uriel, 1985)

En la Figura 3 se describen dos sistemas constructivos de la columna de gravas en el caso de desplazar el terreno. En el primer caso se hinca la entubación con un tapón perdido en el fondo, al igual que los pilotes de desplazamiento con azuche y tubería recuperable (CPI-2). Tras alcanzar la profundidad necesaria, se rellena la entubación por tongadas y se apisona simultáneamente a la extracción de la tubería. Una variante es hincar el tubo con un vibrohincador. Este tubo presenta una válvula en la punta para permitir la hinca y el desplazamiento del terreno. Posteriormente se rellena con grava y se extrae la tubería mediante vibración, que también compacta las gravas.

Figura 3. Ejecución de una columna de grava mediante desplazamiento (Uriel, 1985)

En Japón se ha desarrollado y utilizado enormemente la técnica de ejecución de columnas de gravas mediante un vibrohincador pesado en cabeza. Pero en este caso, el relleno suele ser de arena en vez de grava, que se compacta e imbrica con el terreno natural mediante sucesivos descensos y elevaciones de la camisa en vibración (Ortuño, 2003).

Referencias:

ORTUÑO, L. (2003). Vibroflotación. Columnas de grava. Jornada sobre mejora del terreno de cimentación. Madrid, 16 de diciembre.

URIEL, A. (1985). Mejora del terreno por medios dinámicos. Curso sobre pavimentos y rellenos portuarios. Puerto Autónomo de Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava inyectada

Figura 1. Esquema del procedimiento constructivo de una columna de grava inyectada. https://www.youtube.com/watch?v=M3CWe35KoTw

Se puede mejorar la resistencia y rigidez de una columna de gravas inyectando una lechada (“grouted gravel pile“). Se trata de preinstalar un tubo de inyección en la perforación antes de que se vierta la grava. La columna de grava se ejecuta mediante vibración, dependiendo la profundidad de la columna de la altura de la máquina. La lechada se inyecta conforme se extrae el tubo. Este tratamiento, además, permite impermeabilizar la columna.

Esta técnica se ha aplicado con éxito en el refuerzo de terrenos blandos en plataformas ferroviarias, carreteras, puertos, etc. Las columnas de grava inyectada es una técnica inventada por el profesor Hanlog Liu.

La columna de grava inyectada presenta ventajas respecto a la columna de gravas convencional (Liu et al., 2015):

a) Mientras la columna de grava se considera flexible, con una longitud efectiva entre 6 y 10 veces su diámetro, o de 6 a 8 m de longitud, la inyectada es rígida y su longitud efectiva puede llegar a 35 m.

b) Las inyectadas son más eficaces para controlar los asientos por su mayor rigidez.

c) Las columnas de grava no pueden utilizarse cuando la resistencia al corte no drenada del suelo es inferior a 15 kPa, cosa que no ocurre con las inyectadas.

d) Las columnas de grava requieren una máquina con un mástil tan alto como la longitud de la columna, cosa que no ocurre con la grava inyectada.

Figura 2. Aspecto de la columna de grava inyectada. https://kknews.cc/news/699b6m.html

El procedimiento constructivo se realizaría de la siguiente forma (Liu et al., 2015):

  1. Se perfora un pozo con un diámetro de entre 40 y 80 cm con lodos de perforación. La velocidad de perforación, la densidad del lodo y la consistencia del lodo se controlan en el rango de 50 a 100 revoluciones/min, 1150 a 1300 kg/m3, y 18 a 25 s, respectivamente. Una vez alcanzada la profundidad requerida, el tubo de perforación se eleva unos 30 cm y luego y se gira durante 25-30 minutos. La tierra que queda en el fondo de la perforación tiene que ser inferior a 30 cm.
  2. Se añade agua a través del tubo de perforación para limpiar el pozo y reducir la densidad del lodo a aproximadamente1100 kg/m3.
  3. Se coloca un tubo de inyección en el centro de la perforación. Se vierte grava en la perforación. Se añade agua continuamente para limpiar la perforación y reducir la densidad de la lechada a 1050 kg/m3.
  4. La lechada de cemento hecha de una mezcla de cemento de 32,5 MPa con una proporción de agua-cemento de 0,5-0,6 se bombea en el pozo a través de la tubería de inyección utilizando un método de abajo hacia arriba. La salida del tubo de inyección se coloca inicialmente a 15-30 cm por encima del fondo del pozo. Una presión de inyección de 0,3 a 0,7 MPa. A continuación, el tubo de inyección se retira a una velocidad de 0,3-0,5 m/min. Sin embargo, se puede utilizar una velocidad más lenta de 0,2-0,3 m/min cuando se encuentre una capa de arena suelta o medianamente suelta. capa de arena suelta o medianamente suelta.
  5. Se retira el tubo de lechada. Después de 7 a 10 días, se coloca una zapata de hormigón armado en la parte superior de la columna.

Os dejo un vídeo explicativo de la técnica.

Referencias:

LIU, H.; KONG, G.Q.; CHU, J. (2015). Grouted gravel column-supported highway embankment over sfot clay: Case study. Canadian Geotechnical Journal, 52(11):150414143659002.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Cursos:

Curso de Procedimientos de Construcción de cimentaciones y estructuras de contención en obra civil y edificación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Geopier: Columnas de grava compactada

Figura 1. Soluciones Geopier. https://www.terratest.com/productos-sistemas-geopier.html

A mediados de los años 80 del siglo pasado se desarrollaron en Estados Unidos una serie de tecnologías, que bajo el nombre de Geopier®, mejoraban suelos blandos, compresibles y de muy baja capacidad portante. Se trata de reemplazar o desplazar el terreno en columnas formadas por capas sucesivas de agregados de grava compactados. En este sentido, podría clasificarse como una técnica de mejora de terrenos de columna de gravas, aunque otras técnicas de compactación profunda, como la sustitución dinámica, tendría un planteamiento similar. No obstante, existen diferencias importantes en cuanto a funcionamiento y ejecución.

El procedimiento constructivo aplica una energía de compactación vertical, de alta frecuencia y baja amplitud de impacto que densifica la grava y desplaza lateralmente el terreno. Este efecto reduce la deformabilidad de la columna, pues el módulo de deformación de la grava se incrementa con la presión de confinamiento. Este módulo es mayor que las columnas de grava tradicionales ejecutadas por vibración, con un ángulo de rozamiento entre 48 y 52º, un 40% superior. El resultado es que con la compactación se consiguen módulos de deformación que varían entre 65 MPa en suelos muy pobres y compresibles, hasta valores de 300 MPa en suelos firmes o a mayor profundidad (Moreno, 2019). El resultado es que las columnas compactadas ofrecen elementos hasta 2 a 9 veces más resistentes que las columnas de grava tradicionales, con una mayor capacidad portante y un mejor control del asiento.

Por otra parte, la presión lateral provocada por la compactación supone una sobre-consolidación del suelo adyacente. Este efecto incrementa su rigidez y resistencia al esfuerzo cortante que permite una mayor capacidad portante y una reducción de asientos. También destaca su aptitud para mitigar el potencial de licuación de suelos en zonas sísmicas. Con estas técnicas se consiguen suelos reforzados que soportan esfuerzos de 200 a 450 kPa.

Esta técnica es aplicable a terrenos flojos, cohesivos blandos o compresibles. Las gravas que se utilizan suelen ser bien graduadas, aunque se pueden emplear gravas más uniformes y abiertas si existe nivel freático y se quiere utilizar la columna como elemento drenante. No obstante, si el suelo es de muy baja rigidez y muy compresible, se puede aumentar la rigidez de la columna agregando una lechada de cemento durante la compactación de la grava, llegando, incluso, a construir una columna de hormigón compactado, agrandado en punta.

Se diferencian distintas tecnologías Geopier® de columnas de agregados de grava compactados:

  • Geopier System (GP3): se realiza una perforación previa, de hasta 5-7 m de profundidad, posteriormente se rellena y compacta la grava. Se barrena con un diámetro de 600 a 900 mm en suelos de cierta capacidad portante y sin nivel freático.
  • X1 System (X1):  en terrenos con compacidad suficiente, se perfora hasta 15-17 m, se rellena y compacta la grava.
  • Geopier Impact (Impact): se ejecuta la columna mediante desplazamiento del terreno y compactación de la grava, hasta profundidades de 25 m. Adecuado para terrenos arenosos saturados o cohesivos, potencialmente colapsables. Se introduce la grava a través una tubería, tipo tremie o mandril, que tiene en la punta un pisón. Se compacta en capas de unos 30 cm de espesor, conformando columnas de diámetro entre 500 y 600 mm.

En el caso de terrenos muy compresibles y deformables, se contemplan dos soluciones de inclusiones rígidas:

  • Grouted Impact Pier (GIC): es la misma solución de Impact, pero con una lechada de cemento que se mezcla con la grava. Se usa en suelos blandos o granulares sin cohesión, o bajo en nivel freático.
  • Geo-Concrete Columns (GCC): se construye una columna de hormigón hasta 25-27 m de profundidad desplazando el terreno, colocando una base o punta de mayor diámetro que el fuste y compactando el hormigón. Se emplea en suelos muy blandos y compresibles, incluso con materia orgánica. La ejecución es similar al sistema Impact. La carga soportada por la columna oscila entre 400 y 1500 kN, aunque depende de su diámetro, que varía entre 350 y 500 mm y de la resistencia característica del hormigón, de 15 a 35 MPa.

A continuación os dejo una animación de la técnica Geopier GP3.

En este otro vídeo se observa la ejecución de la técnica Geopier X1.

Aquí, la forma de ejecutar el Geopier Impact.

El sistema Geopier GeoConcrete, su forma de ejecución:

Y por último, la ejecución de Geopier Grouted Impact.

A continuación os dejo una explicación de Terratest donde se explican las diferencias entre los elementos Geopier frente a las columnas de grava.

Descargar (PDF, 1.45MB)

Referencias:

MORENO, J. (2019). Tecnologías Geopier para la mejora de suelos y cimentaciones intermedias. INGEOPRES, 272:36-41.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Refuerzo del terreno mediante inclusiones rígidas

Un suelo blando puede reforzarse mediante inclusiones rígidas verticales dispuestas en forma de malla que suelen apoyarse sobre un sustrato competente y que no se conectan a la estructura. Sobre las inclusiones se acomoda una capa de reparto para transferir las cargas. Esta capa de transferencia puede realizarse en balasto, materiales tratados con cemento o cal, o por materiales granulares. La transferencia mejora si se disponen uno o varios niveles de geosintéticos. Las inclusiones rígidas limitan los asientos y se mejora la capacidad portante del terreno.

A diferencia de las inclusiones blandas, como pueden ser las columnas de grava, la rigidez de las inclusiones rígidas es mayor a la del terreno natural, no siendo necesario confinarlas lateralmente. Además, sus diámetros son menores, con porcentajes de tratamiento comprendidos entre el 2 y el 15% del volumen del terreno. El material introducido en las inclusiones blandas no presenta cohesión, mientras que, en las rígidas, la cohesión es significativa y permanente. Las inclusiones rígidas son estables sin necesidad del confinamiento lateral que, por ejemplo, necesita una columna de grava.

En la Figura 1 se observa que las inclusiones rígidas, a diferencia de otras cimentaciones, no se conectan directamente con la estructura. En efecto, la técnica distribuye las tensiones entre las inclusiones y el suelo blando a través de la capa de reparto y por el rozamiento negativo originado por los diferentes asientos existentes entre el suelo y las inclusiones (Figura 2). Tanto la geometría como las características geotécnicas de la capa determinan la eficacia de la transmisión de las cargas. Una forma de reducir las tensiones en el terreno y aumentarlas en las inclusiones es colocar geomallas en la capa de reparto. Estas mallas acortan la diferencia de asientos entre la cabeza de las inclusiones y el suelo debido al efecto membrana.

Figura 1. Tipos de cimentación (IREX, 2012)

 

Figura 2. Funcionamiento de las inclusiones rígidas (Jenck, 2005)

Las inclusiones rígidas se clasifican atendiendo a su proceso constructivo y a su mecanismo de transferencia de cargas. Una primera división, formulada por Briançon (2002), permite distinguir las inclusiones prefabricadas de las ejecutadas “in situ” (Figura 3). Las primeras se hincan por golpeo o presión distinguiéndose los pilotes de hormigón, acero y madera. Las segundas se subdividen en pilotes de extracción e inclusiones ejecutadas por medio de un ligante añadido al suelo. Sin embargo, una clasificación más utilizada divide las inclusiones rígidas atendiendo a su procedimiento constructivo en inclusiones por desplazamiento, por extracción y por mezclado.

Figura 3. Principales tipos de inclusiones rígidas. Adaptado de Briançon (2002)

Las inclusiones rígidas producen los siguientes efectos sobre el terreno:

  • Mayor resistencia y menor deformación del suelo tratado. La magnitud depende del espaciamiento entre las inclusiones, de las condiciones del terreno, del empotramiento y de la dosificación del mortero de la inclusión.
  • Descarga de las tensiones al suelo blando debido al efecto arco entre las inclusiones, que puede ser del 60 al 95% de la carga.
  • Disminución de la consolidación de rellenos blandos saturados, al aliviar las inclusiones la carga que le llega al terreno.

Os dejo un vídeo explicativo del procedimiento constructivo de una de las técnicas, en este caso, columnas de módulo controlado. Espero que os sea de interés.

Referencias:

BRIANÇON L. (2002). Renforcement des sols par inclusions rigides – Etat de l’art. IREX, Paris, 185 p.

IREX (2012). Projet national ASIRI. Recommandations pour la conception, le dimensionnement, l’exécution et le contrôle de l’amélioration des sols de fondation par inclusions rigides. Presses des Ponts. France.

JENCK, O. (2005): Le renforcement des sols compressibles par inclusions rigides verticals. Modélisation physique et numérique.  https://tel.archives-ouvertes.fr/tel-00143331

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas encapsuladas con geotextil

Figura 1. Esquema de columna encapsulada de geotextil (Murugesan y Rajagopal, 2010)

Algunos suelos, como los depósitos de arcilla blanda, los suelos de turba, los rellenos recientes, las arcillas marinas, etc., plantean problemas en la construcción debido a su baja capacidad portante, su alta compresibilidad, su tendencia al flujo lateral, etc. Estos suelos necesitan un tratamiento para mejorar su comportamiento técnico según los requisitos de diseño de la estructura.

Un tratamiento habitual en suelos arcillosos blandos es la utilización de columnas de grava. Sin embargo, si los suelos son extremadamente blandos, el confinamiento lateral que ofrece el suelo circundante puede ser inadecuado para conformar la columna, lo que provocará asientos superficiales más acusados, disminuyendo de esta forma la eficacia de las columnas de gravas. Una posibilidad de mejorar el rendimiento de las columnas de grava es envolverla con un geosintético adecuado (geomalla o geotextil) de forma tubular (Figura 1).

Las columnas reforzadas por geosintéticos, o columnas encapsuladas con geotextil (“geotextile encased columns, GECs”) son pilotes granulares, normalmente de arena, revestidos con un geotextil de alta resistencia, que se utilizan para la mejora del terreno en suelos extremadamente blandos. La función estructural del encapsulado geosintético transforma el relleno mineral en elementos de soporte. Es un método muy interesante para cimentar terraplenes en suelos con baja capacidad portante. Al poder utilizar los rellenos existentes en la obra, se ahorran  recursos y tiempo.

Este sistema se desarrolló en Alemania a mediados de los años 90. La función del geotextil es garantizar la integridad de los pilotes y proporcionar confinamiento en suelos muy débiles hasta una resistencia al corte no drenada de 15 kPa. Por encima de este valor, el suelo tiene suficiente presión de confinamiento para asegurar la integridad del pilote, pudiéndose colocar arena o grava sin necesidad de geotextil. La clave es el geotextil que soporta el material de relleno, creando una carcasa que se tensa por las tensiones horizontales dirigidas hacia el terreno colindante (Figura 2).

Figura 2. Columna reforzada por geosintéticos. https://www.menardgroupusa.com/solutions/geotextile-encased-columns-for-ground-improvement/#

La técnica consiste en conducir o hacer vibrar un tubo de acero de 80 cm de diámetro en el terreno, seguido por la colocación de un geotextil cilíndrico cerrado inferiormente, con una resistencia a la tracción comprendida entre 200 y 400 kN/m. Este tubo se incrusta unos 0,5 m en el estrato competente. A continuación, se introduce arena o grava para formar una columna y se retira la camisa de acero. El principio básico de esta técnica es aliviar la carga sobre el terreno blando sin alterar sustancialmente la estructura del suelo. El sistema actúa como drenaje y como pilote. La columna transfiere la carga a los estratos portantes, limitando la carga sobre el terreno blando, acotando los asientos. A menudo se coloca en la parte superior de los pilotes una capa de refuerzo para mejorar la distribución de la carga.

A pesar de que es posible introducir grava, esta proporciona una mayor rigidez a la columna y tiene que ser compatible con el material geosintético para evitar su deterioro. El encajonamiento geosintético también controla el diámetro de la columna, minimiza las pérdidas de material y aumenta la rigidez global de la columna. Asimismo, evita la contaminación de la columna granular, preservando así las características de drenaje.

Los efectos que producen estas columnas son los siguientes:

  • Reducción del asentamiento residual en un 50 – 75% respecto al terreno no mejorado
  • Hasta el 90% de la consolidación tiene lugar durante la construcción
  • Puede utilizarse en suelos extremadamente blandos (por ejemplo, resistencia al corte no drenado < 15 kPa)
  • Se puede cargar inmediatamente después de la instalación

En la Figura 3 puede verse el procedimiento constructivo de las columnas reforzadas por geosintéticos. En la fase (1) se instala el tubo; en la fase (2) se coloca la funda de geotextil; en la fase (3) se rellena dicha funda; por último, en la fase (4) se extrae el tubo.

Figura 3. Fases constructivas de una columna reforzada por geosintéticos. https://cofra.com/solutions/elements/geotextile-encased-columns.html

Existen dos posibilidades de métodos constructivos, en función de que se desplace o no el suelo blando. La primera es el método por desplazamiento, en el cual se introduce un tubo de acero con punta cerrada, seguido por la inserción del geotextil y el relleno granular. En este caso, la punta se abre cuando la tubería se levanta. Es un procedimiento útil en suelos muy blandos, con diámetros aproximados de 0,80 m y separación entre columnas de 1,5 a 2,5 m.

La segunda técnica constructiva es el método de sustitución, con excavación del suelo blando que queda dentro de la tubería. Se introduce aquí una camisa abierta y se extrae el material del interior mediante una barrena. Se prefiere este método para suelos con una resistencia a la perforación relativamente alta, o cuando hay que minimizar los efectos de las vibraciones en edificios cercanos o carreteras.

Os dejo algunos vídeos que ilustran este procedimiento constructivo.

Referencias:

ALMEIDA, M.; RICCIO, M.; HOSSEINPOUR, I.; ALEXIEW, D. (2018). Geosynthetic Encased Columns for Soft Soil Improvement. DOI:10.1201/9781315177144.

KEMPFERT, H.G.; JAUP, A.; RAITHEL, M. (1997). Interactive behavior of a flexible reinforced sand column foundation in soft soils. ISSMGE, 14th International Conference on Soil Mechanics and Geotechnical Engineering, Hamburg, Germany, pp. 1757-1760.

MURUGESAN, S.; RAJAGOPAL, K. (2006). Studies on the Behavior of Single and Group of Geosynthetic Encased Stone Columns. Journal of Geotechnical and Geoenvironmental Engineering, 136(1):129-139.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes verticales como técnica de mejora de terrenos

Figura 1. Drenes verticales o drenes mecha. https://www.keller.com.es/

Hoy día existen técnicas de mejora que permiten acelerar el proceso de consolidación de un terreno blando (en general, limos y arcillas poco permeables) provocado por una precarga.  Se puede utilizar tanto unas inclusiones verticales por columnas de grava, como la instalación de drenes verticales. Estas inclusiones se disponen en patrones de distribución uniforme, al tresbolillo o en forma de cuadrícula, uno cada 1,5-2,5 m2. La profundidad eficaz del tratamiento puede llegar hasta varias decenas de metros.

Este artículo se va a centrar en la técnica de drenes verticales. Los fines buscados con este método son alcanzar un grado de consolidación suficiente dentro de un plazo aceptable en el proyecto, modificando las variables de consolidación y tiempo. Con ello se aceleran los asientos por el drenaje, con asientos insignificantes tras la construcción. A diferencia de las columnas de grava, los drenes verticales no cumplen ningún tipo de función estructural, excepto la posible reducción del potencial de licuación en algunos suelos.

Los drenes verticales son columnas de material permeable instalados en suelos arcillosos compresibles para drenarlos, recogiendo y evacuando el agua expulsada durante la consolidación. Estos drenes acortan el recorrido de agua, pues al drenaje vertical existente se le suma el drenaje horizontal o radial que crea el dren vertical (Figura 2). Entre los drenes y la precarga se instalan geotextiles o bien una capa de arena para que los drenes estén en contacto con la atmósfera, a presión “cero” en su parte superior (Oteo et al., 2012).

Figura 2. Esquemas del drenaje. https://www.terratest.cl/tecnologia-mechas-drenantes.html

El drenaje vertical es habitual en suelos blandos con estratos delgados o no muy profundos, suelos blandos con cargas moderadas, suelos blandos con cargas superficiales o construcciones donde es necesario reducir el asentamiento diferencial. Por tanto, son técnicas frecuentes en obras viales (carreteras o ferrocarriles), en explanaciones (aeropuertos, naves industriales, silos, depósitos), en obras hidráulicas (costas, puertos, presas) o en depósitos naturales (terraplenes y rellenos, vertederos).

Los drenes verticales pueden ser:

  • De arena ejecutados “in situ”
  • Prefabricados de arena
  • Drenes de mecha

Los drenes prefabricados de arena van empacados en una camisa filtrante. Los drenes de mecha o simplemente mechas son los más utilizados. Las mechas pueden ser tubos de plástico corrugado flexible, en cuyo interior hay un filtro cubierto. Los más comunes son los drenes de banda, por lo general de unos 100 mm de ancho (Figura 3).

Figura 3. Mandriles para drenes de banda (Bielza, 1999)

La maquinaria empleada en la instalación de las mechas drenantes suele ser de gran tamaño, pero se consigue que no produzca perturbación en las distintas capas del terreno, siendo un sistema limpio que no genera residuos en el suelo. Con esta técnica se pueden llegar a 70 m de profundidad en caso necesario.

Las etapas del procedimiento constructivo son las siguientes:

  1. Se sitúa la máquina en el emplazamiento. Las características de la mecha y el vástago deben combinar bien con el tipo de suelo a tratar
  2. Se introduce el vástago junto a la mecha hasta la profundidad requerida. Se debe controlar la verticalidad del vástago y la colocación recta y estirada de la mecha.
  3. Se extrae el vástago, dejando la mecha en el terreno.
  4. Una vez extraído el vástago, se corta la mecha unos 30 cm por encima de la superficie el terreno
Figura 4. Ejecución de mechas (Oteo et al., 2012)

El Ministerio de Fomento (2002) recomienda una separación de prediseño para las mechas drenantes en función del tipo de suelo. Estando dispuestas en tresbolillo, la distancia será de 1,00 m en suelos arcillosos de elevada plasticidad; de 1,50 m en limos o arcillas de baja plasticidad; y de 2,00 m en arcillas donde se intercalen horizontalmente suelos más permeables como limos o arenas. Se debe fijar el tiempo de espera para determinado grado de consolidación, asiento o presiones intersticiales. Además, los aspectos que se deben controlar son la longitud hincada y los espaciamientos, la longitud externa de las mechas, el espesor y la granulometría de la capa drenante.

Entre las ventajas de los drenes prefabricados se encuentra su bajo coste, la mayor capacidad de drenaje, una instalación rápida, el uso de equipos ligeros y sencillos, proceso mecanizado, la continuidad del dren, la calidad constante y garantizada, la limpieza del emplazamiento, la alteración mínima del terreno y un transporte y acopio poco significativo.

Figura 5. Ejecución de mechas. Cortesía de Terratest.

Una técnica con una finalidad similar a los drenes verticales consiste en la utilización de drenes que disminuyen la presión hidrostática en taludes, consiguiéndose una mayor estabilidad de éstos. Se les denomina drenes californianos, y son tubos de PVC perforados (diámetro 65 mm) cubiertos con geotextil para filtrar el arrastre de sedimentos.

Os paso un vídeo explicativo que os resume brevemente las características principales de esta técnica de mejora del terreno.

En los vídeos que podéis ver a continuación se describen los trabajos de instalación de los drenes verticales. Espero que os sean de interés.

https://www.youtube.com/watch?v=TLLVOUtA1IU

Os dejo a continuación una pequeña descripción de la técnica de drenes verticales, cortesía de la empresa Menard.

Descargar (PDF, 5.44MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/

Un terreno se considera que es malo o inadecuado si no cumple con determinadas condiciones o propiedades que lo hagan apto para los requerimientos de un proyecto. Por ejemplo, para el caso de un terraplén, el Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes (PG3), clasifica los materiales que se pueden utilizar como suelos inadecuados, marginales, tolerables o seleccionados. Pero estos requerimientos varían en función del tipo de proyecto del que estemos hablando (edificación, puentes, presas, carreteras, etc.).

Cuando un terreno es inadecuado, se pueden tomar distintas decisiones al respecto (Nicholson, 2015):

  1. Abandonar el proyecto. Esta solución se considera adecuada cuando es posible encontrar otra ubicación a nuestro proyecto o bien cuando es inviable desde el punto de vista económico, social o ambiental.
  2. Extraer y reemplazar el terreno inadecuado. Es una práctica habitual que puede ser inapropiada cuando el coste de la retirada del terreno y la aportación de los materiales seleccionados no es competitivo, no se encuentran disponibles o existen restricciones medioambientales.
  3. Redimensionar o cambiar el proyecto para que sea compatible con las características del terreno. Es el caso del uso de pilotes para trasladar las cargas a un estrato competente.
  4. Modificar el suelo o la roca para mejorar sus propiedades o su comportamiento a través de técnicas de mejora de terrenos.

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata de incrementar la capacidad portante, reducir la deformabilidad, disminuir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que aplicables a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora. Con todo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en los tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden organizar las técnicas de mejora del terreno en función de su temporalidad (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo el refuerzo y la mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

También es posible clasificar las técnicas de mejora del terreno atendiendo a la fase en la que se encuentra un proyecto (Nicholson, 2015):

a) Mejoras previas a la construcción. Se trata de métodos eficientes en cuanto a coste, y por tanto, deseables si son posibles. Se trata de mejorar el emplazamiento de la obra como parte de la planificación de las tareas definidas en el proyecto. Como ejemplos tenemos la compactación, la preconsolidación, el rebajamiento del nivel freático o las inyecciones.

b) Mejoras durante la construcción. Estas técnicas se realizan a la vez que el proyecto y pueden quedar como parte permanente del mismo. Sería el caso de las columnas de grava, tratamientos superficiales del terreno (compactación superficial, estabilización con cal o cemento, etc.), congelación de suelos, geosintéticos, anclajes, claveteado del terreno, etc.

c) Mejora tras la construcción. Se trata normalmente de técnicas de reparación, normalmente caras y que suponen la última alternativa para resolver un problema como pudiera ser la estabilización de una ladera o problemas de filtración de agua. Entre estas técnicas se encontrarían el rebajamiento del nivel freático, micropilotes de refuerzo, etc.

Os dejo a continuación un vídeo explicativo de las clasificaciones de las técnicas de mejora del terreno.

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • NICHOLSON, P.G. (2015). Soil improvement and ground modification methods. Elsevier, Butterworth-Heinemann, 472 pp.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava mediante vibrosustitución

KellerTerra muestra en un vídeo de 5 minutos cómo se ejecuta una columna de grava (vibrosustitución) en la obra de la Central de Ciclo Combinado de la Bahía de Escombreras, Murcia. Después de visualizarlo, contesta a las siguientes preguntas:

  1. ¿Qué es una central de ciclo combinado?
  2. ¿Qué circunstancias del terreno hicieron recomendable la mejora del suelo mediante columnas de gravas?
  3. ¿Qué características se querían conseguir del terreno mejorado?
  4. ¿De qué partes consta un tubo vibrador?
  5. ¿Pará qué sirve el tamiz que se encuentra en la tolva donde la cargadora descarga grava?
  6. ¿Qué hace el aire comprimido en la cámara de descarga?
  7. ¿Qué diámetros de columna de grava se ejecutaron?

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.