Columnas de grava ejecutadas por medios convencionales

Una columna de grava no solo se puede construir con técnicas como la vibrosustitución o el vibrodesplazamiento, sino que también es posible ejecutarlas con medios convencionales propios de los pilotes. En las Figuras 1 y 2 se observan tres procedimientos para ejecutar pilotes de grava mediante la sustitución del terreno.

Si el terreno es estable, la ejecución es similar a la de los pilotes de extracción con barrera sin entubación (pilotes CPI-7, según la nomenclatura de NTE). En este caso, tras la excavación con una barrena, se rellena la perforación con gravas, apisonando cada una de las tongadas.

Si el terreno no es estable, es necesario utilizar una camisa recuperable que sostenga la excavación (similar a la ejecución del pilote CPI-4). En este caso, se va excavando el material a la vez que se introduce la camisa. Tras llegar a la profundidad requerida, se va retirando la entubación conforme se va rellenando y apisonando las gravas por tongadas.

Figura 1. Ejecución de una columna de grava mediante sustitución en terreno estable o con entibación (Uriel, 1985)

En la Figura 2 se muestra un tercer procedimiento similar al anterior. Se trata de introducir la camisa mediante un vibrohincador. Una vez se llega a la profundidad prevista, se rellena la entubación de grava y, una vez llena, se extrae la tubería mediante vibración, que a su vez, compacta las gravas. No obstante, también es posible introducir la entubación mediante empuje, apoyándose en el par de la perforadora.

Figura 2. Ejecución de una columna de grava mediante sustitución con vibrohincador (Uriel, 1985)

En la Figura 3 se describen dos sistemas constructivos de la columna de gravas en el caso de desplazar el terreno. En el primer caso se hinca la entubación con un tapón perdido en el fondo, al igual que los pilotes de desplazamiento con azuche y tubería recuperable (CPI-2). Tras alcanzar la profundidad necesaria, se rellena la entubación por tongadas y se apisona simultáneamente a la extracción de la tubería. Una variante es hincar el tubo con un vibrohincador. Este tubo presenta una válvula en la punta para permitir la hinca y el desplazamiento del terreno. Posteriormente se rellena con grava y se extrae la tubería mediante vibración, que también compacta las gravas.

Figura 3. Ejecución de una columna de grava mediante desplazamiento (Uriel, 1985)

En Japón se ha desarrollado y utilizado enormemente la técnica de ejecución de columnas de gravas mediante un vibrohincador pesado en cabeza. Pero en este caso, el relleno suele ser de arena en vez de grava, que se compacta e imbrica con el terreno natural mediante sucesivos descensos y elevaciones de la camisa en vibración (Ortuño, 2003).

Referencias:

ORTUÑO, L. (2003). Vibroflotación. Columnas de grava. Jornada sobre mejora del terreno de cimentación. Madrid, 16 de diciembre.

URIEL, A. (1985). Mejora del terreno por medios dinámicos. Curso sobre pavimentos y rellenos portuarios. Puerto Autónomo de Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes de hormigón in situ en forma de X o Y

Figura 1. https://www.youtube.com/watch?v=kV2C-61N_Zs

Recientemente se han desarrollado pilotes de hormigón ejecutados “in situ” con secciones en X o en Y para mejorar la fricción con el terreno. Esta idea no es del todo nueva, puesto que los pilotes metálicos de sección en I o en H, las barretes, etc., disponen de secciones que mejoran el rozamiento.

Los pilotes de hormigón ejecutados “in situ” con sección en X (“X-section cast-in-place concrete pile“, XCC) fue patentado en China por el Geotechnical Institute of Hohai University. En este caso, utilizando secciones circulares inversas, se pueden ejecutar pilotes ahorrando hormigón y con la misma área de superficie que un pilote circular del mismo diámetro. Su ejecución se basa en una tubería metálica con un tope en punta que se introduce en el terreno antes de hormigonar. El diámetro de la camisa metálica oscila entre 0,25 y 1,00 m, llegando a 25 m profundidad. Además, diversos estudios han comprobado que la capacidad vertical del pilote con sección en X es un 20% mayor que el de sección circular con la misma cantidad de hormigón debido a su mayor superficie de fricción (Lv et al., 2011).

Figura 2. Detalle de la punta de la camisa. https://www.youtube.com/watch?v=kV2C-61N_Zs

A continuación os dejo un vídeo explicativo de la instalación de este tipo de pilotes.

Referencias:

LV, Y.; DING, X.; LIU, H. (2011). In Situ Tests on Cast-in-Place Concrete X-Section Pile for Bearing Capacity of Single-Pile Composite Foundation. GeoHunan International Conference 2011.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes de hormigón in situ huecos de gran diámetro

Figura 1. Máquina para instalar pilotes PCC. Fuente: https://www.youtube.com/watch?v=AtOu0L2sXkw

Los pilotes de hormigón “in situ” huecos y de gran diámetro (“cast-in-place concrete large-diameter pipe“, PCC) constituyen una técnica de mejora de suelos basados en inclusiones rígidas desarrollados recientemente en China debido a su bajo coste y a su alta capacidad de carga. La función de este sistema es minimizar los asentamientos totales y diferenciales tras la construcción de un terraplén en un suelo blando.

Se trata de un pilote tubular de hormigón vertido “in situ” que se construye con una carcasa formada por dos tubos de acero de distinto diámetro colocados uno dentro del otro, auxiliados por una pilotadora dotada de un vibrador (Figura 1).

El espacio entre los dos tubos se cierra en la parte inferior y el pilote se hace vibrar en el suelo. Una vez se alcanza la profundidad requerida, se vierte hormigón en la zona hueca creada entre los dos tubos del pilote, se comprime mediante vibración y se retrae este armazón. Este proceso abre el cierre entre las dos carcasas permitiendo que el tubo de hormigón permanezca en el suelo mientras se retraen las tuberías concéntricas.

El pilote final tiene un diámetro de 1,0 a 1,5 m, un grosor de pared de 100 a 150 mm, una longitud de hasta 25 m y una distancia entre centros de unos 2,5 a 4,0 m (Figura 2).

Figura 2. Dimensiones de un pilote PCC. Fuente: https://www.youtube.com/watch?v=AtOu0L2sXkw

Sobre el campo de pilotes se coloca un colchón formado por tres capas de geotextil con grava entre ellas para redistribuir la carga del relleno a los pilotes. Se comprueba que la velocidad de instalación es bastante lenta, pero que racionalizando el hormigonado se puede ganar tiempo. Se realizan pruebas posteriores para verificar la calidad del pilote individual y de toda la mejora del suelo.

El pilote PCC ofrece mejor rendimiento económico que otros métodos convencionales. Presenta un mejor control de calidad, pues tanto la integridad como el grosor de la pared se puede verificar más fácilmente. Combina las ventajas del pilote de hormigón pretensado, del pilote perforado y del pilote de acero. Así, el PPC puede alcanzar profundidades de 25 m con diámetros de hasta 1,50 m, mientras que las columnas de grava y las columnas de suelo-cemento presentan diámetros que rondan los 0,50 m y profundidades normalmente limitadas a 15 m. Por otra parte, pilotes de estas dimensiones no se podrían prefabricar y colocar sin que estuvieran fuertemente armados, cosa que no ocurre con un PPC.

La capacidad portante del PCC es elevada, pues el rozamiento es alto por su diámetro y porque se desarrolla tanto por el interior como por el exterior del pilote tubular. Ello permite separar los pilotes entre sí, disminuyendo el número total necesario. Además, la forma anular del elemento rebaja la cantidad de hormigón empleado.

En la Figura 3 se muestra la secuencia de la instalación del PCC. Primero se monta la carcasa anular en la pilotadora (a), se empuja al principio y luego se vibra para introducirla en el terreno (b). Una vez se alcanza la profundidad, se vierte hormigón en el espacio anular (c). Después se extrae la doble tubería de acero mediante vibración (d) hasta terminar el pilote (e).

Figura 3. Fases de la ejecución de un pilote PPC (Liu et al., 2009)

Os dejo a continuación un vídeo explicativo que creo os puede servir para entender el procedimiento constructivo de este tipo de pilotes.

 

Referencias:

LIU, H.L.; FEI, K.; MA, X.H.; GAO, Y.F. (2003). Cast-in-situ concrete thin-wall pipe pile with vibrated and steel tube mould technology and its application (I): Development and design. Rock Soil Mechanics, 24:164–168.

LIU, H.L.; CHU, J.; DENG, A. (2009). Use of large-diameter, cast-in situ concrete pipe piles for embankment over soft clay. Canadian Geotechnical Journal, 46(8): 915–927.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava inyectada

Figura 1. Esquema del procedimiento constructivo de una columna de grava inyectada. https://www.youtube.com/watch?v=M3CWe35KoTw

Se puede mejorar la resistencia y rigidez de una columna de gravas inyectando una lechada (“grouted gravel pile“). Se trata de preinstalar un tubo de inyección en la perforación antes de que se vierta la grava. La columna de grava se ejecuta mediante vibración, dependiendo la profundidad de la columna de la altura de la máquina. La lechada se inyecta conforme se extrae el tubo. Este tratamiento, además, permite impermeabilizar la columna.

Esta técnica se ha aplicado con éxito en el refuerzo de terrenos blandos en plataformas ferroviarias, carreteras, puertos, etc. Las columnas de grava inyectada es una técnica inventada por el profesor Hanlog Liu.

La columna de grava inyectada presenta ventajas respecto a la columna de gravas convencional (Liu et al., 2015):

a) Mientras la columna de grava se considera flexible, con una longitud efectiva entre 6 y 10 veces su diámetro, o de 6 a 8 m de longitud, la inyectada es rígida y su longitud efectiva puede llegar a 35 m.

b) Las inyectadas son más eficaces para controlar los asientos por su mayor rigidez.

c) Las columnas de grava no pueden utilizarse cuando la resistencia al corte no drenada del suelo es inferior a 15 kPa, cosa que no ocurre con las inyectadas.

d) Las columnas de grava requieren una máquina con un mástil tan alto como la longitud de la columna, cosa que no ocurre con la grava inyectada.

Figura 2. Aspecto de la columna de grava inyectada. https://kknews.cc/news/699b6m.html

El procedimiento constructivo se realizaría de la siguiente forma (Liu et al., 2015):

  1. Se perfora un pozo con un diámetro de entre 40 y 80 cm con lodos de perforación. La velocidad de perforación, la densidad del lodo y la consistencia del lodo se controlan en el rango de 50 a 100 revoluciones/min, 1150 a 1300 kg/m3, y 18 a 25 s, respectivamente. Una vez alcanzada la profundidad requerida, el tubo de perforación se eleva unos 30 cm y luego y se gira durante 25-30 minutos. La tierra que queda en el fondo de la perforación tiene que ser inferior a 30 cm.
  2. Se añade agua a través del tubo de perforación para limpiar el pozo y reducir la densidad del lodo a aproximadamente1100 kg/m3.
  3. Se coloca un tubo de inyección en el centro de la perforación. Se vierte grava en la perforación. Se añade agua continuamente para limpiar la perforación y reducir la densidad de la lechada a 1050 kg/m3.
  4. La lechada de cemento hecha de una mezcla de cemento de 32,5 MPa con una proporción de agua-cemento de 0,5-0,6 se bombea en el pozo a través de la tubería de inyección utilizando un método de abajo hacia arriba. La salida del tubo de inyección se coloca inicialmente a 15-30 cm por encima del fondo del pozo. Una presión de inyección de 0,3 a 0,7 MPa. A continuación, el tubo de inyección se retira a una velocidad de 0,3-0,5 m/min. Sin embargo, se puede utilizar una velocidad más lenta de 0,2-0,3 m/min cuando se encuentre una capa de arena suelta o medianamente suelta. capa de arena suelta o medianamente suelta.
  5. Se retira el tubo de lechada. Después de 7 a 10 días, se coloca un de hormigón armado en la parte superior de la columna.

Os dejo un vídeo explicativo de la técnica.

Referencias:

LIU, H.; KONG, G.Q.; CHU, J. (2015). Grouted gravel column-supported highway embankment over sfot clay: Case study. Canadian Geotechnical Journal, 52(11):150414143659002.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con cemento

Figura 1. https://www.obrasurbanas.es/stabile-estabilizacion-suelos-carreteras/

Un suelo se puede estabilizar con cemento. Según el artículo 512 del PG3, consiste en la mezcla íntima, convenientemente compactada, de terreno, cemento, agua y eventualmente adiciones, a la cual se le exigen unas determinadas condiciones de insusceptibilidad al agua, resistencia y durabilidad.

En efecto, al fraguar e hidratarse los silicatos y aluminatos cálcicos anhidros, une las partículas del suelo, reduce su sensibilidad al agua, disminuye la deformación del suelo estabilizado y proporciona cierta resistencia a tracción según la dosificación empleada. Se pueden estabilizar tanto los suelos granulares como los de grano fino, excepto si son muy plásticos o presentan mucha humedad. En este último caso, se podrían tratar previamente con cal. No se podrán utilizar suelos con material vegetal u orgánica, o cualquier otra sustancia que perjudiquen el fraguado del cemento.

Según las propiedades de la mezcla resultante, el suelo estabilizado con cemento se puede dividir en dos grupos:

  • Suelos mejorados con cemento, al que se agrega una cantidad relativamente pequeña de cemento para mejorar algunas propiedades, como es su sensibilidad a los cambios de humedad o su mayor capacidad de soporte, quedando suelto el material tras su tratamiento. Es una técnica orientada a mejorar las explanadas. La mezcla se realiza in situ, con dosificaciones inferiores al 3% sobre el peso seco del suelo. El PG3 los clasifica en S-EST 1 y S-EST 2.
  • Suelos estabilizados con cemento, donde tras el fraguado del cemento, se obtiene un material con cierta resistencia mecánica. No se trata de un hormigón, pues los granos no se ven envueltos en pasta de cemento, sino que su unión es puntual. El PG3 los divide en S-EST 3 si la resistencia a compresión a 7 días es de 1,5 MPa, para uso en explanadas, y los suelos estabilizados para subbases y bases, donde se eleva dicha resistencia mínima a 2,5 MPa. En este último caso, su denominación habitual es suelocemento, cuya fabricación se realiza en central. Se exige un adecuado curado, lo que implica que tras la extensión y compactación de la capa, se riega con una emulsión bituminosa de rotura rápida para evitar la evaporación prematura.

Se necesitaría un elevado contenido de cemento si el suelo presenta muchos finos plásticos, lo que, además, dificultaría el mezclado. Por ello se limitan los tratamientos con cemento a suelos que cumplan las siguientes condiciones:

  • Límite líquido < 40 en los S-EST 2 y S-EST 3
  • Índice de plasticidad < 15
  • Cernido ponderal por el tamiz UNE 2 mm > 20 %
  • Cernido ponderal por el tamiza UNE 0,063 mm ≤ 35 % (50 % en los S-EST 1 y S-EST 2)

Con carácter general, el procedimiento constructivo de una estabilización con cemento para por las siguientes fases: preparación del terreno, mezclado “in situ” o en central, compactación, ejecución de juntas y curado de la mezcla. Normalmente se compacta por capas de 20 a 30 cm.

Los cementos más adecuados para estabilizar suelos son aquellos que presentan un plazo elevado para que se puedan trabajar fácilmente, un moderado calor de hidratación y un lento desarrollo de resistencia que minimice las fisuras de retracción. Por ello son adecuados cementos con mayor contenido de adiciones activas (escorias de horno alto, puzolanas naturales y cenizas volantes), tales como los tipos CEM III, IV y V.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Os dejo algunos vídeos de esta técnica de mejora de suelos.

A continuación os dejo una guía de soluciones para obras de estabilización de suelos, ejecución de suelo-cemento in situ y reciclado de firmes elaborada por la Asociación Nacional Técnica de Estabilizados de Suelos y Reciclados de Firmes (ANTER).

Descargar (PDF, 5.38MB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Pilotes perforados o de extracción

Figura 1. Perforación a rotación con cuchara. Imagen: V. Yepes

Se denominan pilotes excavados, perforados o de extracción, los que en su ejecución la perforación se efectúa por extracción del terreno. Debido a esta forma de instalación, se suelen denominar también pilotes de sustitución. Los pilotes perforados se hormigonan en obra. Son pilotes muy utilizados, aunque en edificación se reduce su uso a pilotes de un diámetro menor al metro. Sus diámetros habituales varían entre 350 y 3000 mm. Actualmente se encuentra vigente la norma europea UNE-EN 1536:2011+A1:2016 que establece los principios generales para la ejecución de pilotes perforados.

La excavación del terreno para ejecutar estos pilotes suele ser a percusión con cucharas de distintos tipos o trépanos. Sin embargo, también se perfora a rotación con distintos tipos de corona o cuchara (Figura 1), a rotopercusión si los terrenos son duros, compactos o rocosos o mediante útiles helicoidales que se hincan con giro y se extraen sin él (Figura 2). Cada método de excavación influye de forma diferente en el terreno, lo cual modifica el comportamiento pilote-terreno.

Figura 2. Perforación a rotación con hélice. Imagen: V. Yepes

Respecto a los pilotes hincados, los excavados presentan las siguientes ventajas:

  • Pueden obtenerse muestras del terreno mientras se realiza la excavación.
  • Pueden atravesarse con más facilidad estratos duros.
  • Los sistemas de perforación producen mucho menos ruido y vibraciones, con maquinaria generalmente más ligera y más barata. En su caso, solo hay vibraciones cuando se hincas las camisas. Es por ello que se emplean más en zonas urbanas que los hincados.
  • Pueden alcanzarse mayores profundidades.

Sin embargo, respecto a los hincados, los pilotes de perforación no se pueden construir inclinados, el hormigón puede presentar mala calidad por su difícil puesta en obra y problemas de curado en contacto con el terreno, una colocación deficiente de las armaduras, la excavación afloja los terrenos arenosos y pueden estrangularse al extraer la camisa o la hélice. Además, para tener una idea de la sección real de la excavación y del pilote frente a la sección teórica, se utiliza la “curva de hormigonado”, que nos indica el consumo real de hormigón en función de la profundidad.

El hormigón que se vierte para conformar este tipo de pilotes debe presentar algunas características especiales, como utilizar un cemento resistente en terrenos agresivos. Según indica el CTE, el hormigón de los pilotes perforados debe presentar las siguientes características:

  • Alta capacidad de resistencia contra la segregación
  • Alta plasticidad y buena cohesión
  • Buena fluidez
  • Capacidad de autocompactación
  • Suficiente trabajabilidad durante el proceso de vertido, incluida la retirada, en su caso, de los entubados provisionales

Por tanto, no se aconseja el uso de cementos de gran finura de molido y alto calor de hidratación, debido al empleo de altas dosificaciones. No se recomiendan los cementos de aluminato de calcio, aconsejándose los cementos con adiciones (tipo CEM II), porque las adiciones mejoran la durabilidad y la trabajabilidad, reduciendo la generación de calor durante el curado. Si la agresividad del terreno es muy elevada, se deben emplear cementos con la característica especial de resistencia a sulfatos o agua de mar (SR/MR).

En cuanto a los áridos, se utilizará una granulometría continua para evitar la segregación. También se preferirá el empleo de áridos redondeados cuando la colocación del hormigón se realice mediante tubo tremie. El tamaño máximo se limita a 32 mm o a ¼ de la separación entre armaduras longitudinales, eligiéndose el valor menor de ambos. En condiciones normales, se utilizarán tamaños máximos de árido de 25 mm si es rodado y 20 mm si es de machaqueo.

Como en los hincados, existen diversos procedimientos de ejecución, con o sin entubación según la consistencia y estabilidad del terreno y con diferentes sistemas de compactación del hormigón: mecánicamente o con aire comprimido.

Si se emplea entubación, su recuperación o integración definitiva se debe decidir con los mismos criterios que en los pilotes hincados; en terrenos de cierta consistencia, puede no ser necesaria la entubación, en cuyo caso la excavación puede realizarse con lodos o en seco. Los métodos de entibación o sostenimiento de la perforación son más complejos y caros cuanto menos consistente es el terreno. Así, rocas, arcillas, limos y arenas son, por este orden, cada una más difícil de sostener. Además, la presencia del nivel freático acrecienta el problema, más si el agua está en movimiento o está cargada de sales.

Por otra parte, hay que tener presente que, en una zona de relativamente poco espesor alrededor del terreno excavado, se produce una alteración que depende del método de perforación y que normalmente producirá una disminución de la tensión lateral previa a la instalación del pilote. Ello se traduce en un descenso de la densidad y del ángulo de rozamiento, sobre todo en las arcillas (en arenas la perforación no puede realizarse sin entibación, que incluso puede densificar el terreno si la perforación se realiza dentro de un tubo hincado previamente).

Así, el uso de hélices discontinuas para realizar la excavación deja peor el fondo de la excavación por falta de limpieza adecuada y caída de detritus de las paredes al introducir las armaduras. Ello influye en la resistencia por punta del pilote, que podría mejorarse con una inyección de “jet-grouting” en el fondo de la excavación.

Los pilotes perforados, si llegan a un sustrato rocoso, deberían poder empotrarse en él de alguna forma. Para ello se excava la roca con trépano o con otro medio. En el caso de que el empotramiento no supere un diámetro de profundidad, entonces se considera que el pilote está simplemente apoyado. En estos casos, hay que asegurar que el fondo de la perforación se encuentre limpio para evitar depósitos de material compresible que originen asientos y pérdida de capacidad portante por la base.

No se debe permitir la hinca con desplazamiento de pilotes o entibaciones a distancias menores a 3 m de un pilote hormigonado hasta que este hormigón presente una resistencia mínima de 3 MPa. Este plazo también se debe respetar cuando se realice la perforación con extracción, a una distancia mínima de 3,5 diámetros medidos desde el centro del pilote.

Solo se pueden ejecutar pilotes aislados hormigonados “in situ” si su diámetro supera los 1000 mm y se arman para las excentricidades y momentos resultantes. No se deben ejecutar pilotes aislados de este tipo si su diámetro es inferior a los 450 mm. En diámetros intermedios, solo se permiten pilotes aislados si se arriostran en dos direcciones perpendiculares.

La norma NTE-CPI “Cimentaciones. Pilotes in situ”, indica que el hormigonado del pilote quedará a una altura superior a la definitiva, debiéndose demoler el exceso una vez endurecido el hormigón. La altura a sanear será como mínimo la mitad del diámetro cuando la cabeza quede sobre el nivel freático, o de vez y media el diámetro cuando la cabeza quede por debajo. De todos modos, la recomendación es que la Dirección Facultativa indique la profundidad a descabezar teniendo en cuenta estos factores y el grado de contaminación del hormigón de la parte superior del pilote.

En cuanto a los ensayos de control de los pilotes terminados, se distinguen los ensayos de integridad a lo largo del pilote y los ensayos de carga (estáticos o dinámicos). Los primeros comprueban la continuidad del fuste del pilote y la resistencia del hormigón; para ello pueden ser ensayos de transparencia sónica, de impedancia mecánica o sondeos mecánicos a lo largo del pilote. El Código Técnico de Edificación CTE DB-SE C establece que el número de ensayos de integridad no debe ser inferior a 1 por cada 20 pilotes, salvo en el caso de pilotes aislados de diámetros entre 450 y 1000 mm, que no debe ser inferior a 2 por cada 20 pilotes. En pilotes aislados de diámetro superior a 1000 mm, no debe ser inferior a 5 por cada 20 pilotes. Sin embargo, son frecuencias de muestreo muy bajas, pues no son las habituales aceptadas internacionalmente, donde se especifica un mínimo del 30% como muestra. Con todo, se recomienda ensayar al 100% todos los pilotes, al menos con el ensayo sónico mediante martillo de mano.

En la Tabla 1 se recoge el uso de los pilotes perforados en función de los condicionantes geotécnicos, diámetro, profundidad y rendimientos que puede tener, todo ello para tener un orden de magnitud de sus características principales.

Tabla 1. Clasificación de pilotes perforados en función del sistema de ejecución y características del terreno (Caro, 2017)

Referencias:

CARO, P. (2016). Criterios para la selección de equipos en la perforación de pilotes. Revista Obras Urbanas, 58: 28-40.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Efectos de la compactación mecánica de un suelo

https://pixabay.com/es/photos/rodillo-rodillos-de-tambor-%C3%BAnico-238142/

El objetivo perseguido con la construcción de un terraplén es que tanto las cargas fijas como las repetitivas produzcan, en el primer caso, deformaciones y asientos diferenciales acotados -que no dañen la posible estructura que se apoye en el mismo-, o bien, en el segundo, que las deformaciones sean recuperables al cesar las cargas. Podría pensarse en el primer caso de una estructura apoyada sobre un relleno, y en el segundo, de un terraplén que soporte el firme de una carretera. Otro propósito es obtener una resistencia a rotura por esfuerzo cortante mínima, que dependerá de la cohesión y del rozamiento interno entre las partículas. Estas condiciones se mantendrán durante toda la vida útil del terraplén.

Durante la compactación se provoca la compresión del terreno, la expulsión de parte del gas y una recolocación de las partículas sólidas, que facilitarán los objetivos antes descritos. La compactación es un proceso rápido, elaborado por capas, donde no tiene lugar una variación de la humedad del suelo. Otras formas de aumentar la resistencia a la deformación podrían ser la adición de ligantes o aditivos que consigan mayores fuerzas de cohesión entre las partículas. Después le sigue un proceso de consolidación, -que es distinto del anterior-, en el cual lentamente, por la acción del propio peso y de las sobrecargas, se expulsa aire y eventualmente agua de los poros, con asientos posteriores.

El incremento de compacidad en un suelo disminuirá los huecos entre las partículas, con mayor trabazón entre ellas, aumentando sus fuerzas de cohesión y el rozamiento interno entre los granos. Con ello se dificulta el movimiento entre ellos, y por consiguiente, disminuirán las deformaciones.

El agua es necesaria para desarrollar las fuerzas de cohesión entre los granos, pero un exceso puede hacerlas desaparecer. Incluso una presión en succión de los gases contenidos en el suelo mantendrá unidas las partículas.

Por consiguiente, la compactación estabiliza el terraplén, ya que:

  • Aumenta su compacidad (su densidad seca).
  • Aumenta el trabazón de su estructura.
  • Aproxima el contenido de humedad al óptimo (así es como debe realizarse la compactación).
  • Al bajar el contenido de gases provoca una presión intersticial negativa.
  • Dificulta la variación del grado de humedad, y por tanto aumenta la estabilidad.

Para tener una visión general de la compactación mecánica de suelos, os dejo esta conferencia del profesor Sandoval, de la UNLP.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 253 pág. ISBN: 84-7721-551-0.

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5. Ref. 402.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Geopier: Columnas de grava compactada

Figura 1. Soluciones Geopier. https://www.terratest.com/productos-sistemas-geopier.html

A mediados de los años 80 del siglo pasado se desarrollaron en Estados Unidos una serie de tecnologías, que bajo el nombre de Geopier®, mejoraban suelos blandos, compresibles y de muy baja capacidad portante. Se trata de reemplazar o desplazar el terreno en columnas formadas por capas sucesivas de agregados de grava compactados. En este sentido, podría clasificarse como una técnica de mejora de terrenos de columna de gravas, aunque otras técnicas de compactación profunda, como la sustitución dinámica, tendría un planteamiento similar. No obstante, existen diferencias importantes en cuanto a funcionamiento y ejecución.

El procedimiento constructivo aplica una energía de compactación vertical, de alta frecuencia y baja amplitud de impacto que densifica la grava y desplaza lateralmente el terreno. Este efecto reduce la deformabilidad de la columna, pues el módulo de deformación de la grava se incrementa con la presión de confinamiento. Este módulo es mayor que las columnas de grava tradicionales ejecutadas por vibración, con un ángulo de rozamiento entre 48 y 52º, un 40% superior. El resultado es que con la compactación se consiguen módulos de deformación que varían entre 65 MPa en suelos muy pobres y compresibles, hasta valores de 300 MPa en suelos firmes o a mayor profundidad (Moreno, 2019). El resultado es que las columnas compactadas ofrecen elementos hasta 2 a 9 veces más resistentes que las columnas de grava tradicionales, con una mayor capacidad portante y un mejor control del asiento.

Por otra parte, la presión lateral provocada por la compactación supone una sobre-consolidación del suelo adyacente. Este efecto incrementa su rigidez y resistencia al esfuerzo cortante que permite una mayor capacidad portante y una reducción de asientos. También destaca su aptitud para mitigar el potencial de licuación de suelos en zonas sísmicas. Con estas técnicas se consiguen suelos reforzados que soportan esfuerzos de 200 a 450 kPa.

Esta técnica es aplicable a terrenos flojos, cohesivos blandos o compresibles. Las gravas que se utilizan suelen ser bien graduadas, aunque se pueden emplear gravas más uniformes y abiertas si existe nivel freático y se quiere utilizar la columna como elemento drenante. No obstante, si el suelo es de muy baja rigidez y muy compresible, se puede aumentar la rigidez de la columna agregando una lechada de cemento durante la compactación de la grava, llegando, incluso, a construir una columna de hormigón compactado, agrandado en punta.

Se diferencian distintas tecnologías Geopier® de columnas de agregados de grava compactados:

  • Geopier System (GP3): se realiza una perforación previa, de hasta 5-7 m de profundidad, posteriormente se rellena y compacta la grava. Se barrena con un diámetro de 600 a 900 mm en suelos de cierta capacidad portante y sin nivel freático.
  • X1 System (X1):  en terrenos con compacidad suficiente, se perfora hasta 15-17 m, se rellena y compacta la grava.
  • Geopier Impact (Impact): se ejecuta la columna mediante desplazamiento del terreno y compactación de la grava, hasta profundidades de 25 m. Adecuado para terrenos arenosos saturados o cohesivos, potencialmente colapsables. Se introduce la grava a través una tubería, tipo tremie o mandril, que tiene en la punta un pisón. Se compacta en capas de unos 30 cm de espesor, conformando columnas de diámetro entre 500 y 600 mm.

En el caso de terrenos muy compresibles y deformables, se contemplan dos soluciones de inclusiones rígidas:

  • Grouted Impact Pier (GIC): es la misma solución de Impact, pero con una lechada de cemento que se mezcla con la grava. Se usa en suelos blandos o granulares sin cohesión, o bajo en nivel freático.
  • Geo-Concrete Columns (GCC): se construye una columna de hormigón hasta 25-27 m de profundidad desplazando el terreno, colocando una base o punta de mayor diámetro que el fuste y compactando el hormigón. Se emplea en suelos muy blandos y compresibles, incluso con materia orgánica. La ejecución es similar al sistema Impact. La carga soportada por la columna oscila entre 400 y 1500 kN, aunque depende de su diámetro, que varía entre 350 y 500 mm y de la resistencia característica del hormigón, de 15 a 35 MPa.

A continuación os dejo una animación de la técnica Geopier GP3.

En este otro vídeo se observa la ejecución de la técnica Geopier X1.

Aquí, la forma de ejecutar el Geopier Impact.

El sistema Geopier GeoConcrete, su forma de ejecución:

Y por último, la ejecución de Geopier Grouted Impact.

A continuación os dejo una explicación de Terratest donde se explican las diferencias entre los elementos Geopier frente a las columnas de grava.

Descargar (PDF, 1.45MB)

Referencias:

MORENO, J. (2019). Tecnologías Geopier para la mejora de suelos y cimentaciones intermedias. INGEOPRES, 272:36-41.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con ligantes bituminosos

Figura 1. Estabilización de suelos con betún espumado. Fuente: https://www.i-q.net.au/main/research-to-expand-foamed-bitumen-applications

El uso de ligantes hidrocarbonados puede estabilizar suelos granulares con pocos finos y baja plasticidad. Consiste en la mezcla íntima y homogénea, compactada adecuadamente, de terreno, agua, ligante bituminoso y, en su caso, adiciones. El ligante bituminoso mejora las características resistentes del suelo, reduciendo su capacidad de absorción de agua e incrementando su cohesión.

Se trata de una técnica poco empleada por su elevado coste, pero que puede ser interesante, por ejemplo, con arenas de granulometría uniforme, como sería el caso de algunas regiones del norte de Francia, Países Bajos, la Pampa argentina o Arabia Saudí (Kraemer et al., 1999). También se emplea donde el coste de los betunes es asequible. Sería adecuado para suelos con menos del 20% del peso pasando por el tamiz 0,080 UNE, con un índice plástico IP<10, que puedan ser pulverizados económicamente y que estén exentos de cantidades perjudiciales de materia orgánica, arcillas de alta plasticidad o materiales micáceos (García Valcarce, 2003). La fracción cernida por el tamiz 0,40 de UNE cumplirá las condiciones siguientes: LL < 35 e IP < 15.

Dependiendo del tipo de suelo, método constructivo y condiciones meteorológicas, se emplean en este tipo de estabilización betunes fluidificados de viscosidad media, emulsiones bituminosas de rotura lenta y aceites pesados. El mezclado suele ejecutarse “in situ”, agregando agua al suelo para facilitar la mezcla de todos los componentes, aunque también se podría realizar en central. La mezcla debe realizarse de tal forma, y a la velocidad precisa para conseguir un material homogéneo y exento de concentraciones de ligante. Tras la colocación, debe compactarse la mezcla adecuadamente en el tajo.

Esta técnica de estabilización de suelos se encontraba en el artículo 511 del Pliego de Prescripciones Técnicas Generales para Obras de Carreteras y Puentes hasta la entrada en vigor de la O.C. 297/88 que lo suprime. La justificación dada era la de una unidad de obra de escaso empleo, dejando su regulación a los pliegos de prescripciones técnicas particulares. La Orden FOM 891/2004 lo derogó definitivamente este artículo.

Resulta de interés el uso de la espuma de betún (“foamed bitumen”) en la estabilización de suelos. Se trata de una técnica también utilizada en el reciclado de pavimentos “in situ” o en la construcción de mezclas bituminosas en capas de base. El betún espumado se consigue inyectando una pequeña cantidad de agua fría (1 a 2% del peso del asfalto) y aire comprimido a una masa de betún caliente (160º C – 180º C), dentro de una cámara de expansión, generando espuma (Thenoux y Jamet, 2002). Se trata de una técnica relativamente nueva en su uso que permite producir mezclas asfálticas de un modo muy diferente a los sistemas tradicionales.

A continuación os dejo una conferencia sobre estabilización de suelos con emulsiones asfálticas del grupo TDM.

Os dejo a continuación un vídeo de una estabilización usando betún y cemento.

 

También os dejo una conferencia sobre estabilización de asfalto espumado de Sergio Serment.

Referencias:

GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

THENOUX, G.; JAMET, A. (2002). Tecnología del asfalto espumado. Revista Ingeniería de Construcción, 17(2):84.92.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con cal

Figura 1. Estabilizadora de suelos WR 250 de Wirtgen. http://caltek.com.co/tratamiento-de-suelos-con-cal/

Los trabajos de construcción se ven dificultados por la presencia de arcilla y un alto contenido de agua en un suelo. Una alternativa a la sustitución del suelo es la estabilización mediante cal. El efecto estabilizador de la cal sobre el suelo se obtiene mezclándolo y compactándolo con cal aérea (viva o apagada) y agua. Los suelos más adecuados son los de granulometría fina y notable plasticidad. Se emplea cal con una riqueza en CaO superior al 90%. Dependiendo del caso, se agrega un 4-7 % de cal apagada o del 2-5 % de cal viva sobre el peso seco del suelo. Hay que proteger a los operarios si se emplea la cal viva, evitando el contacto con la piel. La mezcla se puede realizar “in situ” (Figura 1) o en central. Algunos autores (Bouzá, 2003) diferencian entre la mejora y la estabilización de un suelo con cal en función de la ganancia mínima de resistencia a compresión simple sobre el valor inicial del suelo de 350 kPa.

La cal viva (óxido de calcio) seca de forma efectiva la humedad del suelo por hidratación y evaporación, al reaccionar de forma exotérmica. Se puede bajar entre un 2% y un 5% la humedad en función de la cal añadida y las condiciones del suelo. Este proceso es inmediato tras adicional la cal. Otro efecto inmediato es una reacción rápida de floculación e intercambio iónico que modifica la granulometría, la textura y la compacidad del suelo, así como la propiedad de retener el agua. A continuación, se forman nuevos productos químicos mediante una reacción muy lenta de tipo puzolánico. La sílice y la alúmina del suelo se combinan con la cal en presencia de agua para formar silicatos y aluminatos cálcicos insolubles, lo que supone una mejora de las características resistentes, así como una mayor estabilidad frente a las heladas.

El proceso de ejecución “in situ” pasa por la distribución uniforme de la cal viva o apagada mediante equipos mecánicos con la dosificación fijada de dos formas posibles (Cabrera et al., 2012):

  • Por vía seca, extendiendo previamente la cal en forma de polvo o granes sobre la superficie de trabajo, antes de mezclarla con el suelo.
  • Por vía húmeda, en forma de lechada de cal hidratada o apagada elaborada previamente por equipos mecánicos.

Estos tratamientos se utilizan cuando es imposible disponer de materiales alternativos, pues su coste puede ser limitante en caso contrario. Su uso habitual es en capas de subbase y base para pavimentos de viales y carreteras, infraestructuras de ferrocarriles y pistas aeroportuarias para aumentar su capacidad portante y reducir su susceptibilidad al agua de suelos arcillosos. Los suelos a tratar con cal no contendrán materia orgánica o vegetal, ni elevados contenidos de sulfatos solubles. En el caso de subbases y bases de firmes, el suelo antes del tratamiento no contendrá partículas de tamaño superior a 80 mm o a la mitad del espesor de la tongada compactada. Además, el rechazo del tamiz 0,080 UNE será inferior al 85% en peso. La efectividad del tratamiento depende del nivel de arcilla presente (al menos, del 7%) y de su capacidad para reaccionar.

La estabilización con cal aumenta tanto el límite líquido como el plástico, así como muy ligeramente su índice de plasticidad en suelos con IP<15. Sin embargo, reduce el índice plástico en los suelos de plasticidad media-alta (IP>15), desactivando total o parcialmente la actividad de las arcillas, consiguiendo de esta forma una menor susceptibilidad al agua. Asimismo, permite densificar suelos con una humedad natural elevada al incrementar la humedad óptima de compactación. No obstante, la estabilización con cal disminuye la densidad máxima Proctor del suelo original. Como contrapartida, se incrementa el esfuerzo cortante con el porcentaje de cal, el tiempo transcurrido, la temperatura de curado y la disgregación del suelo durante la ejecución.

El suelo se desmenuza fácilmente y se vuelve granular con la cal. El aumento del límite plástico y de la humedad óptima de compactación facilitan su puesta en obra. El mezclado se realiza habitualmente en dos etapas, con un tiempo de reacción intermedio de 1 a 2 días. Los equipos modernos de mezclado “in situ” disponen de un mezclador situado en la parte central de la máquina (Figura 2). Esta cámara de mezclado puede tener unas barras de impacto en su zona delantera para disgregar las partículas gruesas, y una o dos compuertas de apertura regulable, y un sistema de difusores para la distribución del agua, lechada o aditivos de líquidos.

Figura 2. Estabilización “in situ” mediante un rotor de fresado y mezcla. https://www.wirtgen-group.com/es-bo/aplicaciones/obras-de-movimiento-de-tierras/estabilizacion/

Los suelos granulares suelen estabilizarse con cemento, pero se puede usar cal, sobre todo si se añaden cenizas volantes. A largo plazo, estas cenizas forman materiales cementantes. Las dosis de cal y cenizas oscilan entre el 3-5 % y el 10-20 %, respectivamente.

En el artículo 512 Suelos estabilizados in situ se establecen las especificaciones para el tratamiento de suelos con cal en el ámbito español de las carreteras. Los suelos estabilizados in situ S-EST1 y S-EST2 se pueden conseguir con cal o con cemento. El S-EST3 se obtiene solo con cemento.

Os dejo a continuación las recomendaciones de la Junta de Andalucía para los pliegos de especificaciones técnicas generales para el tratamiento de los suelos con cal.

Descargar (PDF, 384KB)

Os dejo un vídeo sobre la estabilización de suelos por la vía húmeda de la Asociación Antera.

Podéis ver a continuación varios vídeos donde se puede ver cómo se ejecuta la estabilización con cal.

Referencias:

BAUZÁ, J.D. (2003). Estabilización de suelos con cal. Mezclas con cemento en las infraestructuras del transporte, Madrid, 30 de enero, 37 pp.

CABRERA, F.; NAVARRO, J.J.; ESTAIRE, J.; RUIZ, M.S. (2012). Nuevas prescripciones de estabilización de suelos con cal para rellenos de terraplén en líneas de alta velocidad de ADIF. Revista Vía Libre – Técnica, 5, pp. 1-9.

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.