Clasificaciones de las técnicas de mejora y refuerzo del terreno

Figura 1. Vibrosustitución. https://www.trevispa.com/es/Tecnolog%C3%ADas/vibrosustituci%C3%B3n

Un terreno, por bueno que sea, puede tratarse para mejorar sus características o reforzarlo. Se trata normalmente de mejorar la capacidad portante, reducir la deformabilidad, reducir la permeabilidad o acelerar la consolidación. Para ello se emplean un conjunto de técnicas que pueden aplicarse a multitud de situaciones, desde el cimiento de una presa hasta los casos más comunes como pueden ser los terrenos blandos. Los primeros métodos se emplearon para aumentar la capacidad portante o para estabilizar suelos granulares. Pero pronto se amplió el campo de aplicación a terrenos cohesivos. Sin embargo, no hay que olvidar que siempre existe la posibilidad de retirar el suelo y sustituirlo por otro mejor, siendo, por tanto, la primera de las soluciones que deben tenerse en cuenta. Los terrenos granulares deformables o licuables y los terrenos cohesivos blandos o deformables son los que habitualmente son objeto de mejora; sin embargo, también hay terrenos difíciles que pueden requerir tratamiento como los expansivos, los colapsables, los residuales, los altamente compresibles, los duros degradables, los kársticos, los suelos dispersivos o las arcillas susceptibles, entre otros. La profundidad de la mejora puede variar desde menos de un metro en el caso de la compactación superficial con rodillo vibrante hasta más de 100 m en el caso de tratamientos con inyecciones (Ministerio de Fomento, 2002).

Antes de describir las distintas clasificaciones que se han utilizado para las técnicas de mejora del terreno, podemos enunciar las que contempla la Guía de Cimentaciones en Obras de Carretera (Ministerio de Fomento, 2002). Son las siguientes: sustitución, compactación con rodillo, precarga, mechas drenantes, vibración profunda, compactación dinámica, inyecciones, inyecciones de alta presión (jet-grouting), columnas de grava, columnas de suelo-cemento, claveteado o cosido del terreno (bulones), geosintéticos, explosivos, tratamientos térmicos, congelación y electro-ósmosis.

Mitchell (1981) realizó una clasificación de los tratamientos del terreno atendiendo a su granulometría. En la Figura 2 se puede ver, de forma aproximada, el campo de aplicación de las técnicas.

Figura 2. Aplicabilidad de las técnicas de mejora del terreno atendiendo a su granulometría (Mitchell, 1981)

También se pueden clasificar las técnicas de mejora del terreno en función de la temporalidad de la técnica (Van Impe, 1989). En la Figura 3 se clasifican los métodos en temporales, que se limitan al periodo de ejecución de la obra, y en permanentes, atendiendo o no a la adición de materiales en el terreno.

Figura 3. Clasificación de las técnicas de mejora de terreno. Adaptado de Van Impe (1989)

En cambio, Schaefer (1997) distinguió las técnicas en tres grupos, las de mejora de terreno (ground improvement), las de refuerzo del terreno (ground reinforcement) y las de tratamiento del terreno (ground treatment). En la Tabla 1 se ha recogido esta distinción. Sin embargo, a veces no está clara la diferencia entre el tratamiento, la mejora o el refuerzo. El Ministerio de Fomento (2002) incluye en un mismo grupo a los métodos de refuerzo y mejora, llamando a ambos métodos de mejora. El caso de las columnas de gravas sería, por ejemplo, tanto un refuerzo como una mejora.

Tabla 1. Clasificación de los métodos de mejora, refuerzo y tratamiento de terrenos (Schaefer, 1997)

El Comité Técnico TC17 de la Sociedad Internacional de Mecánica de Suelos e Ingeniería Geotécnica, ISSMG clasificó los métodos de mejora en cinco grupos:

  1. Mejora del terreno sin adiciones en suelos no cohesivos o materiales de relleno: Compactación dinámica, vibrocompactación, compactación por explosivos, compactación por impulso eléctrico y compactación superficial (incluyendo la compactación dinámica rápida).
  2. Mejora del terreno sin adiciones en suelos cohesivos: Sustitución/desplazamiento (incluyendo la reducción de carga mediante materiales ligeros), precarga mediante relleno (incluyendo el empleo de drenes verticales), precarga mediante vacío (incluyendo la combinación de relleno y vacío, consolidación dinámica con drenaje mejorado (incluyendo el empleo de vacío), electro-ósmosis o consolidación electro-cinética, estabilización térmica usando calentamiento o congelación y compactación por hidrovoladura.
  3. Mejora del terreno con adiciones o inclusiones: vibrosustitución o columnas de grava, sustitución dinámica, pilotes de arena compactada, columnas encapsuladas con geotextiles, inclusiones rígidas, columnas reforzadas con geosintéticos o rellenos pilotados, métodos microbianos y otros métodos no convencionales (formación de pilotes de arena mediante explosivos y el uso de bambú, madera y otros productos naturales).
  4. Mejora del terreno con adiciones tipo inyección: Inyección de partículas, inyección química, métodos de mezclado (incluyendo la mezcla previa y la estabilización profunda), jet grouting, inyecciones de compactación y inyecciones de compensación.
  5. Refuerzo del terreno: tierra reforzada con acero o geosintéticos, anclajes al terreno o claveteado del terreno y métodos biológicos mediante vegetación.

Como puede observarse, el número de clasificaciones posibles es muy alto. Dejo a continuación las recomendaciones de la Guía de Cimentaciones (Ministerio de Fomento, 2002) respecto a la aplicabilidad de las principales técnicas de mejora del terreno.

Tabla 2. Campo de aplicación de las principales técnicas de mejora del terreno (Ministerio de Fomento, 2002)

Por último, os dejo un artículo de Carlos Oteo y Javier Oteo sobre las innovaciones recientes en el campo de la mejora y refuerzo del terreno, publicado en la Revista de Obras Públicas en el año 2012.

Descargar (PDF, 2.54MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • MINISTERIO DE FOMENTO (2002). Guía de Cimentaciones. Dirección General de Carreteras.
  • MITCHELL, J.K. (1981). Soil improvement: state-of-the-art report. 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 509-565.
  • OTEO, C.; OTEO, J. (2012). Innovaciones recientes en el campo de la mejora y refuerzo del terreno. Revista de Obras Públicas, 3534, 19-32.
  • VAN IMPE, W.F. (1989). Soil improvement techniques and their evolution. A.A. Balkema, Rotterdam, 77-88.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación con explosivos

Figura 1. Compactación con explosivos con cargas confinadas. http://62.129.205.139/en/microblasting/

La compactación de un suelo mediante explosivos se considera una técnica de mejora del terreno de carácter permanente y que no precisa de adición de materiales. Se trata de colocar cargas explosivas en profundidad que, en suelos granulares poco densos -con menos del 20% de limos o del 5% de arcillas-, provocan su licuefacción y posterior consolidación. Con ello se consiguen asientos generalizados en su superficie y, por tanto, un aumento de su peso específico. Fue en Rusia, en 1936, donde tuvieron lugar las primeras compactaciones mediante explosivos, incluso bajo el agua. En España se han utilizado en el puerto de Valencia para consolidar rellenos hidráulicos, resolviendo el tratamiento del terreno en solo dos meses (Romana y Ronda, 1997).

Este procedimiento es más eficiente que la vibrocompactación, por la aplicación de mayor energía, pero siempre que se domine la técnica. También es muy aplicable en suelos con grandes bolos, suelos vinos o con niveles superiores más rígidos, donde otras técnicas no son útiles. Los resultados son muy buenos, pudiéndose incrementar la densidad relativa de una arena floja en un 15-30%. Se trata de un procedimiento rápido y económico, no siendo necesario el empleo de una maquinaria especial. Suele terminarse el tratamiento con una compactación final de tipo superficial mediante rodillos vibrantes.

Como inconvenientes a este método cabría destacar el efecto de las explosiones sobre estructuras próximas al radio de acción, la falta de uniformidad en el terreno tratado, el factor psicológico negativo asociado al uso de explosivos y el cumplimiento de la normativa relacionada con los explosivos, especialmente en áreas pobladas. A veces se pueden utilizar productos expansivos no explosivos para evitar algunos de estos problemas. Por otra parte, el control de resultados requiere una exploración geotécnica posterior para evaluar el efecto del tratamiento.

En función de la situación donde se aloje la carga del explosivo, las voladuras pueden ser confinadas (la carga se coloca dentro de la capa del suelo, Figura 1), superficiales (en la superficie del terreno, Figura 2) o subacúaticas (pero por encima del nivel del terreno a compactar, Figura 3). Lo más normal es usar voladuras confinadas.

Figura 2. Voladuras superficiales.  http://62.129.205.139/en/microblasting/

 

Figura 3. Voladuras subacuáticas. http://62.129.205.139/en/microblasting/

Se puede definir el radio de influencia del tratamiento como la superficie cuyo asiento es mayor a 1 cm. La fórmula empírica que define dicha zona (López Jimeno et al., 1995) es

Rmin = K · Q1/3

donde Q es la carga del explosivo en kg y K un coeficiente adimensional que depende del tipo de suelo, según la Tabla siguiente:

Tabla 1. Coeficiente K para definir el radio de influencia de la compactación con explosivos (López Jimeno et al., 1995)

De forma aproximada, las cargas se suelen colocar a una profundidad en torno al 75% de la profundidad del estrato a compactar, con una separación entre cargas entre 5 y 15 m. Suelen utilizarse cargas del orden de 10 a 30 g de dinamita (o TNT, o amonita) por m3 de suelo. Para mayor detalle en el cálculo y diseño de la cantidad de explosivo, el radio de acción de la carga efectiva, el espesor de la carga efectiva, el espesor de la capa compactada, la profundidad a la que debe situarse la carga y el radio del dren de arena creado, pueden consultarse textos especializados. Hemos dejado un artículo al respecto al final del artículo.

Os dejo algunos vídeos al respecto. Observad cómo tras la explosión de las cargas, existe una salida importante de agua a presión.

Descargar (PDF, 1.43MB)

REFERENCIAS:

  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Ed. Carlos López Jimeno. Madrid, 432 pp.
  • GARCÍA VALCARCE, A. (dir.) (2003). Manual de edificación: mecánica de los terrenos y cimientos. CIE Inversiones Editoriales Dossat-2000 S.L. Madrid, 716 pp.
  • LÓPEZ JIMENO, C. et al. (1995). Manual de perforación y voladuras de rocas. Instituto Tecnológico Geominero de España.
  • ROMANA, M.; RONDA, J. (1997). Consolidación por voladuras de un relleno hidráulico en el puerto de Valencia. Boletín de la Sociedad Española de Mecánica del Suelo y Cimentaciones, 126.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Paradoja de Zenón en la parsimonia del asiento de los suelos saturados

Figura 1. Inclinación de la torre de Pisa

Una de las paradojas que planteó el filósofo Zenón de Elea es que si para ir a un lugar recorres primero la mitad de la distancia, luego la mitad de la distancia que te queda por recorrer, y así hasta el infinito, nunca llegarás a tu destino, aunque estés toda la vida andando. Esta paradoja se solucionó matemáticamente en el siglo XIX al aceptar que la suma de 1/2 + 1/4 + … suman 1. Pues bien, un terreno saturado al que sometemos a una carga va a asentar de forma indefinida, pero no superará un valor tope determinado. Veamos esto con mayor detalle.

En un artículo anterior vimos hablamos del Principio de Terzaghi, por el cual un terreno se deforma solo cuando existe un cambio en sus tensiones efectivas. Cuando se carga un terreno saturado, éste tiene la costumbre provocar asientos que se incrementan con el tiempo, siempre que sea posible el drenaje. Esto plantea la pregunta de si los asientos crecerán de forma indefinida con el tiempo. Afortunadamente, el asiento tiende asintóticamente a una magnitud última a la cual se llegará, eso sí, en tiempo infinito.

Pero empecemos por el principio. En presencia de un sólido homogéneo, isótropo y linealmente elástico, la teoría de la elasticidad nos permite conocer perfectamente la deformación que tendrá ante un incremento de cargas. Para ello basta conocer el módulo de elasticidad E y el coeficiente de Poisson ν. Es más, si estamos ante este tipo de terreno y conocemos las ecuaciones de Hooke en términos efectivos (es decir, conocemos E‘ y  γ’, obtenidos en suelo drenado, a largo plazo), entonces tenemos herramientas para averiguar la deformación del terreno, tal y como vimos en el artículo que donde hablábamos de los asientos de cargas rectangulares en el semiespacio de Boussinesq. Este método sería válido para cargas de servicio o de trabajo, alejadas de la carga de rotura (factor de seguridad del orden de 3), que probablemente generen asientos elásticos. El método elástico será tanto más aceptable cuanto más se asemeje el comportamiento del suelo al del sólido lineal-elástico, como es el caso de los suelos granulares o las arcillas fuertemente sobreconsolidadas, bajo presiones normales de cimentación.

Sin embargo, no vamos a tener tanta suerte. El comportamiento del suelo es más complejo. De hecho, la deformación ocurrirá, tal y como se ha comentado anteriormente, cuando las presiones efectivas empiecen a cambiar. Y eso tendrá lugar si se permiten disipar las presiones intersticiales del terreno. Por tanto, las deformaciones van a depender, entre otros factores, de la permeabilidad. Terrenos altamente permeables, como gravas o arenas, van a deformar rápidamente, puesto que el agua drenará con mucha facilidad. Pero terrenos más impermeables como las arcillas, el proceso se dilatará en el tiempo. Es el fenómeno conocido como consolidación.

Por tanto, ante un terreno saturado, tenemos tres tipos de consolidación. La consolidación inicial la provoca un aumento de la presión total, que provoca un cambio de volumen debido a efectos como la disolución de las burbujas de aire, el cierre de fisuras o la reordenación de las partículas, entre otras posibles causas. La consolidación primaria, es provocada por el aumento de la presión efectiva como consecuencia de la disipación de las sobrepresiones intersticiales. Por último, la consolidación secundaria se produce a tensión efectiva constante, es decir, una vez disipada la sobrepresión intersticial y se debe a factores como la fluencia por desplazamientos y reorientaciones de partículas, o bien a la descomposición de la materia orgánica del suelo, entre otras posibles causas.

Figura 2. Curva de consolidación de un suelo saturado.

Para determinar tanto la magnitud de la deformación de un suelo al aumentar la tensión efectiva a la que está sometido (curva edométrica), como la velocidad a la que ocurre el asiento de consolidación (curva de consolidación), se utiliza el ensayo edométrico. De este ensayo y sus características hablaremos en otros artículos.

Pero aquí lo que queremos es ver cómo evolucionan los asiento con el tiempo durante el proceso de consolidación. En un proceso unidimensional, la ecuación que gobierna dicho proceso es la siguiente:

donde Cv es el denominado coeficiente de consolidación vertical, que depende del nivel de tensiones existente y cuyas unidades son [L2]/[T]. Este coeficiente en una arcilla puede deducirse de un ensayo edométrico de una muestra inalterada. Su valor tipo oscila entre 0,4 x 10-4  y 3 x 10-3 cm2/s, y los valores deducidos in situ oscilan entre 0,7 x 10-4  y 250 cm2/s (González Caballero, 2001).

Si definimos como grado de consolidación U la relación entre el asiento experimentado en un instante por el suelo respecto al asiento total, podemos utilizar U como variable auxiliar adimensional para resolver la ecuación diferencial anterior.

Si llamamos factor de tiempo a Tv, éste se encuentra relacionado con U. La solución simplificada de la ecuación diferencial, suponiendo que el incremento de presión total es uniforme o lineal en el caso del doble drenaje, nos lleva a dos ecuaciones sencillas, que son las siguientes:

Estas expresiones las hemos dibujado en la Figura 3, donde se relaciona U con Tv. Se puede observar que para el grado de consolidación del 100%, el factor de tiempo se hace infinito. No obstante, se puede considerar que un factor de tiempo Tv = 2 corresponde prácticamente al final de la consolidación primaria.

Figura 3. Factor de tiempo en función del grado de consolidación

Además, el coeficiente de consolidación vertical Cv está relacionado con el factor de tiempo Tv, con la distancia libre de drenaje d y con el tiempo t a través de la siguiente expresión:

Por tanto, se puede saber el tiempo que tardará en asentar un suelo saturado para alcanzar un grado de consolidación determinado conociendo la distancia libre de drenaje y el coeficiente de consolidación vertical. Los cálculos pueden realizarse rápidamente utilizando la gráfica de la Figura 4. Se ha dibujado el eje vertical en escala logarítmica. Cada función indica una longitud libre de drenaje distinta.

Figura 4. Relación entre el producto del coeficiente de consolidación y el tiempo con el grado de consolidación y la distancia libre de drenaje.

Vamos a hacer un cálculo aproximado utilizando la Figura 4. Si suponemos una arcilla con un coeficiente de consolidación Cv = 1,0 m2/año, en el periodo de 1 año, con una longitud de drenaje de 1 m, se habrá superado más del 90% del asiento previsto, pero si la longitud de drenaje es de 2 m, no llegaremos al 60% del asiento.

Se deja al lector curioso la demostración de que si la longitud de drenaje la dividimos por n, entonces el tiempo que se tardará en alcanzar el mismo grado de consolidación se divide por n2 . Así, por ejemplo, una capa de arcillas dispuesta entre dos capas de material granular tardará en alcanzar un mismo asiento en la cuarta parte del tiempo que si dicha capa estuviese dispuesta entre una capa granular y otra impermeable.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, 309 pp.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Asientos de cargas rectangulares en el semiespacio de Boussinesq

Joseph Valentin Boussinesq. https://es.wikipedia.org/wiki/Joseph_Boussinesq

El matemático francés Joseph Valentin Boussinesq (1842-1929) desarrolló en 1885 una expresión matemática para obtener el incremento de esfuerzo en una masa semi-infinita de suelo debido a la aplicación de una carga puntual en su superficie. Dicha expresión se puede integrar para obtener soluciones para áreas cargadas. Para ello se supone que dicho semi-espacio es infinitamente grande, siendo un medio homogéneo, elástico lineal e isótropo.

Sabiendo que el terreno dista de ser un semiespacio de Boussinesq, se puede aplicar la Teoría de la Elasticidad para estimar los asientos producidos por una carga rectangular como pudiera ser la de una losa de cimentación o la de una zapata.  Estos asientos pueden producirse instantáneamente o bien con el paso del tiempo, los llamados asientos de consolidación. El modelo elástico proporciona soluciones para una gran variedad de problemas, y si bien el comportamiento del terreno no es generalmente elástico, hoy día se dispone de una amplia experiencia respecto al uso y limitaciones.

Una de las grandes ventajas que presenta la hipótesis de que el terreno es elástico lineal es la validez del principio de superposición, cuyo enunciado dice que “si se tienen dos estados de tensiones y deformaciones correspondientes, al estado tensional suma le corresponde el estado de deformaciones suma“.

Para el cálculo de las deformaciones con la teoría elástica es necesario conocer el módulo de elasticidad o módulo de Young, E, así como el coeficiente de Poisson, γ. Sin embargo, según el Principio de Terzaghi, “las deformaciones en suelos se deben a la variación de las tensiones efectivas“, por lo que las ecuaciones de Hooke deben escribirse en términos efectivos. Es decir, se deben utilizar E‘ y  γ‘, obtenidos en condiciones drenadas del suelo, es decir, a largo plazo. Este método sería válido para cargas de servicio o de trabajo, alejadas de la carga de rotura (factor de seguridad del orden de 3), que probablemente generen asientos elásticos. El método elástico será tanto más aceptable cuanto más se asemeje el comportamiento del suelo al del sólido lineal-elástico, como es el caso de los suelos granulares o las arcillas fuertemente sobreconsolidadas, bajo presiones normales de cimentación.

En las Tablas D.23 y D.24 del Código Técnico de Edificación se recogen valores orientativos de los módulos de elasticidad E‘ y del coeficiente de Poisson γ‘. En algunos casos no es posible trabajar con tensiones efectivas, por lo que en Geotecnia se hace en totales, utilizando unos parámetros elásticos en totales o aparentes.

Como un suelo saturado responde a corto plazo sin variar su volumen, ello supone un coeficiente de Poisson de 0,5 trabajando en tensiones totales. En ese caso se utiliza un módulo de elasticidad Eu denominado “módulo de elasticidad sin drenaje“. Este módulo es de difícil determinación, aunque se suele considerar  Eu  = 500·Cu, pero con errores del orden del 50%. Skempton recomienda adoptar como Eu el módulo secante correspondiente a una tensión aplicada igual al 65% de la tensión de rotura (coeficiente de seguridad F=3 en cimentaciones superficiales). Como los esfuerzos cortantes son iguales en tensiones totales o en efectivas, los módulos de rigidez G coincidirán, lo cual permite deducir Eu conocidos E‘ y γ‘ con la siguiente expresión:

Llegado a este punto, ¿cómo calculamos las deformaciones verticales al aplicar una carga sobre el terreno? Llamaremos “asientos” a dicha deformación vertical, distinguiéndose los “asientos instantáneos” los que ocurren a corto plazo, es decir, en condiciones sin drenaje. A ellos habría que sumar los asientos a largo plazo, en condiciones de drenaje, que son los “asientos de consolidación“. Por tanto, los asientos totales se calcularán con E‘ y γ‘ (condiciones drenadas, a largo plazo) y los asientos instantáneos con Eu  y con γ = 0,5. La diferencia serán los asientos diferidos (semejantes a los de consolidación). Veamos ahora los cálculos.

Para cargas flexibles con forma circular, cuadrada o rectangular, el asiento bajo el centro de las mismas se obtiene con la siguiente expresión:

En la que B es el lado menor del área cargada y IS es un coeficiente de influencia que vale IS =1 en cargas circulares y IS =1,122 en cargas cuadradas. Para cargas rectangulares se puede obtener el asiento en una esquina con la fórmula anterior pero adoptando un coeficiente de influencia que viene dado por esta expresión, donde n=L/B:

El Cuadro 1 y la Figura 1 nos dan valores para este coeficiente de influencia.

Cuadro. Valores del coeficiente de influencia en función de L/B

 

Figura 1. Coeficiente de influencia en función de L/B

Aplicando el principio de superposición que permite la teoría elástica, el lector puede comprobar de forma sencilla que el asiento en el centro es el doble que en una de sus esquinas (Figura 2).

Figura 2. Principio de superposición para calcular el asiento en el centro de una carga rectangular por suma de cuatro asientos de cargas rectangulares en su esquina

Por último, en el caso de una carga rígida, como sería el caso de muchas zapatas, se considera que el asiento es uniforme e igual, aproximadamente, a 0,8 veces el asiento que se obtendría en el centro si fuese una zapata flexible. Es fácil comprobar que dicho asiento valdría.

Como recordatorio, habría que decir que la carga que se aplica en superficie en las fórmulas anteriores se debería cambiar por la carga o tensión neta en el caso de que la carga se aplique tras una excavación previa. Es decir, la carga a utilizar en las fórmulas es la diferencia entre la tensión aplicada en superficie y la existente en el terreno a la profundidad del plano de cimentación. Dicho de otra forma, hay que quitar de la carga total aplicada la correspondiente al peso del terreno excavado.

Se deja al lector inquieto calcular el asiento en el centro de una zapata rectangular de 2,50 m x 5,00 m que se cimenta sobre unas arcillas con un peso específico saturado de 22 kN/m3, con un módulo de elasticidad efectivo de 92,00 MPa y un coeficiente de Poisson efectivo de 0,5. La zapata se apoya a 2,00 m de profundidad y el peso propio que se le transmite es de 100 kN/m2.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ CABALLERO, M. (2001). El terreno. Edicions UPC, 309 pp.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • IZQUIERDO, F.A. (2001). Cuestiones de geotecnia y cimientos. Editorial Universidad Politécnica de Valencia, 227 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Voladura en una cantera de áridos

http://mti-minas-valencia.blogspot.com.es/

A continuación os dejo un vídeo de Georock S.L.  donde se explica la voladura en una cantera de áridos en San Fulgencio (Alicante). Una vez visionado, será fácil responder a las siguientes preguntas:

          1. ¿Qué tipo de material se extrae en esta cantera?
          2. ¿Qué altura de banco tiene esta cantera?
          3. ¿Qué dos tipos de explosivo se usan?
          4. ¿Qué separación existe entre los taladros?, ¿qué diámetro tienen?
          5. ¿Qué consumo de explosivo se necesita?
          6. ¿Cuál es la velocidad de detonación en este caso?

En este otro vídeo podéis ver el efecto de los microrretardos:

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Evaluación aproximada de caudales de bombeo en excavación de solares

Figura 1. Vaciado de solar en recinto apantallado bajo nivel freático. https://www.obrasurbanas.es/pantallas-tablestacas-excavaciones/

Resulta muy habitual en edificación excavar sótanos que se encuentran bajo nivel freático. Esta excavación suele realizarse al abrigo de un recinto de muros o pantallas y se hace necesario drenar el agua que queda al fondo de la excavación. Para un estudio en detalle del flujo hidráulico en un medio poroso deberíamos acudir a la ecuación de Laplace y realizar la integración de este tipo de ecuación en derivadas parciales atendiendo a las condiciones de contorno. Sin embargo, vamos a dar aquí una solución aproximada que puede servir en obra para realizar una previsión de las bombas de achique necesarias o tomar decisiones tales como prolongar las pantallas lo suficiente como para empotrarlas en un sustrato impermeable. Como siempre, cada caso es particular y requiere de un estudio económico para ver la mejor opción.

Vamos a suponer que se va a excavar un solar, de dimensiones “a·b” en presencia de nivel freático en un terreno poroso con un coeficiente de permeabilidad “k“.  Las pantallas se encuentran empotradas una longitud “L“, el fondo de excavación se encuentra a una profundidad “H” respecto al nivel freático y existe un estrato impermeable a una distancia “h‘” respecto a la pantalla (ver Figura 2). Se pretende calcular el caudal de achique de forma que el agua no se encharque en el fondo de la excavación. Se supone que se ha realizado una evaluación previa para evitar el sifonamiento, el levantamiento de la excavación y el cálculo mecánico de las pantallas, entre otros aspectos.

Figura 2. Flujo de agua bajo un recinto apantallado

Para resolver el problema emplearemos la Ley de Darcy, que establece que la velocidad de un fluido en medio poroso es proporcional al gradiente hidráulico. Multiplicando esa velocidad por la sección que atraviesa el flujo, tendremos la evaluación del caudal según la siguiente expresión, donde “Q” es el caudal, “k” es el coeficiente de permeabilidad”, “i” es el gradiente hidráulico y “S” es la sección atravesada por el flujo.

En el problema que nos ocupa, el caudal puede atravesar dos secciones, una lateral determinada por el estrato impermeable y el fondo de la pantalla “S1”, y la formada por el fondo de la excavación del solar “S2”. Calculemos en ambos casos el caudal. Es posible realizar una estimación aproximada considerando el flujo del agua próximo a la pantalla, puesto que es la línea de flujo más corta y la que supone un mayor gradiente crítico. En este caso, i=H/(H+2L).

Para la sección “S1″, el caudal “Q1″ tendrá el siguiente valor:

 

Análogamente, para la sección”S2″, el caudal “Q2″ tendrá el siguiente valor:

El caudal estimado será el menor ambas dos estimaciones: Q=min(Q1, Q2).

Igualando ambos caudales se puede determinar la distancia del sustrato impermeable al fondo de la pantalla a partir de la cual dicho sustrato no influye en la estimación del caudal:

En el caso de un solar cuadrado, si el sustrato impermeable se encuentra a una distancia superior a la cuarta parte del lado del solar, todo el flujo pasa por el fondo de la excavación.

A todo caso, de las expresiones anteriores se deduce que el caudal máximo que puede entrar en la excavación se da cuando el sustrato impermeable se encuentra a una distancia del fondo de la pantalla superior al cociente entre el área y el perímetro del recinto. Si la capa impermeable se encuentra más cerca, el caudal baja proporcionalmente hasta anularse teóricamente cuando llega a tocar a la pantalla.

Referencias:

PÉREZ VALCÁRCEL, J.B. (2004). Excavaciones urbanas y estructuras de contención. Ediciones Cat. Colegio Oficial de Arquitectos de Galicia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El efecto Renard, o por qué un suelo parece que entra en ebullición: Sifonamiento

Figura 1. Arenas movedizas. https://churbuck.com/category/clamming/page/2/

Cuando existe un flujo ascendente de agua en un terreno, la corriente circula en sentido contrario al peso del terreno. Este empuje puede ser tan algo que supere al peso del terreno, con lo cual tenemos la impresión que el terreno se ha licuado y se comporta como un líquido en ebullición. Este efecto, muy estudiado en cualquier libro de geotecnia, tiene lugar cuando las tensiones efectivas se anulan. Se produce el fenómeno del sifonamiento o licuefacción, también llamado “efecto Renard”. En este caso, una arena, por ejemplo, pierde su consistencia y parece que entre en ebullición. Esto se debe a que un suelo sin cohesión pierte completamente su resistencia al corte y pasa a comportarse como un fluido.

Resulta sencillo demostrar que este fenómeno ocurre cuando se alcanza un gradiente crítico, cuyo valor es el cociente entre el peso específico sumergido del suelo y el peso específico del agua. Este valor se aproxima en muchos casos a la unidad. Cualquier objeto que se sitúe sobre un terreno con licuefacción que tenga un peso específico superior al del la mezcla fluida de terreno y agua, se hundirá; esto es especialmente importante si tenemos maquinaria dentro de la excavación o existen cimentación que se apoye en esa zona. Se trata del conocido fenómeno de las arenas movedizas.

Este problema es importante cuando tenemos que excavar bajo nivel freático una profundidad “h” (ver Figura 2). Una forma de solucionar evitar el sifonamiento consiste en utilizar tablestacas o ataguías que tengan una longitud de empotramiento “x” suficiente. En este caso, la línea de filtración más corta del agua tiene una longitud igual a h+2x.

Figura 2. Longitud de empotramiento para evitar el sifonamiento

Supongamos que nos dan como datos el peso específico de las partículas sólidas de un suelo “γs ” y su porosidad “n”. El peso específico del agua es  “γw“. Vamos a considerar un coeficiente de seguridad  “η”. Como el gradiente es h/(h+2H), se puede comparar con el gradiente crítico dividido por su coeficiente de seguridad. De este modo, es fácil demostrar que la longitud de empotramiento es:

En la Figura 3 se representa la evolución del empotramiento en función de la profundidad de la excavación bajo nivel freático y de la porosidad del suelo. Se ha supuesto γs = 2,65 t/m3   y un coeficiente de seguridad η = 3. Es fácil comprobar la relación lineal entre el empotramiento y la altura del nivel freático sobre la excavación. Además, cuanto más poros presenta el terreno, más empotramiento es necesario.

Figura 3. Profundidad de empotramiento de una tablestaca para evitar el sifonamiento

Respecto al coeficiente de seguridad frente al sifonamiento, el Código Técnico de la Edificación (CTE), en su Documento Básico SE-C Cimientos, se indica que, en el caso de las pantallas, el coeficiente de seguridad será η = 2.

Nota muy importante: una cosa es la profundidad mínima de empotramiento para evitar el sifonamiento y otra bien diferente es calcular el empotramiento necesario de una tablestaca para soportar los esfuerzos de empuje a los que está sometido. Por tanto, el empotramiento real será el mayor de los dos valores. Se recomienda siempre efectuar con detalle los cálculos geotécnicos y estructurales necesarios. Y sobre todo, utilizar el sentido común.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La magia de las tensiones efectivas en geotecnia

Karl von Terzaghi (1883 – 1963) ://es.wikipedia.org/wiki/Karl_von_Terzaghi

Os presento uno de los conceptos básicos utilizados en geotecnia que, en ocasiones, complica a muchos de mis estudiantes cuando en la asignatura Procedimientos de Construcción explicamos algunos aspectos de la mejora de terrenos (columna de grava, precarga, drenes verticales, etc.). Se trata del concepto de “tensiones efectivas”, que hoy es sencillo, pero que confundió a numerosos ingenieros durante mucho tiempo.

La ley de elasticidad Hooke, donde la aplicación de una fuerza supone una deformación proporcional a la misma, desde luego no era aplicable directamente a muchos problemas que los ingenieros tenían con el terreno. Desde siempre se conoce que el comportamiento mecánico del suelo es algo complejo, pero era sorprendente, por ejemplo, que una carga aplicada sobre un terreno con nivel freático elevado, no se deformase. Y lo más sorprendente, es que, al cabo de cierto tiempo, sin modificar el estado de cargas, el terreno se deformara “por arte de magia”.

Este problema ingenieril traía de cabeza a muchos ingenieros hasta los primeros años del siglo XX. Si se analiza un suelo desde el punto de vista “microscópico”, la transmisión de esfuerzos se realiza mediante cadenas de partículas, unas apoyadas con otras. Lo que es peor, si este suelo es de partículas tan finas como son las arcillas, la fuerza de gravedad pierde importancia frente a las fuerzas fisico-químicas. La solución es entender la mecánica del suelo como si fuera un medio continuo, es decir, desde el punto de vista “macroscópico”. Tal simplificación necesita un marco teórico de partida que fue postulado por uno de los grandes genios y padre de la mecánica de suelos: Karl von Terzaghi (Praga, 2 de octubre de 1883 – Winchester, Massachusetts, 25 de octubre de 1963).

Su aportación genial fue formular un postulado acerca de lo que denominó como “tensiones efectivas“. Como todo postulado que se precie, se trata de una proposición no evidente por sí misma, ni demostrada, pero que se acepta, ya que no existe otro principio al que pueda ser referida. De todos modos, las evidencias empíricas del correcto funcionamiento de este postulado hace que hoy día se admita en el campo de la mecánica de suelos porque permite explicar multitud de problemas geotécnicos. Terzaghi definió el concepto de tensiones efectivas, en 1923, partiendo de resultados experimentales. De forma muy simple, diremos que las tensiones efectivas que actúan en el terreno son el exceso de tensión sobre la presión intersticial del agua presente en él. Y lo más importante de todo ello es que son las tensiones efectivas las que pueden provocar cambios en la deformación del terreno. Pero vamos a reproducir (González de Vallejo et al., 2004) las dos partes fundamentales del enunciado de su postulado, según las propias palabras de Terzaghi:

“Las tensiones en cualquier punto de un plano que atraviesa una masa de suelo pueden ser calculadas a partir de las tensiones principales totales σ1, σ2 y σ3 , que actúan en ese punto. Si los poros del suelo se encuentran rellenos de agua bajo una presión u, las tensiones principales totales se componen de dos partes. Una parte, u, llamada presión neutra o presión intersticial, actúa sobre el agua y sobre las partículas sólidas en todas direcciones y con igual intensidad. Las diferencias σ’1 = σ1 – u, σ’2 = σ2 – u, σ’3 = σ3 – u  representan un exceso de presión sobre la presión neutra u, y actúan exclusivamente en la fase sólida del suelo. Estas fracciones de las tensiones principales totales se denominan tensiones efectivas.

Cualquier efecto medible debido a un cambio de tensiones, tal como la compresión, la distorsión o la modificación de la resistencia al corte de un suelo, es debido exclusivamente a cambios en las tensiones efectivas”.

Podemos sacar varias conclusiones directamente de este postulado:

  1. Si en un suelo saturado no hay cambios de volumen ni de distorsión, eso significa que las tensiones efectivas no han cambiado.
  2. Como el agua no es capaz de soportar tensiones tangenciales, las que existan en un suelo saturado la debe absorber el esqueleto sólido del suelo.
  3. Si a un suelo saturado se le permite el drenaje (disipación de la tensión intersticial), entonces este suelo se deforma y se modifica su resistencia a corte. Al fenómeno se denomina consolidación.

Como entretenimiento práctico podéis deducir cómo la tensión efectiva en un punto de un estrato situado bajo nivel freático es igual al producto de la profundidad del punto en el estrato multiplicado por el peso específico sumergido del material de dicho estrato. Asimismo, si existen distintos estratos, es la suma de las alturas de los posibles estratos por sus correspondientes pesos específicos sumergidos.

Referencias:

  • DAS, B. (2005). Fundamental of Geotechnical Engineering – 2nd ed, Technomic Publishing Co.
  • GONZÁLEZ DE VALLEJO, L.I. et al. (2004). Ingeniería Geológica. Pearson, Prentice Hall, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Proceso constructivo de un aparcamiento subterráneo

Construcción del aparcamiento subterráneo bajo la Plaza Mayor, en 1968. http://bosquesurbanospanama.wordpress.com/

Hay varias formas de construir un aparcamiento subterráneo. A continuación os paso un vídeo de la empresa Pantallax Cimentaciones Especiales, que ilustra el procedimiento constructivo de un aparcamiento subterráneo. El vídeo describe pormenorizadamente el proceso constructivo de un aparcamiento subterraneo, realizado mediante cimentaciones especiales tales como muros pantalla, pilotes, anclajes, etc. Espero que os guste.

https://www.youtube.com/watch?v=B_qU8WqaaQA

 

Normativa peruana sobre suelos y cimentaciones

¿Es bueno aplicar una norma que se utiliza en un país distinto al nuestro? Esta pregunta se repite muchas veces cuando se abren debates, sobre todo en España sobre el uso de los Eurocódigos (véase el caso de la Instrucción de Hormigón Estructural). Es evidente que en cada país se utiliza un tipo de norma que, si bien tiende a unificar aquellas partes comunes asentadas en el ámbito técnico y científico, en numerosas ocasiones se adapta a la idiosincrasia del país y sus circunstancias. Aspectos como el riesgo sísmico o geológico, materiales y procedimientos constructivos más empleados, sistemas de control de calidad en el sector, etc., hacen que se particularicen o resalten determinados aspectos de cada norma. No obstante todo lo anterior, sería un gran avance unificar normas y criterios, aunque en cada país se adoptaran coeficientes de seguridad o parámetros de diseño particulares.

En este caso os presento la Resolución Ministerial nº 406-2018-vivienda por la que se publica la Norma Técnica E.050 sobre “Suelos y Cimentaciones” del Perú. Agradezco el documento a Christian Martín Torres Delgado. Es una de las ventajas de estar conectado a las redes sociales, en este caso LinkedIn, que permiten compartir conocimiento técnico de forma ágil. Espero que el documento os sea de interés.

Descargar (PDF, 2.72MB)