Contención del agua mediante escudos de aire comprimido

Figura 1. Distribución de presiones en el frente del escudo

La necesidad de equilibrar suelos inestables que además se encuentran bajo el nivel freático, ha desarrollado un conjunto de escudos con diversas tecnologías que estabilizan el frente empleando aire comprimido, lodos o las propias tierras extraídas en la excavación.

El aire comprimido es el sistema más antiguo empleado como medio de estabilización en la excavación de túneles. En 1874, James H. Greathead plantea el primer escudo que utiliza aire comprimido, aunque no se llegó a emplear. En 1879, De Witts Haskins maneja por primera vez la presurización a 0,24 MPa en la construcción del túnel en Nueva York, bajo el río Hudson, y del túnel Antwerp Docks recurriendo a dovelas de fundición.

En sus primeras aplicaciones se utilizaron escudos abiertos con una presurización integral del túnel, para construir túneles bajo niveles freáticos poco importantes (0,1 a 0,2 MPa), entre el frente y la esclusa inicial de entrada. En el frente bastaban simples escudos de entibación u otros con rueda abierta, pues el único condicionante era disponer un frente con un coeficiente de permeabilidad al aire bajo, compuesto en su mayoría por arenas finas, arcillas y limos. Estos escudos tenían acceso al frente de excavación por medio de dos sistemas de esclusas de cierre hermético: una para la entrada y salida del personal, y otra para la evacuación del escombro.

Sin embargo, es a partir de los años 1950-60 cuando se reconocen los problemas que plantea el trabajo prolongado en condiciones hiperbáricas. En efecto, cualquier pérdida de aire podría implicar un desastre de enormes proporciones.

En terrenos con frentes con suelos granulares no cohesivos, el riesgo es alto de accidentes debido a la inestabilidad del frente por su rotura. Además, los rendimientos son muy bajos, pues la entrada al túnel del personal y la maquinaria se hace a través de esclusas para mantener la presión. Incluso trabajando por debajo de los 0,3 MPa, se exigen tiempos de descompresión cercanos a las 4 horas, por lo que solo son útiles de 2 a 3 horas por turno, lo cual dispara los costes.

Los inconvenientes de esta forma de trabajo, especialmente por razones de seguridad y salud para los operarios, han eliminado por completo la presurización integral del túnel. Sin embargo en escudos cerrados, el aire comprimido cuando el terreno reúne las condiciones necesarias, puede ser un medio de estabilización eficaz, aplicable en combinación con otros medios de sustentación. Por tanto, se presuriza exclusivamente el terreno del frente, es decir, el espacio comprendido entre la rueda de corte y un mamparo, que es lo que se denomina “cámara de tierras”. De esta forma, se aísla la presión del resto de la máquina, pudiendo los operarios trabajar a presión atmosférica. Hoy día solo se entra en la cámara presurizada para la revisión de la rueda de corte y la reposición de herramientas, siempre con la máquina parada. De todas formas, los escudos de aire comprimido apenas se utilizan hoy en día, pues el aire comprimido complica mucho la organización de la obra. Solo se emplean en labores complementarias o túneles muy cortos y siempre con presiones inferiores a unos 0,3 MPa.

El reparto desigual de presiones sobre el frente de excavación, puede ser un inconveniente tanto más importante cuanto mayor sea la altura del escudo según se aprecia en el esquema siguiente: en escudos de grandes dimensiones la diferencia de cota entre la solera y la clave del túnel, puede llegar a establecer importantes diferencias de presión. Para una diferencia h2 – h1 » 10 m la sobrepresión en clave sería del orden de una atmósfera.

Por otra parte, para que el aire comprimido sea un medio efectivo de sostenimiento arenas o gravas, es necesario que el suelo contenga una proporción mínima (>10 %) de finos, es decir, son necesarios terrenos muy homogéneos. En el caso de materiales no cohesivos con riesgo de roturas del frente, se prefieren otro tipo de escudos, tal y como se describirá en lecciones posteriores.

Los principales componentes de un escudo de aire comprimido son los siguientes:

  • Cabeza de corte, formada por cuchillas y dientes
  • El escudo cilíndrico de protección. Su parte frontal está cerrada por un mamparo que separa la cámara presurizada donde está la cabeza de corte, del resto
  • Gatos hidráulicos de empuje horizontal

En estos escudos la extracción del escombro se realiza hasta la zona despresurizada a través de un tornillo sinfín, que puede descargar en una válvula esférica rotativa. Cuando existen dificultades, se pueden adicionar espumas o polímeros para conformar un gel viscoso manejable.

Existe un tipo especial de tuneladora denominada escudo abierto de aire comprimido, donde la excavación se realiza con un minador puntual o rozadora, mientras que el frente se sostenien con aire comprimido.

La realidad, la presurización neumática actual de la cámara frontal del escudo queda reducida a situaciones de emergencia en escudos de presión de lodos o de tierras para, mediante una esclusa situada en la cabeza de la máquina, permitir el acceso para la sustitución de picas, reparar o solucionar alguna situación inesperada.

Referencias:

  • GALLO, J.; PÉREZ, H.; GARCÍA, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Universidad del País Vasco, Bilbao, 277 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tuneladoras de frente en presión de lodos: los hidroescudos

Vista frontal de un hidroescudo. https://www.eurohinca.com/escudo-cerrado-hidroescudo.html

Los escudos de frente en presión de lodos, o hidroescudos (hydroshield, en inglés) son tuneladoras que emplea lodos tixotrópicos para garantizar la estabilidad del frente, con un sistema de conducción del escombro por vía húmeda mediante bombeo. Estas máquinas surgieron en los años sesenta para resolver el problema de la presurización de los frentes de excavación en materiales no cohesivos.

Actualmente, los hidroescudos son aptos para trabajar para excavar bajo nivel freático en terrenos complicados, formados por arenas y gravas u otros materiales blandos y fragmentados. El límite del tamaño máximo transportable hidráulicamente es de 80 a 100 mm. No obstante, si se incorpora una trituradora en la cabeza de la máquina, se puede abordar el desalojo de tamaños mayores. Cuando el porcentaje de finos (tamiz 200) supera el 20%, la solución no es económica por la dificultad de separar el escombro de la bentonita. Además, se trata de una máquina especialmente indicada para la perforación de pequeños diámetros. No obstante, siempre con los inconvenientes propios de este medio de estabilización: vertido de los lodos y sobrecoste de la instalación para su preparación, bombeo y recuperación.

Estos escudos son las más apropiados para excavar túneles en terrenos inestables sometidos a una elevada presión de aguas subterráneas o a filtraciones que deben contenerse proporcionando sostenimiento al frente de excavación con un fluido a presión. Este fluido de excavación normalmente es una suspensión de bentonita o bien una mezcla de arcilla y agua.

El fluido de perforación se bombea hacia el interior de la cámara de excavación, donde llega al frente de excavación y penetra en el suelo formando la torta de filtro o el mamparo impermeable en suelos finos, o la zona impregnada en suelos gruesos, que garantiza la presión en el frente. La función de los lodos, además de estabilizar el terreno, es facilitar la evacuación del escombro que, mezclado con ellos, se bombea y dirige hacia el exterior.

En estos escudos, la parte de la máquina que realiza la excavación, está separada del resto por una mampara completamente estanca. Los lodos ocupan una cámara con dos compartimentos: uno anterior lleno de lodos con el escudo en funcionamiento y otro posterior en el que se regula la presión por medio de un colchón de aire que está separado de la cámara por un diafragma. El volumen de lodos, se controla automáticamente con un regulador de nivel superior e inferior que actúa sobre los sistemas de alimentación y de extracción del detritus, de forma que cuando los lodos alcanzan uno de estos niveles, las bombas de impulsión o extracción se paran automáticamente.

En la Figura 2 se representan las distintas partes de la que consta un hidroescudo.

Figura 2. Esquema básico de un hidroescudo

La numeración de las partes del hidroescudo de la Figura 2 es la siguiente:

  1. Rueda de corte
  2. Accionamiento
  3. Suspensión de bentonita
  4. Sensor de presión
  5. Esclusa de aire comprimido
  6. Erector de dovelas
  7. Dovelas
  8. Cilindros de propulsión
  9. Burbuja de aire comprimido
  10. Mamparo sumergible
  11. Machacadora
  12. Tubería de extracción

Como en cualquier aplicación con lodos bentoníticos, la permeabilidad del terreno tiene un límite (k > 10-2 cm/s.) a partir del cual la capa de gel ya no se forma sobre el terreno y en consecuencia ha de recurriese a otro medio auxiliar de excavación.

La mezcla con los residuos se bombea desde la cámara de excavación hasta una planta de separación situada en la superficie, compuesta generalmente por cribas y ciclones, lo cual permite reciclar la suspensión de bentonita y arcilla.

Por último, resulta relevante comentar que los hidroescudos son la única forma de excavar un túnel bajo nivel freático cuando las presiones del agua son muy elevadas, por encima de los 5 Bar.

Os dejo a continuación la Figura 3, tomada de Mendaña y Fernández (2011), donde se pueden ver, de una forma aproximada, los rangos de utilización de los hidroescudos frente a los escudos EPB. A la izquierda de la figura tenemos en azul los terrenos cohesivos, donde lo ideal son los escudos EPB, mientras que a la derecha son terrenos no cohesivos con escasez de finos, donde lo más adecuado son los hidroescudos. Existe, como siempre, un campo intermedio donde se debe estudiar con mayor detenimiento la aplicación. En cualquier caso, es muy importante elegir bien los aditivos adecuados.

Figura 3. Campo de aplicación de los escudos presurizados (Mendaña y Fernández, 2011)

Os dejo a continuación un artículo de Mendaña y Fernández publicado en la Revista de Obras Públicas: http://ropdigital.ciccp.es/pdf/publico/2011/2011_octubre_3525_04.pdf

Descargar (PDF, 1.27MB)

Referencias:

  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • MENDAÑA, F.; FERNÁNDEZ, R. (2011). Hidroescudos y tuneladoras E.P.B. Campos de utilización. Revista de Obras Públicas, 3525:67-86.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 23 de marzo de 2020 y termina el 4 de mayo de 2020. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 87 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Procedimientos constructivos de pozos profundos para drenaje de excavaciones

Figura. commons.wikimedia.org (U.S. Navy photo by Mass Communication Specialist Seaman Ernesto Hernandez Fonte/Released)

Las tecnologías de perforación se utilizan en la construcción y la minería para una amplia gama de operaciones: sondeos de reconocimiento, ejecución de pilotes de desplazamiento, barrenado para explosivos y ejecución de pozos. Centrándose en la ejecución de pozos profundos cuya finalidad sea el control del nivel freático de una excavación, las técnicas empleadas son muy variadas.

La elección de la técnica más adecuada de perforación dependerá de la dureza y abrasividad del terreno, de la estabilidad de la perforación, del sistema de extracción de los residuos y de la posible extracción de testigos. No existe una correspondencia biunívoca entre una única técnica de perforación eficiente en todos los suelos y terrenos.

Normalmente, la forma tradicional de perforar un pozo en una zona determinada suele ser la de mayor eficacia, pues la experiencia suele decantar el mejor procedimiento. Sin embargo, conviene estar atento a las innovaciones y desarrollo de nuevas tecnologías que pueden suponer importantes ahorros en casos determinados.

A continuación se resumen brevemente alguna de las técnicas empleadas en la perforación de pozos empleados en el control de agua en obras de ingeniería, remitiendo al lector a otros artículos publicado en este blog relacionados para ampliar información al respecto.

La mejor opción pasa por entender las características litológicas del terreno y las limitaciones de cada método de perforación (diámetro y profundidad de la perforación). A todo caso, siempre se debe distinguir el diámetro necesario de la electrobomba sumergible a colocar en el pozo, el diámetro de la tubería de revestimiento y el diámetro de la perforación.

 

  • Perforación con inyección: Se hinca una tubería de revestimiento inyectando agua a presión a través de una segunda tubería interior. Este sistema es el utilizado en las lanzas de drenaje (wellpoint). El agua recircula los residuos al exterior, dejando la tubería limpia.

 

  • Perforación rotativa con balde o cazo (bucket auger boring): Se perfora con un cazo cilíndrico, a una profundidad máxima de unos 30 m, en terrenos sedimentarios no consolidados o poco cementados. Se puede perforar a un diámetro mínimo de 450 mm, aunque puede llegar a 900 mm, aunque los pozos de drenaje requieren menores dimensiones.

 

  • Perforación a rotación: El arranque de las partículas se realiza mediante el giro de una herramienta de corte que se impulsa por un varillaje. Se utilizan fluidos de perforación para extraer el residuo generado por el tricono o trialeta situado en la punta de la sarta de perforación. Es una técnica efectiva en diámetros de hasta 450 mm. La perforación directa o convencional hace circular al fluido de perforación por el interior del varillaje, retornando a la superficie, junto con el detritus, por el anillo formado por el varillaje y la perforación. En la circulación inversa el fluido entra por el espacio anular y se eleva a la superficie por el interior del varillaje. En el caso de circulación inversa el diámetro habitual es de 600 mm o mayor. Estas técnicas de rotación no suelen utilizarse habitualmente para la ejecución de pozos para el control de aguas subterráneas por su coste. Además, hay que tener presente que los fluidos de perforación, especialmente en el caso de la circulación directa, reducen la permeabilidad en suelos ya de por sí poco permeables.

 

  • Perforación a percusión con cable: Se basa en el golpeteo con una pesada herramienta de corte (trépano) que se eleva con un cable y que cae por gravedad, fragmentando el suelo. Frente a otros sistemas de perforación, es más lento que otros métodos alternativos, pero sus diámetros de perforación habituales de 400 a 700 mm son una ventaja, en una amplia variedad de suelos. No utiliza lodos de perforación para la estabilización de los suelos granulares perforados, empleándose, si fuera necesario, tubos para la contención del suelo (es el caso de formaciones no coherentes, granulares o arcillosas). No suele ser utilizado para pozos de drenaje, excepto si se reutiliza el sondeo realizado por un ensayo de bombeo previo, que requiere mayores diámetros. Se utiliza el método principalmente en rocas compactas, friables y de dureza media, así como en formaciones fisuradas, donde las pérdidas de lodos de perforación sea excesiva. Como inconvenientes cabe destacar la interrupción de la perforación para extraer el detritus por media de cucharas de limpieza, así como cierta dificultad de avance en suelos blandos, libres de piedras o rocas.

 

  • Perforación a rotopercusión: Es una técnica que combina la rotación con la percusión, empleándose en rocas duras y semiduras, donde la rotación no es económica. El principio de perforación de estos equipos se basa en el impacto de una pieza de acero llamada pistón, sobre un útil, que a su vez transmite la energía al fondo del barreno, por medio de un elemento final denominado boca o bit. Utiliza un martillo de fondo, accionado por la inyección de aire comprimido. El aire asciende por el espacio anular del sondeo arrastrando el detritus, al mismo tiempo que lubrifica la perforación. Junto al aire comprimido, se emplea espumante y agua para ayudar a la limpieza del sondeo. Aquí también existe la circulación directa e inversa.

 

  • Perforación con recubrimiento: Se trata la perforación dúplex o dual consistente en la entubación del taladro al mismo tiempo que se avanza en la perforación. Se basa en los mismos principios que la perforación a rotación en circulación directa, pero utilizando como fluido de perforación el aire y, en menor medida, el agua. Los dos métodos más extendidos de perforación con recubrimiento son los conocidos como método OD (overburden drilling) y método ODEX (overburden drilling with the eccentric). La técnica es rentable hasta diámetros de 300 mm y 50 m de profundidad, suficiente para una tubería de 225 mm y una bomba sumergible de 30 l/s. La experiencia indica que bastan perforaciones de 250 mm de diámetro, tuberías de 140 mm y bombas sumergibles de 7 l/s. Por debajo de 5 l/s se conocen como “pozos de baja capacidad” (low capacity wells).

 

  • Perforación sónica: Se trata de una tecnología reciente donde un cabezal hidráulico combina la presión descendente con impactos vibratorios de alta frecuencia (50-180 hz). Utiliza doble tubería, sin necesidad de fluidos de perforación, siendo una técnica poco invasiva en el medio ambiente. Su avance es rápido, pero sus diámetros actuales se limitan a 120 mm, lo cual es poco competitivo para su uso en pozos de drenaje. Sin embargo, no funciona óptimamente en suelos muy duros.

Destacamos, por último, la tendencia de los fabricantes de equipos de perforación para pozos de disponer de equipos multisistema con compresores, varillaje liso, varillaje de doble pared, etc., de forma que se pueden realizar perforaciones mixtas tanto a rotación a circulación inversa como a rotopercusión con un mismo equipo.

Os dejo vídeos explicativos sobre algunas de estas técnicas. Espero que os sean de interés.

Os dejo un vídeo donde se observa la ejecución de un pozo de drenaje.

REFERENCIAS:

  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenaje horizontal con pozos radiales

Figura 1. Pozo Ranney. https://infogram.com/obras-de-toma-1g0n2owd8340p4y

Los pozos radiales o de drenes horizontales consisten en diversos tubos perforados horizontales, que se disponen desde un pozo revestido de hormigón, de un diámetro suficiente para permitir el acceso de varios operarios (Figura 1). El objetivo es extender el radio efectivo del pozo para aumentar el caudal específico de drenaje. De hecho, el pozo con drenes horizontales se comporta, considerando aparte las pérdidas de carga interiores, como un pozo vertical de gran radio.

Los pozos horizontales son útiles en suelos donde no se pueden utilizar zanjas drenantes, pozos profundos o wellpoints, no siendo recomendable en suelos estratificados. Es típico en excavaciones profundas a través de terrenos permeables (aluviales y zonas muy karstificadas), hasta llegar a una capa impermeable.

El agua fluye dentro del pozo desde los tubos perforados horizontales, bombeándose el agua al exterior. Los drenes se pueden perforar con cierta inclinación hacia arriba para penetrar en más de un horizonte de acuífero. Estos drenes se colocan mediante martillos neumáticos o por inyección. La longitud de los drenes varía en función del área a drenar, pudiendo variar de 30 a 100 m de longitud.

Figura 2. Esquema de pozo radial. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Según el procedimiento constructivo para instalar los drenes horizontales, se denominan pozos Ranney, Fehlmann o Preussag:

  • Pozos Ranney: las perforaciones radiales se realizan con los mismos tubos filtrantes definitivos, quedando directamente instalados. Son tubos de acero, de paredes gruesas y ranuras alargadas en sentido longitudinal.
  • Pozos Fehlmann: utiliza tubos de perforación, de unos 250-300 mm de diámetro, que se retiran después de la colocación de los filtros, pudiéndose utilizar de nuevo. De esta forma se puede elegir el material y abertura de las ranuras de los tubos filtrantes según las propiedades químicas del agua y con la granulometría y permeabilidad del terreno.
  • Pozos Preussag: emplea tubos de perforación similares al sistema Fehlmann, colocando después prefiltros de arena. A veces la colocación de estos prefiltros puede ser complicada y difícilmente adaptable a posibles variaciones de la granulometría a lo largo del dren.

El procedimiento constructivo presenta dos fases características, la construcción del pozo central e instalación de los drenes horizontales. El pozo central se construye hincando cilindros de hormigón, de unos 3-4 m de diámetro, a medida que se excava. Este cajón se introduce en el suelo por el sistema de “cajones indios“, por excavación interior sin achique previo. Cuando la profundidad del pozo alcanza la cota prevista, se hormigona el fondo construyendo un tapón bajo el agua.

En el caso del sistema Fehlmann, los colectores se hincan con un equipo de empuje instalado sobre una plataforma en el fondo del pozo. Para facilitarla se coloca una punta reforzada, denominada piloto, que desagrega el terreno facilitando el avance. En el interior de estos tubos se colocan los tubos filtrantes, de forma que los tubos estancos se retiran para volverse a utilizar, quedan abandonado en el terreno el piloto. Este tubo con punta reforzada puede comunicar con el interior del pozo central por medio de una tubería auxiliar llamada tubería de desarenado. La presión del agua sobre los agujeros del azuche crea una corriente de agua a gran velocidad por el interior de la tubería de desarenado cuando se abre una válvula en el interior del pozo. Posteriormente durante el servicio de la captación, la cámara sirve como elemento receptor y depósito de los caudales extraídos y para facilitar las maniobras de cierre y apertura de cada dren.

Los rendimientos para construir un pozo de este tipo pueden ser de 5-7 m por semana para el pozo central y de 8-10 m diarios para la penetración de los tubos horizontales.

Figura 3. Hinca de tubería en sistema Fehlmann. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Destacan las siguientes ventajas de los pozos radiales: permiten, para igual velocidad de flujo, caudales superiores a los pozos ordinarios; se puede regular cada colector por separado, pudiendo cerrarlos para el mantenimiento; baja velocidad de entrada del agua a los drenes (hasta 30 veces menor que en los pozos ordinarios), por lo que disminuyen los arrastres; no le afectan tanto las fluctuaciones del nivel freático como a los pozos ordinarios; además, como los drenes permanecen siempre sumergidos, se reducen los fenómenos de corrosión e incrustaciones. Sin embargo, es necesaria una fuerte inversión inicial y un alto grado de especialización en la construcción, con acuíferos no demasiado profundos (aunque hay realizaciones de hasta 70 m). Además, el hincado de los drenes limita su uso a acuíferos granulares poco compactos de granulometría variable.

El rendimiento hidráulico en estos pozos supera de 45 a 60% la producción de un pozo ordinario de diámetro similar, pudiendo llegar, en capas freáticas, a caudales de 200 a 400 l/s. Si los pozos están cerca de un río, el caudal sube de 750 a 1150 l/s.

Se puede estimar el caudal Q (m3/s) de un pozo radial en régimen normal de servicio en función de del radio del pozo r (m), de la altura del agua sobre la solera en régimen normal h (m) y del coeficiente de permeabilidad del terreno k (m/s):

De la ecuación se observa que el caudal depende del radio y de la altura del agua sobre la solera y como no se puede hacer mucho para aumentar esta última, debe actuarse sobre el radio, que puede ser grande.

Os dejo varios vídeos explicativos de este tipo de pozos radiales.

Os dejo a continuación un artículo donde se explica cómo se ejecutó un pozo Ranney, en este caso para aumentar el abastecimiento de agua en Málaga.

Descargar (PDF, 6.64MB)

REFERENCIAS:

  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes de penetración transversal: drenes californianos

Figura 1. Drenes californianos. http://civogal.com/drenes-californianos

Cuando se quiere reducir las presiones intersticiales en taludes y zonas de difícil acceso, son muy útiles los drenes de penetración transversal. Son perforaciones ascendentes comúnmente llamadas drenes californianos (horizontal drains), debido a que el Departamento de Carretas de California empezó a utilizarlo a partir de los últimos años de la década de 1930.

Son perforaciones de pequeño diámetro y gran longitud realizadas frecuentemente con los mismos carros perforadores empleados en la instalación de bulones o ejecución de sondeos. En su interior se dispone un tubo de policloruro de vinilo (PVC) ranurado, de un diámetro mínimo de 50 mm capaces de soportar cierta carga por si la perforación colapsara, tubo en ocasiones rodeado de un geotextil que actúe de filtrante para evitar el taponamiento o la erosión interna del terreno al escapar los finos. No obstante, si las deformaciones esperadas superan al radio del tubo, entonces se utilizan drenes metálicos. Asimismo, se pueden disponer drenes sin tubo interior, especialmente en roca sana, donde no se esperen movimientos que obstruyan la perforación, ni materiales que puedan obstruirla.

Los drenes se disponen con una pequeña inclinación, de al menos el 3% sobre la horizontal, normalmente entre 5-10º, para evacuar el agua por gravedad, debiéndose introducir, al menos, en 2-3 m en la zona de acumulación de agua. Es por ello que a veces también se llaman drenes subhorizontales. Se debe dejar también, entre 2 y 3 m del tubo más próximo a la boca del taladro sin orificios ni ranuras. En otras ocasiones se pueden disponer más inclinados, incluso en vertical en galerías de drenaje.

Los drenes de penetración transversal tienen como objeto reducir las presiones intersticiales, agotar un embalsamiento de agua o rebajar el nivel freático. En el caso de taludes, los drenes se utilizan para estabilizar deslizamientos profundos, tal y como se puede apreciar en la Figura 2. Son especialmente eficaces en terrenos permeables, rocas fisuradas o cuando interceptan capas permeables saturadas, perdiendo eficacia en suelos arcillosos homogéneos.

Figura 2. Localización del nivel freático antes y después de la instalación de un dren horizontal

Si bien la disposición de los drenes depende de las condiciones hidrogeológicas y morfológicas del talud o ladera, normalmente se disponen 1-2 filas de tubos distanciados entre 7 y 30 m, siendo lo más frecuente entre 10 y 15 m. En el caso de taludes de más de 60 m de altura, se disponen bermas y una línea de drenes al pie de cada berma, recogiendo el agua a una cuneta impermeable. Con alturas superiores a 100 m, la longitud de perforación necesaria es tan alta que su coste se dispara. Si en nivel freático se encuentra entre 30 y 60 m por encima del pie del talud, se prolongan los drenes desde el pie hasta una profundidad igual a la altura del talud, con un máximo de 90-100 m.

La perforación simultánea de los drenes con desmontes de alturas superiores al de la maquinaria ordinaria facilita su ejecución y mejora las condiciones de drenaje durante la excavación. No se emplean lodos tixotrópicos durante la perforación, sino entubaciones provisionales al atravesar terrenos inestables o tramos de falla, hasta instalar el tubo definitivo. El agua drenada por los tubos debe canalizarse adecuadamente a cunetas u otros elementos del drenaje superficial. Además, estos drenes deben someterse a revisiones periódicas, con un mantenimiento que incluya su limpieza con aire a presión.

Los drenes de penetración transversal presentan como ventajas su rápida y sencilla instalación en comparación con otros sistemas de drenaje profundo, permite alcanzar toda la superficie del talud, puede ejecutarse una vez iniciadas las inestabilidades y el desagüe se realiza por gravedad, sin el uso de bombas o sistemas auxiliares. Sin embargo, su área de influencia es limitada en comparación con otros sistemas de drenaje profundo y se ejecutan una vez hecho el talud, por lo que su estabilidad puede complicarse.

Como información complementaria, os dejo la ficha técnica realizada por GEOCISA sobre al ejecución de anclajes y drenes californianos en el castillo de Jadraque (Guadalajara).

Descargar (PDF, 277KB)

REFERENCIAS:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Voladura en una cantera de áridos

http://mti-minas-valencia.blogspot.com.es/

A continuación os dejo un vídeo de Georock S.L.  donde se explica la voladura en una cantera de áridos en San Fulgencio (Alicante). Una vez visionado, será fácil responder a las siguientes preguntas:

          1. ¿Qué tipo de material se extrae en esta cantera?
          2. ¿Qué altura de banco tiene esta cantera?
          3. ¿Qué dos tipos de explosivo se usan?
          4. ¿Qué separación existe entre los taladros?, ¿qué diámetro tienen?
          5. ¿Qué consumo de explosivo se necesita?
          6. ¿Cuál es la velocidad de detonación en este caso?

En este otro vídeo podéis ver el efecto de los microrretardos:

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Técnicas de perforación, muestreo y caracterización para la recuperación de elementos de valor desde relaves

Un depósito de relave se puede definir como un potencial yacimiento de origen minero secundario, residual, proveniente de un yacimiento geológico de minerales que han sido explotados para recuperar elementos tales como cobre, hierro, plata, oro, plomo, etc.

Os paso a continuación un manual de uso público que trata sobre las técnicas de perforación, muestreo y caracterización de estos depósitos publicado recientemente por Irene Aracena y Tania Triviño, en el contexto de Chile. Agradezco a Tania que me haya facilitado este documento para compartir con todos vosotros.

 

 

 

 

Descargar (PDF, 8MB)

Perforación con hélice corta

Hélice cortaCuando se trata de perforaciones de diámetros elevados y la extracción del material se realiza de forma discontinua, se utiliza la perforación con hélice corta (intermittent augering).

Con este procedimiento se pueden abrir perforaciones de hasta unos 2,5 m de diámetro y profundidades de hasta unos 50 m. El terreno debe ser lo suficientemente seco y cohesivo para evitar derrumbes en las paredes. En caso contrario, se debería recurrir a la perforación con lodos y extracción con cazo.

 

 

 

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Soil nailing o suelo claveteado

Soil nailing
Figura 1. Gunitado sobre ladera claveteada

La técnica del soil nailing, o claveteado de suelos,  consiste en reforzar un talud, a medida que desciende la excavación, mediante la introducción de anclajes de refuerzo pasivos o activos, generalmente subhorizontales, que trabajan principalmente a tracción, pero también pueden tomar cargas de flexión y corte. Estos refuerzos se complementan a medida que baja la excavación con un paramento superficial que puede ser rígido o flexible que impide el deslizamiento del suelo entre los puntos que se encuentran las barras instaladas. Este refuerzo del terreno permite mejorar su resistencia al corte a lo largo de superficies potenciales de falla.

Las barras se colocan en unos sondeos perforados previamente y que luego se rellenan con una lechada o mortero de inyección. Posteriormente se ejecuta un paramento vertical que impida la caída de tierra entre los puntos donde se sitúan las inclusiones. Esto suele realizarse mediante hormigón proyectado (gunita), que suele reforzarse mediante una malla de acero.

Este procedimiento no se puede aplicar bajo nivel freático, ni tampoco cuando el suelo es blando o muy blando, pues entonces no es rentable su uso.

Figura 2. Procedimiento constructivo del suelo claveteado. https://civilengineeringbible.com/article.php?i=107

Os paso unos cuantos vídeos informativos al respecto. Espero que os sean de utilidad.

 

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.