Zonas de un anclaje

Figura 1. Componentes de un anclaje activo

Un anclaje es el elemento capaz de transmitir esfuerzos de tracción desde la superficie del terreno hasta una zona interior del mismo. En artículos anteriores vimos el concepto y la clasificación de los anclajes, la forma de ejecutar un anclaje y aspectos relacionados con la seguridad en su ejecución. En este artículo vamos a describir brevemente las diferentes zonas de un anclaje.

En los anclajes se distinguen las siguientes zonas (Figura 1):

  • Zona o bulbo de anclaje: es la parte solidaria al terreno en profundidad, encargada de transferirle los esfuerzos. Tiene características muy distintas dependiendo del procedimiento constructivo empleado. Teóricamente se trataría de una parte fija, es decir, que no se movería ni durante el tesado ni durante la movilización del empuje activo. En la práctica se puede mover algo, pero no debe despegarse del terreno, pues entonces desaparecería la capacidad del anclaje.
  • Zona libre: es la parte en la que la armadura es independiente del terreno que la rodea, de forma que está libre su deformación al tensionarse. En efecto, la capacidad de deformación de esta zona libre es la que provoca la progresiva puesta en carga del anclaje. Conviene una longitud mínima de unos 5 m para que el esfuerzo aplicado se vea poco afectado por los posibles desplazamientos de la cabeza respecto a la zona de anclaje al terreno. Puede garantizarse la independencia del anclaje respecto al terreno en esta zona mediante camisas de PVC o metálicas. Sin embargo, debe garantizarse su protección contra la corrosión.
  • Cabeza: es la unión de la armadura a la placa de apoyo, sobre la que se ejerce la fuerza estabilizadora sobre la estructura. Dependen de cada fabricante y son similares a las utilizadas en hormigón pretensado.

En la Figura 2 se puede observar la cabeza para un anclaje de 8 torones.

Figura 2. Cabeza para un anclaje de 8 torones. https://publicworkstoolscad.blogspot.com/

Os dejo una animación de Keller Cimentaciones respecto a la ejecución de una inyección.

Referencias:

AETESS (2006). Guía Técnica de Seguridad AETESS. Micropilotes y anclajes.

DIRECCIÓN GENERAL DE CARRETERAS (2001). Guía para el diseño y la ejecución de anclajes al terreno en obras de carretera. Madrid.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa por corte

Figura 1. Secuencia de corte

La perforación rotativa por corte tuvo su máximo desarrollo en la década de los 40 en las minas de carbón americanas. Hoy día su uso se limita a las rocas blandas y de pequeños diámetros, aunque en los trabajos a cielo abierto este sistema entra en competencia con el arranque directo y en los trabajos subterráneos con la perforación rotopercusiva.

Con este sistema, la fuerza de avance trata de mantener en contacto el útil de corte con la roca, de forma que el filo sea el encargado de realizar los sucesivos cortes.

El corte se realiza con bocas que presentan elementos de carburo de tungsteno u otros materiales como los diamantes sintéticos, pudiéndose distinguir varios tipos:

  • Bocas bilabiales o de tenedor, en diámetros de 36 a 50 mm
  • Bocas trialetas o multialetas, en diámetros de 50 a 115 mm
  • Bocas de labios reemplazables, con elementos escariadores y perfil de corte escalonado, en diámetros de 150 a 400 mm
Figura 2. Tipos de bocas para perforación por corte

El ángulo de ataque α del útil de corte varía entre 110º y 140º, siendo más obtuso cuanto más dura sea la roca. El ángulo del labio de corte β varía entre 75º y 80º. El ángulo de corte γ oscila entre -6º y 4º, siendo positivo en rocas blandas y negativo en las duras.

Figura 3. Ángulos característicos de un útil de corte

 

Figura 4. Trayectoria de un punto de la boca

Existe una relación empírica entre el diámetro de perforación, la velocidad de penetración y el tipo de roca:

donde

Vp = Velocidad de penetración

μ = Coeficiente de fricción de la roca

E = Empuje sobre la boca

Vr = Velocidad de rotación

re = Radio efectivo de la roca

Ev = Energía específica de la roca

Ar = Área de la sección transversal del barreno

 

Sin embargo, en la práctica existe una desviación importante de los datos, pues el coeficiente de fricción depende del empuje y la velocidad de rotación se limita por el desgaste continuo que se produce en las bocas al aumentar el número de revoluciones.

Figura 5. Relación entre el empuje y la velocidad de penetración

En la práctica, se pueden definir dos campos claros de operatividad de este sistema de perforación rotativa:

  • Aquellas rocas de resistencia a compresión menor a 80 MPa
  • Rocas con contenido en sílice menor al 8%, para evitar un desgaste excesivo

La eliminación del detrito de perforación suele realizarse con un fluido de barrido que puede ser aire, en los trabajos a cielo abierto o agua o aire húmedo en los trabajos de interior. Emplear aire con inyección de agua no sólo facilita la evacuación del detritus y favorece la velocidad de avance, sino que también refrigera las bocas de perforación y disminuye su desgaste. Además, evita el colmatado de la perforación y elimina el polvo. Se necesita aproximadamente de 1000 a 1500 l/min de aire y por cada perforadora unos 250 cm3/min de agua.

En rocas muy blandas (30 a 40 MPa) puede emplearse varillaje helicoidal, de paso mayor cuanto más grande sea la velocidad de penetración, para evacuar el residuo de la perforación.

Figura 6. Varilla helicoidal y bocas de perforación

Os dejo a continuación un vídeo donde explico, en general, la perforación rotativa de rocas. Espero que os complemente la información anterior.

Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hinca de pilotes y tablestacas por prebarrenado

Figura. Pilote hincado perforado previamente. https://www.junttan.com/piling-specialist/piling-applications/

En situaciones difíciles, como estratos de arcilla compacta o roca blanda, cuando la técnica de la inyección del agua es inapropiada, se puede optar por una perforación vertical previa mediante una barrena helicoidal de un diámetro bastante inferior al pilote. Al utilizar una perforación previa, se protege el pilote de un hincado demasiado difícil y, además, se reduce el ruido y las vibraciones. El diámetro del prebarrenado dependerá del tamaño y forma del pilote, así como de las características del terreno. Suele ser 100 mm inferior que la diagonal de la sección de pilotes cuadrados o en H, y 25 mm inferior en caso de sección circular. Sin embargo, si el terreno es muy resistente, a veces el diámetro del prebarrenado es igual a la mayor dimensión exterior del pilote.

Esta técnica es aplicable a la hinca de pilotes muy próximos a otra infraestructura, de forma que el desplazamiento radial del terreno puede afectarla. También sería de interés en el caso de que la hinca del pilote transmita fuertes presiones hidráulicas a distancias considerables. Otro caso sería en terrenos de gran susceptibilidad tixotrópica, donde se pueden levantar los pilotes varios metros por la recuperación de las propiedades del suelo.

En otras ocasiones se recurre a la técnica del punzonado cuando los pilotes son pequeños. Consiste en la hinca de un perfil pesado de acero laminado para romper estratos duros, este punzón se tiene que sacar antes de hincar el pilote.

A continuación os dejo un vídeo donde se realiza un prebarrenado antes de la hinca de un pilote metálico de sección en H.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué son los micropilotes?

Figura 1. Micropilotes

Los micropilotes son pilotes de pequeño diámetro de perforación, normalmente de 80 a 300 mm, compuestos por una barra, tubo de acero o de armadura de acero que constituye el núcleo portante, el cual se recubre normalmente de lechada inyectada de cemento que forma el bulbo. Esta inyección favorece el trabajo por rozamiento lateral del fuste. Aparecieron en los años 50 los “pali-radicci” o pilotes-raíz, para solucionar los problemas de recalces de edificios o estructuras, que eran perforaciones con un diámetro pequeño (de 3” o menos), donde se introducía un redondo de acero y se inyectaban con una lechada de cemento.

Los micropilotes estructurales actuales son de mayor diámetro, entre 100 y 150 mm, introduciendo en ellos una armadura. Las características técnicas de los materiales y modo de ejecución de estos micropilotes permiten lograr altas capacidades de carga, normalmente entre 100 y 150 kN, tanto a la tracción como a la compresión con deformaciones mínimas. Se consigue así, un elemento resistente en el que predomina la longitud y resistencia por rozamiento o fuste. El uso de micropilotes es especialmente interesante cuando existen cargas dispersas de poca importancia, terrenos y cimientos heterogéneos, condiciones difíciles de ejecución en espacios reducidos, con restricciones en altura, o zonas congestionadas, y donde se alternan las cargas en tracción y compresión.

Hoy también existen micropilotes de gran capacidad, con diámetros de 300 mm o excepcionalmente de más, donde se introduce como elemento resistente un perfil metálico, generalmente tubular, capaz de resistir 2000 kN o más. Posteriormente se inyecta mortero de cemento para rellenar la sección interior del perfil y sellar la corona exterior entre el perfil metálico y el terreno. Con perforación a rotopercusión, se alcanzan rendimientos de 50 a 100 m por turno. Sin embargo, los costes de este sistema son superiores a otros pilotes, y sólo se justifica cuando hay que atravesar zonas rocosas.

La maquinaria empleada para ejecutar los micropilotes presenta ventajas respecto a la de los pilotes, pues es más accesible y maniobrable en espacios pequeños, reducen los movimientos durante la ejecución y por tanto las deformaciones respecto a estructuras vecinas, son adaptables a suelos duros, heterogéneos y con obstáculos y mantienen bien la verticalidad. Sin embargo, no son tan aptos en terrenos saturados o con nivel freático superior a la cota inferior de la cimentación. En la Figura 2 se muestran algunas máquinas empleadas en la ejecución de micropilotes.

Figura 2. Maquinaria empleada en la ejecución de micropilotes. Fuente: http://www.civogal.com/

La inyección del micropilote se realiza por circulación inversa, bombeándose desde la central de fabricación de lechada y mediante el empleo de batidoras de alta turbulencia. La inyección se realiza por el interior de la armadura hasta el fondo del taladro ascendiendo por el espacio anular existente entre la armadura y el varillaje de perforación, desplazando al exterior el posible detritus de perforación. Según su forma de ejecución los micropilotes pueden estar inyectados a baja o a alta presión. En los primeros se reproduce la técnica del pilote de gran diámetro, se inyecta mortero o mezcla cementicia de forma que se recubre el elemento de acero que constituye la armadura. Los micropilotes inyectados a alta presión se realiza ésta en una o varias etapas a través de válvulas antirretorno, colocado en la parte más profunda del micropilote, de forma que se conforme un bulbo que transmita las cargas en profundidad. Esta última técnica es parecida a la inyección de terreno no cohesivo, formando una serie de bulbos que, en su conjunto, conforman el elemento de transmisión de la carga del micropilote al terreno.

Existen distintos tipos de inyección empleados con los micropilotes:

  • (IU) “Inyección única global”: desde la base inferior del tubo de armado asciende el material de relleno entre las paredes de éste y la del encamisado si lo hay, o del terreno si no lo hay. Sería adecuado para rocas más o menos sanas, suelos cohesivos muy duros y suelos granulares.
  • (IRS) “Inyección repetitiva y selectiva”: a través de las válvulas anti retorno dispuestas a lo largo de la tubería de armado. Sería adecuada para suelos cohesivos no muy duros, suelos de consistencia baja o media y suelos granulares donde se intenta crear un bulbo
  • (IR) “Inyección única repetitiva”: a través de rejillas practicadas a lo largo del tubo. Para rocas blandas y fisuradas y materiales granulares gruesos de compacidad media.

Los micropilotes también se pueden realizan hincando una única tubería y sin inyección de lechada. Es el caso de una cimentación provisional o cuando posteriormente se vaya a excavar dejando los micropilotes a la vista. Como son de acero, esto permite soldar una estructura de arriostramiento. Incluso se pueden formar “muros pantalla” de micropilotes (Figura 3) que contengan tierras en un vaciado, en cuyo caso se descubre la lechada para soldar vigas metálicas a los tubos como estructura auxiliar para el arriostramiento y apuntalamiento provisional del muro. En un artículo anterior podéis ver qué medidas de seguridad se deben adoptar en la ejecución de este tipo de cimentación profunda.

Figura 3. Pantalla de micropilotes con anclajes. Fuente: http://www.geotec262.com/micropilotes-anclajes

Os dejo un par de animaciones de Keller sobre la ejecución de micropilotes.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Principios de las perforaciones a rotación

Figura 1. Principio de la perforación rotativa

En un artículo anterior explicamos los fundamentos de la perforación por extracción de material. De entre los procedimientos existentes, la perforación mecánica por rotación constituye uno de los procedimientos más habituales. Aquí vamos a explicar los principios básicos en los que se basa.

El principio utilizado por las perforadoras rotativas consiste en aplicar energía al terreno haciendo rotar un útil de corte o destroza conjuntamente con la acción de una fuerza de empuje. Este tipo de perforación se empezó a utilizar en minería sobre rocas blandas; sin embargo, la rapidez de desplazamiento y montaje de estos equipos, la variedad de útiles de corte han favorecido su uso en otros campos.

El giro del útil lo realiza el motor de la perforadora en superficie, que acciona una mesa o cabeza de rotación que, a su vez, mueve el tren de varillaje y éste finalmente transmite el giro al útil. Los útiles de corte que se emplean en rotación son las barrenas helicoidales, las coronas circulares y las cabezas tricono, según el tipo de terreno, del diámetro del talador y de la finalidad de la perforación (extracción de testigos o avance a destroza).

La perforación a rotación presenta características diferentes si se realiza en roca o en suelos. En roca el avance se produce por corte y compresión: el giro se realiza mediante sonda o rotor y la presión por barra de carga, varillaje y empuje hidráulico. En el caso de los suelos, si éstos son granulares no demasiado cohesivos, la perforación se realiza con una barrena helicoidal; en el caso de granulares muy sueltos es necesario el uso de cucharas.

En otros artículos anteriores ya hablamos de la perforación rotativa de rocas, de la perforación rotativa con triconos, de la perforación rotativa con cazo, del sondeo a rotación con barrena helicoidal, entre otros. También podéis leer algunas entrada que escribimos en su momento sobre técnicas de reconocimiento en el estudio geotécnico,  la ejecución de pilotes o de procedimientos de perforación horizontal dirigida con sistemas de perforación a rotación.

Sistemas de avance

El avance de la perforación rotativa en rocas se produce por la influencia simultánea de la presión que el útil de corte ejerce sobre el terreno y el efecto producido por el giro de dicho útil sobre la roca. Estas dos acciones se pueden provocar con diversos medios y potencia según las fuentes de energía y los sistemas de empuje y rotación empleados.

Las formas de energía motriz de uso más frecuente son la térmica y la eléctrica. La primera se suele utilizar en perforadoras pequeñas y medianas, generalmente montadas sobre camión en equipos accionados por el propio motor del camión o más frecuentemente por dos motores, el del camión más otro independiente. Para perforadoras montadas en equipos de mayor tamaño (diámetros de perforación superior a 250 mm, lo más normal es emplear energía eléctrica a media tensión, alimentando la perforadora con corriente alterna. En algunas instalaciones mineras también se emplean equipos diésel-eléctricos cuyo coste de mantenimiento es aproximadamente un 15% inferior al de los equipos diésel.

La aplicación de la potencia se realiza mediante mecanismos de transmisión mecánicos e hidráulicos. La energía se transmite a través de las barras de perforación, que giran al mismo tiempo que penetra la boca, debido a la intensidad de la fuerza de avance. Prácticamente, casi sin excepciones, esta fuerza de empuje se obtiene a partir de un motor hidráulico. En este tipo de perforación, las pérdidas de energía en las barras y la boca son despreciables, por este motivo, la velocidad de penetración no varía apenas con la longitud del barreno. Para girar las barras y conseguir el par necesario, estas máquinas tienen un sistema de rotación montado habitualmente sobre un bastidor que se desliza a lo largo del mástil de la perforadora. El barrido del detritus de la perforación se realiza con aire comprimido, para lo cual el equipo está dotado de uno o dos compresores ubicados en la sala de máquinas.

Figura 2. Perforación a rotación para estudios de terrenos

Empuje y elevación

El empuje a aplicar dependerá de la resistencia del terreno y del diámetro de la perforación (Figura 3). El mecanismo de empuje está diseñado para aplicar una fuerza del orden del 50% del peso de la máquina, alcanzando los equipos de mayor tamaño un peso de unas 120 t. Los sistemas de empuje, además de proporcionar la presión suficiente sobre el fondo de la perforación, sirven para elevar y manipular el conjunto de varillas o barras que hay que añadir o quitar durante la ejecución de la perforación. Se pueden emplear sistemas mecánicos (por cadena o cremallera) o hidráulicos. Los sistemas hidráulicos están formados por dos cilindros combinados, son más potentes y fácilmente controlables.

Figura 3. Mecanismos de empuje y elevación

El empuje transmitido al fondo del taladro debe ser suficiente para que el efecto conjunto sobre la roca genere una tensión superior a su resistencia a compresión. Pero tampoco conviene un empuje excesivo que aumente el desgaste del equipo. La velocidad de penetración aumenta proporcionalmente al empuje hasta un límite a partir del cual el útil se agarrota y los insertos se incrustan en la roca. En estas condiciones, el desgaste aumenta considerablemente junto con un mayor consumo de energía y, si la roca es dura, puede producirse la rotura de los dientes del útil (Figura 4).

Figura 4. Relación velocidad de avance-empuje

Como suele ser habitual, os dejo unos vídeos al respecto.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación rotativa con cazo

Figura 1. Cazo rotativo abierto

Cuando se utilizan lodos tixotrópicos para el sostenimiento de la perforación, o estamos ante la presencia de agua, la barrena helicoidal no puede retirar el material, pues éste se escurre entre los pasos de ésta. En estos casos se emplea la perforación rotativa con cazo (bucket auger boring).

La perforadora con cazo rotativo utiliza un accionamiento mecánico o hidráulico que hace girar una Kelly que se fija a la cuchara. Para perforar, la cuchara gira para permitir que la parte inferior de los dientes de corte llene la cuchara. Las aletas en el fondo de la cuchara se cierran para mantener los detritus en su interior. El fondo de la cuchara es abatible (Figura 1) para permitir el vertido de la excavación.

La perforación con cazo es más lenta, con rendimientos previstos pueden ser la mitad (40-50 m/turno) de los conseguidos con hélices. Si bien es cierto que pueden triplicar los alcanzados con cuchara de valvas. Existen variantes de cazo con dientes de tierra, con dientes de widia, de fondo plano, se entrada simple, doble, etc.

Este sistema presenta algunos inconvenientes, además de los asociados a la perforación con lodos. Cuando se extrae el cazo se ejerce cierta succión que puede inestabilizar las paredes. Este efecto es particularmente sensible con diámetros de 500 mm o menos, por lo que lo habitual es perforar con cazo por encima de los 600 mm de diámetro.

Figura 2. Cazo rotativo

 

Os dejo algunos vídeos que ilustran la forma de trabajar con este tipo de perforación rotativa.


Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fluidos bentoníticos como estabilizador de excavaciones

Central de tratamiento de lodos. Imagen de Catalana de Perforacions

La bentonita es el nombre con el que se denominan a ciertos tipos de arcillas que poseen propiedades tixotrópicas cuando se mezclan con el agua. Debe su nombre a su descubrimiento cerca de Fort Benton, en los Estados Unidos en el siglo XIX. Las bentonitas comerciales son silicatos de aluminio hidratados y contienen fundamentalmente el mineral montmorillonita. El nombre de este tipo de arcilla se debe a su descubrimiento en cerca de Montmorillon, en Francia. Hoy día se utilizan distintas clases de bentonita tanto en ingeniería civil como en edificación, pudiendo variar sensiblemente sus propiedades en función de su origen.

Uno de los usos más frecuentes de la bentonita es como fluido estabilizador de excavaciones, donde compite con los fluidos a base de polímeros, fundamentalmente en la ejecución de pilotes. Dentro de este uso, la estabilización de excavaciones de muros pantalla esta ampliamente difundida en España. Los fluidos bentoníticos se utilizan también habitualmente para estabilizar las paredes de la excavación de pilotes excavados de cierto diámetro e incluso en los de pequeño diámetro en competencia con las entibaciones recuperables. En esta aplicación el fluido bentonítico debe se capaz de formar una barrera o bizcocho (cake) en las paredes de la excavación a fin de impedir la pérdida de fluido en el terreno, creando una capa contra la que puede actuar la presión del fluido para contrarrestar las presiones externas del terreno o las aguas freáticas. Otro uso habitual, del cual ya hemos hablado en una entrada anterior, es como fluido de perforación en la Perforación Horizontal Dirigida. También se usa la bentonita en la creación de barreras húmedas en el terreno para contener el agua de zonas contaminadas. Son las pantallas plásticas (Cutter Soil Mixing). En esta aplicación se suele mezclar con cemento u otros materiales a fin de crear un slurry que permanece en estado fluido durante varias horas antes de adquirir mayor consistencia y funcionar como barrera. En ciertas ocasiones se suele introducir una membrana flexible en la barrera. Por último, los fluidos bentoníticos también se utilizan para la contención del frente de excavación en túneles, delate de las tuneladoras y para el transporte de los restos excavados hacia las unidades desarenadoras situadas en la parte posterior del convoy.

Sin embargo, las propiedades de las bentonitas varían y, por tanto, no todas sirven para todos los usos. Por ejemplo, la propiedad de resistencia del estado de gel es importante si el fluido bentonítico esta en reposo y debe ser capaz de contener sólidos en suspensión, y no es por el contrario importante si el fluido es agitado continuamente en un sistema con recirculación. Las propiedades de las bentonitas deben considerarse antes de usar un tipo determinado para una aplicación específica. Independientemente de estas variaciones en cuanto a sus característica, las bentonitas deben cumplir los siguientes requisitos y funciones:

    1. Mantener los frentes de la excavación aportando presión hidrostática a las paredes de la misma.
    2. Mantenerse dentro de la excavación sin fluir hacia el suelo colindante.
    3. Mantener en suspensión los detritus procedentes de la excavación.
    4. Permitir ser desplazados con facilidad y limpiamente por el hormigón, sin una afección significativa a la adherencia armadura-hormigón.
    5. Debe ser posible su limpieza de sólidos en suspensión mediante el bombeo y paso por desarenadoras para su reutilización posterior.
    6. Ser bombeables con facilidad.

En general, las tres primeras propiedades requieren un producto denso y las tres últimas un producto muy fluido. Hay por tanto un conflicto que debe ser resuelto en cada caso antes de la puesta en obra del fluido estabilizador.

En el vídeo que sigue se puede observar la elaboración de bentonita para su uso en un muro pantalla.

En este otro, podéis ver su uso en un pilote.

En el vídeo que os dejo a continuación se profundiza en el uso de los lodos como fluido de perforación. Espero que os sea de utilidad.

Referencias:

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Potencia de un martillo a rotopercusión

Figura 1. Martillo en cabeza. http://osebe.es/perforaciones-con-martillo/

En una entrada anterior ya se comentaron los fundamentos básicos de la perforación a rotopercusión. El principio de perforación de estos equipos se basa en el impacto de una pieza de acero llamada pistón, sobre un útil, que a su vez transmite la energía al fondo del barreno, por medio de un elemento final denominado boca o bit. Este sistema de perforación suele usarse en terrenos muy duros y semiduros. Estas perforadoras, tal y como se comentó anteriormente, pueden tener el martillo en cabeza o en fondo.

La potencia necesaria de un martillo se puede estimar mediante la siguiente expresión:

donde,

P = potencia del martillo

pf = presión del fluido (aire o aceite) en el interior del cilindro

s = superficie de trabajo del pistón

Ip = carrera del pistón

mp = masa del pistón

Figura 2.- Elementos para el cálculo de la potencia del martillo

Es posible estimar la velocidad de penetración Vp1 para un diámetro dado d1, cuando, utilizando el mismo equipo en similares condiciones, se conoce la velocidad Vp2 que se alcanza para otro diámetro d2.

Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Perforación por extracción de material

Figura 1.- Perforación mecánica (Ingeopress)

Las operaciones necesarias para la ejecución con éxito de perforación con extracción de material son el troceo, la extracción del material propiamente dicha y la contención de las paredes. Estas operaciones se realizan en ocasiones de forma simultánea a la ejecución de la perforación.

 

La rotura o corte del terreno puede realizarse mediante varios procedimientos diferentes. Entre otros, destacan los siguientes:

 

  • Perforación mecánica: se deben aplicar tensiones sobre el material que superen su resistencia de corte. Este efecto puede realizarse por impacto (percusión), presión (empuje), fricción (rotación) o desgaste (barrido), o por efectos combinados de ellos.
  • Perforación térmica: realizada mediante soplete o lanza térmica, plasma, fluido caliente o congelación.
  • Perforación química: realizada mediante microvoladura o por disolución.
  • Perforación hidráulica: provocada por efecto de un chorro de agua a alta presión, por erosión o cavitación.
  • Otros tipos de perforación: eléctrica, sónica, nuclear, etc.

 

La eliminación del detritus puede ser discontinua, en el caso de interrupción de la perforación y la eliminación mecánica del detritus, o continua, empleando un fluido en circulación (aire, agua o lodos) que, a su vez, refrigera el útil de perforación y sostiene las paredes de la perforación. La extracción hidráulica presenta dos variantes, la circulación directa y la circulación inversa.

Cuando se utiliza un fluido para extraer el detritus, la circulación directa se refiere a que el fluido de perforación y el detritus se elevan hacia la superficie entre las paredes del sondeo y el varillaje. La circulación directa es el sistema más empleado en perforaciones relativamente cortas (menos de 50 m) y hasta ahora ha sido universal en los martillos neumáticos.

Figura 2.- Extracción del material en una perforación

En cambio, con la circulación inversa, el fluido y el material se eleva por el interior del varillaje. En este caso se mantiene inundada la perforación, siendo el ascenso del material por depresión o por inyección forzada. Se emplea también con martillos en fondo. Este método tiene interés en formaciones relativamente blandas poco permeables, con fisuración débil, poco abrasivas y de paredes estables (arcillas, algunas formaciones yesíferas y sales potásicas, por ejemplo). Es un método seguro, pero más caro, aunque mejora la limpieza del sondeo, recupera detritus de mayor tamaño y aumenta la velocidad de perforación. Normalmente se emplea un sistema de doble pared, es decir, dos tubos concéntricos: por la cámara exterior se inyecta el fluido y por la interior asciende.

Figura 3.- Esquema de instalación en circulación inversa

La perforación en suelos es más sencilla que en roca, pero en numerosas ocasiones se necesita un sostenimiento de las paredes del sondeo para evitar su derrumbe. El sostenimiento se puede realizar mediante fluidos como el agua (equilibrio hidrostático) o lodos (películas tixotrópicas) que sirven, además, para la eliminación del detritus; o bien mediante entubaciones, que pueden ser provisionales o definitivas.

El lodo es una mezcla de agua y bentonita sódica (a veces, sepiolita) tratada, a la que en ocasiones se añade arcilla y algún aditivo. Esta mezcla forma una lámina o “cake” que impermeabiliza el sondeo, de forma que si se mantiene llena de lodo la perforación, la presión en la cara interna de la pared supera a la existente en el exterior, lo que permite la estabilidad de la pared.

En sondeos y perforaciones helicoidales, el residuo de la perforación se extrae con la propia hélice.

Según la resistencia a compresión de las rocas y el diámetro de perforación, se pueden delimitar distintos métodos de perforación, según se refleja en la Figura 4. Sin embargo, en obras de construcción, lo habitual son los métodos rotopercutivos en la perforación de rocas, mientras que en minería a cielo abierto, también se utiliza la perforación rotativa.

Figura 4.- Campos de aplicación de los métodos de perforación en función de la resistencia de las rocas y diámetros de los barrenos (ITGE, 1994)

Referencias:

INSTITUTO TECNOLÓGICO Y MINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Ed. IGME. Madrid, 500 pp.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vagones y carros perforadores

Figura 1.- Vagón perforador montado en llantas BARI-JÚPITER, modelo JRD 120 (B)

En una entrada anterior se describió el sistema de montaje de perforación mediante jumbos. En esta entrada, el sistema de montaje será el de vagones y carros perforadores. Los vagones y carros perforadores son las unidades remolcadas o autoportantes que permiten trasladar martillos medianos o pesados, de accionamiento neumático o hidráulico, y que están pensadas para perforaciones a cielo abierto.

La mayoría de estos equipos disponen de un sistema de avance con potencia suficiente para alcanzar profundidades superiores a 50 m, longitud que rebasa el límite de los 20 m impuesto por las desviaciones que son más habituales en este tipo de perforación.

Los equipos más simples, diseñados para excavación en banco y explotación de minas y canteras, constan de un chasis remolcable sobre el que se apoya un martillo de fondo ligero montado sobre una deslizadera de unos 2-2,5 m con avance de cadena.

Los equipos pesados, con diámetro superior a 12 cm y 3 – 4 t, montados sobre orugas, disponen de una deslizadera de mayor longitud (5-6 m) y de un sistema de avance con la potencia adecuada al peso del varillaje o sarta de tubos que se requiere en perforaciones más profundas.

Figura 2.- Carro perforador FlexiROC D65 de Atlas Copco
Figura 3.- Componentes de un carro perforador Atlas Copco

 

Figura 4.- Perforadora montada sobre camión T455WS SCHRAMM

Os dejo algunos vídeos al respecto:

 

Referencia:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.