Drenaje horizontal con pozos radiales

Figura 1. Pozo Ranney. https://infogram.com/obras-de-toma-1g0n2owd8340p4y

Los pozos radiales o de drenes horizontales consisten en diversos tubos perforados horizontales, que se disponen desde un pozo revestido de hormigón, de un diámetro suficiente para permitir el acceso de varios operarios (Figura 1). El objetivo es extender el radio efectivo del pozo para aumentar el caudal específico de drenaje. De hecho, el pozo con drenes horizontales se comporta, considerando aparte las pérdidas de carga interiores, como un pozo vertical de gran radio.

Los pozos horizontales son útiles en suelos donde no se pueden utilizar zanjas drenantes, pozos profundos o wellpoints, no siendo recomendable en suelos estratificados. Es típico en excavaciones profundas a través de terrenos permeables (aluviales y zonas muy karstificadas), hasta llegar a una capa impermeable.

El agua fluye dentro del pozo desde los tubos perforados horizontales, bombeándose el agua al exterior. Los drenes se pueden perforar con cierta inclinación hacia arriba para penetrar en más de un horizonte de acuífero. Estos drenes se colocan mediante martillos neumáticos o por inyección. La longitud de los drenes varía en función del área a drenar, pudiendo variar de 30 a 100 m de longitud.

Figura 2. Esquema de pozo radial. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Según el procedimiento constructivo para instalar los drenes horizontales, se denominan pozos Ranney, Fehlmann o Preussag:

  • Pozos Ranney: las perforaciones radiales se realizan con los mismos tubos filtrantes definitivos, quedando directamente instalados. Son tubos de acero, de paredes gruesas y ranuras alargadas en sentido longitudinal.
  • Pozos Fehlmann: utiliza tubos de perforación, de unos 250-300 mm de diámetro, que se retiran después de la colocación de los filtros, pudiéndose utilizar de nuevo. De esta forma se puede elegir el material y abertura de las ranuras de los tubos filtrantes según las propiedades químicas del agua y con la granulometría y permeabilidad del terreno.
  • Pozos Preussag: emplea tubos de perforación similares al sistema Fehlmann, colocando después prefiltros de arena. A veces la colocación de estos prefiltros puede ser complicada y difícilmente adaptable a posibles variaciones de la granulometría a lo largo del dren.

El procedimiento constructivo presenta dos fases características, la construcción del pozo central e instalación de los drenes horizontales. El pozo central se construye hincando cilindros de hormigón, de unos 3-4 m de diámetro, a medida que se excava. Este cajón se introduce en el suelo por el sistema de “cajones indios“, por excavación interior sin achique previo. Cuando la profundidad del pozo alcanza la cota prevista, se hormigona el fondo construyendo un tapón bajo el agua.

En el caso del sistema Fehlmann, los colectores se hincan con un equipo de empuje instalado sobre una plataforma en el fondo del pozo. Para facilitarla se coloca una punta reforzada, denominada piloto, que desagrega el terreno facilitando el avance. En el interior de estos tubos se colocan los tubos filtrantes, de forma que los tubos estancos se retiran para volverse a utilizar, quedan abandonado en el terreno el piloto. Este tubo con punta reforzada puede comunicar con el interior del pozo central por medio de una tubería auxiliar llamada tubería de desarenado. La presión del agua sobre los agujeros del azuche crea una corriente de agua a gran velocidad por el interior de la tubería de desarenado cuando se abre una válvula en el interior del pozo. Posteriormente durante el servicio de la captación, la cámara sirve como elemento receptor y depósito de los caudales extraídos y para facilitar las maniobras de cierre y apertura de cada dren.

Los rendimientos para construir un pozo de este tipo pueden ser de 5-7 m por semana para el pozo central y de 8-10 m diarios para la penetración de los tubos horizontales.

Figura 3. Hinca de tubería en sistema Fehlmann. http://ocw.bib.upct.es/pluginfile.php/6012/mod_resource/content/1/Tema_03_CAPT_AGUAS_SUB.pdf

Destacan las siguientes ventajas de los pozos radiales: permiten, para igual velocidad de flujo, caudales superiores a los pozos ordinarios; se puede regular cada colector por separado, pudiendo cerrarlos para el mantenimiento; baja velocidad de entrada del agua a los drenes (hasta 30 veces menor que en los pozos ordinarios), por lo que disminuyen los arrastres; no le afectan tanto las fluctuaciones del nivel freático como a los pozos ordinarios; además, como los drenes permanecen siempre sumergidos, se reducen los fenómenos de corrosión e incrustaciones. Sin embargo, es necesaria una fuerte inversión inicial y un alto grado de especialización en la construcción, con acuíferos no demasiado profundos (aunque hay realizaciones de hasta 70 m). Además, el hincado de los drenes limita su uso a acuíferos granulares poco compactos de granulometría variable.

El rendimiento hidráulico en estos pozos supera de 45 a 60% la producción de un pozo ordinario de diámetro similar, pudiendo llegar, en capas freáticas, a caudales de 200 a 400 l/s. Si los pozos están cerca de un río, el caudal sube de 750 a 1150 l/s.

Se puede estimar el caudal Q (m3/s) de un pozo radial en régimen normal de servicio en función de del radio del pozo r (m), de la altura del agua sobre la solera en régimen normal h (m) y del coeficiente de permeabilidad del terreno k (m/s):

De la ecuación se observa que el caudal depende del radio y de la altura del agua sobre la solera y como no se puede hacer mucho para aumentar esta última, debe actuarse sobre el radio, que puede ser grande.

Os dejo varios vídeos explicativos de este tipo de pozos radiales.

Os dejo a continuación un artículo donde se explica cómo se ejecutó un pozo Ranney, en este caso para aumentar el abastecimiento de agua en Málaga.

Descargar (PDF, 6.64MB)

REFERENCIAS:

  • POWERS, J.P.; CORWIN, A.B.; SCHMALL, P.C.; KAECK, W.E. (2007). Construction dewatering and groundwater control: New methods and aplications. Third Edition, John Wiley & Sons.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 326 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Drenes de penetración transversal: drenes californianos

Figura 1. Drenes californianos. http://civogal.com/drenes-californianos

Cuando se quiere reducir las presiones intersticiales en taludes y zonas de difícil acceso, son muy útiles los drenes de penetración transversal. Son perforaciones ascendentes comúnmente llamadas drenes californianos (horizontal drains), debido a que el Departamento de Carretas de California empezó a utilizarlo a partir de los últimos años de la década de 1930.

Son perforaciones de pequeño diámetro y gran longitud realizadas frecuentemente con los mismos carros perforadores empleados en la instalación de bulones o ejecución de sondeos. En su interior se dispone un tubo de policloruro de vinilo (PVC) ranurado, de un diámetro mínimo de 50 mm capaces de soportar cierta carga por si la perforación colapsara, tubo en ocasiones rodeado de un geotextil que actúe de filtrante para evitar el taponamiento o la erosión interna del terreno al escapar los finos. No obstante, si las deformaciones esperadas superan al radio del tubo, entonces se utilizan drenes metálicos. Asimismo, se pueden disponer drenes sin tubo interior, especialmente en roca sana, donde no se esperen movimientos que obstruyan la perforación, ni materiales que puedan obstruirla.

Los drenes se disponen con una pequeña inclinación, de al menos el 3% sobre la horizontal, normalmente entre 5-10º, para evacuar el agua por gravedad, debiéndose introducir, al menos, en 2-3 m en la zona de acumulación de agua. Es por ello que a veces también se llaman drenes subhorizontales. Se debe dejar también, entre 2 y 3 m del tubo más próximo a la boca del taladro sin orificios ni ranuras. En otras ocasiones se pueden disponer más inclinados, incluso en vertical en galerías de drenaje.

Los drenes de penetración transversal tienen como objeto reducir las presiones intersticiales, agotar un embalsamiento de agua o rebajar el nivel freático. En el caso de taludes, los drenes se utilizan para estabilizar deslizamientos profundos, tal y como se puede apreciar en la Figura 2. Son especialmente eficaces en terrenos permeables, rocas fisuradas o cuando interceptan capas permeables saturadas, perdiendo eficacia en suelos arcillosos homogéneos.

Figura 2. Localización del nivel freático antes y después de la instalación de un dren horizontal

Si bien la disposición de los drenes depende de las condiciones hidrogeológicas y morfológicas del talud o ladera, normalmente se disponen 1-2 filas de tubos distanciados entre 7 y 30 m, siendo lo más frecuente entre 10 y 15 m. En el caso de taludes de más de 60 m de altura, se disponen bermas y una línea de drenes al pie de cada berma, recogiendo el agua a una cuneta impermeable. Con alturas superiores a 100 m, la longitud de perforación necesaria es tan alta que su coste se dispara. Si en nivel freático se encuentra entre 30 y 60 m por encima del pie del talud, se prolongan los drenes desde el pie hasta una profundidad igual a la altura del talud, con un máximo de 90-100 m.

La perforación simultánea de los drenes con desmontes de alturas superiores al de la maquinaria ordinaria facilita su ejecución y mejora las condiciones de drenaje durante la excavación. No se emplean lodos tixotrópicos durante la perforación, sino entubaciones provisionales al atravesar terrenos inestables o tramos de falla, hasta instalar el tubo definitivo. El agua drenada por los tubos debe canalizarse adecuadamente a cunetas u otros elementos del drenaje superficial. Además, estos drenes deben someterse a revisiones periódicas, con un mantenimiento que incluya su limpieza con aire a presión.

Los drenes de penetración transversal presentan como ventajas su rápida y sencilla instalación en comparación con otros sistemas de drenaje profundo, permite alcanzar toda la superficie del talud, puede ejecutarse una vez iniciadas las inestabilidades y el desagüe se realiza por gravedad, sin el uso de bombas o sistemas auxiliares. Sin embargo, su área de influencia es limitada en comparación con otros sistemas de drenaje profundo y se ejecutan una vez hecho el talud, por lo que su estabilidad puede complicarse.

Como información complementaria, os dejo la ficha técnica realizada por GEOCISA sobre al ejecución de anclajes y drenes californianos en el castillo de Jadraque (Guadalajara).

Descargar (PDF, 277KB)

REFERENCIAS:

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Voladura en una cantera de áridos

http://mti-minas-valencia.blogspot.com.es/

A continuación os dejo un vídeo de Georock S.L.  donde se explica la voladura en una cantera de áridos en San Fulgencio (Alicante). Una vez visionado, será fácil responder a las siguientes preguntas:

          1. ¿Qué tipo de material se extrae en esta cantera?
          2. ¿Qué altura de banco tiene esta cantera?
          3. ¿Qué dos tipos de explosivo se usan?
          4. ¿Qué separación existe entre los taladros?, ¿qué diámetro tienen?
          5. ¿Qué consumo de explosivo se necesita?
          6. ¿Cuál es la velocidad de detonación en este caso?

En este otro vídeo podéis ver el efecto de los microrretardos:

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Apuntes de la Universitat Politècnica de València. Ref. 530, 165 pp.

Técnicas de perforación, muestreo y caracterización para la recuperación de elementos de valor desde relaves

Un depósito de relave se puede definir como un potencial yacimiento de origen minero secundario, residual, proveniente de un yacimiento geológico de minerales que han sido explotados para recuperar elementos tales como cobre, hierro, plata, oro, plomo, etc.

Os paso a continuación un manual de uso público que trata sobre las técnicas de perforación, muestreo y caracterización de estos depósitos publicado recientemente por Irene Aracena y Tania Triviño, en el contexto de Chile. Agradezco a Tania que me haya facilitado este documento para compartir con todos vosotros.

 

 

 

 

Descargar (PDF, 8MB)

Perforación con hélice corta

Hélice cortaCuando se trata de perforaciones de diámetros elevados y la extracción del material se realiza de forma discontinua, se utiliza la perforación con hélice corta (intermittent augering).

Con este procedimiento se pueden abrir perforaciones de hasta unos 2,5 m de diámetro y profundidades de hasta unos 50 m. El terreno debe ser lo suficientemente seco y cohesivo para evitar derrumbes en las paredes. En caso contrario, se debería recurrir a la perforación con lodos y extracción con cazo.

 

 

 

Referencias:

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Soil nailing o suelo claveteado

Soil nailing
Figura 1. Gunitado sobre ladera claveteada

La técnica del soil nailing, o claveteado de suelos,  consiste en reforzar un talud, a medida que desciende la excavación, mediante la introducción de anclajes de refuerzo pasivos o activos, generalmente subhorizontales, que trabajan principalmente a tracción, pero también pueden tomar cargas de flexión y corte. Estos refuerzos se complementan a medida que baja la excavación con un paramento superficial que puede ser rígido o flexible que impide el deslizamiento del suelo entre los puntos que se encuentran las barras instaladas. Este refuerzo del terreno permite mejorar su resistencia al corte a lo largo de superficies potenciales de falla.

Las barras se colocan en unos sondeos perforados previamente y que luego se rellenan con una lechada o mortero de inyección. Posteriormente se ejecuta un paramento vertical que impida la caída de tierra entre los puntos donde se sitúan las inclusiones. Esto suele realizarse mediante hormigón proyectado (gunita), que suele reforzarse mediante una malla de acero.

Este procedimiento no se puede aplicar bajo nivel freático, ni tampoco cuando el suelo es blando o muy blando, pues entonces no es rentable su uso.

Figura 2. Procedimiento constructivo del suelo claveteado. https://civilengineeringbible.com/article.php?i=107

Os paso unos cuantos vídeos informativos al respecto. Espero que os sean de utilidad.

 

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ensanchadoras de la base de pilotes: el balde de quijadas

Figura 1. Balde de quijadas con articulación en la base y con articulación superior

En suelos suficientemente coherentes se puede ensanchar la base de la perforación, a fin de aumentar la capacidad de transmitir resistencia por punta, mediante una herramienta especial denominada balde de campana o de quijadas. Este útil puede ser de dos tipos: con articulación en la base o con articulación superior.

El ensanche del fondo excavación (acampanamiento o underreaming) tiene forma troncocónica. Como criterio general, la altura del ensanchamiento debe ser mayor que el diámetro del pilote y la anchura menor que tres veces el diámetro.

Figura 2. Herramienta para ensanchamiento de la punta del pilote

 

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

STARSOL: Pilotes con hélice continua mejorada

Figura 1. Pilotes Starsol. http://www.soletanche-bachy.com.ar

Dentro de los pilotes de extracción de barrena continua podemos distinguir un procedimiento mejorado denominado STARSOL. Se trata de un sistema desarrollado por el grupo francés SOTELANCHE-BACHY, al cual pertenece la empresa española RODIO, por lo que también se llama este procedimiento Rodiostar/Starsol. Con este sistema se resuelven dos problemas que tenían procedimientos anteriores: la perforación de capas duras y la ejecución y control de la calidad del hormigonado. La perforación en capas duras se realiza mediante un motor de gran potencia, con un par de 90000 N·m, incorporando un útil de corte bajo el eje de la hélice, con lo que puede atravesar o empotrase en terrenos de 35 a 50 N/mm2 de resistencia a rotura. Ello hace innecesario el uso de trépano. Tampoco se necesitan lodos ni camisa porque el hormigonado se realiza a través del tubo interno, que funciona a modo de Tremie. El mayor problema es que las armaduras deben introducirse después del hormigonado, aunque este problema se podría resolver definitivamente con hormigones armados con fibras de acero. Los diámetros habituales de este tipo de pilotes se encuentran entre 0,40 y 1,00 m, con una profundidad máxima normal de 30 m. La potencia total instalada ronda los 250 KVA.

Los elementos principales del equipo son los siguientes:

  • Grúa dotada de grupo hidráulico
  • Mástil guía
  • Cabeza de rotación hidráulica
  • Manguera de introducción del hormigón al tubo interior
  • Barrena continua alrededor del tubo exterior
  • Tubo central con desplazamiento por el interior del tubo exterior
  • Sistema de gatos que permite el desplazamiento vertical del tubo central hasta 1,50 m
  • Útil de limpieza

En la Figura 2 se muestran las fases constructivas del método. El procedimiento comienza con la perforación mediante rotación de la barrena. Una vez llega a la profundidad requerida, se para la rotación, se levanta el conjunto y se comienza a bombear hormigón a presión. La distancia entre las bases de la barrena y del tubo sumergido es de 1,50 m. Por último, una vez hormigonado el pilote, se coloca la armadura, incluso con vibradores si fuera necesario. La armadura se puede introducir con este método fácilmente hasta 15 m, aunque el mejor registro de 17 m se consiguió en 1988.

La diferencia entre el procedimiento STARSOL y los pilotes de barrena continua convencionales es que en los primeros el hormigón se bombea a presión (de al menos 0,1 MPa, lo que asegura un excelente contacto en cualquier terreno), de forma que dicha presión y el volumen de hormigón se encuentran controlados. Esto garantiza que el primer hormigón vertido es el único que ha estado en contacto con el terreno y el único que puede estar contaminado. En el caso de los pilotes de barrena continua clásica, el hormigón se vierte a través del tubo central de la barrena y directamente sobre el anterior, mientras que en el sistema STARSOL, se realiza mediante un tubo telescópico introducido por dicha barrena hueca, el cual puede quedar introducido hasta 1,0 m por debajo de la lámina libre de hormigón, de ahí la mayor presión de bombeo y la gran ventaja con respecto al CPI-8 convencional; pues se evita la posibilidad de cortes en el hormigón.

Figura 2. Esquema del proceso de ejecución del pilote STARSOL

A continuación os dejo algunos vídeos explicativos que creo de interés.

Referencias:

GARCÍA-VALCARCE, A.; SACRISTÁN, J.A.; GONZÁLEZ, P.; HERNÁNDEZ, R.J.; PASCUAL, R.; SÁNCHEZ-OSTIZ, A.; IRIGOYEN, D. (2003). Manual de edificación. Mecánica de los terrenos y cimentaciones. Editorial CIE Dossat 2000, 710 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas con la perforación o la hinca de pilotes ante información confusa del terreno

Reconocimiento geotécnico. https://www.arqhys.com/construccion/reconocimiento-geotecnico.html

En algunos artículos anteriores hemos descrito algunos procedimientos constructivos de los distintos tipos de pilotes. También se han comentado en artículos anteriores algunas técnicas relacionadas con los informes geotécnicos.

Podéis consultar el siguiente documento realizado por Juan Herrera y Jorge Castilla, de la UPM: “Utilización de técnicas de sondeos en estudios geotécnicos“:  http://oa.upm.es/10517/1/20120316_Utilizacion-tecnicas-sondeos-geotecnicos.pdf

 

Sin embargo, aquí quiero resaltar algunos casos concretos donde los informes geotécnicos pueden confundir al constructor y llevarlo a errores durante la perforación o hinca de los pilotes (Rodríguez Ortiz, 1982):

  1. Capas delgadas de arenisca floja o vetas de arena cementadas. Las coronas de sondeo las traspasan y disgregan, confundiéndose con arenas. Las barrenas que perforan los pilotes son de diámetro mayor y no tienen potencia suficiente para romper estas capas, con lo que se hace necesario un trépano. En el caso de hinca, se suele dar rechazo al llegar a estas capas, deteniéndose la hinca, lo que supone un riesgo de punzonamiento bajo las cargas de trabajo.
  2. Las vetas carbonatadas y costras, de naturaleza evaporítica y de espesores variables, con elevadas resistencias. Los sondeos a rotación disgregan las gravas presentes, otras veces se sacan testigos rocosos que se confunden con gravas o bolos calcáreos. Son errores de apreciación que, unido a la difícil correlación entre los cortes geotécnicos, provocan que pasen desapercibidas estas vetas y causen problemas en la hinca y en la perforación.
  3. Las vetas silicatadas se confunden con los cantos de sílex. Son capas de extraordinaria dureza que hace difícil la penetración de los pilotes, incluso con espesores de pocos centímetros.
  4. Bloques erráticos u obstáculos de tamaño similar al diámetro del pilote. Pueden dificultar enormemente el hincado o la perforación.
  5. Confusión entre roca sana y alterada en el apoyo del pilote, que puede magnificar o infravalorar la capacidad portante prevista.
  6. Evaluación de la resistencia de una capa rocosa para predecir si la excavación debe realizarse con trépano, tricono o elementos de corte rotativo.
  7. La estructura del substrato rocoso debe caracterizarse geológicamente y con reconocimientos puntuales para determinar si las fracturas impiden la perforación rotativa para un determinado diámetro.
  8. Los sondeos pueden interpretar una estabilidad de las paredes diferente a la perforación del pilote, pues los diámetros son diferentes. Si el terreno lo permite, se prefieren los sondeos helicoidales, pues se aproximan mejor a las condiciones de perforación del pilote.
  9. La permeabilidad del terreno y la presencia de capas granulares abiertas pueden impedir la perforación con lodos, debiéndose recurrir a la entubación. Un sondeo convencional puede pasar por alto este aspecto, salvo que se hagan pruebas de bombeo o permeabilidad.

Veamos este vídeo de geotecnia.ONLINE sobre las cinco cosas que debemos hacer antes de empezar con los sondeos o perforaciones de un estudio del terreno. El contenido se relaciona con lo que hemos contado anteriormente.

 

Referencias:

RODRÍGUEZ ORTIZ, J.M. (1982). Reconocimientos del terreno para pilotajes, en ROMANA, M. (Ed.): Apuntes sobre pilotes. Universidad Politécnica de Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Zonas de un anclaje

Figura 1. Componentes de un anclaje activo

Un anclaje es el elemento capaz de transmitir esfuerzos de tracción desde la superficie del terreno hasta una zona interior del mismo. En artículos anteriores vimos el concepto y la clasificación de los anclajes, la forma de ejecutar un anclaje y aspectos relacionados con la seguridad en su ejecución. En este artículo vamos a describir brevemente las diferentes zonas de un anclaje.

En los anclajes se distinguen las siguientes zonas (Figura 1):

  • Zona o bulbo de anclaje: es la parte solidaria al terreno en profundidad, encargada de transferirle los esfuerzos. Tiene características muy distintas dependiendo del procedimiento constructivo empleado. Teóricamente se trataría de una parte fija, es decir, que no se movería ni durante el tesado ni durante la movilización del empuje activo. En la práctica se puede mover algo, pero no debe despegarse del terreno, pues entonces desaparecería la capacidad del anclaje.
  • Zona libre: es la parte en la que la armadura es independiente del terreno que la rodea, de forma que está libre su deformación al tensionarse. En efecto, la capacidad de deformación de esta zona libre es la que provoca la progresiva puesta en carga del anclaje. Conviene una longitud mínima de unos 5 m para que el esfuerzo aplicado se vea poco afectado por los posibles desplazamientos de la cabeza respecto a la zona de anclaje al terreno. Puede garantizarse la independencia del anclaje respecto al terreno en esta zona mediante camisas de PVC o metálicas. Sin embargo, debe garantizarse su protección contra la corrosión.
  • Cabeza: es la unión de la armadura a la placa de apoyo, sobre la que se ejerce la fuerza estabilizadora sobre la estructura. Dependen de cada fabricante y son similares a las utilizadas en hormigón pretensado.

En la Figura 2 se puede observar la cabeza para un anclaje de 8 torones.

Figura 2. Cabeza para un anclaje de 8 torones. https://publicworkstoolscad.blogspot.com/

Os dejo una animación de Keller Cimentaciones respecto a la ejecución de una inyección.

Referencias:

AETESS (2006). Guía Técnica de Seguridad AETESS. Micropilotes y anclajes.

DIRECCIÓN GENERAL DE CARRETERAS (2001). Guía para el diseño y la ejecución de anclajes al terreno en obras de carretera. Madrid.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.