Tricono con insertos. https://www.talleresegovia.com
La perforación rotativa con triconos se ha tratado en artículos anteriores. Se trata de uno de los procedimientos más extendidos y consiste en equipos grandes capaces de ejercer empujes elevados sobre la boca. En este artículo se explicará un procedimiento para calcular la velocidad de barrido.
El aire comprimido enfría y lubrica los cojinetes del tricono, limpia el fondo del barreno y eleva el detrito a la velocidad adecuada para el ascenso.
El aire circula desde el compresor hasta el mástil mediante un tubo y una manguera flexible protegida, pasando por la cabeza de rotación. A continuación, entra en la barra de perforación y llega a la boca, donde sale entre los conos, arrastrando los detritos y llevándolos a la superficie.
Si los fragmentos son grandes y el caudal de aire es insuficiente, vuelven al fondo y se remueven hasta alcanzar el tamaño adecuado. Esto genera un consumo innecesario de energía, una menor velocidad de penetración y un mayor desgaste de la boca. Por otro lado, una velocidad ascensional excesiva incrementa el desgaste del centralizador y de las barras de perforación.
A continuación se ofrece un nomograma original elaborado por el profesor Pedro Martínez Pagán para estimar la velocidad de barrido de perforación de un equipo rotary (Instituto Tecnológico Geominero de España, 1994).
Esta expresión incorpora la corrección por altura geográfica que hay que hacerle al caudal que proporciona un compresor por la pérdida que sufre:
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
La perforación rotativa con triconos es uno de los procedimientos más extendidos, y está constituido por grandes equipos capaces de ejercer elevados empujes sobre la boca. Esto se debe a que las unidades que trabajan con trépanos son más sencillas de diseño y de menor envergadura. Las perforadoras rotativas están formadas esencialmente por una fuente de energía, como una batería de barras o tubos individuales o conectados en serie, que transmite el peso de la rotación y el aire de barrido a una boca con dientes de acero o insertos de carburo de tungsteno que actúan sobre la roca.
En este tipo de perforación, la velocidad de penetración depende de muchos factores externos, como las características geológicas, las propiedades físicas de las rocas, la distribución de tensiones y la estructura interna. Por este motivo, determinar la velocidad de penetración durante el desarrollo de un proyecto es una tarea difícil para el ingeniero proyectista, pero necesaria, ya que la decisión que se tome va a incidir decisivamente en el resto de las operaciones.
Las fórmulas empíricas para estimar la velocidad de penetración son muy sencillas y se basan en ensayos de campo. En general, tienen en cuenta las siguientes variables: diámetro de la perforación, empuje sobre el tricono, velocidad de rotación y resistencia a compresión simple. La resistencia a compresión es la variable desconocida, cuyo valor se puede estimar fácilmente mediante un ensayo de laboratorio o de campo.
A continuación se ofrece un nomograma original elaborado por los profesores Pedro Martínez Pagán, Daniel Boulet y Trevor Blight para estimar el coeficiente de perforación de un equipo rotary basándose en la formulación empírica que dedujo Praillet en 1978. Esta fórmula es más fiable en todos los rangos de resistencias de las rocas y permite calcular el valor de la resistencia a compresión de la roca durante una operación en marcha.
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
PRAILLET, R. (1984), Consideraciones de un fabricante de máquinas de perforación. Canteras y Explotaciones
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
De US Environmental Protection Agency, Office of Research and Development, Washington, DC – “The Hydraulic Fracturing Water Cycle”, Dominio público, https://commons.wikimedia.org/w/index.php?curid=25673027
La fracturación hidráulica, comúnmente conocida como fracking, es una técnica que se utiliza para extraer hidrocarburos, como el gas natural y el petróleo, de formaciones rocosas subterráneas de baja permeabilidad, especialmente lutitas o esquistos. Este método ha revolucionado la industria energética, ya que permite acceder a recursos que antes eran inaccesibles, contribuyendo significativamente a la diversificación de las fuentes de energía.
El fracking consiste en perforar un pozo vertical hasta alcanzar la formación rocosa objetivo. Una vez en la profundidad deseada, la perforación se desvía horizontalmente, extendiéndose varios kilómetros dentro de la capa de lutita. A través de este pozo se inyecta una mezcla de agua, arena y productos químicos a alta presión. Esta presión fractura la roca, creando fisuras por las que se liberan los hidrocarburos atrapados, que son posteriormente extraídos a la superficie.
Evolución histórica de la fracturación hidráulica
El desarrollo del fracking no es un fenómeno reciente, sino el resultado de una evolución que se inició hace dos siglos. En 1821, la perforación del primer pozo comercial de gas de lutita cerca de Fredonia, en Nueva York, marcó el inicio de la explotación de este tipo de gas. Aunque este recurso era útil para la iluminación doméstica, no adquirió relevancia económica hasta mucho después. No fue hasta después de la Segunda Guerra Mundial, en un contexto de crecimiento industrial y demanda energética acelerada, cuando el gas natural comenzó a jugar un papel clave.
En las décadas de 1980 y 1990, los productores se enfrentaron al declive de los yacimientos convencionales y comenzaron a buscar alternativas en formaciones de baja permeabilidad, como el gas de las capas de carbón (CBM) y el gas de lutita (shale gas). Sin embargo, estos recursos presentaban limitaciones tecnológicas significativas, especialmente en lo que respecta a la capacidad para extraer hidrocarburos atrapados en micro o nanoporos. No fue hasta 2005 cuando la combinación de fracturación hidráulica y perforación horizontal demostró plenamente su viabilidad, lo que supuso un cambio de paradigma en la industria energética global.
El fracking ha transformado el panorama energético de países como Estados Unidos, donde se ha convertido en uno de los principales productores de petróleo y gas a nivel mundial. Sin embargo, esta técnica ha generado debates y regulaciones en diversas regiones debido a sus implicaciones ambientales. En Europa, por ejemplo, se ha analizado la dependencia del gas obtenido por fracking en otros países y se han criticado estas prácticas.
La historia del fracking es también una historia de innovación. Desde la mejora de los motores de fondo y los sistemas de telemetría hasta el diseño de fracturas más eficientes, cada avance ha contribuido a aumentar la recuperación de hidrocarburos y a reducir los costes asociados. Sin embargo, el desarrollo de estas tecnologías ha planteado también nuevos desafíos ambientales y sociales que no existían en las explotaciones convencionales.
De Battenbrook – Trabajo propio, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30796394
Fundamentos técnicos de la fracturación hidráulica
El fracking combina dos tecnologías clave: la perforación horizontal y la fracturación hidráulica. Ambas se han desarrollado para abordar el desafío que supone la extracción de hidrocarburos de yacimientos de baja permeabilidad, caracterizados por una porosidad extremadamente reducida y escasas conexiones entre los poros. Este tipo de formación geológica requiere la creación artificial de caminos por donde los hidrocarburos puedan fluir hacia los pozos de producción.
La perforación horizontal: Este enfoque, en contraste con la perforación vertical tradicional, permite acceder a una zona más extensa de la formación productora. Un pozo puede extenderse lateralmente varios kilómetros dentro del yacimiento, lo que aumenta considerablemente la cantidad de hidrocarburos que pueden recuperarse. Esto es especialmente relevante en yacimientos continuos como el gas de lutita, donde los hidrocarburos están distribuidos uniformemente en capas sedimentarias.
La fracturación hidráulica: Este proceso consiste en inyectar un fluido compuesto de agua, arena y aditivos químicos a alta presión. El agua actúa como medio de transporte, la arena como material de soporte de fracturas y los aditivos cumplen diversas funciones, como reducir la fricción, evitar la corrosión y mejorar la eficiencia del proceso. La fracturación crea redes de microfracturas en la roca madre, lo que aumenta la permeabilidad y permite que el gas o el petróleo fluyan hacia el pozo.
Avances tecnológicos adicionales: El uso de la telemetría avanzada (logging while drilling y measurement while drilling) proporciona datos en tiempo real sobre las condiciones del subsuelo. Esto permite ajustar la dirección del pozo y optimizar el diseño de las fracturas para maximizar la producción. Además, las fracturas multietapa, que dividen la sección horizontal del pozo en segmentos individuales, han demostrado ser una estrategia eficaz para estimular formaciones de gran tamaño.
Uno de los desafíos de los yacimientos de gas no convencional es el rápido declive de la producción. Este fenómeno obliga a perforar nuevos pozos de manera constante para mantener niveles de producción comercialmente viables. Por lo tanto, la explotación del gas de lutita es una actividad intensiva y duradera que requiere una planificación meticulosa y una inversión considerable.
Cómo funciona la fracturación hidráulica. https://www.todoporhacer.org/la-fractura-hidraulica/
Impactos ambientales del fracking
La fracturación hidráulica ha generado preocupaciones significativas en torno a su impacto ambiental, especialmente en lo que respecta al consumo de agua, la contaminación de acuíferos, la emisión de gases de efecto invernadero y la sismicidad inducida. Estas preocupaciones están respaldadas por pruebas documentadas que detallan tanto los riesgos como las medidas de mitigación disponibles.
Consumo de agua: Cada pozo de fracturación hidráulica requiere entre 8000 y 15 000 m³ de agua, dependiendo de factores como la profundidad del pozo y el número de etapas de fracturación. Esta cantidad de agua es considerable, particularmente en regiones con recursos hídricos limitados. Para mitigar este impacto, se ha propuesto reutilizar las aguas de retorno y utilizar fuentes no convencionales de agua, como las salobres. Es esencial investigar previamente la disponibilidad de agua superficial y subterránea para garantizar la sostenibilidad del proyecto.
Contaminación de acuíferos: Aunque las zonas de fractura están separadas de los acuíferos por capas de roca impermeable, las fugas a través de defectos en la cementación de los pozos suponen un riesgo. Los fluidos de fracturación, que contienen metano y aditivos químicos, pueden migrar hacia los acuíferos superficiales en caso de fallo estructural. Por ello, es esencial realizar un seguimiento continuo y diseñar adecuadamente los pozos para prevenir estos incidentes.
Sismicidad inducida: La fracturación hidráulica puede causar micro-sismos de baja intensidad, imperceptibles sin instrumentos especializados. En raras ocasiones, la inyección en áreas cercanas a fallas activas ha generado sismos de mayor magnitud, aunque el límite superior para estos eventos es de 3 en la escala de Richter. La evaluación geológica previa y el monitoreo continuo son fundamentales para minimizar este riesgo.
Gestión de aguas residuales: Las aguas de retorno contienen minerales disueltos, compuestos químicos y, ocasionalmente, materiales radiactivos naturales (NORM). Las estrategias de mitigación incluyen el tratamiento de residuos, la evaporación y la reutilización del agua reciclada. Estas medidas no solo reducen la demanda de agua dulce, sino que también minimizan el impacto ambiental.
Retos sociales y económicos
El desarrollo de la fracturación hidráulica enfrenta múltiples retos sociales y económicos. En términos sociales, la aceptación pública es fundamental. La percepción de riesgo asociada a la contaminación del agua, la sismicidad y la ocupación del terreno puede generar resistencia en las comunidades locales. Por otro lado, el fracking ofrece beneficios económicos significativos, como la reducción de la dependencia energética de las importaciones y la creación de empleo.
En España, las estimaciones de recursos prospectivos varían considerablemente. Según la Agencia Estadounidense de Información Energética (EIA), el país cuenta con 226 bcm de gas técnicamente recuperable, mientras que otros estudios elevan esta cifra a 1978 bcm. Estas reservas tienen el potencial de abastecer la demanda nacional durante décadas, aunque su desarrollo enfrenta desafíos como la falta de infraestructura y los altos costes de perforación.
Desde el punto de vista económico, el fracking es competitivo. El coste medio de extracción se estima en 5 céntimos de euro por kWh, lo que lo convierte en una opción viable frente a otras fuentes de energía. Sin embargo, para garantizar la sostenibilidad del sector, los beneficios deben equilibrarse con los riesgos ambientales y sociales.
Conclusiones
La fracturación hidráulica es una tecnología innovadora que ha transformado la industria energética. Aunque ofrece oportunidades significativas para la diversificación y la seguridad energética, su implementación debe abordarse con un enfoque integral que contemple tanto los beneficios económicos como sus posibles impactos ambientales y sociales. Es necesario realizar una evaluación cuidadosa y aplicar regulaciones estrictas para mitigar riesgos y garantizar una explotación sostenible de los recursos naturales. El desarrollo de recursos no convencionales en España requerirá una planificación meticulosa, un marco regulatorio sólido y un compromiso transparente con las comunidades locales.
Al adoptar medidas de mitigación efectivas y avanzar en tecnologías más sostenibles, el fracking puede desempeñar un papel crucial en la transición hacia un sistema energético más diversificado y seguro, minimizando al mismo tiempo su impacto ambiental y social.
Figura 1. Energía específica requerida para diferentes sistemas de excavación.
La energía específica, también conocida como Specific Energy (SE) en inglés, se define como la cantidad de energía consumida para excavar un volumen unitario de roca. Esta medida se expresa en diversas unidades, tales como MJ/m, KW-h/m3, hp-h/yd3 o hp-h/t, que relacionan la energía consumida con el volumen excavado.
Es importante destacar que la energía específica tiende a aumentar cuando se busca producir partículas de un tamaño menor en una misma roca. Este incremento está directamente relacionado con el aumento de la resistencia a compresión de la roca en cuestión.
La energía específica requerida para la excavación de una determinada roca dependerá de dos factores clave: la separación de los cortadores (S) y su profundidad de ataque (P). El ratio entre estos dos parámetros, denominado S/P, se convierte en un elemento crucial al seleccionar equipos. Para rozadoras tipo “drag”, este ratio varía entre 2 y 4, mientras que para cortadores de discos oscila entre 10 y 20.
En términos prácticos, la energía específica desempeña un papel esencial al determinar los ratios de avance (m/h o m/día) de una máquina. Esta información se revela como un indicador clave para optimizar la eficiencia y el rendimiento de los equipos utilizados en la excavación de rocas.
La Figura 1 presenta el espectro de la energía específica necesaria para la fragmentación de una roca mediante diversos sistemas de excavación comúnmente utilizados.
El ratio de producción instantáneo (IPR, en inglés) de un equipo se puede calcular de la siguiente forma:
El ratio lineal de avance (ROP, en inglés) de un equipo se calcula de la siguiente forma:
El ratio de avance diario (AR, en inglés) de un equipo es:
La tabla que se presenta a continuación resulta útil para anticipar el ratio de producción (IPR) y el ratio de avance (AR) de un equipo mecánico, todo ello fundamentado en la energía específica.
Referencias:
MARTÍNEZ-PAGÁN, P. (2023). Laboreo de minas. 3.º Curso – GIRME – Ingeniería de Minas. Universidad Politécnica de Cartagena.
ROSTAMI, J. (2011). Mechanical Rock Breaking. In SME Mining Engineering Handbook, 3rd Edition, Darling, P. (Ed.), Society for Mining, Metallurgy, and Exploration, 417-434.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
Figura 1. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/
La Máquina de Desarrollo Minero “Mine Development Machine” (MDM) es un equipo especializado diseñado para la perforación de secciones no circulares, específicamente rectangulares, en entornos de rocas con una resistencia a la compresión de hasta 200 MPa. Este dispositivo está equipado con un cabezal de corte rotativo que cuenta con cortadores de disco para garantizar una eficiente excavación.
Hasta ahora, la excavación de galerías mineras y túneles de acceso se ha llevado a cabo mediante una metodología de perforación y voladura a menudo lenta y ardua. Históricamente, los métodos de túneles mecanizados han carecido de la personalización necesaria para agilizar las actividades mineras. El MDM ofrece una tasa de excavación el doble de rápida que la perforación y voladura, en el caso del modelo Robbins MDM5000. El perfil rectangular elimina la necesidad de verter una solera o cortar el invertido, lo que permite su uso inmediato por la flota de vehículos de la mina.
Su aplicación principal se encuentra en la construcción de infraestructuras mineras, especialmente en el desarrollo de túneles de acceso o galerías con dimensiones de 5,0 m de ancho por 4,5 m de alto. La solera resultante del túnel queda en condiciones óptimas para ser utilizada por los equipos mineros que operan sobre ruedas, facilitando así el transporte y movimiento en el interior de la mina.
Figura 2. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/
El MDM utiliza gran parte de la misma tecnología que una máquina perforadora de túneles, incluyendo cortadores de disco que se desplazan en la misma pista durante un ciclo de perforación. Durante la perforación, los agarres se extienden contra las paredes del túnel, reaccionando al impulso hacia adelante de la máquina, al igual que en las TBM estándar. Los cilindros hidráulicos de propulsión se extienden, empujando los cortadores hacia la roca. La transferencia de este alto impulso a través de los cortadores de disco giratorios crea fracturas en la roca, provocando que los fragmentos se desprendan de la cara del túnel. Un sistema único de agarre flotante presiona contra las paredes laterales y se bloquea en su lugar mientras los cilindros de propulsión se extienden, permitiendo que la viga principal avance el MDM. Además, se coloca soporte continuo inmediatamente detrás del cabezal cortador en un patrón que cumple con los estándares de la mina. El soporte y la instalación de servicios públicos como tuberías, ventilación e iluminación se realizan simultáneamente a la perforación. Dado que la roca se fractura mecánicamente, no se requiere trituración secundaria y la roca rota es adecuada para el transporte mediante cintas transportadoras.
Existen algunas diferencias clave: mientras que una TBM estándar tiene un movimiento circular constante coincidente con el eje del túnel durante la perforación, el MDM utiliza un movimiento oscilante del cabezal cortador. El cabezal cortador del MDM oscila hacia arriba/abajo alrededor de un eje horizontal perpendicular al eje del túnel. La evacuación de material en el MDM es bastante diferente a la de una TBM estándar, con el material desplazándose hacia atrás desde el cabezal cortador en cada barrido descendente hacia una cinta transportadora o cadena instalada en el invertido. Esencialmente, la carga de la cinta transportadora se ejecuta mediante el barrido descendente del cabezal cortador en lugar de que los cucharones de material se vacíen sobre una cinta transportadora mientras el cabezal cortador gira, como en la configuración de una TBM estándar.
El MDM presenta diversas ventajas para las minas en comparación con otros métodos, como la perforación y voladura. La perforación con el MDM tiene tasas de avance aproximadamente el doble de las de una perforación y voladura, lo que resulta en paredes de túneles más uniformes, menos desprendimiento excesivo y un menor requerimiento de soporte estructural. El aumento en las tasas de avance se debe en parte al progreso continuo de la máquina, a diferencia de las operaciones de perforación y voladura, donde los equipos deben salir del túnel durante la detonación por motivos de seguridad. Además, la instalación simultánea de soporte estructural aumenta aún más las tasas generales de avance en comparación con las operaciones de perforación y voladura que deben instalar el soporte estructural de manera secuencial.
Este avanzado equipo ha demostrado su eficacia en la mina de plata de Fresnillo, ubicada en México. Su rendimiento se destaca con avances notables de 10-12 metros por día en condiciones de rocas con una resistencia inferior a 100 MPa, y de 7-10 metros por día en terrenos más desafiantes, con resistencia en el rango de 100-150 MPa. La máquina ha perforado a velocidades de hasta 52 metros en una semana y 191 metros en un mes en andesita y esquisto con intrusiones de cuarzo que desafiaron intentos previos de excavación con rozadoras.
La versatilidad y eficiencia de la MDM la convierten en una herramienta crucial para la ejecución de proyectos mineros, mejorando la productividad y la seguridad en el desarrollo de túneles y galerías en condiciones diversas.
Os dejo algunos vídeos de esta máquina.
Os dejo, también, un artículo explicativo de esta máquina.
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Río Blast, S.A., Madrid, 206 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
Figura 1. Cat HW300 Highwall Miner, https://h-cpc.cat.com/cmms/v2?&f=subfamily&it=group&cid=406&lid=en&sc=CA&gid=18296377&nc=1
Dentro de los equipos empleados en la excavación mecánica en minería a cielo abierto destacan los “Highwall Miners”. Estos avanzados equipos mineros desempeñan un papel crucial en la extracción de minerales al excavar sobre paredes o muros verticales. Constituyen una combinación ingeniosa entre un minador continuo (CM) y la estructura exterior que proporciona el soporte necesario para el minador. Su aplicación se centra en la explotación de capas delgadas de carbón, yeso u otras rocas de dureza media a blanda, siendo especialmente idóneos para la minería de contorno.
Con la capacidad de extraer minerales de carbón con potencias de hasta 1,5 metros, estos equipos representan una solución eficiente y productiva para la industria minera. La versatilidad de estos dispositivos permite alcanzar grandes producciones, llegando hasta las 110,000 toneladas al mes, con tan solo cuatro personas operando el equipo.
Destacando entre sus características, el equipo Cat HW300 Highwall Miner demuestra su capacidad al trabajar en bermas de hasta 18 metros. Esta notable amplitud de acción amplía las posibilidades de extracción y facilita la labor minera en entornos desafiantes.
Figura 2. https://cinmine.com/products/highwall-miner-products/
Además de su eficiencia en la producción, estos equipos demuestran su valía al recuperar hasta un 70% del carbón presente en las capas explotadas, lo que contribuye significativamente a maximizar la rentabilidad de las operaciones mineras.
En resumen, estos equipos de vanguardia no solo destacan por su capacidad para extraer minerales en condiciones específicas, sino que también ofrecen eficiencia, productividad y rentabilidad, convirtiéndose en piezas clave para el éxito de la industria minera en la extracción de recursos en capas delgadas.
Os dejo a continuación algunos vídeos para que veáis el funcionamiento de estos equipos.
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
Figura 1. https://www.epiroc.com/es-es/products/rock-drilling-tools/geotechnical-drilling-tools/large-diameter-drilling-solustions/cluster-drills
El sistema Cluster-Drill constituye un avance en la técnica de perforación rotopercutiva diseñado especialmente para perforaciones de gran diámetro. Este sistema está conformado por un conjunto de martillos en fondo (DTH) que resulta ideal para la construcción de chimeneas.
Los diámetros de las perforaciones abarcan desde 915 mm hasta 1778 mm. Este sistema permite alcanzar grandes profundidades, llegando hasta los 300 m en roca dura y abrasiva.
Además de posibilitar la perforación de cada martillo TDH de manera independiente, también incorpora un módulo rotativo que los contiene. Este módulo principal puede extenderse para recoger los detritos generados durante el proceso.
Figura 2. https://www.epiroc.com/es-es/products/rock-drilling-tools/geotechnical-drilling-tools/large-diameter-drilling-solustions/cluster-drills
Os paso un vídeo de Atlas Copco de este sistema de perforación.
Referencias:
DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.
Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.
Sobre el autor:Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.
Figura 1. Minador continuo excavando. https://www.exms.co.za/expert-camera-systems/continuous-miner-camera-system/
Los minadores continuos (continuous miners, en inglés), son equipos para la excavación mecánica usados en minería subterránea. Crean huecos rectangulares empleando tambores de picas (6 m de ancho por 5 m de alto). Se emplean principalmente en minas de minerales blandos, tales como el carbón o la sal.
Existen equipos con posibilidad de llevar a cabo un sostenimiento simultáneo, lo que le permite avanzar 12 m sin retirarse. Un equipo puede producir unas 600 – 700 t/h de mineral. Este mineral se descarga a través de un transportador blindado a “shuttle cars”.
A continuación presento un ejercicio resuelto y un nomograma que puede ser útil para el cálculo del ratio de avance diario de un minador continuo. Se trata de una colaboración con el profesor de la Universidad Politécnica de Cartagena, Pedro Martínez Pagán.
Como podéis comprobar, existen vínculos comunes entre las especialidades de ingeniería civil y minas en muchos aspectos relacionados con la maquinaria y los procedimientos de construcción. Espero que os sea útil.
Para resolver este ejercicio, resulta de interés la tabla que presentamos en la Figura 2, donde se proporcionan valores de energía específica para varios tipos de excavadoras mecánicas.
Figura 2. Valores de energía específica para varios tipos de excavadoras mecánicas. Fuente: SME Mining Engineering Handbook (2011) – Rostami et al. (1994).
También podéis utilizar este nomograma, elaborado junto con los profesores Pedro Martínez Pagán y Jamal Rotami, que espero os sea útil.
ROSTAMI, J. (2011). Mechanical Rock Breaking. In SME Mining Engineering Handbook, 3rd Edition, Darling, P. (Ed.), Society for Mining, Metallurgy, and Exploration, 417-434.
Perforación a percusión con cable. https://www.massenzaperforadoras.es/la-perforacion-de-percusion/
La perforación a percusión con cable es un método de perforación vertical que se basa en el golpeteo de un trépano pesado que se eleva con un cable y cae por gravedad, fragmentando el suelo. Este método se utiliza en terrenos de dureza media a baja o en terrenos duros que sean frágiles, pero se desaconseja en terrenos detríticos no cohesionados, muy duros, abrasivos y plásticos. La frecuencia de golpeo se encuentra en el rango de 40 a 50 impactos por minuto, y se logran rendimientos medios de 2 a 4 m/día en materiales duros y de 10 a 20 m/día en materiales blandos. La altura de caída del trépano depende de la dureza del terreno y de la profundidad del fondo de perforación.
Aquí os traigo un nomograma original, elaborado en colaboración con los profesores Pedro Martínez-Pagán y Daniel Boulet, en el que se puede calcular las características propias de este método de perforación, tales como el peso de la sarta de perforación, la velocidad media de la herramienta o la potencia necesaria de la máquina. También os paso un problema resuelto, que espero sea de vuestro interés.