Equipos para excavación de roca dura en sección rectangular: Máquina de desarrollo minero

Figura 1. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/

La Máquina de Desarrollo Minero “Mine Development Machine” (MDM) es un equipo especializado diseñado para la perforación de secciones no circulares, específicamente rectangulares, en entornos de rocas con una resistencia a la compresión de hasta 200 MPa. Este dispositivo está equipado con un cabezal de corte rotativo que cuenta con cortadores de disco para garantizar una eficiente excavación.

Hasta ahora, la excavación de galerías mineras y túneles de acceso se ha llevado a cabo mediante una metodología de perforación y voladura a menudo lenta y ardua. Históricamente, los métodos de túneles mecanizados han carecido de la personalización necesaria para agilizar las actividades mineras. El MDM ofrece una tasa de excavación el doble de rápida que la perforación y voladura, en el caso del modelo Robbins MDM5000. El perfil rectangular elimina la necesidad de verter una solera o cortar el invertido, lo que permite su uso inmediato por la flota de vehículos de la mina.

Su aplicación principal se encuentra en la construcción de infraestructuras mineras, especialmente en el desarrollo de túneles de acceso o galerías con dimensiones de 5,0 m de ancho por 4,5 m de alto. La solera resultante del túnel queda en condiciones óptimas para ser utilizada por los equipos mineros que operan sobre ruedas, facilitando así el transporte y movimiento en el interior de la mina.

Figura 2. https://www.robbinstbm.com/products/mining-machines/mine-development-machine/

El MDM utiliza gran parte de la misma tecnología que una máquina perforadora de túneles, incluyendo cortadores de disco que se desplazan en la misma pista durante un ciclo de perforación. Durante la perforación, los agarres se extienden contra las paredes del túnel, reaccionando al impulso hacia adelante de la máquina, al igual que en las TBM estándar. Los cilindros hidráulicos de propulsión se extienden, empujando los cortadores hacia la roca. La transferencia de este alto impulso a través de los cortadores de disco giratorios crea fracturas en la roca, provocando que los fragmentos se desprendan de la cara del túnel. Un sistema único de agarre flotante presiona contra las paredes laterales y se bloquea en su lugar mientras los cilindros de propulsión se extienden, permitiendo que la viga principal avance el MDM. Además, se coloca soporte continuo inmediatamente detrás del cabezal cortador en un patrón que cumple con los estándares de la mina. El soporte y la instalación de servicios públicos como tuberías, ventilación e iluminación se realizan simultáneamente a la perforación. Dado que la roca se fractura mecánicamente, no se requiere trituración secundaria y la roca rota es adecuada para el transporte mediante cintas transportadoras.

Existen algunas diferencias clave: mientras que una TBM estándar tiene un movimiento circular constante coincidente con el eje del túnel durante la perforación, el MDM utiliza un movimiento oscilante del cabezal cortador. El cabezal cortador del MDM oscila hacia arriba/abajo alrededor de un eje horizontal perpendicular al eje del túnel. La evacuación de material en el MDM es bastante diferente a la de una TBM estándar, con el material desplazándose hacia atrás desde el cabezal cortador en cada barrido descendente hacia una cinta transportadora o cadena instalada en el invertido. Esencialmente, la carga de la cinta transportadora se ejecuta mediante el barrido descendente del cabezal cortador en lugar de que los cucharones de material se vacíen sobre una cinta transportadora mientras el cabezal cortador gira, como en la configuración de una TBM estándar.

El MDM presenta diversas ventajas para las minas en comparación con otros métodos, como la perforación y voladura. La perforación con el MDM tiene tasas de avance aproximadamente el doble de las de una perforación y voladura, lo que resulta en paredes de túneles más uniformes, menos desprendimiento excesivo y un menor requerimiento de soporte estructural. El aumento en las tasas de avance se debe en parte al progreso continuo de la máquina, a diferencia de las operaciones de perforación y voladura, donde los equipos deben salir del túnel durante la detonación por motivos de seguridad. Además, la instalación simultánea de soporte estructural aumenta aún más las tasas generales de avance en comparación con las operaciones de perforación y voladura que deben instalar el soporte estructural de manera secuencial.

Este avanzado equipo ha demostrado su eficacia en la mina de plata de Fresnillo, ubicada en México. Su rendimiento se destaca con avances notables de 10-12 metros por día en condiciones de rocas con una resistencia inferior a 100 MPa, y de 7-10 metros por día en terrenos más desafiantes, con resistencia en el rango de 100-150 MPa. La máquina ha perforado a velocidades de hasta 52 metros en una semana y 191 metros en un mes en andesita y esquisto con intrusiones de cuarzo que desafiaron intentos previos de excavación con rozadoras.

La versatilidad y eficiencia de la MDM la convierten en una herramienta crucial para la ejecución de proyectos mineros, mejorando la productividad y la seguridad en el desarrollo de túneles y galerías en condiciones diversas.

Os dejo algunos vídeos de esta máquina.

Os dejo, también, un artículo explicativo de esta máquina.

Descargar (PDF, 7.14MB)

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Río Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Excavación mecánica a cielo abierto: Highwall miners

Figura 1. Cat HW300 Highwall Miner, https://h-cpc.cat.com/cmms/v2?&f=subfamily&it=group&cid=406&lid=en&sc=CA&gid=18296377&nc=1

Dentro de los equipos empleados en la excavación mecánica en minería a cielo abierto destacan los “Highwall Miners”. Estos avanzados equipos mineros desempeñan un papel crucial en la extracción de minerales al excavar sobre paredes o muros verticales. Constituyen una combinación ingeniosa entre un minador continuo (CM) y la estructura exterior que proporciona el soporte necesario para el minador. Su aplicación se centra en la explotación de capas delgadas de carbón, yeso u otras rocas de dureza media a blanda, siendo especialmente idóneos para la minería de contorno.

Con la capacidad de extraer minerales de carbón con potencias de hasta 1,5 metros, estos equipos representan una solución eficiente y productiva para la industria minera. La versatilidad de estos dispositivos permite alcanzar grandes producciones, llegando hasta las 110,000 toneladas al mes, con tan solo cuatro personas operando el equipo.

Destacando entre sus características, el equipo Cat HW300 Highwall Miner demuestra su capacidad al trabajar en bermas de hasta 18 metros. Esta notable amplitud de acción amplía las posibilidades de extracción y facilita la labor minera en entornos desafiantes.

Figura 2. https://cinmine.com/products/highwall-miner-products/

Además de su eficiencia en la producción, estos equipos demuestran su valía al recuperar hasta un 70% del carbón presente en las capas explotadas, lo que contribuye significativamente a maximizar la rentabilidad de las operaciones mineras.

En resumen, estos equipos de vanguardia no solo destacan por su capacidad para extraer minerales en condiciones específicas, sino que también ofrecen eficiencia, productividad y rentabilidad, convirtiéndose en piezas clave para el éxito de la industria minera en la extracción de recursos en capas delgadas.

Os dejo a continuación algunos vídeos para que veáis el funcionamiento de estos equipos.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F.; ALCALÁ, J. (2012). Técnicas de voladuras y excavación en túneles. Editorial de la Universitat Politècnica de València. Ref. 530, 165 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ideas sobre la docencia de la asignatura de Procedimientos de Construcción

En el prólogo de obras anteriores, mencioné que la enseñanza de “Procedimientos de Construcción” es complicada, ya que implica instruir a futuros ingenieros civiles sobre la realización de obras. Este proceso abarca no solo las fases constructivas, sino también aspectos de gran relevancia, como el manejo de maquinaria y medios auxiliares, la seguridad y salud, el impacto ambiental de las obras, y sobre todo, conocimientos fundamentales en geotecnia, resistencia de materiales, mecánica, cálculo de estructuras, gestión de empresas, planificación de obras y economía. Todo este conjunto de conocimientos es esencial para tomar decisiones acertadas al seleccionar el mejor proceso constructivo para un proyecto específico. Además, debemos abordar toda esta información, considerando que la mayoría de los alumnos tienen poca o nula experiencia práctica en relación con el entorno físico de las obras.

Una dificultad adicional radica en la creación de un conjunto ordenado y coherente de problemas resueltos que no sean meramente teóricos, sino que se acerquen al mundo real de la profesión. Esta tarea resulta compleja en ocasiones, pues los procedimientos constructivos requieren conocimientos que abarcan casi todas las áreas de la ingeniería. En consecuencia, explicar esta asignatura en los primeros cursos de un grado universitario puede parecer arriesgado, debido a la amplia gama de conocimientos necesarios. Sin embargo, los planes de estudio a veces presentan estas incongruencias y desafíos en la enseñanza de esta materia.

Al final ha salido un volumen extenso, con una amplia variedad de problemas resueltos, que intenta abarcar todo el campo de conocimiento de los procedimientos de construcción, incluyendo la maquinaria y los medios auxiliares utilizados tanto en la ingeniería civil como en la edificación, e incluso en algunos casos, en la minería.

Esta colección forma parte del conjunto de materiales, libros y documentación que he elaborado como autor, complementando así el contenido teórico de la asignatura. Por esta razón, recomiendo al lector que acuda a manuales, libros o apuntes para reforzar la parte teórica de los problemas. No obstante, he incluido una extensa bibliografía que espero sea útil para este propósito. Además, me complace recomendar mi blog, que cuenta con
una trayectoria de casi 12 años y ha recopilado cerca de 2.000 artículos relacionados con aspectos de la ingeniería de la construcción. Puedes encontrarlo en el siguiente enlace: https://victoryepes.blogs.upv.es/.

El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Por último, y a pesar de que he puesto todo el empeño en resolver y revisar cada uno de los problemas, es posible que existan erratas o errores. Por ello, agradezco de antemano cualquier sugerencia o mejora que pueda ser útil para futuras ediciones. Espero sinceramente que este libro que tiene en sus manos contribuya a mejorar la calidad de la enseñanza de este tipo de asignaturas y que se convierta en una herramienta valiosa tanto para estudiantes como para profesionales. Su éxito en el aprendizaje y aplicación de los procedimientos de construcción es mi mayor deseo.

Valencia, a 25 de julio de 2023

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Nomogramas para su empleo en trabajos de movimiento de tierras

Este artículo presenta cinco nomogramas originales que pueden ser utilizados en proyectos de movimientos de tierra. El primero de ellos calcula el peso específico aparente de un suelo, mientras que el segundo nomograma facilita el valor de la piedra en el diseño de voladuras según la metodología de Ash. Los dos siguientes se aplican para determinar la capacidad de la hoja empujadora de un buldócer, y finalmente, el último nomograma ayuda a calcular el rendimiento de escarificado de un buldócer.

Estos nomogramas demuestran también las capacidades de los programas de código abierto, PyNomo y Nomogen, para generar nomogramas adaptados a las necesidades de cálculo de cualquier proyectista. Este proyecto es el resultado de una colaboración internacional entre profesores de Finlandia, Canadá y Australia, y su artículo ha sido publicado en la revista inGEOpress en mayo de 2023.

En este trabajo se proporcionan cinco nomogramas originales generados con el programa Pynomo (http://lefakkomies.github.io/pynomo-doc/introduction/introduction.html), muy útiles para su empleo en trabajos de obra civil, movimiento de tierras y/o minería, así como en ámbito docente. Los ejemplos resueltos por cada uno de los nomogramas también demuestran que los valores obtenidos se obtienen con una precisión adecuada a los requerimientos que se exigen en ingeniería de proyectos, haciéndolos útiles cuando no se tiene acceso a ordenadores o a calculadoras programables y, especialmente, en el manejo de ecuaciones cuyo empleo sea repetitivo.

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BOULET, D.; BLIGHT, T. (2023). Nomogramas para su empleo en trabajos de movimiento de tierras. Canteras y explotaciones, 657(3):44-48.

Os paso a continuación el artículo entero por si os resulta de interés.

Descargar (PDF, 3.41MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Códigos abiertos para la elaboración de nomogramas en el ámbito de la ingeniería civil y minera

En este artículo se hace una introducción sobre los códigos abiertos, PyNomo y Nomogen, para la elaboración de nomogramas o ábacos de útil aplicación en el ámbito de la ingeniería civil y minera, resolviendo de forma gráfica y eficiente ecuaciones comúnmente utilizadas y sin necesidad de realizar cálculos manuales exhaustivos. Se presentan varios ejemplos de nomogramas realizados con PyNomo y Nomogen que servirán para mostrar la utilidad de estos códigos abiertos en el campo de la ingeniería hidráulica. Se trata de una colaboración internacional con profesores de Finlandia, Canadá y Australia, cuyo resultado se ha publicado en la revista inGEOpress, en su número de abril del 2023.

La nomografía se puede definir como aquella rama de las matemáticas que se encarga de la representación gráfica de ecuaciones a través de nomogramas (también conocidos como ábacos) que permiten poner en relación tres o más variables resolviendo una de ellas cuando se conocen el resto. Esta área de las matemáticas fue implantada en 1880, y posteriormente desarrollada por Maurice d’Ocagne. El empleo de la nomografía tuvo su mayor desarrollo en el siglo pasado como una forma de resolver de forma rápida y precisa complejas expresiones matemáticas en sectores tan diversos como medicina, aeronáutica, hidráulica, química, física, matemáticas, electrónica, radio, balística, alimentación, etc. Por ello, son innumerables los ejemplos que han llegado hasta nuestros días y que aún aparecen en libros especializados de ingeniería, especialmente hidráulica, ingeniería civil, minería, etc. . Además, en la actualidad, todavía es común que un gran volumen de documentación técnica, folletos de especificaciones técnicas y catálogos de equipos faciliten el cálculo de numerosas expresiones a través de nomogramas.

Referencia:

MARTÍNEZ-PAGÁN, P.; YEPES, V.; ROSCHIER, L.; BOULET, D.; BLIGHT, T. (2023). Introducción de los códigos abiertos PyNomo y Nomogen para la elaboración de nomogramas en el ámbito de la ingeniería civil y minera. Ingeopres, 302:66-70.

Os paso a continuación el artículo entero por si os resulta de interés.

Descargar (PDF, 2.76MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Cálculo del transporte hidráulico de pulpas

Figura 1. Bomba horizontal de pulpas (Bouso y Martínez-Pagán, 2023)

Una pulpa es una mezcla líquida que contiene partículas sólidas en suspensión. Las características de la pulpa dependen de la naturaleza, tamaño, forma, densidad y cantidad de las partículas sólidas, así como de la naturaleza, densidad y viscosidad del líquido. El flujo de las pulpas es diferente al de los líquidos homogéneos, donde su naturaleza (laminar, transitorio o turbulento) se determina a partir de las propiedades físicas del líquido y su conductividad. Para calcular un sistema de transporte hidráulico de pulpa, compuesto por una bomba y una tubería, es esencial conocer previamente parámetros como la densidad de sólido y líquido, viscosidad, concentración de sólidos, tipo de tubería y topografía del terreno.

La caracterización de una pulpa es más compleja que la de un líquido debido a la presencia de partículas sólidas y su influencia en la mezcla. Es importante tener en cuenta que una pulpa no es una disolución, sino una suspensión de sólidos en líquidos donde cada componente está claramente definido. Debemos considerar el fenómeno de sedimentación de los sólidos en el líquido, especialmente cuando las turbulencias son bajas o no existen. Este fenómeno puede causar acumulaciones de sólidos y dificultar las operaciones de transporte o almacenamiento. En términos generales, las pulpas se pueden clasificar en dos grupos: pulpas sin sedimentación y pulpas con sedimentación.

Figura 2.  Bomba de pulpas. https://www.mogroup.com/es/informacion/e-books/manual-de-bombas–para-pulpa/

Las pulpas sin sedimentación, también conocidas como pulpas homogéneas, están compuestas por partículas finas (menores de 50 mm) y forma una mezcla homogénea y estable. No causan desgaste significativo, pero requieren una atención especial en la selección y funcionamiento de las bombas debido a su aumento de viscosidad. Cuando el contenido de partículas es alto, su reología se asemeja a la de líquidos No-Newtonianos. Ejemplos de este tipo de pulpa incluyen lodos espesados de la extracción de áridos, lechadas de cemento y lodos de perforación.

Las pulpas con sedimentación están formadas por partículas gruesas que tienden a crear una mezcla inestable y se comportan como líquidos Newtonianos. Generalmente, causan un elevado desgaste y requieren una selección cuidadosa de las tuberías, debido a su tendencia a sedimentar y causar obstrucciones. Este tipo de pulpa es común en el transporte de pulpas y se conoce como pulpa heterogénea, ya que los sólidos no se distribuyen uniformemente en conducciones horizontales a lo largo de su eje vertical a altas velocidades. Las fases sólida y líquida mantienen su propia identidad y el aumento de viscosidad es generalmente de poca importancia. Las pulpas heterogéneas suelen ser de menor concentración de sólidos y con partículas de mayor diámetro que las pulpas homogéneas. Ejemplos incluyen pulpas en plantas de tratamiento de áridos y minerales, equipos de dragado, etc.

En el transporte de pulpas minerales por tubería, la naturaleza de las partículas y las velocidades de flujo determinan los regímenes de flujo, que pueden ser tanto turbulentos como laminares. Sin embargo, en la mayoría de las aplicaciones, el régimen turbulento, que se produce cuando las partículas son gruesas y tienden a sedimentar, es el más común. Este tipo de fluido se conoce como fluido newtoniano. En cambio, las pulpas con partículas finas y uniformes suelen producir regímenes de flujo laminar.

Os dejo a continuación un artículo, elaborado por Juan Luis Bouso y Pedro Martínez-Pagán, donde se presenta un ejemplo de cálculo para una operación de bombeo de pulpas. Se exploran las diferentes alternativas de cálculo, que pueden variar debido a las preferencias personales de los técnicos o a la adaptabilidad de un procedimiento específico a las características de la operación de bombeo. Al final del trabajo, se incluye un anexo con gráficos y cálculos, que pueden ser muy útiles. Espero que os sea de interés.

Descargar (PDF, 36.36MB)

Referencias:

ANDREA, E. (2014). Tecnología metalúrgica. Universidad de Cantabria. https://ocw.unican.es/course/view.php?id=261

BOUSO, J.L.; MARTÍNEZ-PAGÁN, P. (2023). Bombeo de pulpas minerales. Diferentes procedimientos de cálculo. Rocas y Minerales, 605:56-73.

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. 3ª edición, E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ-PAGÁN, P.; PERALES, A. (2020). Tecnología metalúrgica, 2ª edición. Universidad Politécnica de Cartagena. https://ocw.bib.upct.es/course/view.php?id=178

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Diseño de una pista para unidades de acarreo en una explotación minera

https://www.ipe.org.pe/portal/mineria-generara-impacto-positivo-de-us-17000-mllns/

En una explotación minera, o en obras civiles de envergadura, deben circular unidades de acarreo sobre caminos provisionales. Lo importante es que el diseño de estas pistas permita una circulación segura, sin perder ritmo de producción. Para ello se deben cuidar los aspectos relacionados con el firme, la pendiente, la anchura de la pista, los radios, peraltes y sobreanchos en curvas, la visibilidad en las curvas y cambios de rasante y en el bombeo. Los mejores rendimientos y condiciones de seguridad se obtienen con pendientes en torno al 8%, siempre que la resistencia a la rodadura se considere normal.

A continuación os presento un vídeo explicativo y un problema resuelto. Nos hemos basado en el “Manual de áridos”, una publicación del año 1998 que os dejo en las referencias. Espero que os sea de interés.

Descargar (PDF, 194KB)

Referencias:

LÓPEZ JIMENO, C. (ed.) (1998). Manual de áridos. Prospección, explotación y aplicaciones. E.T.S. de Ingenieros de Minas de Madrid, 607 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tendencias tecnológicas en el sector de maquinaria de construcción, obras públicas y minería

Me ha hecho llegar Joaquín Durán Álvarez, profesor de la Universidad de Granada, un documento elaborado por ANMOPYC (Asociación Española de Fabricantes de Maquinaria de Construcción, Obras Públicas y Minería), en el que se analizan las tendencias tecnológicas del sector. Tal y como indica el propio documento, el estudio nació con tres objetivos: a) conocer la situación actual del sector y los retos que se le plantean, b) realizar una prospectiva tecnológica concreta del sector y c) tener un referente documental en el que poder indagar y profundizar sobre cada una de las tendencias tecnológicas detectadas como fundamentales para alcanzar la competitividad de las empresas del sector.

Debido al interés del tema, os dejo el documento. Espero que os sea de interés.

Descargar (PDF, 2.46MB)

Técnicas de perforación, muestreo y caracterización para la recuperación de elementos de valor desde relaves

Un depósito de relave se puede definir como un potencial yacimiento de origen minero secundario, residual, proveniente de un yacimiento geológico de minerales que han sido explotados para recuperar elementos tales como cobre, hierro, plata, oro, plomo, etc.

Os paso a continuación un manual de uso público que trata sobre las técnicas de perforación, muestreo y caracterización de estos depósitos publicado recientemente por Irene Aracena y Tania Triviño, en el contexto de Chile. Agradezco a Tania que me haya facilitado este documento para compartir con todos vosotros.

 

 

 

 

Descargar (PDF, 8MB)