Control de calidad en recepción. Planes de muestreo

En una entrada anterior resolvimos un problema concreto de un plan de muestreo por atributos. Sin embargo, para los que no estén familiarizados con la jerga y las definiciones de la estadística empleada en el control de calidad, me he decidido por subir unas transparencias que a veces utilizamos en clase para cuando tenemos que explicar los planes de muestreo.

Pero antes, voy a comentar brevemente algunos conceptos relacionados con el control de calidad, el control estadístico, el control de aceptación y el control del proceso, entre otros. Vamos a ello.

El control de calidad es la parte de la gestión de la calidad orientada al cumplimiento de los requisitos de los productos o los servicios. Se trata de un método de trabajo que permite medir las características de calidad de una unidad, compararlas con los estándares establecidos e interpretar la diferencia entre lo obtenido y lo deseado para poder tomar decisiones conducentes a la corrección de estas diferencias.

En el proceso proyecto-construcción, la comprobación de los requisitos exigibles de calidad se basa fundamentalmente en el control de la calidad. Los pliegos de condiciones técnicas definen, para cada unidad de obra, qué tipo de controles deben realizarse para dar por buena la correcta ejecución de una obra, atendiendo no sólo a los materiales, sino a su puesta en obra y terminación. La misma filosofía es aplicable a la propia redacción de los proyectos de construcción por parte de las empresas de consultoría.

Una forma de controlar la calidad se basa en la inspección o la verificación de los productos terminados. Se trata establecer un filtro sobre los productos antes que éstos lleguen al cliente, de forma que los que no cumplen se desechan o se reparan. Este control en recepción normalmente se realiza por personas distintas a las que realizan el trabajo de producción, en cuyo caso los costes pueden ser elevados y pueden no considerarse las actividades de prevención ni los planes de mejora. Se trata de un control final, situado entre el productor y el cliente, que presenta la ventaja de ser imparcial, pero que adolece de muchos inconvenientes como son el desconocimiento de las circunstancias de la producción, la no-responsabilización de producción por la calidad, la lentitud en el flujo de la información, etc.

Sin embargo, una inspección al 100% de todas las unidades producidas puede ser materialmente imposible cuando los ensayos a realizar son destructivos. En estos casos, se hace necesario tomar decisiones de aceptación o rechazo de un lote completo de producto en función de la calidad de una muestra aleatoria. Este control estadístico (Statistical Control) proporciona una menor información, e incluso presenta riesgos propios del muestreo, pero sin embargo resulta más económico, requiere menos inspectores, las decisiones se toman con mayor rapidez y el rechazo a todo el lote estimula a los proveedores a mejorar la calidad.

El control estadístico se asentó plenamente a partir de la Segunda Guerra Mundial, caracterizándose por la consideración de las características de calidad como variables aleatorias, por lo que se centra básicamente en la calidad de fabricación o de producción. Este tipo de control también se identifica con el interés en conocer las causas de variación y establecer, como consecuencia, procedimientos de eliminación sistemática de dichas causas para la mejora continua de la calidad.

El control estadístico puede aplicarse en el producto final, lo que sería el control de aceptación, o bien a lo largo del proceso de producción, lo cual comprende el control del proceso. El control estadístico de recepción supone el establecimiento de planes de muestreo con criterios de aceptación o rechazo claros sobre lotes completos en función de los ensayos realizados sobre una muestra aleatoria. Este control por muestreo puede realizarse por atributos basándose en la norma ISO-2859, o bien por variables según ISO-3951. En cuanto al control estadístico de procesos, herramientas como los gráficos de control (Quality Control Chart) permiten tomar decisiones cuando el proceso se encuentra fuera de control. Igualmente, los estudios de capacidad de los procesos permiten decidir la capacidad de éstos de producir dentro de los límites de las especificaciones de calidad contratadas.

Una empresa constructora debería reducir al mínimo los costes de una mala calidad asegurándose que el resultado de sus procesos cumplieran los requisitos pactados con el cliente. Por ello, para garantizar que el control de aceptación de los productos presenta éxito –el denominado control externo-, la empresa constructora debería organizar como una actividad propia, un conjunto de controles en su cadena de producción que garantizase la calidad de las unidades de obra –actividad que recibe el nombre de control interno-.

Tanto el control interno como el externo puede ser realizado por la propia empresa constructora, por el cliente o por una organización independiente contratada al efecto. Así, por ejemplo, el control del hormigón recibido por el contratista puede ser realizado por una entidad independiente, la ejecución de la ferralla puede controlarse por parte de la dirección facultativa, o bien, la propia empresa constructora puede realizar un control interno de la ejecución de la obra.

Os paso, por tanto, la presentación que he utilizado alguna vez en clase.

Descargar (PDF, 3.97MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas heurísticas para el diseño de pasarelas mixtas

Acaban de publicarnos un artículo en la revista científica Applied Sciences (indexada en el JCR, Q2) un artículo que trata sobre el uso de distintas técnicas heurísticas para optimizar una pasarela de sección mixta hormigón-acero. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo de este trabajo ha sido aplicar técnicas de optimización heurística a un puente peatonal compuesto de hormigón y acero, modelado como una viga biapoyada. Se ha desarrollado un programa específico en Fortran, capaz de generar puentes peatonales, comprobar todos sus estados límite y evaluar su coste. Se han utilizado en este trabajo los siguientes algoritmos: búsqueda local de descenso (DLS), un recocido simulado híbrido con un operador de mutación (SAMO2) y una optimización de enjambres de luciérnagas (GSO) en dos variantes. Los resultados se compararon según el coste más bajo. Los algoritmos GSO y DLS combinados obtuvieron los mejores resultados en términos de coste. Además, se ha estudiado la comparación entre las emisiones de CO2 asociadas a la cantidad de materiales obtenidos por cada técnica heurística y la solución de diseño original. Finalmente, se realizó un estudio paramétrico en función de la longitud de vano del puente peatonal.

El artículo se ha publicado en abierto, y se puede descargar en el siguiente enlace: https://www.mdpi.com/2076-3417/9/16/3253

ABSTRACT:

The objective of this work was to apply heuristic optimization techniques to a steel-concrete composite pedestrian bridge, modeled like a beam on two supports. A program has been developed in Fortran programming language, capable of generating pedestrian bridges, checking them, and evaluating their cost. The following algorithms were implemented: descent local search (DLS), a hybrid simulated annealing with a mutation operator (SAMO2), and a glow-worms swarm optimization (GSO) in two variants. The first one only considers the GSO and the second combines GSO and DLS, applying the DSL heuristic to the best solutions obtained by the GSO. The results were compared according to the lowest cost. The GSO and DLS algorithms combined obtained the best results in terms of cost. Furthermore, a comparison between the CO2 emissions associated with the amount of materials obtained by every heuristic technique and the original design solution were studied. Finally, a parametric study was carried out according to the span length of the pedestrian bridge.

Keywords: pedestrian bridgecomposite structuresoptimizationmetaheuristicsstructural design

REFERENCIA:

Yepes, V.; Dasí-Gil, M.; Martínez-Muñoz, D.; López-Desfilis, V.J.; Martí, J.V. Heuristic Techniques for the Design of Steel-Concrete Composite Pedestrian Bridges. Appl. Sci. 20199, 3253.

Descargar (PDF, 3.69MB)

 

 

Optimización de puentes pretensados mediante la metodología de la superficie de respuesta

Nos acaban de publicar en la Revista CIATEC-UPF (Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, CIATEC-UPF – ISSN 2176-4565) , un artículo relacionado con la optimización de pórticos de hormigón armado con sistemas de agrupación de columnas. Se trata de una colaboración con el profesor Moacir Kripka y está dentro del proyecto de investigación DIMALIFE.

Os paso a continuación el resumen y una copia descargable del artículo, pues está publicado en abierto. Espero que os sea de interés.

RESUMEN:

Los puentes son infraestructuras esenciales para mejorar la comunicación dentro de un territorio. La optimización constituye un proceso que permite obtener puentes de menor coste bajo ciertas restricciones. Debido a la complejidad de los problemas estructurales, la optimización matemática no es útil y se recurre a la optimización heurística debido a su mayor eficacia. En este trabajo se presenta una alternativa a la optimización heurística basada en los metamodelos. El procedimiento consiste en una reducción de los factores iniciales mediante el diseño de experimentos, reduciendo significativamente la complejidad del problema sin perder información. Posteriormente, se aplica la metodología de la superficie de respuesta para obtener el óptimo del problema. Este procedimiento se aplica a un tablero de un puente de losa maciza que cumpla todas las restricciones de las normativas.

PALABRAS CLAVE:

Hormigón estructural. Optimización. Puente pretensado. Metamodelo. Superficie de respuesta

REFERENCIA:

PENADÉS-PLÀ, V.; YEPES, V.; KRIPKA, M. (2019). Optimización de puentes pretensados mediante la metodología de la superficie de respuesta. Revista CIATEC-UPF, 11(2):22-35. https://doi.org/10.5335/ciatec.v11i2.9159

 

Descargar (PDF, 988KB)

 

¿Penalizaciones económicas por una mala compactación?

En un artículo anterior tuvimos ocasión de hablar en detalle de los aspectos básicos del control de calidad en la compactación de un suelo. Pero, ¿qué pasa si existe una desviación entre los resultados que esperábamos y los realmente obtenidos? Es un tema que levanta fuertes discusiones, sobre todo por la repercusión económica y de funcionalidad de la unidad de obra. Mi opinión es que hay que ser muy cauteloso con la aceptación de unidades de obra con mermas de calidad, pero a veces se admiten excepciones que deben estar documentadas y razonadas. Una posibilidad es imponer una penalización económica lo suficientemente fuerte que desaconseje al contratista entrar en esa zona cercana a la aceptación, pero que se encuentre ligeramente por debajo de las especificaciones.

A veces el incumplimiento de las especificaciones que afecten a una determinada parte de la obra de terraplén, y siempre que a criterio del Director Facultativo estos defectos no impliquen una pérdida significativa en la funcionalidad y seguridad de la obra o parte de la obra y no sea posible subsanarlos posteriormente, pueden aplicarse penalizaciones en forma de deducción en la relación valorada. Esta posibilidad no debe nunca implicar una aceptación sin más de la merma de calidad, sino que sólo es aplicable en casos excepcionales.

A modo de ejemplo, y sin que ello suponga que esta penalización sea la más adecuada para todos los casos, el artículo 32.31 del Pliego de Condiciones Técnicas Generales 1988, del Ayuntamiento de Madrid propone las siguientes fórmulas, que podrán ser modificadas o complementadas en el Pliego de Condiciones Técnicas Particulares:

 

P1  = 0,04 ·ΔC · P        (por defecto de compactación)

P2  = 0,20 · N · P        (por cambio de calidad en el material)

siendo:

P1 y P2             deducción unitaria por penalización €/m3

P                     precio unitario del terraplén €/m3

ΔC                  defecto en % del grado de compactación en relación con el especificado.

N                     coeficiente por cambio de calidad.

– de seleccionado a adecuado, N=1

– de seleccionado a tolerable, N=4

– de adecuado a tolerable, N=2.

 

Referencias:

YEPES, V. (2014). Equipos de compactación superficial. Apuntes de la Universitat Politècnica de València, Ref. 187. Valencia, 113 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Medición del trabajo a través del procedimiento de observaciones instantáneas

Junto con el cronometraje, las observaciones instantáneas constituye un procedimiento de medición del trabajo que permite determinar los tiempos improductivos y sus causas, eliminándolas mediante su análisis. Igualmente se emplea como auxiliar del estudio de métodos para eliminar o disminuir el tiempo de trabajo. Sin embargo, si bien el cronometraje es más apropiado para trabajos muy sistematizados y repetitivos, efectuados por una o pocas unidades de recurso, las observaciones instantáneas cubre el resto de los escenarios posibles como trabajos poco sistematizados, con ciclos largos o realizados por numerosos recursos.

Las observaciones instantáneas se basan en comprobar si, en un momento dado, un recurso se encuentra trabajando o parado. Se puede estimar el tiempo de trabajo y el de parada, así como su error estadístico basando se en la distribución binomial de probabilidad. Se puede realizar una pasada si observamos a un conjunto de recursos y anotamos para cada uno de ellos su situación de trabajo o parada. Para planificar correctamente las observaciones, se debería garantizar que todas las actividades sean observadas un número de veces proporcional a su duración.

Detengámonos un momento en el fundamento estadístico del método. Supongamos que p es la fracción del tiempo en el que un recurso presenta una característica. Por ejemplo, si p=15% puede significar que, del tiempo total de permanencia de una máquina en una obra, el 15% del tiempo se encuentra la máquina parada. Si extraemos n elementos de la población infinita de posibilidades en las que una máquina puede estar parada en una proporción p en una obra, la probabilidad de que x máquinas se encuentren paradas se encuentre parada sería la siguiente:

Si en la distribución binomial se cumple que n·p>15, entonces la distribución binomial -que es discontinua- se puede aproximar a la distribución normal -que es continua-.

Ahora lo que nos interesa es conocer el tamaño de la muestra n para proporciones necesario para una población infinita. Para calcular este tamaño de muestra, antes debemos especificar el nivel de confianza con el que se desea realizar la estimación y el margen de error máximo tolerable D. De esta forma, se espera trabajar con una muestra que sea representativa y que las estimaciones sean consistentes. La expresión que utilizaremos será la siguiente:

Aquí os dejo una tabla que relaciona el nivel de confianza con los las variables utilizada en la fórmula anterior:

Nivel de confianza α Z α/2 (Z α/2)2
99% 0,01 2,576 6,636
95% 0,05 1,960 3,842
90% 0,10 1,645 2,706
80% 0,20 1,280 1,638
50% 0,50 0,674 0,454

 

También os dejo un vídeo explicativo y un problema resuelto.

Descargar (PDF, 100KB)

Referencia:

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp. ISBN: 978-84-9048-301-5.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Constructividad, constructibilidad, constructabilidad, ¿todo lo mismo?

Figura 1. Capacidad de influir en el coste durante el proceso proyecto-construcción (Serpell, 2002)

Todo el mundo está de acuerdo en que la industria de la construcción es un motor del desarrollo económico de una sociedad, pues permite crear infraestructuras que soportan las actividades económicas y viviendas. Pero para ello se requieren recursos intensivos, tanto públicos como privados que, en muchas ocasiones, no se utilizan de forma efectiva. Se trata de un sector con amplio margen de mejora en cuanto a productividad se refiere y que, de momento, y con carácter general, no aprovecha todas las oportunidades que brinda el desarrollo tecnológico.

Todos los agentes que participan en la industria de la construcción, desde proyectistas, constructores, suministradores de materiales y equipos, etc., se ven abocados a utilizar de forma efectiva y eficiente todos los recursos a su alcance para mejorar de este modo la productividad y los resultados empresariales. Ello supone, no solo utilizar bien los recursos disponibles, sino alcanzar con ellos los objetivos empresariales, que pasan por la satisfacción de las necesidades de los clientes en cuanto a calidad, costes y plazos.

En la Figura 1 se puede observar cómo, en el proceso proyecto-construcción, las primeras fases son las que presentan mayor capacidad de influencia en el coste final de un proyecto (Serpell, 2002). Sobre este asunto ya hablamos en un artículo anterior: La “Ley de los Cincos” de Sitter. Las estadísticas europeas señalan (ver Calavera, 1995) que el proyecto es el responsable del 35-45% de los problemas en construcción. A este respecto Sitter (véase Rostman, 1992) ha introducido al llamada “Ley de los Cincos”, postulando que un dólar gastado en fase de diseño y construcción elimina costes de 5 dólares en mantenimiento preventivo, 25 dólares en labores de reparación y 125 en rehabilitación.

Por tanto, mejorar el diseño de un proyecto constructivo es clave, no solo para conseguir satisfacer los requerimientos del cliente, sino para mejorar los resultados de todos los agentes involucrados en el proceso proyecto-construcción. Sobre este aspecto la bibliografía de origen anglosajón habla de Constructability o Buildability, que se ha traducido al español como “constructabilidad” o “constructibilidad”, incluso “constructividad”. Sin embargo, son palabras que no las recoge la Real Academia Española de la Lengua. Simplificando, podríamos hablar de que una obra puede construirse de forma más o menos fácil y efectiva. Ello va a depender de muchos factores, pero uno de los más importantes va a ser el propio proyecto constructivo. Por cierto, no vamos a utilizar aquí el concepto de “coeficiente de constructibilidad“, que en el ámbito del urbanismo, se refiere a un número que fija el máximo de superficie posible a construir en un ámbito determinado.

En la Figura 2 he elaborado un mapa conceptual para aclarar las ideas. Como puede verse, tanto la constructividad como la constructibilidad tienen como objetivo último satisfacer las necesidades del cliente en cuanto a calidad, costes, plazos, estética, etc., además de cumplir con otro tipo de objetivos relativos al contexto (requerimientos ambientales, sociales, legales, etc.), de forma que los agentes involucrados en la construcción sean capaces de mejorar sus resultados empresariales. Sin embargo, el enfoque de ambos conceptos es diferente. Veamos con algo de detalle las diferencias.

 

Figura 2. Mapa conceptual sobre constructividad y constructibilidad. Elaboración propia.

La constructividad define el grado con el cual un proyecto facilita el uso eficiente de los recursos para facilitar su construcción, satisfaciendo tanto los requerimientos del cliente como otros asociados al proyecto. Como se puede ver, se trata de un concepto directamente ligado a la fase del proyecto, y por tanto, depende fuertemente del equipo encargado del diseño.

Por otra parte, la constructibilidad es un concepto relacionado con la gestión que involucra a todas las etapas del proyecto y que, por tanto, depende tanto de los proyectistas, de los gestores del proyecto y de los constructores. Aunque se trata de un concepto también relacionado con las etapas del diseño del proyecto, la diferencia estriba en la incorporación de personal en esta etapa preliminar de personal con experiencia y conocimiento en construcción con el fin de mejorar la aptitud constructiva de una obra.

Quizá un ejemplo sea clarificador. Supongamos un equipo de arquitectura que está proyectando un edificio complejo, como por ejemplo un hospital. Este equipo, con mayor o menor experiencia en obra, tratará de diseñar un edificio que se pueda construir. El proyecto se licitará y una empresa constructora se encargará de su ejecución. Resulta evidente que, en función de los problemas de obra, el proyecto podrá modificarse para adaptarse a problemas que no quedaron resueltos en el proyecto o a cambios no previstos durante la ejecución. Se trata de un ejemplo donde los proyectistas han incorporado, en la medida de lo posible, aspectos relacionados con la constructividad.

Por otra parte, podría darse el caso de un concurso de proyecto y construcción, donde el adjudicatario participara, a su riesgo, del proceso proyecto-construcción. En este caso, es muy posible que al equipo redactor del proyecto se incorporaran personas con amplia experiencia en la ejecución de este tipo de proyectos. Por ejemplo, jefes de obra o producción de la empresa que hubiesen realizado proyectos similares, podrían aportar conocimientos para mejorar el proyecto, de forma que éste fuera fácilmente construible con los medios disponibles por la propia empresa. En este caso, estamos refiriéndonos a una gestión del proyecto donde se incorporan aspectos relacionados con la constructibilidad.

Para terminar, tenemos ejemplos claros de la diferencia entre estos dos conceptos en el caso de los proyectos que nuestros estudiantes elaboran durante sus estudios, por ejemplo, en el Grado de Ingeniería Civil o en el Máster en Ingeniería de Caminos, Canales y Puertos (donde imparto docencia). Un alumno brillante puede desarrollar un proyecto formalmente correcto, pero es muy habitual encontrar detalles mal resueltos porque son difíciles de construir. No se debe a que ha aplicado mal sus conocimientos, más bien se trata de falta de experiencia en obra que impide volcar en el proyecto soluciones que faciliten la construcción de la obra. Este problema, desgraciadamente, se repite en numerosas empresas de proyectos, donde la falta de experiencia de los proyectistas en la ejecución de la obra supone posteriormente problemas que ya se comentaron anteriormente cuando hablábamos de la regla de Sitter. La consecuencia de todo ello es clara: la importancia de que los proyectistas presenten experiencia dilatada en la ejecución de obra. La segunda derivada también es clara: los profesores en escuelas técnicas que forman a futuros ingenieros o arquitectos, deberían tener cierta experiencia en obra real. Igual es hora de balancear la importancia de la investigación y la experiencia en el mundo real a la hora de evaluar el perfil de los profesores que se dedican a formar a los futuros técnicos. Pero ese es otro tema.

Os dejo algún vídeo al respecto para ampliar conceptos.

Referencias:

CALAVERA, J. (1995). Proyectar y controlar proyectos. Revista de Obras Públicas num. 3.346. Madrid, septiembre.

PELLICER, E., CATALÁ, J., SANZ, A.(2002). La administración pública y el proceso proyecto-construcción. Actas del VI Congreso Internacional de Ingeniería de Proyectos, Departamento de Proyectos de Ingeniería de la Universidad Politécnica de Cataluña y AEIPRO, Barcelona, página 35.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, 292 pp.

ROSTMAN, S. (1992). Tecnología moderna de durabilidad. Cuadernos Intemac, 5.

YEPES, V. (1998). La calidad económica. Qualitas Hodie, 44: 90-92.

YEPES, V. (2003). Sistemas de gestión de la calidad y del medio ambiente en las instalaciones náuticas de recreo.Curso Práctico de Dirección de Instalaciones Náuticas de Recreo. Ed. Universidad de Alicante. Murcia, pp. 219-244.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp.

YEPES, V.; PELLICER, E. (2003). ISO 10006 “Guidelines to quality in project management” application to construction. VII International Congress on Project Engineering. 10 pp. ISBN: 84-9769-037-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vídeo y presentación completa conferencia sobre toma de decisiones en puentes

El 23 de mayo de 2019 tuve la oportunidad de impartir una conferencia en el Centro de Estudios Avanzados y Extensión de la Pontificia Universidad Católica de Valparaíso, en su sede de Santiago (Chile). El título de la charla coincide con el proyecto DIMALIFE, que en este momento tenemos en marcha dentro de nuestro grupo de investigación de la Universitat Politècnica de València: “Toma de decisiones en la gestión del ciclo de vida de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. En este enlace podéis ver una nota de prensa sobre la misma: http://www.pucv.cl/pucv/noticias/primera-persona/investigador-de-la-universitat-politecnica-de-valencia-realiza/2019-05-27/164204.html

La conferencia se pudo ver también por streaming en directo. Agradezco a la PUCV la grabación de la misma. Os paso a continuación no solo el vídeo sino también la presentación del PowerPoint utilizado en la misma. Espero que os sea de interés.

Descargar (PDF, 7.01MB)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Por qué es tan difícil asignar recursos a la conservación de las carreteras?

Figura 1. Conservación de carretera Guayaquil-Santa Elena.

En muchos foros se repite, a modo de mantra, que la falta de conservación de nuestras carreteras (y calles, en el caso de las ciudades) se debe fundamentalmente a un problema de orden económico. Por algún u otro motivo (crisis económica, dificultad en aprobar presupuestos, falta de voluntad política, etc.), la falta aparente de recursos obliga a realizar una conservación correctiva o reactiva de las carreteras que, como ya se justificó en un artículo anterior, provoca estados sub-óptimos en la infraestructura y tiene como consecuencia el incremento del riesgo de accidentes, la reducción de la velocidad de los vehículos, las restricciones de paso y la elección por los usuarios de itinerarios alternativos con mayor tiempo de recorrido. Conviene insistir en este punto, una conservación deficiente genera mayores costes a los usuarios relacionados con el valor del tiempo de viaje, con el vehículo y con los accidentes de tráfico. La justificación económica de las restricciones presupuestarias queda en entredicho cuando se consideran los costes totales del transporte.

Sin embargo, en nuestro grupo de investigación hemos desarrollado modelos que, incluso en el caso de disponer presupuestos restrictivos, pueden maximizar el estado o condición, no de una carretera, sino de una red completa, considerando, además, distintas funciones objetivo (costes económicos, sociales y medioambientales). Pero para entender mejor el problema, expongo a continuación la dificultad intrínseca de este tipo de problemas y justificaré las razones por las que muchos gestores del mantenimiento de carreteras toman decisiones que se alejan de ser óptimas.

La clave para entender la magnitud del problema radica en la dificultad que tienen los gestores de la red de carreteras en la toma de decisiones debido a la explosión combinatoria de las soluciones posibles cuando se tienen en cuenta distintos tipos de tratamientos de preservación, mantenimiento y rehabilitación (P+M+R) y los periodos de aplicación. Dicho de otra forma, en una red de carreteras se trata de decidir en qué tramo de la red se aplica un tratamiento de los múltiples posibles y cuándo se debe realizar. Las decisiones tomadas conforman el programa de conservación de la red de carreteras.

En la Figura 2 se representan las variables fundamentales que conforman el problema. En una red de carreteras tenemos N activos (tramos considerados), S posibles tratamientos cada uno de los cuales se aplicará en el instante t en los T años considerados en el programa de conservación.

Figura 2. Programa de conservación (Torres-Machí, 2015)

El programa de conservación resultante de las decisiones tomadas para un horizonte de T años nos dirá para cada uno de los años dónde actuar y qué tipo de tratamiento se deberá realizar. En la Figura 3 queda representada un posible programa fruto de las decisiones tomadas.

Figura 3. Ejemplo de programa de conservación (Torres-Machí, 2015)

Lo difícil de este problema, como hemos dicho anteriormente, es acertar con el mejor programa de conservación. No hay más remedio que aplicar técnicas de optimización para resolver el problema si los presupuestos son escasos. Caben dos enfoques, el secuencial y el holístico. El primero se centra en un activo (tramo de carretera, calle en una ciudad) y se decide qué tratamientos y cuándo se van a aplicar. En este caso el problema tiene N·S^T soluciones. En cambio, el enfoque holístico considera toda la red: se trata de elegir qué activo tiene prioridad en la red y luego decidir qué tratamiento y cuándo se aplica. Aquí se dispara el número de posibles soluciones a S^(N·T). A modo de ejemplo, teniendo en cuenta solo dos tratamientos (S=2), un horizonte de 10 años (T=10) y 7 tramos diferentes de carretera (N=7), el número de posibles soluciones es de 1,18E+21.

La única forma de abordar este problema es con algoritmos heurísticos de optimización multiobjetivo. Os dejo algunas referencias de cómo hemos resuelto en nuestro grupo de investigación este problema y en un artículo posterior os explico cómo formular el problema de optimización (funciones objetivo, restricciones, etc.). Como ya dije en artículos anteriores, la puerta está abierta a quien quiera participar en nuestro grupo.

Referencias:

  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La evaluación técnica de una carretera

Figura 1. Representación de la evolución del índice PSI. https://www.pavementinteractive.org/

En una entrada anterior vimos que una infraestructura se puede evaluar con indicadores de estado y de prestaciones. En el caso de una carretera, las funciones básicas que debe cumplir pasan por poseer una capacidad estructural suficiente para soportar las cargas a la estará sometida, presentar un nivel de servicio adecuado bajo el punto de vista del usuario y garantizar la seguridad en cualquier momento. En consecuencia, el estado y las prestaciones de una carretera varían a lo largo del tiempo debido a las solicitaciones directas o indirectas, como puede ser el tráfico o el clima, y por tanto, se debe evaluar periódicamente el estado  de la carretera para garantizar las funciones básicas que antes hemos definido.

Dentro de la gestión de una carretera, llamaremos evaluación técnica al proceso que pasa por recoger datos, evaluar la infraestructura a través de un indicador y predecir la condición futura de la carretera mediante un modelo de comportamiento.

La primera fase de la evaluación técnica implica examinar las características de una carretera tanto desde el punto de vista funcional como estructural. Existen distintos tipos de indicadores para evaluar las características de una carretera. Estos indicadores se correlacionan entre ellos para comparar los valores cuando se utilizan distintas metodologías de medición. Si se evalúa la funcionalidad del pavimento, se puede medir el nivel de servicio o la seguridad. Por otra parte, la evaluación estructural mide la capacidad de soporte del pavimento. Para ello se pueden medir las propiedades mecánicas (deflexiones y deformaciones) o bien el deterioro superficial (agrietamiento, defectos superficiales o la deformación del pavimento.

  • El nivel de servicio mide la capacidad del pavimento para servir al tránsito ofreciendo un nivel de calidad adecuado a los usuarios; por tanto, se trata de una percepción subjetiva basada en la comodidad. Esta percepción se mide habitualmente relacionándola con la regularidad superficial, medida con indicadores como el IRI (International Roughness Index), PSI (Present Serviceaility Index)PSR (Present Serviceaility Rating) . Hoy en día el IRI es el indicador más importante, y se evalúa a partir del perfil longitudinal del pavimento.
  • El nivel de seguridad de una carretera depende de múltiples factores, como son el diseño geométrico, la señalización o las características de los vehículos, entre otros muchos. Sin embargo, para medir la seguridad del pavimento se suele utilizar la textura (macrotextura o microtextura) y la resistencia al deslizamiento (coeficiente de fricción internacional, IFI). Hay que tener presente, en este caso, que la resistencia al deslizamiento no solo depende de la textura del pavimento, sino que también depende de las características de los neumáticos y de las condiciones del vehículo. Pero si se tiene que medir la condición del pavimento, deberemos centrarnos en la microtextura, que influye fuertemente en el deslizamiento de vehículos a baja velocidad sobre superficies mojadas) y la macrotextura (que facilita el drenaje del agua y que ofrece resistencia al deslizamiento en vehículos a alta velocidad sobre pavimentos mojados). El IFI, que es el indicador que se utiliza internacionalmente, consta de dos números, uno adimensional que representa la fricción (cero es un deslizamiento perfecto, y uno es adherencia) y otro, en unidades de velocidad (km/h) que representa la macrotextura. Con estos dos valores se puede calcular el valor de fricción a cualquier velocidad de deslizamiento.
  • Las propiedades mecánicas del pavimento (módulo elástico, fatiga, deformación y tensiones residuales) definen los parámetros de resistencia de las diferentes capas de la estructura del pavimento. Sin embargo, el indicador más utilizado para para evaluar la capacidad estructural es la medición de las deflexiones (deformación elástica de un pavimento al paso de una carga).
  • El deterioro superficial se hace patente con las grietas, defectos superficiales y deformaciones del pavimento, así como en los defectos de los tratamientos o reparaciones realizadas. Suele medirse mediante una inspección visual, que puede ser manual o automática.

 

Figura 2. Características evaluadas en la auscultación de pavimentos. Elaboración propia basada en Torres-Machí (2015)

Sin embargo, aunque todos los indicadores expuestos son de interés en la toma de decisiones, también es cierto que resulta conveniente disponer de indicadores compuestos que permitan simplificar la información. Se trata de combinar los indicadores individuales para simplificar la toma de decisiones. Algunos de ellos son el PCI (Pavement Condition Index), el PQI (Pavement Quality Index) y el POI (Pavement Overall Index). Como estos indicadores son una agregación de distintos deterioros, para utilizarlos en la gestión de una red de carreteras, es necesario una calibración previa (de Solminihac, 2001).

Estos indicadores se utilizan, entre otros, para realizar una optimización multiobjetivo en la toma de decisiones necesaria para el mantenimiento de una red de carreteras. En el caso de los indicadores de condición, se trata de maximizar dicho indicador a lo largo del ciclo de vida de la red de carreteras. Os dejo a continuación algunas referencias y trabajos de nuestro grupo de investigación.

Referencias:

  • DE SOLMINIHAC, H. (2001). Gestión de infraestructura vial. Pontificia Universidad Católica de Chile. Santiago, Chile.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Indicadores de estado y de prestaciones de las infraestructuras

En una entrada anterior vimos las distintas estrategias de conservación de las infraestructuras y cómo éstas influían en el coste que debían pagar los usuarios. Estas estrategias podían modificar el estado o las prestaciones de la infraestructura, que de forma irremediable, se degradan con el tiempo. Llegado a este punto, conviene diferenciar los conceptos de estado y de prestaciones de una infraestructura.

La gestión de las infraestructuras (carreteras, puentes, etc.) supone un proceso por el cual se debe asignar de forma eficiente los recursos limitados en la dirección marcada por los objetivos estratégicos de la organización responsable de dicha gestión. Para ello se hacen necesarios una serie de indicadores que permitan medir de forma cuantitativa o cualitativa los resultados procedentes de las acciones realizadas sobre dichos activos respecto a los objetivos.

Dichos indicadores pueden ser de estado o de prestaciones. El estado o condición de una infraestructura se define como su estado físico, que puede afectar o no a sus prestaciones. En cambio, la prestación o rendimiento se define como la capacidad de la infraestructura para proveer un determinado nivel de servicio a los usuarios. Se pueden llamar también prestaciones funcionales, pues indican el nivel de habilitación de una infraestructura para desarrollar su función principal, que es la prestación del servicio, aunque también podrían incluir otras características o efectos no directamente relacionados con el servicio a los usuarios.

Saber diferenciar ambos conceptos es básico para cualquier organización responsable de la gestión de una infraestructura. Así, por ejemplo, las prestaciones de un puente pueden no verse afectadas por el estado hasta que se produzca un fallo. Es fácil encontrar un puente de hormigón con defectos superficiales (corrosión de armaduras, desconchados, etc.) que mantiene intacta su funcionalidad e integridad estructural. También podría darse el caso de un puente en muy buen estado que no sea capaz de soportar determinadas cargas de tráfico o que impone restricciones de gálibo que afectan al tráfico.

Puente “traga camiones” de Leganés. https://www.lavanguardia.com

Pero, ¿cuáles son las razones para disponer de indicadores en la gestión de las infraestructuras? Pues son imprescindibles para tomar decisiones que afectan a estos activos. Permiten identificar las necesidades de intervención, proporcionan la guía de los procesos y criterios en la toma de decisiones y son los elementos que permiten controlar el progreso hacia los objetivos y metas trazados por la organización responsable de la gestión.

En el caso de una carretera, los indicadores utilizados en su gestión se suelen agrupar en diferentes categorías que corresponden con los objetivos de la organización responsable de dicha gestión. Se podrían considerar, entre otros, los siguientes: conservación de la carretera, seguridad vial, movilidad y accesibilidad, medioambiente, operaciones y mantenimiento y eficiencia económica.

Si se disponen de mediciones de dichos indicadores, éstos permiten comparar sus valores con determinados estándares, umbrales o niveles mínimos. Esta información es determinante en la identificación de las necesidades de intervención y, por tanto, catalizan todo el proceso posterior de selección de intervenciones y asignación de recursos económico.

En artículos posteriores hablaremos de cómo podremos utilizar estos índices para el caso particular de las carreteras y utilizar técnicas procedentes de la optimización multiobjetivo y de la toma de decisiones multicriterio para asignar los presupuestos restrictivos de los que dispone una organización para que la condición de las carreteras sea la máxima posible. Ya adelantamos que el problema no es sencillo, pero afortunadamente nuestro grupo de investigación ya dispone de las herramientas necesarias para planificar el mantenimiento y la conservación de una red de carreteras o de calles en una ciudad con presupuestos muy restrictivos.

 

Referencias:

  • CLEMENTE, J.J. (2012). La toma de decisión en el marco de la gestión de activos de infraestructuras de transporte terrestre. Trabajo de investigación. Universitat Politècnica de València.
  • SALAS, J.; YEPES, V. (2019). MS-ReRO and D-ROSE methods: assessing relational uncertainty and evaluating scenarios’ risks and opportunities on multi-scale infrastructure systems. Journal of Cleaner Production, (accepted, in press).
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53.
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72.
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.
  • TORRES-MACHÍ, C. (2015). Optimización heurística multiobjetivo para la gestión de activos de infraestructuras de transporte terrestre. Tesis doctoral. Universitat Politècnica de València – Pontificia Universidad Católica de Chile.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; VIDELA, C.; PELLICER, E.; YEPES, V. (2014). An iterative approach for the optimization of pavement maintenance management at the network level. The Scientific World Journal, Volume 2014, Article ID 524329, 11 pages.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56.
  • TORRES-MACHI, C.; PELLICER, E.; YEPES, V.; CHAMORRO, A. (2017). Towards a sustainable optimization of pavement maintenance programs under budgetary restrictions. Journal of Cleaner Production, 148:90-102.
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.