Lo que nos dice un dendrograma sobre los puentes losa postesados aligerados

Figura 1. Paso superior sobre la N-II. https://ingedis.es/puentes.htm

Como ya habréis observado, en muchos de mis artículos os doy pistas sobre cómo utilizar determinadas herramientas que nos permiten, si sabemos utilizarlas, obtener información relevante y muchas veces no evidente de nuestras bases de datos. En esta ocasión os voy a hablar de los métodos jerárquicos de análisis cluster, y en particular, de los dendrogramas. En el contexto de la minería de datos, se consideran los algoritmos de agrupamiento (clustering), como una técnica de aprendizaje no supervisado.

Los llamados métodos jerárquicos buscan formar agrupaciones de elementos de forma sucesiva, de modo que se minimice alguna distancia o maximice alguna medida de similitud. Estos métodos se dividen, a su vez, en métodos aglomerativos -también llamados ascendentes- que comienzan con tantos grupos como individuos haya, formándose grupos de forma ascendente, de forma que al final todos los casos se engloban en un mismo aglomerado. Por contra, los métodos disociativos -descendentes- hacen lo contrario, comienzan con un conglomerado que engloba todos los casos y, con sucesivas divisiones, se forman grupos cada vez más pequeños hasta llegar a tantas agrupaciones como casos.

Un dendrograma es una representación gráfica de los datos en forma de árbol que los organiza en subcategorías que se van dividiendo hasta llegar al nivel de detalle deseado. Para formar este diagrama se forman conglomerados de observaciones en cada paso y sus niveles de similitud. El nivel de similitud se mide en el eje vertical (aunque también se puede mostrar el nivel de distancia), y las diferentes observaciones se especifican en el eje horizontal.

Veamos cómo se puede utilizar dicha herramienta. Para eso vamos a utilizar los datos recopilados de 61 puentes losa postesados aligerados (Yepes et al., 2009). Utilizamos el software Minitab para este análisis. En la Figura 2 se ha realizado un análisis para las 61 observaciones. Aunque permite determinar qué puentes son más parecidos entre sí, la verdad es que la información que nos deja es difícil de manejar.

Figura 2. Dendrograma obtenido por conglomerado de las 61 observaciones de puentes losa (Yepes et al., 2009)

En cambio, si realizamos el mismo análisis respecto a las variables que definen el puente y a su coste, obtenemos información relevante, tal y como se puede observar en la Figura 3. El conglomerado de variables a sí obtenido comienza con todas las variables separadas, cada una formando su propio conglomerado. En el primer paso, las dos variables más cercanas entre sí se unen. En el siguiente paso, una tercera variable se une a las primeras dos u otras dos variables se unen para formar un conglomerado diferente. Este proceso continuará hasta que todos los conglomerados se unan en un solo conglomerado. En el caso estudiado, se ha utilizado como medición de la distancia la correlación y el método de vinculación completo. De esta forma conseguimos que un conglomerado se encuentre dentro de una distancia máxima, tendiéndose a producir conglomerados con diámetros similares.

Figura 3. Dendrograma realizado con las variables que definen los 61 puentes losa postesados (Yepes et al., 2009)

La Figura 3 ya nos permite interpretar cómo se relacionan las variables de un puente losa postesado, siendo un análisis que es coherente con los resultados obtenidos en Yepes et al. (2009). Se observa que el coste está muy relacionado con la cuantía de armadura activa, y también, con la cuantía de hormigón empleado. También se observa la estrecha relación entre el canto y la luz del puente, que junto con la cuantía del aligeramiento interior, se aglomeran a otro nivel para configurar el coste. Otras relaciones son evidentes, como que la longitud total del puente y el número de vanos son magnitudes muy relacionadas, o cómo la anchura del tablero se relaciona con el número de apoyos existentes en el estribo.

Referencias:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión de la innovación en las empresas constructoras

Tras la crisis financiera de 2008, que supuso una caída brutal de la contratación de obra pública en España, las empresas constructoras y consultoras tuvieron que internacionalizarse. Sin casi haber salido completamente de este trance, sobrevino la actual crisis sanitaria de la pandemia del coronavirus que ha acarreado una nueva recesión social y económica que, de momento, no se atisba su solución. Las consecuencias de esta nueva crisis, graves sin duda, aún no se sabe hasta dónde pueden alcanzar. Por tanto, el sector de la construcción vuelve a sufrir una convulsión de difícil pronóstico. Las nuevas tecnologías están teniendo un papel determinante en la forma de afrontar esta coyuntura, especialmente en el trabajo no presencial. Los cambios que podrían tardar décadas en llegar, nos han alcanzado de repente. La pregunta es la de siempre: ¿cómo afrontar la competitividad de las empresas en escenarios tan cambiantes como los actuales?

Parece evidente que la metáfora darwinista de la evolución podría aplicarse, con todas las cautelas necesarias, al mundo empresarial. Solo sobrevivirán aquellas organizaciones capaces de adaptarse rápidamente al nuevo entorno. Y para ello no es suficiente la mejora continua de nuestros procesos y productos, sino que se requiere un cambio radical, rupturista, basado en la innovación, capaz de crear un “océano azul” donde la competencia sea irrelevante.

A continuación os paso una clase que tuve que impartir en línea sobre la gestión de la innovación en las empresas constructoras. Se trata de una clase impartida en la asignatura “Gestión de la innovación en el sector de la construcción” del Máster Universitario en Planificación y Gestión en Ingeniería Civil (MAPGIC) de la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de la Universitat Politècnica de València. La dejo en abierto para que la pueda ver quien esté interesado.

La resiliencia de las infraestructuras

Figura 1. https://www.un.org/sustainabledevelopment/es/2015/09/infraestructura-innovacion-e-industrias-inclusivas-claves-para-el-desarrollo/

La resiliencia es un concepto que viene del mundo de la psicología y representa la capacidad para adaptarse de forma positiva frente a situaciones adversas. Proviene del latín resilio, “volver atrás, volver de un salto, resaltar, rebotar”. En el campo de la mecánica, la resiliencia sería la capacidad de un material para recuperar su forma inicial después de haber sido deformado por una fuerza. En la ecología, un sistema es resiliente si puede tolerar una perturbación sin colapsar a un estado completamente distinto, controlado por otro conjunto de procesos. En un entorno tecnológico, este término se relaciona con la capacidad de un sistema de soportar y recuperarse ante desastres y perturbaciones. En este artículo vamos a indagar en el concepto de resiliencia de las infraestructuras.

Así, dentro de los objetivos de desarrollo sostenible de Naciones Unidas (Figura 1), encontramos el Objetivo 9: Construir infraestructuras resilientes, provomer la industrialización sostenible y fomentar la innovación. En efecto, las infraestructuras deben hacer frente al crecimiento de la población, pero también a los crecientes peligros físicos (cinéticos) como el terrorismo, o los asociados al clima extremo y los desastres naturales. La frecuencia y gravedad de estos eventos extremos se prevén crecientes, y por tanto, es más que previsible un aumento en los costes e impacto humano. Además, debido a la cada vez más informatización y digitalización de las infraestructuras, el riesgo de ataques informáticos a las infraestructuras es más que evidente.

La resiliencia puede asociarse con cuatro atributos: robustez, que es la capacidad para resistir un evento extremo sin que el fracaso en la funcionalidad sea completo; rapidez, que sería la capacidad de recuperarse de forma eficiente y efectiva; la redundancia, que sería la reserva de componentes o de sistemas estructurales sustitutivos; y el ingenio, que sería la eficiencia en la identificación de problemas, priorizando soluciones y movilizando recursos para su solución (Bruneau et al., 2003).

Matemáticamente se puede evaluar la resiliencia integrando la curva de funcionalidad a lo largo del tiempo (ver Figura 2).

donde Q(t) es la funcionalidad; t0 es el momento en el que ocurre el evento extremo y Tr es el horizonte hasta donde se estudia la funcionalidad.

Figura 2. Valoración de la resiliencia tras un evento extremo (Anwar et al., 2019)

En la Figura 2 se pueden observar los tres estados correspondientes con la funcionalidad. En la situación de fiabilidad, la infraestructura se encuentra con la funcionalidad de referencia, previo al evento extremo. La situación de recuperación comienza tras la ocurrencia del evento extremo, con una pérdida de funcionalidad dependiente de la robustez de la infraestructura, y con una recuperación que depende de los esfuerzos realizados en la reparación, que puede ser rápida o lenta en función del ingenio o la creatividad en las soluciones propuestas, así como de la redundancia de los sistemas previstos. Por último, la situación recuperada es la que ocurre cuando la funcionalidad vuelve a ser la de referencia.

Se comprueba en la Figura 2 cómo una infraestructura pasa de una funcionalidad de referencia a una residual tras el evento extremo. Tras el evento, puede darse una demora en la recuperación de la funcionalidad debido a las tareas de inspección, rediseño, financiación, contratación, permisos, etc.). La recuperación completa de la funcionalidad depende de la forma en la que se han abordado las tareas de reparación. Es fácil comprobar que la resiliencia se puede calcular integrando la curva de recuperación de la funcionalidad desde la ocurrencia del evento extremo hasta la completa recuperación, dividiendo dicho valor por el tiempo empleado en dicha recuperación.

Este modelo simplificado permite establecer las pautas para mejorar la resiliencia de una infraestructura:

a) Incrementando la robustez de la infraestructura, es decir, maximizar su funcionalidad residual tras un evento extremo.

b) Acelerando las actividades de recuperación de la funcionalidad de la infraestructura.

En ambos casos, es necesario concebir la infraestructura desde el principio con diseños robustos, con sistemas redundantes y con una previsión de las tareas de reparación necesarias.

Con todo, la capacidad de recuperación comprende cuatro dimensiones interrelacionadas: técnica, organizativa, social y económica (Bruneau et al., 2003). La dimensión técnica de la resiliencia se refiere a la capacidad de los sistemas físicos (incluidos los componentes, sus interconexiones e interacciones, y los sistemas enteros) para funcionar a niveles aceptables o deseables cuando están sujetos a los eventos extremos. La dimensión organizativa de la resiliencia se refiere a la capacidad de las organizaciones que gestionan infraestructuras críticas y tienen la responsabilidad de tomar decisiones y adoptar medidas que contribuyan a lograr la resiliencia descritas anteriormente, es decir, que ayuden a lograr una mayor solidez, redundancia, ingenio y rapidez. La dimensión social de la resiliencia consiste en medidas específicamente diseñadas para disminuir los efectos de los eventos extremos por parte de la población debido a la pérdida de infraestructuras críticas. Análogamente, la dimensión económica de la resiliencia se refiere a la capacidad de reducir tanto las pérdidas directas e indirectas de los eventos extremos.

El problema de estas cuatro dimensiones se pueden sumar de forma homogénea, con interrelaciones entre ellas. El reto consiste en cuantificar y medir la resiliencia en todas sus dimensiones, así como sus interrelaciones. Se trata de un problema de investigación de gran trascendencia y complejidad, que afecta al ciclo de vida de las infraestructuras desde el inicio de la planificación (Salas y Yepes, 2020).

Referencias:

ANWAR, G.A.; DONG, Y.; ZHAI, C. (2020). Performance-based probabilistic framework for seismic risk, resilience, and sustainability assessment of reinforced concrete structures. Advances in Structural Engineering, 23(7):1454-1457.

BRUNEAU, M.; CHANG, S.E.; EGUCHI, R.T. et al. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake Spectra 19(4): 733–752.

SALAS, J.; YEPES, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planning. International Journal of Environmental Research and Public Health, 17(3): 962. DOI:10.3390/ijerph17030962

El misterio de los muros serpenteantes “crinkle crankle walls”

Figura 1. “Crinkle crankle wall” localizado en Bramfield, Suffolk. Wikipedia

A veces una imagen es muy eficaz para explicar un concepto aparentemente sencillo como la influencia del momento de inercia en la resistencia de una sección estructural. Para eso utilicé los llamados “muros serpenteantes“, también llamados “crinkle crankle walls“, muros que se popularizaron en el Reino Unido en el siglo XVIII. Lo digo porque el otro día puse en Twitter una pregunta aparentemente sencilla como la siguiente: ¿Por qué creéis que en Inglaterra a veces nos encontramos con este tipo de muros ondulados? ¿Se trata de algo decorativo? Tiene una explicación mucho más profunda. Es una pregunta típica que suelo hacer a mis estudiantes para que incentivarles al pensamiento crítico y para que puedan enlazar conceptos que aprendieron en otras asignaturas.

La sorpresa ha sido mayúscula. El tuit ha sido retuiteado y comentado muchísimo más de lo que esperaba. Muchas contestaciones han sido correctas. Otras, incluso siendo correctas, son muy creativas.

La verdad es que la forma ondulada permite un aumento considerable del momento de inercia de la sección, lo cual permite reducir las tensiones provocadas por el momento flector en la base. Esto permite reducir la cantidad de ladrillos necesarios en el caso de ser un muro recto: se tendría que realizar un muro doble y, probablemente, reforzar con algún pilar intermedio o contrafuerte, dependiendo de la altura del muro y de las acciones previstas, especialmente el viento. La solución, como veis, es bastante sencilla con unos conocimientos muy básicos de resistencia de materiales y cálculo estructural. Lo que es evidente, es que esta geometría precisa de cierta destreza por parte de los oficiales que ejecutan el muro, y algo más de tiempo.

Sin embargo, las respuestas recibidas van más allá de esta consideración. Os voy a comentar algunas de ellas para que veáis que la inteligencia colectiva, a veces, ofrece soluciones de los más creativas.

Por ejemplo, Amaia López nos ilustra un ejemplo de muro serpenteante que se encuentra en nuestro país, en concreto, en Caldes de Montbui (Barcelona).

Figura 2. Muro serpenteante en Caldes de Montbui (Barcelona). Fuente: Amaia López

Otros son más creativos, como Rafael Naranjo, que nos dice que podría ser la forma para defender ciertas posiciones en la batalla, aunque creo que en Inglaterra estos muros no tienen mucho que ver con este tipo de estrategias bélicas. También muchas respuestas han comentado el aumento de la estabilidad del muro, aunque para eso tenemos el cimiento, que debería ser quien asegurara este estado límite. Alguno se inclina por hablar de las ondas sísmicas y su afección al muro. Por cierto, alguien ha querido traducir “crinkle crankle” como “cigüeña arrugada”, aunque yo me quedo mejor con el nombre de “muro serpenteante”.

Metidos en Carretera (@MetEnCarretera) nos ofrece una explicación con el símil de algunas soluciones prefabricadas, para ganar canto sin incrementar el espesor del muro. Este es un buen ejemplo.

Figura 3. Ejemplo de muro prefabricado. Fuente: @MetEnCarretera

Otras explicaciones apuntan al efecto arco que presenta el muro, haciendo que los efectos de flexión se transformen en compresión. Eso me recuerda a la solución genial de Eduardo Torroja para la cubierta del hipódromo de la Zarzuela, aunque la diferencia es que el muro serpenteante tiene una sola curvatura, y la cubierta citada tiene doble curvatura. Una idea sería usar esta forma para muros de contención prefabricados. Ahí lo dejo.

Figura 4. Hipódromo de la Zarzuela. Wikipedia

Interesante la puntualización de Luis Bañón (@luisbanon) respecto al problema que pueden presentar estos muros delgado si choca frontalmente un vehículo debido al punzonamiento. Santiago Calvo nos da un motivo agrícola, como es la ampliación de la superficie de cultivo de fruta aprovechando las zonas de sombra que proporciona esta geometría, y también un motivo estético, como es su uso en la Universidad de Virginia. Quisco Mena, incluso argumenta que, además de la inercia, esta forma permite eliminar las juntas de dilatación.

Como resumen, no dejo de sorprenderme cada día en las redes sociales. A veces hay mucha tontería, pero otras veces se aprende. Este es un ejemplo de interactuar con mis estudiantes y abrir un debate interesante en redes.

Os dejo algunos vídeos de esta tipología de muro. También podéis ver muchas fotografías de esta tipología aquí: https://www.boredpanda.es/muros-ondulados/?utm_source=google&utm_medium=organic&utm_campaign=organic

 

Puentes mixtos: diseño, análisis de ciclo de vida, mantenimiento y toma de decisiones

Acaban de publicarnos un artículo en la revista Advances in Civil Engineering,  revista indexada en el JCR. Se trata de un artículo de revisión del estado del arte de los puentes mixtos de hormigón y acero desde los puntos de vista del diseño, análisis del ciclo de vida, mantenimiento y toma de decisiones. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Los puentes mixtos de acero y hormigón se utilizan como alternativa a los puentes de hormigón debido a su capacidad de adaptar su geometría a las limitaciones de diseño y a la posibilidad de reutilizar algunos de los materiales de la estructura. En esta revisión del estado del arte, informamos de la investigación realizada sobre el diseño, el comportamiento, la optimización, los procesos de construcción, el mantenimiento, la evaluación del impacto y las técnicas de toma de decisiones de los puentes mixtos para llegar a un enfoque de diseño completo. Además de un análisis cualitativo, se utiliza un análisis multivariante para identificar las lagunas de conocimiento relacionadas con el diseño de los puentes y para detectar las tendencias de la investigación. Un objetivo adicional es hacer visibles las lagunas en el diseño sostenible de los puentes mixtos, lo que permite centrar los futuros estudios de investigación. Los resultados de esta labor muestran cómo la investigación se ha centrado en el diseño preliminar de puentes con un enfoque principalmente económico, mientras que a nivel mundial la preocupación se dirige a la búsqueda de soluciones sostenibles. Se ha comprobado que las estrategias de evaluación del impacto del ciclo de vida y de adopción de decisiones permiten a los gestores de los puentes mejorar la adopción de decisiones, en particular al final del ciclo de vida de los puentes mixtos.

Abstract

Steel-concrete composite bridges are used as an alternative to concrete bridges because of their ability to adapt their geometry to design constraints and the possibility of reusing some of the materials in the structure. In this review, we report the research carried out on the design, behavior, optimization, construction processes, maintenance, impact assessment, and decision-making techniques of composite bridges in order to arrive at a complete design approach. In addition to a qualitative analysis, a multivariate analysis is used to identify knowledge gaps related to bridge design and to detect trends in research. An additional objective is to make visible the gaps in the sustainable design of composite steel-concrete bridges, which allows us to focus on future research studies. The results of this work show how researchers have concentrated their studies on the preliminary design of bridges with a mainly economic approach, while at a global level, concern is directed towards the search for sustainable solutions. It is found that life cycle impact assessment and decision-making strategies allow bridge managers to improve decision-making, particularly at the end of the life cycle of composite bridges.

Reference:

MARTÍNEZ-MUÑOZ, D.; MARTÍ, J.V.; YEPES, V. (2020). Steel-concrete composite bridges: design, life cycle assessment, maintenance and decision making. Advances in Civil Engineering, 2020, 8823370. DOI:10.1155/2020/8823370

Descargar (PDF, 1.34MB)

 

 

 

Optimización de muros de contrafuertes mediante algoritmo híbrido de enjambre de partículas y clustering

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo se presenta un algoritmo híbrido de enjambre de partículas y clustering para optimizar el coste y las emisiones de CO2 de un muro de contrafuertes. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El diseño de los muros de contrafuertes es un problema de optimización combinatoria de interés debido a las aplicaciones prácticas relativas al ahorro de costos que implica el diseño y la optimización en la cantidad de emisiones de CO2 generadas en su construcción. Por otro lado, este problema presenta importantes retos en cuanto a complejidad computacional, pues involucra 32 variables de diseño, por lo que tenemos en el orden de 10^20 combinaciones posibles. En este artículo proponemos un algoritmo híbrido en el que se integra el método de optimización del enjambre de partículas que resuelve los problemas de optimización en espacios continuos con la técnica de clustering db-scan. Este algoritmo optimiza dos funciones objetivo: las emisiones de carbono y el costo económico de los muros de hormigón armado. Para evaluar la contribución del operador del db-scan en el proceso de optimización, se diseñó un operador aleatorio. Se comparan las mejores soluciones, los promedios y los rangos intercuartílicos de las distribuciones obtenidas. A continuación se comparó el algoritmo db-scan con una versión híbrida que utiliza k-means como método de discretización y con una implementación discreta del algoritmo de búsqueda de armonía. Los resultados indican que el operador db-scan mejora significativamente la calidad de las soluciones y que la metaheurística propuesta muestra resultados competitivos con respecto al algoritmo de búsqueda de armonía.

Abstract:

The design of reinforced earth retaining walls is a combinatorial optimization problem of interest due to practical applications regarding the cost savings involved in the design and the optimization in the amount of CO2 emissions generated in its construction. On the other hand, this problem presents important challenges in computational complexity since it involves 32 design variables; therefore we have in the order of 10^20 possible combinations. In this article, we propose a hybrid algorithm in which the particle swarm optimization method is integrated that solves optimization problems in continuous spaces with the db-scan clustering technique, with the aim of addressing the combinatorial problem of the design of reinforced earth retaining walls. This algorithm optimizes two objective functions: the carbon emissions embedded and the economic cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization process, a random operator was designed. The best solutions, the averages, and the interquartile ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a hybrid version that uses k-means as the discretization method and with a discrete implementation of the harmony search algorithm. The results indicate that the db-scan operator significantly improves the quality of the solutions and that the proposed metaheuristic shows competitive results with respect to the harmony search algorithm.

Keywords:

CO2 emission; earth-retaining walls; optimization; db-scan; particle swarm optimization

Reference:

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6):862. https://doi.org/10.3390/math8060862

Descargar (PDF, 847KB)

Evaluación del impacto ambiental y social de puentes de carretera óptimos de hormigón postesado

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo se evalúa el impacto social y ambiental de puentes de carretera óptimos de hormigón postesado. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La mayoría de las definiciones de sostenibilidad incluyen tres pilares básicos: económico, ambiental y social. El aspecto económico siempre se evalúa, pero no necesariamente en el sentido de la sostenibilidad económica. Por otra parte, el aspecto ambiental se está considerando cada vez más, mientras que el pilar social apenas se ha trabajado en él. Centrándose en los pilares ambiental y social, resulta crucial el uso de metodologías que permitan una evaluación amplia de todos los aspectos y la integración de la evaluación en unos pocos indicadores que sean comprensibles. Este artículo se estructura en dos partes. En la primera parte se hace un examen de los métodos de evaluación del impacto del ciclo de vida, que permiten una evaluación amplia de los aspectos ambiental y social. En la segunda parte, se realiza una evaluación completa de la sostenibilidad ambiental y social utilizando la base de datos de ecoinvent y el método ReCiPe, para el pilar ambiental, y la base de datos SOCA y el método simple de ponderación del impacto social, para el pilar social. Esta metodología se utilizó para comparar tres puentes optimizados: dos puentes de carretera de hormigón postensado de sección en cajón con diversas características iniciales y de mantenimiento, y un puente prefabricado de hormigón pretensado. Los resultados muestran que existe una alta interrelación entre el impacto ambiental y social para cada etapa del ciclo de vida.

Abstract

Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.

Keywords

 SustainabilityLCAS-LCAsocial assessmentecoinventSOCA

Reference:

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

Descargar (PDF, 1.52MB)

Optimización del mantenimiento del pavimento en carreteras mediante GRASP

La insuficiente inversión en el sector público junto con programas ineficaces de infraestructura de mantenimiento conducen a altos costos económicos a largo plazo. Por lo tanto, los responsables de la infraestructura necesitan herramientas prácticas para maximizar la eficacia a largo plazo de los programas de mantenimiento. En el artículo que os presento se describe una herramienta de optimización basada en un procedimiento híbrido de búsqueda aleatoria y adaptativa (GRASP) considerando la aceptación del umbral (TA) con restricciones relajadas. Esta herramienta facilita el diseño de programas de mantenimiento óptimos sujetos a restricciones presupuestarias y técnicas, explorando el efecto de diferentes escenarios presupuestarios en el estado general de la red. La herramienta de optimización se aplica a un estudio de caso, demostrando su eficiencia para analizar datos reales. Se demuestra que los programas de mantenimiento optimizado rinden un 40% más a largo plazo que los programas tradicionales basados en una estrategia reactiva. Para ampliar los resultados obtenidos en este estudio de caso, también se optimizaron un conjunto de escenarios simulados, basados en el rango de valores encontrados en el ejemplo real. El trabajo concluye que este algoritmo de optimización mejora la asignación de los fondos de mantenimiento con respecto a la obtenida con una estrategia reactiva tradicional. El análisis de sensibilidad de una gama de escenarios presupuestarios indica que el nivel de financiación en los primeros años es un factor impulsor a largo plazo de los programas de mantenimiento óptimo.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Os dejo a continuación la versión autor del artículo.

Descargar (PDF, 568KB)

 

 

 

Optimización de emisiones de CO2 y costes de muros de contrafuertes con el algoritmo del agujero negro

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo minimizamos las emisiones de CO2 en la construcción de un muro de contrafuertes de hormigón armado usando la metaheurística del agujero negro (Black Hole Algorithm). El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La optimización del costo y de las emisiones de CO2 en los muros de contención de tierras es relevante, pues estas estructuras se utilizan muy frecuentemente en la ingeniería civil. La optimización de los costos es esencial para la competitividad de la empresa constructora, y la optimización de las emisiones es relevante en el impacto ambiental de la construcción. Para abordar la optimización se utilizó la metaheurística de los agujeros negros, junto con un mecanismo de discretización basado en la normalización mínimo-máxima. Se evaluó la estabilidad del algoritmo con respecto a las soluciones obtenidas; se analizaron los valores de acero y hormigón obtenidos en ambas optimizaciones. Además, se compararon las variables geométricas de la estructura. Los resultados muestran un buen rendimiento en la optimización con el algoritmo de agujero negro.

Abstract

The optimization of the cost and CO 2 emissions in earth-retaining walls is of relevance, since these structures are often used in civil engineering. The optimization of costs is essential for the competitiveness of the construction company, and the optimization of emissions is relevant in the environmental impact of construction. To address the optimization, black hole metaheuristics were used, along with a discretization mechanism based on min–max normalization. The stability of the algorithm was evaluated with respect to the solutions obtained; the steel and concrete values obtained in both optimizations were analyzed. Additionally, the geometric variables of the structure were compared. Finally, the results obtained were compared with another algorithm that solved the problem. The results show that there is a trade-off between the use of steel and concrete. The solutions that minimize CO 2 emissions prefer the use of concrete instead of those that optimize the cost. On the other hand, when comparing the geometric variables, it is seen that most remain similar in both optimizations except for the distance between buttresses. When comparing with another algorithm, the results show a good performance in optimization using the black hole algorithm.

Keywords

CO2 emission; earth-retaining walls; optimization; black hole; min–max discretization

Reference:

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12, 2767. DOI:10.3390/su12072767

Descargar (PDF, 770KB)

Valoración multicriterio de alternativas sostenibles para viviendas unifamiliares

Acaban de publicarnos un artículo en la revista Journal of Cleaner Production, revista de ELSEVIER indexada en el primer decil del JCR.

En este artículo se presenta un estudio de tres alternativas estructurales diferentes que se aplican a un chalet adosado para facilitar la toma de decisiones, basándose en múltiples criterios y teniendo en cuenta la sostenibilidad. La metodología empleada permite identificar la estructura y evaluar las diferentes alternativas aquí propuestas para encontrar la opción óptima. Se compara una solución de referencia tradicional, un diseño prefabricado y, finalmente, una opción tecnológica basada en un sistema estructural integral de hormigón armado. El estudio proporciona un conjunto de indicadores para evaluar los aspectos ambientales, económicos y sociales de un edificio a lo largo de su ciclo de vida.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El artículo lo podéis descargar GRATUITAMENTE hasta el 25 de abril de 2020 en el siguiente enlace:

https://authors.elsevier.com/a/1ah94_LqUdMgSB

Abstract

In the architecture sector, single-family housing projects are often linked to demand from private clients, without arousing very much interest from developers, who seek higher returns on other real estate assets. For any owner, the construction of a home is perhaps the biggest investment of their life, and success or failure will therefore depend on the right decision. This paper presents a study of three different structural alternatives that are applied to a terraced house to facilitate decision making by a self-promoter, based on multiple criteria and taking sustainability into consideration. The methodology used allows us to identify the structure and to evaluate the different alternatives proposed here in order to find the optimal option. A comparison is drawn between a traditional reference solution, a pre-cast design and finally a technological option based on an integral reinforced concrete structural system. Although the technical feasibility of these last two solutions has been proven, they have not yet received enough attention from researchers to allow the thermal envelope of the building to be solved at the same time as the structure itself. The last of these alternatives achieved the best valuation, although it is neither the most widely used alternative or the quickest to build. This study demonstrates the practical versatility of a method that is seldom used in residential construction and only rarely used for single-family homes. We evaluate three alternatives for optimizing the structure and enveloping walls of a self-promoted, terraced house from a sustainability perspective. The study provides a set of indicators for assessing the environmental, economic and social aspects of a building throughout its life cycle. The sustainability index of the structural envelope obtained in this way allows a self-promoter to prioritize solutions to ensure its global sustainability.

Highlights

  • Each self-promoting decisions influence the global model of sustainable construction.
  • Self-construction prioritizes economic and functional aspects in the life cycle.
  • Three alternatives comparing traditional structure with non-conventional MMC systems.
  • A balance between the indicators favours a better sustainability index.
  • Reinforced concrete technology in housing reduces 10% lead times and 23% cost.

Keywords

Single-family house
Multi-criteria decision making
Sustainable design
MIVES
Ytong
Elesdopa

Reference:

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, 120556. DOI:10.1016/j.jclepro.2020.120556