Evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero

Acaban de publicarnos un artículo en el Journal of Marine Science and Engineering, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En los últimos tiempos, se han llevado a cabo reparaciones y mantenimiento en estructuras para prevenir el colapso súbito y los consiguientes daños económicos y humanos. La presencia de iones cloruro es un factor natural que contribuye a la degradación de las estructuras en entornos marinos, reduciendo su vida útil. Por lo tanto, es esencial supervisar regularmente el estado de los edificios costeros de hormigón para repararlos a tiempo. El objetivo de este estudio es evaluar el método de densidad espectral de potencia (PSD) como un método no destructivo de detección de daños para monitorizar la ubicación y cantidad de daños causados por los iones cloruro durante la vida útil de una estructura. Se utilizan diferentes enfoques, como la evaluación del ciclo de vida (LCA) y su coste (LCCA).

En este sentido, en primer lugar, se calculó el daño por corrosión causado por los cloruros en función de la distancia de la zona al agua de mar para determinar la vida útil de cada parte de un puente de hormigón en ambiente marino mediante el método convencional. A continuación, se estimó el deterioro del hormigón, basándose en la corrosión de las barras de refuerzo cada año. El método PSD permitió controlar la pérdida anual de sección transversal de la armadura, las variaciones en las características dinámicas (como la rigidez y la masa) y la vida útil de la estructura del puente mediante ecuaciones de sensibilidad y el algoritmo de mínimos cuadrados lineales. Por último, se compararon los costes del ciclo de vida (CCV) y los costes de mantenimiento y reparación del método PSD con el método convencional en función de la ubicación y calidad de los daños en cada año de vida del puente hasta el final de su vida útil. Los resultados mostraron que esta estrategia fue muy eficaz para reducir y optimizar los costes de mantenimiento y reparación causados por la corrosión por cloruros.

Figura 1. Dimensiones de un vano del puente de Arosa

Abstract:

Repairs and maintenance have recently been necessary to prevent sudden collapses of structures, which can lead to human and financial damage. Chloride ions are a natural factor in marine environments that deteriorate structures and reduce lifespan. Therefore, it is essential to regularly monitor the condition of concrete coastal buildings to ensure timely repairs. This study aims to evaluate the performance of the power spectral density (PSD) method as a non-destructive damage detection method for monitoring the location and amount of damage caused by chloride ions during a structure’s lifespan. The study employs different approaches, including life-cycle assessment (LCA) and life-cycle cost assessment (LCCA). The conventional method calculates the chloride corrosion damage dependent on the zone’s distance from seawater to determine the service life of each part of a coastal concrete bridge. The next stage forecasts the bridge’s concrete deterioration based on the rebar corrosion each year. The PSD method monitors the annual loss of reinforcement cross-sectional area, dynamic characteristics such as stiffness and mass changes, and the bridge structure’s lifespan using sensitivity equations and the linear-least-squares algorithm. Finally, the LCCA and maintenance and repair costs of the PSD method are compared to the conventional method based on the location and quality of damage in each year of the bridge’s life until the end of its service life. The results show that this strategy effectively reduces and optimizes the maintenance and repair costs caused by chloride corrosion.

Keywords:

Life-cycle cost assessment (LCCA); non-destructive damage-detection technique; chloride ion attack; steel corrosion; power spectral density method (PSD); concrete coastal bridge.

Reference:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

Descargar (PDF, 3.17MB)

Desarrollo regional sostenible de la construcción basada en la teoría de la entropía

Acaban de publicarnos un artículo en Sustainability, revista indexada en el segundo cuartil del JCR. Se trata de aplicar la teoría de la entropía para evaluar el desarrollo sostenible de la construcción en una región determinada, en este caso, en China. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La humanidad se enfrenta actualmente al problema cada vez más urgente de la contaminación del medio ambiente. Para gestionar de forma rigurosa el medioambiente, los distintos gobiernos nacionales deberían basarse en bases científicas prácticas para ajustar y formular políticas y medidas legales basadas en el análisis de los datos existentes. En este trabajo se realiza un análisis basado en la teoría de la entropía de la innovación para evaluar el impacto de ocho provincias chinas, incluyendo los impactos ambientales, los económicos y los sociales. Los resultados muestran que los impactos en China deberían crecer desde 2021 hasta 2044 aproximadamente. Después de 2045, se estabilizarían, habiendo un crecimiento negativo en un corto período. La evaluación global del ciclo de vida (ECV) y la evaluación del impacto social (EIS) siguen siendo positivas. No habrá crecimiento negativo en los datos agregados y las emisiones serán nulas o negativas antes de 2108. Los datos finales de la investigación se presentan en forma de emisiones anuales, que proporcionan una base teórica para que el gobierno formule normativas y planes medioambientales a medio y largo plazo.

Abstract:

Human beings are now facing the increasingly urgent problem of global ecological environment pollution. To verify the scientific nature of environmental governance by governments of various countries, researchers need to provide a scientific basis and practical support for governments to adjust and formulate new policies and regulatory measures at any time through data analysis. This paper applies visual literature, aggregate analysis, engineering data programming, advanced mathematical science algorithms, and innovation entropy theory, and through this study, obtains sustainable impact data from eight Chinese provinces in the 21st century, including environmental, economic, and social impacts. The results show that China’s sustainable data should grow from 2021 to about 2044. After 2045, it will be stable, and there will be negative growth in a short period. The overall life cycle assessment (LCA) and social impact assessment (SIA) remain positive. There will be no negative growth in aggregate data and zero or negative emissions before 2108. The final research data are accurately presented in the form of annual emissions, which provide a scientific and theoretical basis for the government to formulate medium- and long-term ecological regulations and plans.

Keywords:

life cycle cost (LCC); life cycle assessment; social impact assessment; environment; bridge; carbon emissions

Reference:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2022). Research on Sustainable Development of the Regional Construction Industry Based on Entropy Theory. Sustainability, 14(24): 16645. DOI:10.3390/su142416645

Como el artículo está publicado en abierto, os lo podéis descargar aquí mismo:

Descargar (PDF, 3.4MB)