Mesa vibrante de hormigón

Figura 1. Mesa vibrante para compactar hormigón. https://www.eralki.com/maquinas/mesas-compactacion/

Por lo general, una mesa vibrante está compuesta por una superficie de acero u hormigón armado, con vibradores externos montados en el marco de soporte (ver Figura 1). Tanto la mesa como el marco están aislados de la base mediante resortes de acero, juntas aislantes de neopreno u otros dispositivos similares. La propia mesa puede formar parte del molde. Sin embargo, normalmente se coloca un molde separado sobre la mesa. La vibración se transmite desde la mesa al molde y luego al hormigón. Existen diferentes opiniones sobre la conveniencia de sujetar el molde a la mesa.

Normalmente, se prefiere una vibración de baja frecuencia (por debajo de 100 Hz) y alta amplitud (más de 0,13 mm), al menos para mezclas más rígidas. La efectividad de la vibración de mesa depende en gran medida de la aceleración impartida al concreto por la mesa. Generalmente, se recomiendan aceleraciones en el rango de 3 g a 10 g (30 m/s² a 100 m/s²), siendo necesarios valores más altos para las mezclas más rígidas. Además, la amplitud no debe ser inferior a 0,025 mm para mezclas plásticas, ni a 0,050 mm para mezclas más rígidas.

Se trata de mesas conformadas por un tablero rígido, comúnmente de acero, que se sostiene de manera elástica sobre una base fija adecuadamente aislada. La vibración se genera mediante generadores ubicados debajo del tablero. En mesas de dimensiones pequeñas (aproximadamente L = 1,50 m), un solo vibrador es suficiente, pero si las dimensiones son mayores, se requiere aumentar proporcionalmente el número de vibradores.

Estas mesas vibrantes se utilizan tanto en laboratorios como en la compactación de elementos prefabricados de hormigón. Por lo tanto, la amplitud y la frecuencia del vibrador deben ser ajustables para adaptarse a los diferentes tipos de hormigón. Es esencial que el tablero sea completamente rígido para garantizar una transmisión uniforme de las vibraciones a toda la pieza.

Figura 2. Movimiento de las masas excéntricas.

Los vibradores, similares a los vibradores externos de encofrado, cuentan con dos masas excéntricas que giran en direcciones opuestas, generando fuerzas vibratorias perpendiculares a la mesa. Deben tener una amplitud elevada y baja frecuencia, ya que los hormigones utilizados en la prefabricación suelen ser secos.

Al igual que con los vibradores de encofrado, la fuerza centrífuga del vibrador puede calcularse aproximadamente en función de los pesos del hormigón y del molde o encofrado, mediante la siguiente fórmula:

donde:

  • PM: peso de la mesa (más el del molde si es solidario a ella)
  • Pm: peso del molde (apoyado y convenientemente fijado a la mesa)
  • Ph: peso del hormigón
  • k: coeficiente variable, que va de 0,5 a 4 según la rigidez de la mesa.

Cuando se vayan a vibrar secciones de hormigón de diferentes tamaños, la mesa debe tener una amplitud variable. Una frecuencia variable es una ventaja adicional.  Si la mesa vibratoria tiene un elemento vibrante que contiene solo un excéntrico, puede generarse un movimiento vibratorio circular que imparte un movimiento rotacional no deseado al hormigón. Esto puede evitarse montando dos vibradores uno al lado del otro, de tal manera que sus ejes giren en direcciones opuestas. Esto neutraliza la componente horizontal de la vibración, de modo que la mesa esté sujeta únicamente a un movimiento armónico simple en la dirección vertical. De esta manera, se pueden obtener amplitudes muy altas. Para lograr una buena consolidación de mezclas muy rígidas, con frecuencia es necesario aplicar presión sobre la superficie superior durante la vibración.

Os dejo algunos vídeos sobre mesas vibradoras.

Referencias:

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vibradores de aguja para compactar el hormigón

Figura 1. Vibrador de aguja. https://www.kiloutou.com/es/c/vibrador-hormigon/

La vibración interna o por inmersión se realiza introduciendo en la masa de hormigón un elemento tubular, conocido como vibrador de aguja. Este dispositivo está compuesto por una cabeza cilíndrica metálica, resistente al desgaste y fácilmente intercambiable, que alberga en su interior el mecanismo vibratorio. Estos son los más utilizados en obras de carácter general. En la mayoría de situaciones, los vibradores internos requieren el efecto refrigerante del hormigón para prevenir el sobrecalentamiento, es decir, el hormigón actúa como un refrigerante.

La vibración por inmersión es una forma de compactación eficiente, pues el vibrador está en contacto directo con el hormigón. Esto permite que el vibrador actúe y cambie de posición según sea necesario, adaptándose al tipo de hormigón. Presentan la ventaja de ser sencillos de manejar y llevar de un lugar a otro. Su efecto se restringe a una masa contenida en un tronco de cono con un diámetro mayor en la superficie que en el fondo, efecto causado por la mayor viscosidad del hormigón en las capas inferiores. Esta situación requiere insertar el vibrador en distintos puntos para que las zonas de acción se superpongan. Por lo general, la separación entre los pinchazos, en centímetros, es equivalente al tamaño de la aguja en milímetros. La distancia entre los puntos de inmersión también depende de la consistencia del hormigón, la forma y tamaño de la pieza, y el tipo específico de vibrador. Además, el radio de acción de un vibrador interno es significativamente menor en el caso del hormigón armado en comparación con el hormigón en masa. Esta reducción puede alcanzar hasta un 50 %.

Los vibradores internos utilizados en la actualidad son de tipo rotativo. Los impulsos vibratorios se generan desde la cabeza del vibrador en ángulo recto. Esta maquinaria suele operar a altas frecuencias (entre 200 Hz y 300 Hz) para producir vibraciones intensas y radios de acción suficientes, gracias a su peso reducido. Con el paso del tiempo, ha habido una tendencia a emplear vibradores de aguja con diámetros más pequeños, incrementando la frecuencia de vibración para conseguir una mayor eficacia. Este cambio también se debe a la demanda de herramientas ligeras y la construcción de obras con secciones delgadas y armaduras cada vez más densas.

Figura 2. Retirar el vibrador de forma lenta. https://diariodecolima.com/noticias/detalle/2022-08-30-vibrado-de-concreto-cmo-contribuye-a-la-resistencia-de-una-obra

En cuanto al proceso, el vibrador interno se introduce verticalmente en el hormigón de manera rápida, pero no debe permanecer en funcionamiento durante un periodo prolongado para prevenir segregaciones o exudaciones, especialmente en hormigones fluidos. Debe continuarse la vibración hasta que las burbujas de aire grandes aparezcan esporádicamente y comience a formarse una capa muy delgada de mezcla fina. Los tiempos habituales de vibrado son de 10 a 15 segundos, al final de los cuales el vibrador debe retirarse lentamente. Tiempos excesivamente largos pueden causar segregación, especialmente si el hormigón no es muy seco. Prolongar el tiempo de vibración para eliminar todo el aire más allá de lo necesario no es práctico y, en hormigones mal dosificados, puede causar efectos nocivos como la disgregación del material. No obstante, es importante tener en cuenta que un exceso de vibración es menos perjudicial que una vibración insuficiente. La extracción debe ser lenta, para que el orificio que se forma se rellene con hormigón y mortero. Es preferible vibrar menos tiempo en muchos puntos, en vez de mucho tiempo en pocos puntos. La Tabla 1 incluye valores orientativos de amplitud y frecuencia, así como el radio de acción y la velocidad de vertido recomendados para diferentes calibres.

Tabla 1. Valores característicos de vibradores de inmersión

Ø vibrador (mm) Frecuencia (Hz) Amplitud (mm) Radio de acción (cm) Velocidad de vertido (m3/h)
20 – 40 170 – 250 0,4 – 0,8 8 – 15 0,8 -4
30 – 60 150 – 225 0,5 – 1,0 13 – 25 2,5 – 8
50 – 90 130 – 200 0,6 – 1,3 18 – 35 4,5 – 15
80 – 150 120 – 180 0,8 – 1,5 30 – 50 11- 30
En general, se considera que la capa de hormigón debe tener una altura inferior a la longitud de la aguja del vibrador para poder revibrar la capa inferior al mismo tiempo que se vibra la superior; no obstante, esto puede resultar complicado de conseguir. Al compactar en profundidad las sucesivas capas de hormigón, el vibrador debe introducirse entre 10 y 15 cm en la capa anterior para asegurar la unión entre las capas (Figura 2).
Figura 2. 10 cm de penetración del vibrador en la capa inferior del hormigón. https://www.vibrafrance.fr/es/content/6-conseils-techniques

Las diferentes inserciones deben situarse aproximadamente a vez y media el radio de acción del vibrador interno para generar solapamientos. Como regla práctica, se puede decir que la distancia entre los puntos de inmersión debería ser unas 8 a 10 veces el diámetro de la aguja. Normalmente, no debe excederse los 50 cm entre los puntos de inserción (Figura 3).

Figura 3. Empleo del vibrador interno.

Durante la vibración, se debe evitar que el vibrador toque el encofrado. Se debería mantener una distancia de unos 10 cm entre el vibrador y las caras verticales de los encofrados para evitar la formación de burbujas superficiales. En cuanto a las armaduras, aunque la norma tradicional recomienda no tocarlas, puede ser beneficioso vibrarlas para lograr una mayor adherencia y una densidad más alta del hormigón en las zonas con mayor concentración de barras. Tampoco se debe distribuir el hormigón utilizando el vibrador de aguja.

El campo óptimo de actuación de estos aparatos se encuentra con relaciones agua/cemento entre 0,4 y 0,6. Con valores inferiores, el hormigón se vuelve muy rígido, y con valores superiores, muy fluido, lo que puede causar problemas de exudación.

Una vibración inadecuada puede provocar distintos defectos en el hormigón:

  • Panal de abeja: Se forman bolsas de áridos sin mortero cuando la vibración es incompleta y no sistemática.
  • Estratos de hormigonado o vetas entre tongadas: Aparecen cuando no se realiza el revibrado y la fusión con la capa anterior, es decir, no se ha llevado a cabo el cosido de capas.
  • Vetas o regueros de arena en la superficie: Ocurren debido a una mala dosificación del hormigón y a fugas en los encofrados, que permiten la pérdida de lechada por una vibración excesiva.
  • Aire ocluido no expulsado: Se manifiesta como huecos de aire en la superficie causados por burbujas de aire que no pudieron salir debido a un tiempo insuficiente de vibrado. Los encofrados de madera permiten liberar las burbujas de aire y logrando una mejor apariencia superficial que con los encofrados metálicos.
  • Fugas en los encofrados y superficies bombeadas: Se producen por un vibrado excesivo o encofrados que no son estancos y resistentes a la vibración.

Desde la perspectiva del tipo de energía, existen tres tipos de vibradores internos: eléctricos, hidráulicos (especialmente utilizados en carreteras y presas), y de aire comprimido.

  • Las agujas eléctricas operan a 200 Hz y están diseñadas para el vibrado de hormigón en edificaciones e ingeniería civil. Los vibradores con motor eléctrico integrado en la cabeza han ganado popularidad en los últimos años. Al tener el motor ubicado en la cabeza del vibrador, no se necesitan motores o flechas separados. Desde la cabeza, sale un cable eléctrico resistente que también sirve como mango. Estos vibradores suelen tener un diámetro mínimo de 50 mm. Este tipo de vibradores está disponible en dos diseños. Uno de ellos utiliza un motor universal y el otro un motor trifásico de 180 Hz (alta frecuencia). En este último caso, la energía generalmente proviene de un motor a gasolina portátil; sin embargo, también se puede utilizar corriente comercial pasada a través de un convertidor de frecuencia. El diseño con motor de inducción experimenta una ligera disminución de velocidad al sumergirse en el hormigón. Esto permite que pueda rotar con un peso excéntrico mayor y desarrollar una fuerza centrífuga más alta que la que producen los modelos con motores eléctricos en la cabeza de un diámetro similar. En algunos países, se utilizan motores para vibradores de 150 o 200 Hz.
  • Los vibradores neumáticos presentan el motor neumático típicamente ubicado dentro de la cabeza del vibrador. El diseño más común emplea aspas que sostienen tanto el motor como los elementos excéntricos sobre apoyos. Sin embargo, existen modelos sin apoyos que requieren menos mantenimiento, así como algunos con flecha flexible que colocan el motor neumático fuera de la cabeza. El uso de vibradores neumáticos presenta ventajas cuando el acceso al aire comprimido es fácil. La frecuencia de vibración depende en gran medida de la presión del aire, la cual debe mantenerse siempre dentro de los niveles recomendados por el fabricante. En ocasiones, puede ser conveniente ajustar la presión del aire para obtener una frecuencia diferente. Las agujas neumáticas, aunque presentan características similares a las eléctricas, incluyen modelos que alcanzan los 320 Hz y diámetros de hasta 140 mm.
  • Los vibradores que funcionan con un motor hidráulico se utilizan ampliamente en las máquinas de pavimentación. Estos vibradores están conectados al sistema hidráulico de la pavimentadora mediante mangueras de alta presión. La frecuencia de vibración puede ajustarse regulando el flujo del fluido hidráulico que pasa a través del vibrador. La eficacia del vibrador depende tanto de la presión como del flujo del fluido hidráulico. Por lo tanto, es crucial realizar revisiones periódicas del sistema hidráulico para garantizar su correcto funcionamiento.

Os dejo algunos vídeos que, espero, sean de vuestro interés.

Os dejo esta presentación que tiene consejos interesantes sobre el vibrado interno del hormigón.

Descargar (PDF, 1.28MB)

Descargar (PDF, 1.39MB)

Referencias:

ACI COMMITTEE 309R-96. Guide for Consolidation of Concrete (ACI 309). American Concrete Institute.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014).Fabricación, transporte y colocación del hormigón.Apuntes de la Universitat Politècnica de València.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Nomogramas para el bombeo de hormigón

Roermond, the Netherlands, – August 08, 2019. Construction of a new highway tunnel in the center of the city.

En un artículo anterior explicamos cómo se podía calcular la presión y la potencia para el bombeo del hormigón. Aquí vamos a presentar un par de nomogramas que hemos desarrollado junto a los profesores Pedro Martínez Pagán y Daniel Boulet. Además, se incluye la resolución completa de un problema utilizando estos nomogramas.

Para los que estéis interesados en ampliar conocimientos, os recomiendo un libro de 300 problemas resueltos de Maquinaria y Procedimientos de Construcción. El libro ofrece una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras. Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 26 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil, la edificación y las obras públicas.

Podéis conseguir el libro en el siguiente enlace: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

A continuación facilitamos un nomograma propio para el cálculo, que he elaborado junto con los profesores Martínez-Pagán y Boulet.

 

Os dejo un problema resuelto con estos nomogramas.

Descargar (PDF, 640KB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones para la evaluación, selección y rehabilitación de edificios

Acaban de publicarnos un artículo en la revista científica Journal of Civil Engineering & Management (indexada en el JCR, Q1) un artículo que analiza el uso de la toma de decisiones con criterios múltiples (MCDM) para evaluar y modernizar edificios, centrándose en la integración de los criterios de seguridad y sostenibilidad. Asimismo, identifica los métodos MCDM más comunes, como el AHP, el SAW y el TOPSIS, y ofrece recomendaciones para futuras investigaciones a fin de mejorar los procesos de toma de decisiones en la renovación de edificios. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones más importantes de este trabajo son las siguientes:

  • El documento realiza una revisión exhaustiva de la literatura sobre los métodos de toma de decisiones con criterios múltiples (MCDM) para evaluar, seleccionar y modernizar edificios, haciendo hincapié en la integración de los criterios de seguridad y sostenibilidad.
  • Aborda la necesidad de realizar evaluaciones con múltiples objetivos en la modernización sostenible para demostrar la sostenibilidad tanto a corto como a largo plazo, colmando así un vacío de conocimiento en el campo de la seguridad estructural y la sostenibilidad de los edificios existentes.
  • El estudio evalúa la tendencia actual de utilizar los MCDM para integrar las tres dimensiones de la sostenibilidad con la seguridad estructural, destacando el potencial de las aplicaciones de los MCDM en la toma de decisiones en los ámbitos de la ingeniería civil, la construcción, la tecnología de la construcción y la sostenibilidad.
  • La investigación tiene como objetivo proporcionar información sobre la evaluación, la selección y la modernización de edificios sostenibles y seguros, y ofrece recomendaciones para futuras investigaciones a fin de mejorar las soluciones de toma de decisiones para integrar los aspectos de seguridad y sostenibilidad en los edificios existentes.

Las conclusiones del artículo son las siguientes:

  • El estudio revisa 91 artículos sobre la evaluación, la selección y la modernización de edificios mediante métodos de toma de decisiones basados en criterios múltiples, lo que indica el creciente interés de la comunidad científica por esta área.
  • Los investigadores se centran en los edificios públicos, en particular en las escuelas y los edificios históricos, e integran las consideraciones económicas y sociales al evaluar los edificios vulnerables y las opciones de modernización.
  • El enfoque actual hace hincapié en la integración en cuatro dimensiones de los aspectos de seguridad, económicos, sociales y ambientales en la modernización de edificios, aunque los criterios específicos para cada dimensión carecen de consenso.
  • El proceso analítico jerárquico (AHP) se utiliza ampliamente para la ponderación de los criterios, mientras que el método TOPSIS es el preferido para integrar los criterios de sostenibilidad y seguridad en la modernización de edificios.
  • El estudio destaca la necesidad de seguir investigando para abordar la subjetividad en la toma de decisiones, incorporar el análisis del ciclo de vida y explorar nuevos sistemas de gestión multifuncional para mejorar la integración de la seguridad y la sostenibilidad en las evaluaciones y modernizaciones de los edificios.

Abstract:

Multiple criteria decision-making (MCDM) has experienced significant growth in recent years, owing to its capacity to integrate even contradictory criteria. This study conducted a comprehensive literature review of MCDM for assessing, selecting, and retrofitting buildings. The bibliometric search used a search algorithm in specialized databases. A filtering and expansion process was done by reviewing references, and 91 relevant articles were selected. The analysis revealed that in a group of studies, socioeconomic criteria were used to assess the vulnerability of buildings. On the other hand, some research integrated the three dimensions of sustainability (economic, social, and environmental) along with safety considerations when identifying optimal retrofit alternatives. Classic MCDMs are prevalent in research within this field. Among the most used methods, the Analytic Hierarchy Process (AHP) was employed for criteria weighting, Simple Additive Weighting (SAW) for constructing vulnerability indices, and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for building retrofitting. This literature review contributes to the path toward a holistic renovation of the existing building stock, providing recommendations for future research to improve decision-making solutions for integrating the safety and sustainability of existing buildings.

Keywords:

Decision-making, MCDM, multi-criteria, retrofit, structural assessment, sustainability, vulnerability

Reference:

VILLALBA, P.; SÁNCHEZ-GARRIDO, A.; YEPES, V. (2024). A review of multi-criteria decision-making methods for building assessment, selection, and retrofit. Journal of Civil Engineering and Management, 30(5):465-480. DOI:10.3846/jcem.2024.21621

Os paso, para su descarga, el artículo, al publicarse en abierto.

Descargar (PDF, 1.66MB)

Colocación del hormigón mediante bombeo

Figura 1. Bombeo de hormigón. https://www.balcellsintegralservice.com/bombeo-hormigon-barcelona-autobomba-sobre-camion.html

El bombeo del hormigón depende de la capacidad del equipo utilizado, del control y la homogeneidad de todos los ingredientes de la mezcla, de la dosificación y mezclado, así como de los conocimientos y la experiencia del personal involucrado. La selección de equipos para el bombeo en condiciones óptimas depende de diversos factores específicos de cada obra. Para obtener información más detallada y concreta, se puede consultar la documentación técnica proporcionada por los fabricantes de bombas y las referencias bibliográficas disponibles. Es recomendable comunicarse con el fabricante para determinar el tipo de bomba adecuado, pues los precios de alquiler aumentan según la capacidad del equipo. Es importante buscar una solución que sea tanto razonable como eficiente.

Para que una operación de bombeo sea satisfactoria, es necesario un suministro constante de hormigón con las características adecuadas. Al igual que el hormigón convencional, requiere un buen control de calidad, una distribución homogénea de áridos, una granulometría adecuada, y materiales dosificados y mezclados uniformemente. A continuación, se ofrecen algunas pautas generales sobre el proceso de bombeo de hormigón.

El proceso de colocación del hormigón por bombeo se basa en la bomba, la tubería y, en su caso, el sistema de distribución a la salida. La bomba debe estar diseñada para aspirar y empujar el volumen de hormigón requerido a través de la tubería hasta el punto de colocación. El tamaño máximo del árido está determinado por los diámetros de los orificios de aspiración y de los cilindros de bombeo. Se recomienda que el diámetro del canal de aspiración sea al menos tres veces mayor que el tamaño máximo del árido.

Figura 2. Bomba de hormigón. https://ittcanarias.com/bombas-de-hormigon-putzmeister/

El tamaño máximo del árido grueso de forma angular se limita a un tercio del diámetro interior más pequeño de la tubería, y para áridos bien redondeados, este tamaño debe ser inferior a dos quintos de estos diámetros. El tamaño máximo del árido (TMA) influye significativamente en el volumen o cantidad de árido que puede utilizarse eficientemente. La cantidad de árido grueso debe reducirse considerablemente a medida que disminuye el TMA, pues la mayor superficie del árido de menor diámetro, o para un peso dado de árido grueso, requiere más pasta para cubrir todas las superficies, lo que reduce la cantidad de pasta disponible para lubricar la línea de la tubería. Los áridos finos o arenas juegan un papel mucho más importante en la proporción de las mezclas bombeables que los áridos gruesos. Junto con el cemento y el agua, proporcionan el mortero que conduce en suspensión los sólidos o áridos gruesos, permitiendo así que una mezcla sea bombeable.

El uso de una autobomba suele estar limitado por una longitud equivalente máxima (L), calculada con la fórmula L = H + 3·V + 10·C₁ + 5·C₂, donde L debe ser menor o igual a 350 mm. En esta fórmula, H representa la distancia horizontal, V el desnivel vertical, C₁ el número de codos a 90º y C₂ el número de codos a 135º.

En el proceso de impulsión del hormigón, el parámetro principal es la máxima presión que puede generar la bomba. Generalmente, las autobombas utilizan una tubería corta que coincide con la longitud de la pluma de distribución, lo que implica que requieren una presión de bombeo menor en comparación con las bombas estacionarias. Estas últimas pueden bombear a distancias mayores con rendimientos similares. Por ejemplo, una presión de 7 MPa puede ser suficiente para autobombas, incluso en casos de grandes caudales. Sin embargo, las bombas estacionarias necesitan alcanzar presiones de hasta 20 MPa para distancias horizontales de 1000 m o verticales de 500 m, lo que ilustra la diferencia en los requerimientos de presión entre ambos tipos de bombas.

La presión requerida para el bombeo varía según diversos factores, como la longitud, el diámetro y la cantidad de codos en la tubería, el caudal, la consistencia del hormigón y la altura. Una estimación de la presión necesaria para un caudal específico se puede obtener mediante nomogramas proporcionados por los fabricantes de los equipos. En este enlace tenéis cómo realizar el cálculo de la presión y del caudal de bombeo.

Figura 3. Nomograma presión hormigón-rendimiento. Fuente: Bombas de hormigón estacionarias, Putzmeister

Durante el proceso de bombeo, el hormigón se transporta a través de tuberías metálicas de diversos espesores, diámetros, longitudes y sistemas de acoplamiento. Los diámetros de estas tuberías suelen oscilar entre 80 mm y 150 mm, con espesores habituales que van desde 4 mm hasta 7 mm. La selección de estas variables está directamente relacionada con la presión de bombeo. Además, las longitudes típicas de los tramos individuales de tubería varían entre 1 m y 3 m.

La definición de los distintos aspectos geométricos de la tubería, junto con las características de su diseño en planta y alzado, resulta crítica para el proceso de bombeo. Además, el sentido del bombeo, ya sea ascendente o descendente, también es fundamental. Los sistemas de acoplamiento entre tramos individuales de tubería están condicionados por estas características geométricas del diseño.

Es recomendable ubicar la bomba lo más cerca posible de la zona de colocación del hormigón, utilizando una manguera flexible o un dispositivo articulado. En caso de emplear una tubería fija, se sugiere iniciar el hormigonado desde el punto más distante de la bomba. Esto permite lubricar toda la tubería al principio y luego ir desmontando secciones de tubo, conectando la manguera de descarga en la parte final. Para este procedimiento, es necesario limpiar la tubería del hormigón utilizando agua o aire a presión.

Al poner en marcha los trabajos, se recomienda lubricar el interior de la tubería con una mezcla de mortero de cemento y arena. Una proporción de una parte de cemento por dos partes de arena es suficiente para lograr una consistencia fluida. Este mortero no solo lubrica la tubería, sino que también rellena posibles cavidades en las juntas del empalme. Aunque el método de lubricación utilizando agua seguido por el paso de hormigón puede funcionar con dosificaciones especialmente diseñadas para el bombeo, existe el riesgo de obstrucciones en la tubería. Dependiendo de la naturaleza del material utilizado para la lubricación, este podrá emplearse o no en la colocación. Una vez que el flujo de hormigón se inicie a través de la tubería, la lubricación se mantendrá mientras el bombeo continúe con un diseño de mezcla adecuado y consistente.

Un problema habitual en el proceso de bombeo es la obstrucción del hormigón en la tubería. Por lo general, el operador de la bomba detecta la obstrucción al observar un aumento en la presión indicada. Los bloqueos pueden resolverse mediante ciclos que alteran la dirección de la presión, especialmente eficaces en conductos verticales. Sin embargo, este procedimiento no debe repetirse más de tres o cuatro veces. Si el bombeo no vuelve a la normalidad, es crucial identificar y eliminar la obstrucción en el punto donde ocurrió.

Los atascos ocurren a menudo en el reductor a la salida de las válvulas y puede detectarse cuando el manómetro registra una subida rápida de la presión. Cuando ocurre, es necesario desmontar y limpiar el reductor. No forzar nunca la bomba y, si es preciso, desmontar el tramo de conducción afectado. Si la presión no experimenta un aumento tan repentino, la obstrucción puede estar en el codo, el reductor o la manguera de descarga. Al observar la tubería e invertir la presión, se puede identificar la ubicación del atasco por la vibración de la tubería. Normalmente, estos tapones no superan los 30 cm de longitud y se pueden desatascar desmontando un tramo de tubería.

Tabla 1. Localización de la obstrucción de una bomba

Subida de presión Localización de la obstrucción
Brusca Bomba o principio de la tubería
Lenta Más alejado de la zona anterior (en la propia tubería)

Los conductos deben limpiarse al finalizar el trabajo o si hay una interrupción importante. El tiempo de espera no debe exceder media hora en climas cálidos y 1 hora en condiciones normales. La limpieza puede realizarse drenando el hormigón con agua o aire, y luego bombeando una esponja húmeda en dirección opuesta para crear un vacío. Para limpiar las tuberías, existen dispositivos de limpieza de diversas rigideces, los cuales deben utilizarse con cuidado para evitar accidentes.

Al realizar un pedido a un proveedor de hormigón preparado y se pretende que sea bombeado, se debe proporcionar la siguiente información, a parte de la resistencia característica o la consistencia: especificar que el hormigón debe ser apto para bombeo y las condiciones de especificación en la puesta en obra. También se debe informar sobre la cantidad y el caudal a bombear, la distancia en horizontal y vertical, el tiempo de funcionamiento de la bomba y los posibles tiempos de espera. Además, es importante indicar si se dispondrá de personal para ayudar en las operaciones de lubricación y limpieza de la tubería.

Aquí tenéis algún vídeo ilustrativo del bombeo del hormigón.
https://www.youtube.com/watch?v=_VGtI5yHnx8https://www.youtube.com/watch?v=P3TLyBiuzcM

Os dejo un catálogo de bombas de hormigón estacionarias de la marca Liebherr, por si os resulta de interés.

Descargar (PDF, 3.64MB)

Y otro de la casa Putzmeister.

Descargar (PDF, 1.89MB)

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 304. Placing Concrete by Pumping Methods (ACI 304.2R-17). American Concrete Institute.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

RODRÍGUEZ-LÓPEZ, A.J. (2015). Determinación automática de la eficiencia volumétrica y otros parámetros de operación de bombas alternativas de hormigón mediante análisis de los pulsos de presión en su salida. Tesis doctoral. Universidad Politécnica de Madrid.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación del hormigón por vibrado

Figura 1. Vibrado del hormigón. https://lobcor.com/6-pasos-para-hacer-un-buen-vibrado-del-hormigon/

El hormigón recién mezclado no se compacta por sí solo debido a su baja fluidez, lo que le impide superar la fricción interna. Solo mediante vibración se pueden vencer estas fuerzas. El vibrado es el método más eficaz para obtener hormigones con un alto grado de compactación, ya que permite rellenar correctamente los encofrados y moldes, eliminando los huecos. Esta técnica se utiliza especialmente cuando se desean hormigones resistentes, siendo adecuada para masas de consistencia seca. El proceso genera movimientos oscilatorios en las partículas del hormigón, sometiéndolas a cincuenta o más impulsos por segundo. La vibración aplicada reduce el rozamiento entre las partículas, facilitando su consolidación al convertir el material en un fluido que se adapta perfectamente a las formas del molde.

La vibración proporciona varios beneficios:

  • Facilita la expulsión del aire atrapado en el hormigón hacia la superficie.
  • Permite el desplazamiento de los áridos, alineándolos entre sí y reduciendo las cavidades, lo que resulta en una mayor densidad y una homogeneidad perfecta.
  • Mejora la adherencia del hormigón a las barras de refuerzo y otras inserciones estructurales internas, así como a los anclajes básicos.

Las fuerzas cohesivas son de mayor magnitud en hormigones más secos, siendo necesario trabajar con relaciones agua/cemento bajas para obtener mejores resistencias mecánicas. Esto hace indispensable el uso de la vibración para reducir el rozamiento entre las partículas del hormigón, permitiendo que, bajo la acción de la gravedad, se acoplen entre sí y formen masas compactas. Además, la vibración distribuye el agua de manera más homogénea, mejorando la hidratación del cemento.

Finalmente, el uso de la vibración permite emplear mezclas más ásperas, con mayores proporciones de áridos gruesos, en comparación con los hormigones apisonados comunes.

La vibración del hormigón ofrece varias ventajas significativas: alta resistencia mecánica, baja porosidad y, por ende, baja permeabilidad al agua y a sustancias agresivas; previene la formación de grietas cerca de las barras o armaduras de refuerzo; garantiza un llenado completo del encofrado; prolonga la vida útil del hormigón; y proporciona un resultado estético de alta calidad.

La vibración del hormigón se realiza mediante vibradores que generan un movimiento armónico descrito por una curva sinusoidal, gracias a masas excéntricas giratorias. La efectividad de este sistema depende de la magnitud de la masa vibrante, así como de la amplitud y frecuencia del movimiento vibratorio.

Si denominamos la semiamplitud del movimiento como 𝐴 y la frecuencia como 𝑓, la aceleración máxima del movimiento se define como:

La eficacia de la vibración depende de varios factores:

  • Amplitud de las oscilaciones: La amplitud mínima eficaz es de 0,05 mm. A mayor amplitud, mayor es el radio de acción.
  • Aceleración de las oscilaciones: La aceleración está relacionada con el cuadrado de la frecuencia (f²). Para fluidificar el hormigón, es mejor que las partículas finas se desplacen, ya que tienen frecuencias de resonancia altas, superiores a 100 Hz.
  • Duración de la vibración: Generalmente, se considera que la vibración ha finalizado cuando la lechada de cemento empieza a llegar a la superficie.

El funcionamiento de los vibradores de uso más frecuente se basa en dos principios mecánicos diferentes:

  1. Las vibraciones se originan por el movimiento de una masa excéntrica que gira dentro de un cilindro. Este es el caso más usual y se presenta con diversos mecanismos y formas de accionamiento.
  2. Las vibraciones se generan mediante un sistema de resortes que sostiene la masa vibrante.

Los efectos de la vibración dependen más de su adecuación a las condiciones de trabajo y al tipo de hormigón que del equipo vibrador en sí. Aunque la vibración es generalmente más eficaz con vibradores de mayor potencia, el tamaño de las piezas, la forma del encofrado y la densidad de las armaduras a menudo determinan el sistema de vibración y las condiciones en que debe realizarse la compactación.

Es crucial ajustar la frecuencia y la amplitud del sistema de vibración a la consistencia y características de los áridos que componen el hormigón. Aunque la vibración es el método de compactación más eficaz y ampliamente utilizado, no todos los hormigones son aptos para vibrarse: los hormigones que se segregan durante la vibración (hormigones fluidos) no deben someterse a este proceso.

Los áridos gruesos se mueven más lentamente que los áridos finos cuando se someten a frecuencias de vibración entre 25 Hz y 350 Hz. Los áridos gruesos requieren frecuencias más bajas y mayor energía de vibración, mientras que los áridos finos necesitan frecuencias más altas y menor energía. Por lo tanto, los hormigones más secos y con áridos de mayor tamaño necesitan una vibración con mayor fuerza y amplitud, pero a una frecuencia más baja. En cambio, los hormigones plásticos, con una mayor relación agua/cemento, requieren una mayor frecuencia y menor fuerza y amplitud de vibración.

Otros factores importantes a considerar son la masa de hormigón afectada por el vibrador y el tiempo de vibración. La eficacia de la vibración, evaluada por la energía transmitida al hormigón, indica que si una masa de hormigón 𝑀′ es superior a la masa 𝑀 que puede compactarse con una determinada energía de vibración 𝐸, la diferencia 𝑀′−𝑀 quedará sin compactar o se compactará deficientemente. Es decir, el vibrador tiene un radio de acción a partir del cual su efecto deja de ser eficaz.

La aceleración transmitida a la masa de hormigón por el vibrador es mayor en los puntos más cercanos a este, lo que resulta en una compactación más enérgica en esas áreas. Para lograr un mayor rendimiento y homogeneidad, es preferible vibrar durante períodos más cortos en puntos cercanos entre sí, en lugar de vibrar durante períodos más largos en puntos más distantes.

Durante la compactación en obra, es recomendable observar el radio de acción, que puede identificarse fácilmente por la superficie en la que la pasta refluye y se forman pequeñas burbujas de aire.

En la siguiente tabla (Fernández Cánovas, 2004) se muestran los valores de 𝛾/𝑔 para diferentes consistencias del hormigón y para una frecuencia de vibración de 50 Hz.

La Figura 2 muestra la variación de la aceleración transmitida al hormigón, medida a diferentes distancias del eje del vibrador, con distintos valores de amplitud y frecuencia.

Figura 2. Efecto producido por la vibración (L’Hermite, 1948: en Calavera et al., 2004)

En ensayos similares realizados con un vibrador de aguja y tiempos de vibración de 10 y 30 segundos, específicamente para hormigones plásticos, se establece la relación entre el radio de acción (en cm) y la frecuencia de vibración (vibr./min). Se observa que el radio de acción, que aumenta con la amplitud, alcanza su valor máximo alrededor de una frecuencia de aproximadamente 12.000 vibraciones por minuto.

Figura 3. Radio de acción en función de la frecuencia y la amplitud. (Bergstrom, 1949: en Calavera et al., 2004)

Además, al prolongar el tiempo de vibración, los efectos de la vibración se intensifican. Por lo tanto, al utilizar un vibrador con una frecuencia y amplitud determinadas, es importante considerar el tiempo de vibración necesario para lograr cada radio de acción.

En la Figura 4 se presenta la relación entre el radio de acción y el tiempo de vibración para un vibrador interno con una amplitud de 1,2 mm en el aire. Es fundamental tener en cuenta que la amplitud de un vibrador sumergido puede ser hasta un 75 % menor dependiendo de la consistencia del hormigón. De acuerdo con la curva, un tiempo de vibración adecuado sería de aproximadamente 10-15 segundos.

Figura 4. Variación del radio de acción en función del tiempo de vibrado

En cuanto al Código Estructural, se establecen dos recomendaciones respecto a la vibración y el uso de vibradores:

  • Al utilizar vibradores de superficie, el espesor de la capa después de compactada no debe ser mayor de 20 cm.
  • La utilización de vibradores de molde o encofrado debe ser estudiada cuidadosamente para asegurar que la vibración transmitida a través del encofrado sea adecuada para una correcta compactación, evitando la formación de huecos y capas de menor resistencia.

Os dejo algunos vídeos que espero os sean de interés.

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control de calidad del hormigón bombeable

Figura 1. Hormigón bombeable. https://web1.icpa.org.ar/wp-content/uploads/2021/05/webinar_2021-02_ICPA-HORMIGONES_BOMBEABLES_2021-06-08.pdf

El control de calidad del hormigón bombeable no difiere respecto a otros tipos de hormigón, sin embargo, en este caso resulta básico mantener un alto nivel de control para garantizar su uniformidad.

Lograr las propiedades requeridas por el hormigón bombeado como material estructural es el resultado de un proceso que comienza con la fabricación del material en planta y finaliza con la salida del material de la tubería en el punto de colocación y posterior compactación y curado. Los factores más importantes para que el hormigón sea bombeable son la composición granulométrica, el contenido de finos, el agua y la consistencia.

El proceso se puede centrar en dos etapas principales, correspondientes al transporte del hormigón desde la fábrica hasta la bomba y desde la bomba hasta el punto de vertido. Estas dos fases deben considerarse juntas, ya que el incumplimiento de los requisitos mínimos de la primera fase puede hacer que la segunda fase sea inviable. Por tanto, cuando proceda, deberían tomarse muestras tanto en el punto de descarga del camión como en el punto de colocación final del hormigón, para comprobar si ha habido cambios en el asentamiento, el contenido de aire, humedad o densidad del hormigón.

Por otro lado, la segunda fase relacionada con el bombeo propiamente dicho del material significa que, en cada caso, el material está relacionado con las características del equipo utilizado (presión de la bomba, disposición de las tuberías, diámetro, cantidad y posicionamiento de los codos). Todo esto significa que el control de calidad debe tener en cuenta los materiales y equipos utilizados, haciendo hincapié en el control de procesos.

Cuando se tomen muestras al final de la línea de colocación, se debe tener mucho cuidado para asegurar que la muestra es representativa del hormigón que entra en la colocación. El cambio de la velocidad de colocación y/o la configuración de la pluma puede dar lugar a resultados erróneos. No debe permitirse que el hormigón caiga libremente en el recipiente del medidor. La manipulación de la muestra no debe provocar cambios en las propiedades del hormigón. La modificación de la velocidad de vertido, de la configuración de la pluma o de ambas puede dar lugar a resultados de ensayo variables o engañosos. No debe permitirse que el hormigón caiga libremente en el recipiente de la máquina de ensayo. Los cilindros deben almacenarse lejos de fuentes de vibración. La manipulación de la muestra no debe provocar cambios en las propiedades del hormigón. El equipo de hormigonado y el inspector de calidad deben estar siempre atentos a cualquier segregación del hormigón que sale de la tubería para eliminar o minimizar una posible segregación.

Con este enfoque se puede garantizar la adecuada colocación del hormigón mediante un bombeo con rendimiento óptimo, independientemente de los aspectos considerados en el Código Estructural, relacionados con el control de la resistencia del hormigón y su durabilidad, que es el principio de control del proceso.

Por ello, se recomienda establecer un rango de consistencias adecuadas en la planta, a la entrada y a la salida de la bomba. En este sentido, cabe señalar que, en última instancia, la consistencia a la salida de la bomba está relacionada con la energía y el sistema de compactación adoptado para el hormigón en cada caso.

Al mismo tiempo, el alcance del control debe ampliarse al equipo de bombeo, incluidas sus condiciones óptimas de funcionamiento y el suministro de repuestos necesarios en caso de avería.

Para los interesados, en este enlace se explica cómo se calcula la presión y el caudal de bombeo: https://victoryepes.blogs.upv.es/2017/02/09/bombeo-hormigon-nomogramas/

También os dejo un webinar sobre hormigones bombeables, que espero os sea de interés.

Os dejo también este documento de ACI, que creo de interés.

Descargar (PDF, 9.46MB)

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 304. Placing Concrete by Pumping Methods (ACI 304.2R-17). American Concrete Institute.

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Grandes vertidos de hormigón

Figura 1. Vertido de 16 200 m³ de hormigón en la losa de cimentación del rascacielos Wilshire Grand Center. https://ycivilengineering.blogspot.com/2014/02/record-mundial-en-vertido-continuo-de.html

Se considera un gran vertido la colocación de más de 200 m³ de hormigón en un mismo elemento. Es el caso del hormigonado en las presas o en grandes losas de cimentación, entre otros. Por ejemplo, en la losa de cimentación del rascacielos Wilshire Grand Center (Los Ángeles, Estados Unidos), en un lapso de 18 horas y media, se vertieron 16.200 m³ de hormigón, empleando 208 camiones que realizaron más de 2.100 viajes. Se llenó un enorme hueco de 5,5 m de profundidad que está revestido con 3.180 toneladas de armaduras de acero.

Los principales problemas asociados a los grandes vertidos son la liberación de una gran cantidad de calor de hidratación y la consiguiente contracción del hormigón al enfriarse, lo que puede causar fisuras. En estructuras de gran envergadura, como las presas, los espesores son tan significativos que la pérdida de calor de la masa a través de su superficie es extremadamente lenta, a menudo tardando varios meses. Este prolongado período de elevación de la temperatura provocan fisuras considerables debido a la retracción térmica. A continuación, se presentan algunas recomendaciones para mitigar los efectos de la colocación de grandes masas de hormigón.

Las medidas a adoptar para este tipo de hormigonado empiezan en el proceso de dosificación: utilizar cementos de bajo calor de hidratación (menor a 65 cal/g a la edad de 5 días), sustituir parte del cemento por cenizas volantes o escorias de alto horno, y enfriar los componentes. En cuanto al procedimiento constructivo, se recomienda evitar diferencias de temperatura superiores a 20 °C entre dos puntos cualesquiera, evitar restricciones externas y realizar el hormigonado de forma continua.

El cemento de bajo calor de hidratación, a veces llamado “cemento frío”, resulta especialmente útil en la producción de grandes volúmenes de hormigón concentrado, dado que reduce significativamente el calor liberado durante la reacción de hidratación, evitando así la formación de fisuras térmicas debido al rápido secado que puede provocar el intenso desprendimiento de calor. Por otro lado, debido a esta misma razón, son altamente susceptibles a las bajas temperaturas, las cuales retrasan significativamente su proceso de endurecimiento. Por lo tanto, no se recomienda su uso cuando la temperatura desciende por debajo de +5 °C. Generalmente, se debe minimizar la cantidad de cemento utilizada. Un exceso de cemento conlleva la necesidad de incrementar la cantidad de agua, lo que puede resultar en problemas de fisuración y pérdida de resistencia. Es esencial recordar que los mejores hormigones son aquellos que proporcionan las características de resistencia y durabilidad deseadas con el menor consumo posible de cemento. Un exceso de cemento, especialmente si es rico en silicato tricálcico, genera una considerable liberación de calor. Esto puede provocar tensiones térmicas diferenciales que superen la resistencia a la tracción del hormigón, sobre todo en las etapas tempranas de fraguado.

Además de reducir la cantidad de cemento y, por ende, disminuir el calor de fraguado (y, en consecuencia, el riesgo de fisuración), la inclusión de puzolanas y cenizas conlleva otros beneficios significativos. Estos materiales no solo mejoran la trabajabilidad de la mezcla fresca, lo que se traduce en una reducción del contenido de agua necesario para el amasado (de un 5 % a un 8 %), sino que también aumentan la resistencia y promueven una mayor durabilidad del hormigón.

El control de la temperatura se realiza mediante termopares colocados a 25 mm de la superficie exterior del hormigón y en el centro del elemento. Si la diferencia de temperaturas supera los 20 °C, se debe elevar la temperatura de la zona más fría utilizando una capa de arena, láminas de polietileno, cartón aislante, mantas aislantes, lonas, etc., aplicadas durante varios días. Para reducir la temperatura máxima alcanzada, es recomendable usar cementos de bajo calor de hidratación y reemplazar parte del cemento por aditivos. Estas medidas son efectivas para elementos de hasta 2,5 m de espesor.

En elementos más gruesos, el hormigón permanece en condiciones adiabáticas durante muchos días, lo que acelera la hidratación del cemento debido al aumento de la temperatura. Aproximadamente, la temperatura máxima se incrementa en 12 °C por cada 100 kg de cemento Portland por m³ de hormigón. En estos casos, el uso de retardadores puede retrasar el aumento de temperatura, pero no lo reduce.

Las restricciones al enfriamiento pueden surgir cuando el hormigón se coloca sobre una base ya endurecida o cuando la secuencia de vertido deja una masa significativa atrapada entre dos áreas de hormigón endurecido, con armadura intermedia. En situaciones donde no se puede evitar esta restricción a la contracción o dilatación térmica, es esencial colocar suficiente armadura de distribución para controlar la formación de fisuras.

Además, se recomienda verter el hormigón de manera continua. Esto requiere un suministro adecuado de hormigón en las proximidades y una planificación cuidadosa. La realización de vertidos en pequeñas cantidades puede ser poco recomendable debido a la creación de numerosas juntas de hormigonado.

Os dejo algunos vídeos ilustrativos. Espero que os interesen.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

TIKTIN, J. (1994). Procesamiento de áridos: instalaciones y puesta en obra de hormigón. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Madrid, 360 pp. ISBN: 84-7493-205-X.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación manual del hormigón: picado y apisonado

Figura 1. Compactación manual.

La compactación manual se realiza generalmente con pisones o herramientas de diversas formas, dependiendo de las dimensiones y la forma de las superficies a compactar. El primer método de compactación manual a considerar es el picado con barra. Este método, tradicional y ampliamente utilizado en la fabricación de probetas para el control de calidad de hormigones con diferentes consistencias, consiste en insertar repetida y enérgicamente una metálica o de madera, ligeramente afilada pero con la punta roma, que se introduce repetidamente en la masa de hormigón. La barra debe atravesar la capa que se está consolidando y penetrar en la capa subyacente, favoreciendo así la eliminación de huecos y burbujas de aire atrapadas en la masa del hormigón tras su vertido.

Este método es adecuado para hormigones de consistencia blanda y fluida, y se usa comúnmente en obras de poca envergadura. Además, es indicado para compactar áreas de piezas con gran cantidad de armaduras, como los nudos de ciertas vigas, donde no es posible compactar mediante vibración una masa seca sin riesgo de crear coqueras. El picado se emplea en zonas muy armadas como complemento del vibrado. Se utiliza siempre en hormigones de consistencia fluida, ya que el vibrador podría provocar segregación.

Algunas veces, en lugar de utilizar barras, se emplean palas en las zonas contiguas a los encofrados. Esto separa los áridos del encofrado, facilita la ascensión del aire hacia la superficie de vertido y reduce la posterior aparición de coqueras en las superficies encofradas del elemento. Las herramientas en forma de pala son especialmente adecuadas para trabajar cerca de los encofrados, mientras que las de forma de aguja se usan en las zonas comprendidas entre las armaduras.

Figura 2. Pisón de acero para hormigón impreso 20 cm x 20 cm. https://www.hormigonimpreso.asia/pisones/303-pison-de-acero-20-cm-x-20-cm.html

Un sistema alternativo al picado es el apisonado, que consiste en aplicar energía superficial al hormigón mediante el impacto continuado de un elemento plano, generalmente metálico, unido a un mástil de madera para facilitar su manipulación. Debe aplicarse en capas delgadas con hormigones de consistencia entre plástica y semiplástica. Este método actúa solo sobre las zonas más superficiales del hormigón, por lo que su uso está limitado a capas con un espesor máximo de 15 cm si el tamaño de los áridos no supera los 30 mm, y hasta 20 cm con áridos de mayor tamaño. Estas capas deben compactarse mediante apisonado de manera uniforme y sin interrupción. Los golpes deben repetirse en el mismo lugar, pero sin ser violentos, para evitar posibles segregaciones en las zonas recién apisonadas. Es más importante la cantidad de golpes que la intensidad de los mismos.

El apisonado manual con pisones de base cuadrada o cilíndrica de unos 8 o 10 kg es un método costoso y anticuado, que dificulta obtener una compactación uniforme y que solo se usa para la puesta en obra de volúmenes pequeños de hormigón. Por esta razón, se utilizan pisones o bandejas accionados por motores, generalmente de combustión interna. Su funcionamiento es similar al utilizado para la compactación de tierras.

Os dejo algún vídeo al respecto.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Transporte del hormigón en tiempo frío

Figura 1. Transporte del hormigón en tiempo frío. https://betoniatecnico.blog/2024/04/08/influencia-de-la-climatologia-las-condiciones-ambientales-del-entorno-y-la-temperatura-de-los-materiales-en-la-realizacion-de-pavimentos-de-hormigon-concreto/

El transporte del hormigón en tiempo frío debe realizarse con mayor cuidado para evitar interrupciones y retrasos en la puesta en obra. El calor generado dentro de la cuba, si es amasadora, por el rozamiento del hormigón con las paredes y palas, evita la congelación del agua de amasado, siempre que el tiempo de permanencia no sea muy prolongado y las temperaturas ambientales no sean extremadamente frías. De lo contrario, sería necesario adoptar medidas especiales de aislamiento de las cubas. El suministro debe estar sincronizado con la puesta en obra para evitar esperas, tanto del hormigón ya colocado y desprotegido como de los camiones pendientes de descarga. Es recomendable que el tiempo de transporte desde la planta hasta la obra sea lo más breve posible.

Se pueden evaluar las pérdidas de temperatura del hormigón durante el transporte, expresadas en °C por cada hora, considerando el tiempo transcurrido entre el amasado y la colocación. Estas pérdidas se expresan como un porcentaje de la diferencia entre la temperatura prevista del hormigón en el momento de su colocación y la temperatura ambiente. El porcentaje de pérdida depende del tipo de transporte: 25% en camiones hormigoneras, 20% en camiones o recipientes abiertos, y 10% en camiones o recipientes cubiertos.

Las bajas temperaturas ambientales en el que se va a transportar el hormigón afectan especialmente a los camiones hormigoneras. Estos vehículos, con su tambor metálico y su sistema de paletas, así como la canaleta, pueden estar extremadamente fríos, especialmente los primeros camiones de la mañana después de una noche de temperaturas gélidas y formación de hielo. En algunas regiones, se implementan medidas para contrarrestar estos efectos, como el uso de resistencias externas que generan calor en el tambor, lavado con agua caliente o estacionamiento de los camiones en espacios interiores.

En el caso de transporte por cinta, especialmente si es muy larga, se debe proteger el hormigón del viento para evitar su enfriamiento y desecación. Además, si se emplea una relación agua/cemento muy baja, también se debe proteger del secado.

En el caso de transporte por bombeo, si la tubería es muy larga, se recomienda aislarla para evitar el enfriamiento del hormigón.

Referencias:

AA. VV. (2002). Hormigones de ejecución especial (seis tipos). Colegio de Ingenieros de Caminos, Madrid, 114 pp.

ACI COMMITTEE 306. Cold wheather concreting (ACI 306R-16). American Concrete Institute.

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.