Mantenimiento preventivo sostenible de estructuras de edificios de hormigón tipo MMC en un entorno adverso

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo sobre el mantenimiento preventivo y sostenible de los métodos modernos de construcción en entornos hostiles. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La industria de la construcción desempeña un papel significativo en la presión medioambiental, atribuido principalmente a su importante consumo de recursos, impulsado sobre todo por el auge de la construcción residencial. Los Métodos Modernos de Construcción (MMC) presentan un paradigma innovador para diseñar y construir infraestructuras y edificios de forma más eficiente, utilizando materiales convencionales con técnicas no convencionales. El artículo pretende aplicar este enfoque a una estructura de edificación basada en MMC, minimizando el impacto de su ciclo de vida mediante la optimización del consumo de materiales de construcción, con especial atención a los efectos de la fase de mantenimiento desde un punto de vista preventivo. Este estudio se centra en la evaluación de la sostenibilidad de los forjados planos de hormigón armado que emplean un sistema de cuerpo estructural hueco, haciendo hincapié explícitamente en los factores de agresividad ambiental que contribuyen a la corrosión, como la carbonatación y los cloruros. La investigación explora diez opciones de diseño para un edificio residencial público frente al mar, examinando su impacto en la economía, el medio ambiente e incluso la sociedad en lo que respecta a los ciclos de mantenimiento necesarios a lo largo de la vida útil de la estructura, en función de la estrategia preventiva empleada para cada diseño. Para evaluar la sostenibilidad de estas opciones, los investigadores emplearon una combinación del método del mejor-peor (BWM) y la técnica VIKOR, teniendo en cuenta nueve criterios relacionados con la sostenibilidad. El estudio concluyó que el hormigón con un 5% de humo de sílice es la opción más rentable y respetuosa con el medio ambiente, y que la impregnación hidrófoba reduce el impacto social. Sin embargo, en comparación con las evaluaciones unidimensionales y bidimensionales, el estudio demuestra la importancia de considerar simultáneamente los impactos económicos, medioambientales y sociales del ciclo de vida de un diseño para lograr la sostenibilidad en el mantenimiento con una visión holística. Este enfoque condujo a una calificación de sostenibilidad un 86% más alta para un diseño que utilizaba cemento sulforresistente en la mezcla de hormigón que la opción de partida.

Aspectos destacables:

  • El estudio evalúa el impacto en el ciclo de vida de diez opciones de diseño mejoradas para un módulo hotelero de tres pisos en un entorno costero, con el objetivo de mejorar la durabilidad y reducir las necesidades de mantenimiento a lo largo de la vida útil de la estructura.
  • Los resultados óptimos se obtienen del intervalo de mantenimiento preventivo, lo que hace hincapié en la importancia de las estrategias de mantenimiento proactivo para mejorar la sostenibilidad y la longevidad de las estructuras de construcción de hormigón basadas en MMC.
  • El documento proporciona evaluaciones exhaustivas del ciclo de vida según las normas ISO 14040, que abordan las tres dimensiones simultáneamente, ofreciendo una visión holística del desempeño en materia de sostenibilidad en los proyectos de construcción.
  • Al centrarse en el mantenimiento preventivo, la investigación destaca el potencial de obtener beneficios ambientales y económicos a largo de un período de 50 años, ya que contribuyen a la sostenibilidad general de las estructuras de los edificios en entornos hostiles.
  • Al incorporar las opiniones de expertos a través del método de toma de decisiones multicriterio de BMW, el estudio proporciona un análisis completo de varios aspectos de la sostenibilidad en los proyectos de construcción, promoviendo prácticas de toma de decisiones sostenibles en la industria.
  • Los resultados subrayan la importancia de la toma de decisiones sostenibles en la construcción, en consonancia con los esfuerzos mundiales para reducir el impacto ambiental y promover prácticas ecológicas en la industria.
  • La investigación hace hincapié en la importancia de las estrategias de mantenimiento preventivo sostenibles para mejorar la longevidad y la sostenibilidad de las estructuras de construcción de hormigón basadas en el MMC, y destaca los beneficios de los enfoques de mantenimiento proactivo.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S2352710224017236

Abstract:

The construction industry plays a significant role in environmental strain, attributed mainly to its substantial resource consumption, primarily driven by the surge in residential construction. Modern Methods of Construction (MMC) presents an innovative paradigm for designing and constructing infrastructure and buildings more efficiently, using conventional materials with unconventional techniques. The article aims to apply this approach to an MMC-based building structure, minimizing its life cycle impact by optimizing the consumption of building materials, with particular attention to the effects of the maintenance phase from a preventive point of view. This study focuses on assessing the sustainability of reinforced concrete flat slabs, employing a hollow structural body system, explicitly emphasizing environmental aggressiveness factors contributing to corrosion, such as carbonation and chlorides. The research explores ten design options for a waterfront public residential building, examining their impact on the economy, the environment, and even society, regarding the maintenance cycles required over the structure’s lifetime, depending on the preventive strategy employed for each design. In assessing the sustainability of these options, researchers employed a combination of the best-worst method (BWM) and the VIKOR technique, considering nine criteria related to sustainability. The study found that 5% silica fume concrete is the most cost-effective and environmentally friendly option, with hydrophobic impregnation reducing social impacts. However, compared to one— and two-dimensional evaluations, the study demonstrates the importance of simultaneously considering a design’s life cycle’s economic, environmental, and social impacts to achieve sustainability in maintenance with a holistic view. This approach led to an 86% higher sustainability rating for a design using sulforesistant cement in the concrete mix than the baseline.

Keywords:

Modern Methods of Construction; Life Cycle Assessment; Sustainable design; Multi-criteria Decision-making; Preventive maintenance; Corrosion

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2024). Sustainable preventive maintenance of MMC-based concrete building structures in a harsh environment. Journal of Building Engineering,95:110155. DOI:10.1016/j.jobe.2024.110155

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Descargar (PDF, 5.43MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Auge de la construcción inteligente: un estudio revela tendencias y desafíos para el futuro

Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo de revisión sobre el estado actual de los métodos modernos de construcción. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El creciente interés por la sostenibilidad, las energías alternativas y los cambios en el estilo de vida debido a la pandemia ha impulsado la fabricación de edificaciones empleando los métodos modernos de construcción (Modern Methods of Construction, MMC), especialmente en el ámbito residencial. Estos métodos, que utilizan tecnologías innovadoras como alternativa inteligente a la construcción tradicional, han sido objeto de un exhaustivo estudio que busca clasificarlos, detectar tendencias y vacíos de conocimiento, y delinear futuras áreas de investigación. El análisis, basado en 633 publicaciones desde 1975 hasta 2022, revela seis grupos temáticos y 18 subcategorías, empleando una novedosa metodología mixta que incorpora el análisis de procesamiento de lenguaje natural (NLP). Si bien se destaca la presencia dominante de herramientas y tecnologías integradas en la Construcción 4.0 y los aspectos de gestión de la industria, también se identifican importantes lagunas de investigación, como la necesidad de aplicar más los MMC en la rehabilitación de edificios y abordar enfoques para mejorar el entorno construido a través del nuevo paradigma del diseño regenerativo. Este estudio exhaustivo ofrece una comprensión más profunda y rigurosa del estado del arte en el campo de la construcción inteligente mediante un mapeo y caracterización de la estructura conceptual del corpus bibliográfico y una evaluación sistemática basada en revisión de literatura. El artículo sugiere que se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.

Aspectos destacables:

  • El estudio utiliza aprendizaje automático combinado con una revisión sistemática de la literatura.
  • Se propone una novedosa metodología mixta que incorpora análisis de procesamiento de lenguaje natural.
  • Se recomienda una clasificación recientemente revisada para todos los MMC aplicados en edificios.
  • La literatura sobre MMC se clasificó en seis grandes áreas con 18 subcategorías.
  • Los temas se identifican mediante análisis de bigrama y agrupamiento, además del conocimiento experto.

Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:

https://www.sciencedirect.com/science/article/pii/S235271022300904X?via%3Dihub

Abstract:

The concerns surrounding sustainability, alternative energies, and lifestyle changes due to the pandemic have resulted in a surge in the manufacturing of buildings utilizing Modern Methods of Construction (MMC), particularly in housing. These methods involve using new technologies as smart building alternatives to traditional construction. Against the backdrop of Industry 4.0, there is an urgent need for a systematic literature review of MMCs in building construction to classify them, detect trends and gaps, and outline future research areas. This study analyzed 633 publications from 1975 to 2022 and grouped them into six thematic clusters and 18 subcategories, using a novel mixed methodology incorporating natural language processing (NLP) analysis. The qualitative analysis of the literature indicates that research in the field is dominated by tools and technologies integrated into Construction 4.0 and the industry’s management aspects. However, this review also highlights several gaps in research, including the need for more application of MMC to building retrofitting and the need for approaches to improve the built environment through the new paradigm of regenerative design. The high-level mapping and characterization of the bibliographic corpus’s conceptual structure and the classical evaluation process based on systematic literature review (SLR) have provided a more profound and rigorous state-of-the-art understanding.

Keywords:

Modern methods of construction; Industrialized buildings; Emerging technologies; Construction industry; Machine learning; Systematic literature review

Reference:

SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; GARCÍA, J.; YEPES, V. (2023). A systematic literature review on Modern Methods of Construction in building: an integrated approach using machine learning. Journal of Building Engineering, 73:106725. DOI:10.1016/j.jobe.2023.106725

Como el artículo se encuentra en abierto, os lo podéis descargar aquí:

Descargar (PDF, 16.3MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Métodos modernos de construcción (MMC): fabricación modular

Figura 1. Construcción modular. https://www.draytonfox.com/modern-methods-of-construction/

La construcción modular y la prefabricación son técnicas ya veteranas en el ámbito de la ingeniería civil y la edificación. Desde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados, la tecnología ha experimentado un avance imparable. Por otra parte, la construcción modular tiene una larga historia en la gestión de la innovación (Simon, 1962). Sin embargo, la auténtica revolución que supone la inteligencia artificial, las tecnologías BIM y los retos de la sostenibilidad están cambiando radicalmente este concepto y lo está llevando a una nueva dimensión. En efecto, estamos ante la revolución de los métodos modernos de construcción. Este es el concepto del que vamos a hablar a continuación.

Los métodos modernos de construcción (Modern Methods of Construction, MMC) , o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Este concepto MMC lo utilizó el gobierno del Reino Unido para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales son tecnologías de construcción en fábrica (Gibb, 1999). Es un término que cubre una amplia gama de tecnologías basada en la fabricación modular, ya sea “in situ” o en otra ubicación, que está revolucionando la forma de construir edificios de forma más rápida, rentable y eficiente. También suele llamarse construcción “off-site”. Un ejemplo no muy lejano ha sido la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días debido a la epidemia del coronavirus. Por ejemplo, países como Suecia y Japón lideran la construcción MMC. En Suecia, casi la mitad de las viviendas de nueva construcción utilizan este método, llegando al 80% en el caso de viviendas unifamiliares. Japón, es el país donde se construye mayor número de viviendas nuevas con este método, aunque no llegan al 20% del total. Incluso podemos leer una noticia de hace unos días donde el alcalde de Londres apoya decididamente la aplicación de diseño de viviendas modulares.

Los diferentes métodos MMC incluyen el sistema de paneles planos prefabricados, módulos volumétricos 3D (Figuras 1 y 3), construcción con losas planas, paneles de cerramiento prefabricados (Figura 2), muros y forjados de hormigón, tecnología de doble pared (Figura 4), cimientos de hormigón prefabricado, aislamiento de encofrados de hormigón, entre otros. No obstante, la gestión de los sistemas 1D/2D respecto a los volumétricos 3D es muy diferente (López, 2017).

Tabla 1. Principales diferencias entre los sistemas modulares basados en elementos 1D y 2D frente a celdas 3D (López, 2017)

La reciente norma UNE 127050:2020 trata justamente de los sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón, así como de los requisitos de comportamiento, fabricación, instalación y verificación.

Figura 2. Paneles de cerramiento prefabricados (precast cladding panels). https://www.designingbuildings.co.uk/wiki/Precast_concrete_cladding

Las ventajas de la construcción MMC frente a la construcción tradicional son evidentes. Los módulos permiten un ahorro de tiempo de hasta el 50%, pues éstos se elaboran en fábrica, sin incidencia del clima. Una vez llegan a la obra, se ensamblan, interrumpiendo al mínimo la propia obra, pues el 80% de la actividad de la construcción se ha realizado lejos de la obra. Permite el uso de materiales respetuosos con el medio ambiente, reduciéndose el desperdicio. Los módulos son de diseño atractivo e innovador, con materiales de elevada calidad, con un diseño a medida del cliente. La construcción en fábrica permite la fabricación con tolerancias estrictas, la reducción de los errores, promueve la seguridad, no estando los materiales a la intemperie durante la construcción. Además, permite el uso de materiales durables, que mejoran el aislamiento acústico, la protección contra incendios y la eficiencia energética. Sin embargo, en algunos países el uso de las MMC presenta costes más elevados que la construcción tradicional. Otras barreras son la falta de mano de obra especializada, la escasez de suministros o la regulación existente (Rahman, 2014). Con todo, la actual crisis del Covid-19 puede acelerar los cambios necesarios. De todos modos, los métodos MMC constituyen un producto diferente al del mercado de la construcción tradicional. La construcción modular, al tratarse de un producto alternativo, en lugar de competir, complementará el mercado tradicional. El objetivo es aumentar la productividad de los recursos disponibles mejorando la calidad, la eficiencia empresarial, la satisfacción del cliente, el rendimiento ambiental, el índice de sostenibilidad y el control de los plazos de entrega (Yepes et al., 2012; Pellicer et al., 2014, 2016).

Figura 3. Módulos volumétricos 3D (3D volumetric modules). http://www.ehu.eus/ehusfera/industrialized-architecture/page/4/

En la tabla siguiente, elaborada por Alejandro López, se pueden ver las diferencias más notables entre la construcción industrializada frente a la tradicional.

Tabla 2. Diferencias entre construcción tradicional e industrializada (Alejandro López).

  Construcción tradicional

Construcción industrializada

Definición Más posibilidades de cambios a lo largo de todo el proceso Etapas claramente definidas, empezando desde el proyecto
Calidad Elementos se manufacturan y/o ejecutan en la propia obra, mayor influencia del error humano (más rechazos) Mayor control (cada pieza tiene su destino), menor influencia del error humano (se sustituyen los albañiles por montadores: la pieza tiene su lugar)
Precisión Se admiten los errores. Las tolerancias se basan en centímetros La precisión dimensional y espacial de los elementos es crucial. Las tolerancias se basan en milímetros
Mano de obra Dependencia casi exclusiva de la capacitación técnica de la mano de obra humana disponible Procesos más automatizados
Coste En origen, normalmente menor. Pero mayor riesgo de imprevistos y desviaciones económicas Precio cerrado en proyecto
Tiempo El mayor grado de indefinición y la mayor interacción entre los distintos agentes provoca desviaciones en tiempo y, por tanto, en costes Mayor grado de cumplimiento en la planificación de la obra, rápida apertura de tajos para otros gremios, menor dependencia de las condiciones climatológicas
Materiales La obra es la fábrica al mismo tiempo. Muchos excedentes de materiales Menor generación de residuos

Una de las claves que acelerará, sin duda, la adopción de los métodos MMC es la introducción de la metodología BIM en los proyectos de edificación o de infraestructuras. En España, las administraciones públicas ya van dando pasos hacia la exigencia de que los proyectos de edificación o infraestructuras se realicen bajo la metodología BIM. Tanto MMC como BIM aumentan claramente la calidad del producto, la sostenibilidad y la mejora del servicio a lo largo del ciclo de vida del activo. A este respecto, recomiendo leer la guía BIM para empresas de prefabricados de hormigón (ANDECE, 2020).

En la feria Construmat de Barcelona (mayo de 2019), McKinsey & Company presentó un informe en el que se detalla cómo la tecnología basada en datos podría ayudar a las empresas españolas de infraestructuras a tomar decisiones más inteligentes, reducir el riesgo y mejorar los resultados de los proyectos. Por tanto, BIM, la automatización de procesos, la inteligencia artificial, el Big Data, las tecnologías en la nube o la interacción con Internet de las Cosas suponen el revolución que lanzará definitivamente la construcción inteligente.

Figura 4. Tecnología de doble pared (twin wall technology). https://www.cornishconcrete.co.uk/products/twin-wall/

Dentro de nuestro grupo de investigación estamos trabajando en la tesis doctoral de Antonio Sánchez Garrido sobre este tipo de aspectos. En una de sus primeras publicaciones en revista indexada en el primer decil de JCR (Sánchez-Garrido y Yepes, 2020), se han aplicado técnicas analíticas de toma de decisiones multicriterio (MCDM) y análisis del ciclo de vida, a una tipología de construcción tradicional de una vivienda unifamiliar, y a dos alternativas diferentes basadas en MMC. Se propone un índice de sosteniblidad, que incluye atributos tangibles e intangibles, así como factores de incertidumbre y riesgos, que permite a los promotores priorizar soluciones que aseguren la sostenibilidad económica, social y medioambiental.

Os dejo algunos vídeos al respecto de esta nueva tecnología.

https://www.youtube.com/watch?v=fZl9Pd0UU_U

Os dejo como información complementaria un artículo de Alejandro López de hace apenas tres años, pero donde ya se empezaba a vislumbrar un crecimiento exponencial de la construcción modular.

Descargar (PDF, 623KB)

Referencias:

AENOR (2020). UNE 127050:2021. Sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón. Requisitos de comportamiento, fabricación, instalación y verificación.

ANDECE (2020). Guía BIM para empresas de prefabricados de hormigón, 46 pp.

DOWSETT, R.; GREEN, M.; SEXTON, M.; HARTY, C.,2019. Projecting at the project level: MMC supply chain integration roadmap for small house builders. Construction Innovation-England, 19 (2): 193-211.

GIBB, A.G.F. (1999). Offsite Fabrication: Prefabrication, Preassembly and Modularisation, Whittles Publishing, Caithness

PELLICER, E.; YEPES, V.; CORREA, C.L.; ALARCÓN, L.F. (2014). Model for Systematic Innovation in Construction Companies. Journal of Construction Engineering and Management, 140(4):B4014001.

PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896.

LÓPEZ, A. (2016). Declaraciones ambientales de productos prefabricados de hormigón. Materiales sostenibles, 46:42-45.

LÓPEZ, A. (2017). Construcción modular en hormigón: una tendencia al alza. Revista Técnica Cemento Hormigón, 980:48-54.

LÓPEZ, A. (2018). Declaraciones ambientales de productos prefabricados de hormigón (y 2ª parte). Ecoconstrucción, 18:24-26.

RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Journal of Management in Engineering, 30(1):69-77.

SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258: 120556.

SIMON, H.A. (1962). The arquitecture of complexity. Proceedings of the American Philosophical Society, 106(6):467-482.

YEPES, V.; PELLICER, E.; ORTEGA, J.A. (2012). Designing a benchmark indicator for managerial competences in construction at the graduate level. Journal of Professional Issues in Engineering Education and Practice, 138(1): 48-54.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.