Procedimientos empleados en la inyección de terrenos

Figura 1. Inyección de una perforación por tramos (Cambefort, 1968)

En artículos anteriores se habló de los materiales empleados en la inyección de terrenos, de las técnicas de inyección del terreno y de los tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los procedimientos empleados en la inyección del terreno.

Un tubo facilita la inyección y evita que la lechada escape al exterior del taladro por el camino más fácil, que suele ser el contacto entre el terreno y el tubo de revestimiento o bien entre el obturador y el exterior del tubo de inyección. La inyección se puede realizar mediante los siguientes procedimientos:

  • Inyección desde la boca de la perforación: se vierte la lechada por gravedad desde la boca del sondeo, obturando en la parte superior. Se utiliza la técnica en rocas con grandes huecos.
  • Inyección ascendente: primero se hinca un tubo y se inyecta a medida que se extrae por tramos de 30 cm. La inyección se realiza por tramos sucesivos, empezando desde la parte inferior del terreno a inyectar hasta la zona superior. Se obtura a distintas profundidades y se aplican presiones de inyección decrecientes. Es una técnica más rápida y barata que la inyección por fases decrecientes, permitiendo independizar la perforación de la inyección.
  • Inyección al avance o por fases descendentes: se perfora un tramo, se retira el varillaje y se inyecta. Tras el fraguado ligero de la lechada, se perfora el tramo inyectado y un tramo nuevo, continuando el proceso. La idea es ir creando techos sucesivos que permitan ir aumentando la presión de inyección. Es una técnica cara, que debe evaluarse bien antes de su uso.
  • Inyección por fases repetitivas mediante tubos-manguito: se perfora y se introduce un tubo ranurado de 50-60 mm de diámetro, sin reperforación, cuyos orificios exteriores se cierran con manguitos de goma que actúan como válvulas anti-retorno, por los que sale la lechada. Se puede inyectar a cualquier nivel y orden o reinyectar mediante un doble obturador. Si se conoce la granulometría de cada capa, se puede ajustar la mezcla de inyección. La lechada de sellado debe ser de baja resistencia (0,3-0,5 MPa) y frágil. Para disminuir la resistencia se puede añadir un 3-4% de bentonita.

A continuación se describe el uso de cada una de estas técnicas en función si la inyección se realiza en terrenos rocosos o bien en terrenos sueltos.

  • Inyección en terrenos rocosos: Lo más habitual es utilizar la inyección por etapas descendentes y la inyección por etapas ascendentes. En macizos de calidad baja se emplea la inyección por etapas descendentes; aquí no tenemos la seguridad de que las paredes de la perforación se sostengan, no van a poder aguantar la presión de inyección, o la estructura geológica puentee la lechada, cementándose los obturadores, con la consiguiente pérdida de obturadores y taladro. En rocas de calidad media o alta se usa la inyección per etapas ascendentes.
  • Inyección en terrenos sueltos: Se utilizan las inyecciones descendentes, las inyecciones armadas, la inyección con puntaza perdida y el jet grouting. En las inyecciones descendentes se procede como en roca, pero la perforación se realiza a rotación con corona del mismo diámetro que la varilla y la inyección se realiza a través del varillaje de perforación. En las inyecciones armadas se introduce un tubo de paredes lisas dentro del taladro, perforando cada cierta distancia de modo que estas perforaciones se cubren con un manguito de caucho que sirve como válvula anti retorno; el espacio anular entre el tubo y las paredes de la perforación se rellena con una mezcla bentonita-cemento, de poca resistencia, que hace de obturador longitudinal y evita que la lechada fluya por la corona anular del taladro pero que se rompe al inyectar; la inyección se hace situando un obturador doble a nivel del manquito que se quiera inyectar. En la inyección con puntaza perdida se perfora con una puntaza de diámetro mayor que la varilla, inyectándose conforme se retira el varillaje; es un método barato con ciertas limitaciones. Con el jet grouting se realizan inyecciones a muy altas presiones, siendo procedimiento que se verá en detalle en una lección posterior.

El procedimiento más habitual es la inyección ascendente, con unas presiones normales de 1 a 3 MPa, aunque este rango se puede ampliar desde los 0,5 a los 8 MPa. Los taladros se separan entre 1 y 4 m. La relación entre el volumen inyectado y el de huecos del terreno es muy variable, entre el 40% en el caso de gravas abiertas o rellenos flojos mal compactados, al 10-20% para terrenos arenosos relativamente compactos. En la inyección de suelos, la técnica más común es la de tubo-manguito.

La longitud máxima de cada tramo de tratamiento varía entre 5 y 10 m. En suelos, la longitud tratada no suele superar el metro de longitud. Los taladros se separan según el tipo de terreno y las presiones que puedan aplicarse. En la Tabla 1 se indica la separación recomendada entre taladros de inyección, para algunas de las aplicaciones habituales:

De todas formas, es importante controlar la presión de la inyección, pues una presión nula puede indicar una pérdida de inyección, una presión excesiva puede dar lugar a levantamientos o giros en el caso de estructuras próximas. Siempre que sea posible se debe realizar un control informatizado de la perforación, así como medir y controlar la presión, el caudal y el volumen de las inyecciones en cada punto.

Por último, hay que tener presente que la inyección del terreno es una operación “ciega”, en el sentido que no se conoce realmente por dónde fluye la mezcla, por ejemplo, por desconocer la red de fracturación. Por tanto, se suelen extraer testigos después de las inyecciones para comprobar los resultados.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipos de lechadas y aplicabilidad de los materiales de inyección de terrenos

Figura 1. Inyección de suelos. https://www.keller.com.es/experiencia/tecnicas/inyeccion-de-macizos-rocosos-suelos

En artículos anteriores se habló de los materiales empleados en la inyección de terrenos y de las técnicas de inyección del terreno. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en los tipos de lechadas y la aplicabilidad de los materiales empleados en la inyección del terreno.

Se pueden distinguir tres tipos de lechadas:

  • Suspensiones inestables: Normalmente son mezclas de cemento diluido con agua en exceso en proporciones variables, no homogéneas, que sedimentan cuando cesa la agitación. Se emplean en rocas o materiales granulares gruesos.
  • Suspensiones estables: Se obtienen por disolución de arcilla y cemento en agua. Con la dosificación adecuada, con una fuerte agitación y con aditivos estabilizadores, se consigue que no se produzca la sedimentación durante la inyección.
  • Líquidos o disoluciones: No contienen partículas sólidas en suspensión, encontrándose en solución o en emulsión los componentes químicos en el agua. Están constituidos por productos químicos como silicatos, resinas orgánicas y productos hidrocarbonados puros. Mantienen constante su viscosidad, hasta el momento de la solidificación.

El sistema de inyección utilizado en cada caso depende de numerosos parámetros como la granulometría, la porosidad, la porosidad, la permeabilidad y las condiciones del agua subterránea, especialmente su composición química y velocidad de circulación. Además, existen numerosos productos en el mercado que se pueden adecuar en mayor o menor medida a las características específicas del terreno, por lo que suele ser habitual consultar a empresas especializadas.

En la Figura 2 se puede ver la aplicabilidad de distintos tipos de inyecciones atendiendo al tamaño de las partículas del suelo a inyectar. Se aprecia que el jet grouting se aplica, en general, a todo tipo de tamaño de partículas, excluyendo los bolos.

Figura 2. Aplicabilidad de distintos materiales de inyección según el tamaño de partículas del suelo (Kutzner, 1996)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Técnicas de inyección del terreno

Figura 1. Tipos principales de inyección del terreno

En un artículo anterior se habló de los materiales empleados en la inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en las técnicas de inyección del terreno.

Todo proceso de inyección presenta dos facetas características (Sanz, 1981):

  1. Introducción y distribución en el medio de la mezcla de inyección. Para que ello sea posible debe adecuarse, de acuerdo con la morfología de los huecos del terreno, de una red de perforación auxiliar y de unas presiones de inyección adecuadas.
  2. Transformación de la mezcla, que endurece según un proceso químico que puede ser desde el fraguado en el caso del cemento, a la transformación sol-gel, en el caso de inyecciones químicas.

Las técnicas de inyección se pueden dividir en los siguientes grupos (Figura 1):

  • Rellenos de huecos y fisuras: Se inyecta lechada en las fracturas, diaclasas o discontinuidades de las rocas; o se rellenan los huecos con una lechada con un alto contenido de partículas. En este caso, el producto se introduce básicamente por gravedad hasta colmatar los huecos. Con grandes huecos, conviene introducir en las lechadas áridos o productos de alto rendimiento volumétrico.
  • Inyecciones de impregnación: No existe rotura del terreno. Se emplean mezclas muy penetrantes, cuyo objetivo principal es disminuir la permeabilidad del terreno rellenando poros y fisuras. Se sustituye el agua o el gas intersticial con una lechada inyectada a baja presión para no producir desplazamientos de terreno.
  • Inyecciones de compactación o de desplazamiento: Se introducen morteros de alta fricción interna que comprimen el terreno flojo y lo desplaza lateralmente de forma controlada, sin que el material inyectado se mezcle con él.
  • Inyecciones de fracturación hidráulica o por tubos manquito: Se fractura el terreno mediante la inyección de la lechada a una presión que supere su resistencia a tracción y su presión de confinamiento. La lechada no penetra en los poros, sino que se introduce en las fisuras creadas por la presión utilizada, formándose lentejones que recomprimen el terreno. Esta técnica también se llama hidrofracturación, hidrofisuración, “hidrojacking” o “claquage”. Son útiles en inyecciones de consolidación, de compensación de asientos, e inyecciones armadas. Para ello se suelen realizar con tubos manguito.
  • Inyección de alta presión: Se excava y mezcla el terreno con un chorro de lechada a alta velocidad (jet-grouting).

Las propiedades más importantes de las mezclas de inyección son las siguientes (Muzas, 2007):

  • Estabilidad y posibilidad de segregación: una velocidad pequeña del fluido puede sedimentar la mezcla y paralizar la inyección.
  • Viscosidad del producto: determina la presión y la velocidad de inyección.
  • Propiedades reológicas: comportamiento de la lechada a lo largo del tiempo.
  • Tiempo de fraguado: limita el plazo de utilización del producto en la inyección.
  • Volumen del producto fraguado: en las mezclas con agua, puede haber decantación o pérdida de agua al terreno contiguo, con disminución del volumen final.
  • Resistencia del producto fraguado.
  • Durabilidad: permanencia del producto fraguado a largo plazo.

En cuanto a los parámetros de la inyección, los más importantes son la velocidad de la inyección, el volumen de inyección, y la presión de inyección. La presión está muy relacionada con el tipo de terreno y con la viscosidad del producto, aconsejándose un valor límite.

Figura 2. Esquemas de algunas técnicas de inyecciones (ROM 5.05)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales empleados en la inyección de terrenos

Figura 1. Proceso de colmatación de los huecos mediante inyección del terreno

La presencia de suelos con permeabilidad muy alta o macizos rocosos muy fracturados pueden hacer que los bombeos sean excesivamente costosos y se precisen otro tipo de técnicas para controlar el nivel freático. Una forma de cambiar la permeabilidad de un terreno, y por tanto, contener mediante barrera el agua subterránea, es mediante la inyección del terreno. La técnica, muy utilizada también como mejora del terreno, consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos (Figura 1).

El tratamiento del terreno con inyecciones depende tanto de las peculiaridades del medio a tratar como de las características del producto de inyección, así como de la forma en la que este producto se introduce en el medio.

Este procedimiento constructivo se inició en Francia, siendo su inventor Charles Bérigny en 1802, quien inyectó morteros de cemento, alguna vez asociados con puzolanas. Si bien al principio solo se pretendían rellenar huecos colocando el mortero líquido por gravedad, poco a poco se perfeccionaron las inyecciones, a partir de 1920-1930, donde la construcción de ferrocarriles abrió paso a las grandes obras hidráulicas.

Las aplicaciones más frecuentes de la inyección del terreno son los tratamientos de las cimentaciones de presas, el refuerzo de cimentaciones o recalce de edificios, así como la construcción de túneles. Sin embargo, hay que ser prudentes con estos procedimientos, pues la inyección de grandes volúmenes de material en el terreno puede causar desplazamientos. Además, el material inyectado tiende a moverse a través de las capas más permeables o a través de grietas débiles, surgiendo a menudo a distancias considerables del punto de inyección.

En el caso de las inyecciones de impermeabilización, el objetivo fundamental es reducir la permeabilidad del terreno. Son tratamientos muy habituales en presas, en túneles y en excavaciones en general, cuando se realizan trabajos bajo nivel freático. Se emplean como mezclas de inyección lechadas y productos químicos como los geles de silicato, aunque también es posible realizar inyecciones de colmatación de huecos mediante arenas sin cemento con objeto de disminuir la permeabilidad, permitiendo el drenaje. A medida que la permeabilidad del medio disminuye, se deben emplear fluidos de menor viscosidad para conseguir la suficiente penetración en el terreno.

Al fluido inyectado se le conoce como mortero de inyección, los cuales pueden ser conglomerados hidráulicos, materiales arcillosos, arenas y filleres, agua y productos químicos. El componente más habitual en las inyecciones es el cemento, el cual puede ir acompañado por distintos productos. Los materiales utilizados en la inyección son los siguientes:

  • Conglomerantes hidráulicos: Incluyen los cementos y productos similares empleados en suspensión cuando se preparan las lechadas. La granulometría del conglomerante hidráulico de la lechada es un factor importante, pues guarda relación con las dimensiones de los huecos o fisuras o huecos existentes.
  • Materiales arcillosos: Las arcillas naturales, de tipo bentonítico, activadas o modificadas, se utilizan en las lechadas elaboradas con cemento, pues reducen la sedimentación y varían la viscosidad y la cohesión de la lechada, mejorando la bombeabilidad.
  • Arena y filleres: Se adicionan a las lechadas de cemento y a las suspensiones de arcilla para variar su consistencia, mejorando de esta forma su comportamiento frente a la acción del agua, su resistencia mecánica y su deformabilidad. Generalmente se utilizan arenas naturales o gravas, filleres calcáreos o silíceos, puzolanas y cenizas volantes, exentos de elementos perjudiciales.
  • Agua
  • Productos químicos: Se utilizan silicatos y sus reactivos, resinas acrílicas y epoxi, materiales procedentes de lignina y poliuretanos, siempre que cumplan la legislación ambiental vigente. Los aditivos son productos orgánicos e inorgánicos que se añaden, en general en cantidades reducidas, a la lechada para modificar sus propiedades y controlar la viscosidad, el tiempo de fraguado y la estabilidad, durante la inyección, además de la resistencia, cohesión y permeabilidad una vez colocada la lechada. Como aditivos se utilizan, entre otros, superplastificantes, productos para retener agua y productos para arrastrar aire.

En la Tabla 1 se relacionan los distintos tipos de productos:

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyección de lechadas químicas

Figura 1. Inyección en presa Los Caracoles, San Juan (Argentina). www.fundacionesespeciales.com

La inyección de morteros líquidos se les conoce también por inyecciones químicas. Las lechadas químicas, también llamadas mezclas químicas, son soluciones puras sin partículas en suspensión, salvo que se añadan con alguna finalidad específica. Se caracterizan por su baja viscosidad, cercana al agua, por lo que penetran en los huecos por donde el agua puede filtrarse. Normalmente penetran en arenas finas, limos arenosos y fisuras de hasta 0,01 mm de apertura. La mezcla gelifica al cabo de cierto tiempo al cambiar bruscamente la viscosidad. Su mayor inconveniente es su alto precio, por lo que suelen utilizarse en casos específicos o combinados con otras técnicas, donde antes se ha inyectado con cemento.

Las mezclas líquidas se caracterizan por su viscosidad, que determina su penetrabilidad, por el tiempo que transcurre desde la fabricación de la mezcla hasta el comienzo de su gelificación y por las características del gel final como aglomerante del medio que recibe la inyección (Figura 2). Estas características se ven afectadas por las proporciones de la mezcla, incluida el agua y también de la temperatura, que modifica el tiempo de gelificación.

Figura 2. Cambio de viscosidad de algunas mezclas químicas (Sanz, 2000)

Las inyecciones químicas se componen de una base de inyección, un reactivo y un catalizador. Así, en el método de Joosten, una solución de silicato de sodio reacciona con una solución alcalina de cloruro cálcico para formar un concentrado de sílice, el llamado gel de sílice. Sin embargo, aparte de los geles de sílice, se pueden clasificar las mezclas químicas en otros tipos de genes y en resinas y espumas.

Se utilizan dos procesos de aplicación de las lechadas químicas. Las de doble acción (two-shot) consiste en inyectar el silicato sódico concentrado y luego una solución de cloruro cálcico que se inyecta a presión elevada que actúa como gelificante. Este procedimiento supone el coste de dos inyecciones y de los sondeos correspondientes. Para evitar esto, se utiliza el proceso de acción simple (one-shot) supone una única inyección de todos los productos, que se mezclan antes de inyectarse, pero diseñando la reacción de forma que la lechada solidifique o se convierta en gel en los huecos del suelo. Este segundo caso corresponde al caso de la reacción del silicato con acetato de etilo, formalmida, etc., o bien utilizando subproductos del tratamiento de las maderas, tales como las lejías lignosulfáticas coaguladas por adición de bicromatos alcalinos.

Los tipos más comunes de lechadas químicas son las siguientes (García Valcarce et al., 2003):

  • Geles duros (reactivos orgánicos):
    • A base de silicato de sodio
    • Mezcla de un lignosulfito y bentonita
  • Geles plásticos (reactivos inorgánicos):
    • A base de silicato de sodio y bentonita desfloculada
    • Geles de bentonita, arcilla o cemento
    • Resinas orgánicas
    • Monómeros acuosos, polímeros precondensados

Estas inyecciones no se aplican a terrenos con poros muy pequeños, como las arcillas y limos, que prácticamente no se pueden inyectar. Se podrían aplicar a arenas finas o loess, pero con costes muy elevados. Tampoco servirían con terrenos con huecos demasiado grandes ni cuando la mezcla presente una viscosidad elevada.

A continuación se describen los tres grandes grupos de lechadas químicas:

  • Geles de sílice: La base habitual es el silicato de sodio disuelto en agua. Esta base se mezcla con un reactivo endurecedor orgánico (geles duros) o mineral (gel o espuma), que, en función de la dosificación, regula la duración del fraguado. Las lechadas químicas de este tipo son las de mayor viscosidad, y su aplicación es adecuada en arenas finas o muy finas (k ϵ [10-3, 10-6] m/s). En roca se emplea cuando las fisuras son finas. Como reactivo inorgánico (fabricación de gel plástico), se usa principalmente el bicarbonato sódico, lo cual forma un gel blando de gelificación retardada, suficiente para la impermeabilización. Entre los reactivos orgánicos se puede mencionar el acetato de etilo, aunque hoy día se ha desplazado por otros productos, muchos bajo marcas comerciales.
  • Otros geles: Para aplicaciones particulares, se pueden utilizar otros tipos de lechadas químicas:
    • Geles mixtos: Mezcla de gel de sílice y resina acrílica, empleado para el tratamiento de fisuras activas.
    • Geles de arcilla: Mezcla de bentonita, silicato y un reactivo, muy utilizado en la impermeabilización de depósitos aluviales, para el remate de pantallas impermeables, así como proceso posterior a la inyección de lechadas de bentonita-cemento. También se utiliza cuando es difícil impermeabilizar con lechadas de cemento y cuando no se justifica el uso de gel.
    • Geles lignocromos: Mezclas de lignosulfatos que contienen un exhalante de cromo, altamente tóxico. Es habitual el lignosulfato de calcio y dicromato de sodio. Se usan también en la impermeabilización de depósitos aluviales complementando a las inyecciones de bentonita-cemento.
  • Resinas: Suelen ser soluciones de productos orgánicos en agua o en disolventes no acuosos, que polimerizan a temperatura ambiente en lugares cerrados. Se utiliza cuando no se puede inyectar otro producto por su viscosidad demasiado elevada. Se emplea en la impermeabilización de terrenos granulares finos o en el cierre de grietas de obras, especialmente presas y túneles. En estos últimos casos, o en la inyección en fisuras den estructuras de hormigón, aunque son muy caras, se pueden usar colas inyectadas, que son resinas de alta viscosidad como pueden ser las resinas epoxi especiales, poliéster, o productos acrílicos, que una vez polimerizan proporcionan mecánicas superiores a las del hormigón. Habría que hacer mención a los productos espumantes que incrementan su volumen con la formación de burbujas de gas (resinas de poliuretano). Un caso especial son los productos “sensibles al agua”, que permanecen líquidos hasta ser inyectados. Están formados por coloides orgánicos (poliol-isocianato) que pasan a espuma de poluiretano, en contacto con el agua, incrementando su volumen en más de 20 veces. Son las resinas de poluiretano acuarreactivas (resinas P.A.).

En la Figura 3 se representa el campo de aplicación de distintas inyecciones químicas en función de la permeabilidad del terreno. Puede verse que las mezclas químicas, especialmente las resinas acrílicas y fenólicas, presentan un mayor rango de aplicabilidad que las inyecciones de lechada de cemento o de arcilla-cemento. Los polímeros dan buen resultado cuando se requiere inyectar fracturas abiertas con agua en circulación, taponándose temporalmente las grietas para inyectar entonces las suspensiones de cemento, morteros y lechadas, que son más resistentes y de mayor durabilidad.

Figura 3. Tipos de inyecciones según la permeabilidad (Pérez Valcárcel, 2004)

En la Figura 4 se observa, con carácter orientativo, el límite de inyectabilidad en función de la permeabilidad del suelo y los diámetros de los granos de lechada (Cambefort, 1968).

Figura 4. Penetrabilidad de los morteros en función de la permeabilidad del medio (Cambefort, 1968)

En la Figura 5 se han representado los materiales que se emplearían en la inyección de acuerdo con el tamaño de los granos del terreno.

Figura 5. Materiales de inyección de acuerdo con el tamaño de las partículas (Bell, 1978)

A parte del coste de este tipo de tratamientos, hay que señalar que el agua marina puede modificar sustancialmente el tiempo de gelificación de varias soluciones de este tipo. Además, normalmente este tipo de tratamientos son provisionales, útiles durante la fase constructiva, pues la durabilidad de este tipo de productos puede ser muy variable.

Referencias:

  • BELL, F.G. (1978). Foundation engineering in difficult ground. Butterworths, London.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 338 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Soil nailing o suelo claveteado

Soil nailing
Figura 1. Gunitado sobre ladera claveteada

La técnica del soil nailing, o claveteado de suelos,  consiste en reforzar un talud, a medida que desciende la excavación, mediante la introducción de anclajes de refuerzo pasivos o activos, generalmente subhorizontales, que trabajan principalmente a tracción, pero también pueden tomar cargas de flexión y corte. Estos refuerzos se complementan a medida que baja la excavación con un paramento superficial que puede ser rígido o flexible que impide el deslizamiento del suelo entre los puntos que se encuentran las barras instaladas. Este refuerzo del terreno permite mejorar su resistencia al corte a lo largo de superficies potenciales de falla.

Las barras se colocan en unos sondeos perforados previamente y que luego se rellenan con una lechada o mortero de inyección. Posteriormente se ejecuta un paramento vertical que impida la caída de tierra entre los puntos donde se sitúan las inclusiones. Esto suele realizarse mediante hormigón proyectado (gunita), que suele reforzarse mediante una malla de acero.

Este procedimiento no se puede aplicar bajo nivel freático, ni tampoco cuando el suelo es blando o muy blando, pues entonces no es rentable su uso.

Figura 2. Procedimiento constructivo del suelo claveteado. https://civilengineeringbible.com/article.php?i=107

Os paso unos cuantos vídeos informativos al respecto. Espero que os sean de utilidad.

 

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyecciones de fracturación

Figura 1. Inyección de fracturación para mejorar terreno bajo cimentación de aerogenerador

Las inyecciones de fracturación (también llamadas hidrofisuración, hidro-fracturación, hidrojacking o claquage), son inyecciones de lechada de cemento a media/alta presión que rompen el terreno, produciendo su densificación y rigidización, creando una red estructuradora.  Se introduce un material de baja viscosidad que busca la rotura del terreno para la posterior introducción de la lechada de pronto fraguado para reestructurarle. El tipo de lechada o mortero a emplear, así como los aditivos y dosificaciones dependerán tanto del tipo de inyección que vayamos a realizar como del resultado que estemos buscando con la intervención.

La técnica se realiza mediante la inyección con un tubo-manguito, inyectándose pequeños volúmenes en cada fase. El producto de inyección no es capaz de penetrar en los poros del terreno, sino que se introduce por las fisuras que se van creando por efecto de la presión. Se crean lentejones del material inyectado, que recomprimen transversalmente el terreno. Al crear una nueva estructura de terreno reforzado se consigue un doble efecto de densificación y rigidización. Esto se debe a que el suelo queda cosido por la red de fracturas cementadas inducidas en el mismo.

Esta técnica suele utilizase en las inyecciones de compensación, utilizadas éstas para controlar los movimientos que puedan generar las obras subterráneas sobre edificios en superficie. Asimismo, se suele utilizar para conseguir  una mejora de las características resistentes del terreno ya que se densifica éste y se generan unas ramificaciones de material resistente a modo de “armado” del terreno.

 

Las fases características de este tipo de inyección son las siguientes:

  1. Instalación del tubo manguito e inyección de la vaina: El tubo manguito se coloca en la perforación efectuada, rellenando con una mezcla de bentonita-cemento, el espacio anular entre la pared del sondeo y el tubo manguito.
  2. Fracturación del suelo: Para permitir la inyección de la suspensión se inserta en un obturador doble, que independiza cada uno de los manguitos durante su inyección.
  3. Inyección múltiple: Los manguitos pueden inyectarse una o varias veces, de acuerdo con los requisitos técnicos. El volumen de lechada, la presión máxima de inyección y, en el caso de una inyección repetitiva, la velocidad de inyección, se mantiene de acuerdo con las instrucciones. Los tubos manguitos pueden reutilizarse.

 

Figura 2. Esquema de inyección por fracturación
Figura 3. Fases de la inyección por fracturación
Os paso una animación de la empresa HAYWARD BAKER que espero os guste.

Referencias:

AENOR (2001). UNE-EN 12715. Ejecución de trabajos geotécnicos especiales. Inyecciones. Madrid.

Dirección General de Carreteras (2002). Guía de cimentaciones en obras de carretera.  Ministerio de Fomento, Madrid.

Puertos del Estado (2005). ROM 0.5-05. Recomendaciones geotécnicas para obras marítimas y portuarias.  Ministerio de Fomento, Madrid.

Muzas, F. (2003). Inyecciones de fracturación y compactación. Jornada sobre mejora del terreno de cimentación. Intevía. (link)

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava mediante vibrosustitución

KellerTerra muestra en un vídeo de 5 minutos cómo se ejecuta una columna de grava (vibrosustitución) en la obra de la Central de Ciclo Combinado de la Bahía de Escombreras, Murcia. Después de visualizarlo, contesta a las siguientes preguntas:

  1. ¿Qué es una central de ciclo combinado?
  2. ¿Qué circunstancias del terreno hicieron recomendable la mejora del suelo mediante columnas de gravas?
  3. ¿Qué características se querían conseguir del terreno mejorado?
  4. ¿De qué partes consta un tubo vibrador?
  5. ¿Pará qué sirve el tamiz que se encuentra en la tolva donde la cargadora descarga grava?
  6. ¿Qué hace el aire comprimido en la cámara de descarga?
  7. ¿Qué diámetros de columna de grava se ejecutaron?

Otro vídeo de interés sobre la vibrosustitución es el siguiente:

Inyecciones de alta presión: Jet grouting

http://www.interempresas.net/Mineria/Articulos/146294-Diametro-columnas-jet-grouting-funcion-energias-especificas-perforacion-inyeccion.html

El Jet-Grouting es un proceso que consiste en la desagregación del suelo (o roca poco compacta), mezclándolo, y parcialmente sustituyéndolo, por un agente cementante (normalmente cemento). La desagregación se consigue mediante un fluido con alta energía, que puede incluir el propio agente cementante. Esta técnica de alta presión consigue desagregar el suelo o la roca poco compacta, mezclándolo y sustituyéndolo por cemento, así se van llenando huecos y discontinuidades. Básicamente se expulsan chorros de lechada de cemento (grout) a través de unas toberas a velocidades muy altas, logrando así la rotura del terreno y su íntima mezcla con el mismo. La técnica del Jet-Grouting tiene múltiples aplicaciones (mejora del terreno, impermeabilización, túneles, etc.), siendo el fluido de perforación también variable (cemento, bentonita, mezclas químicas, etc.)

Os paso varios vídeos al respecto, empezando por una animación sobre del Jet grouting de triple fluido:

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Electroósmosis como técnica de drenaje del terreno

Figura 1. Proceso de electroósmosis (Terrancorp.com, 2014)

Muchos problemas de ingeniería tienen que ver con la estabilidad de los terrenos. Para solucionar estos problemas se utilizan distintos métodos que permiten aumentar la resistencia del mismo mediante tratamientos de tipo granular, químico o térmico. Una forma de estabilizar los suelos finos saturados o parcialmente saturados es la electroósmosis, que no solo permite mejorarlos, sino también se utiliza con técnica de drenaje. Otro de los usos habituales de este técnica es para combatir la humedad por capilaridad, con lo que se combaten las eflorescencias. Sin embargo, en este artículo nos centraremos en el uso de la electroósmosis como técnica de mejora del terreno y como técnica de drenaje del nivel freático.

La electroósmosis es un fenómeno basado en la precipitación eléctrica de sustancias coloidales en suspensión, observado por el físico Reuss (1808) quien introdujo dos tubos verticales abiertos en sus extremos dentro de un bloque de arcilla húmeda llenándolos de agua hasta la mitad de su altura. Después de situar un par de electrodos en su interior, hizo pasar por ellos una corriente eléctrica comprobando que el nivel de agua subía en uno de los tubos mientras descendía en el otro. Esto demostraba la existencia de un flujo de agua de un tubo al otro a través de la arcilla.

Más tarde Casagrande (1.952) llevó a la práctica el sistema aplicándolo para consolidar un suelo arcilloso en la excavación de un talud. Para ello colocó como cátodos, dos series de tubos porosos de 10 cm de diámetro y 7 m de profundidad en tomo a los cuales situó un relleno de gravilla para facilitar la entrada del agua. Entre cada dos cátodos separados 9 m se intercalaron como ánodos, tubos de 12 mm de diámetro. El paso de una corriente de 90 voltios y una potencia de 1,5 kw provocó la acumulación del agua en los tubos porosos (cátodos) de los cuales se pudo extraer fácilmente por bombeo.

La electroósmosis constituye una técnica de drenaje, también llamado método de drenaje eléctrico, que se emplea en la estabilización de arcillas blandas y limos (0,06-0,002 mm), incrementando de este modo su resistencia por la reducción de su contenido de humedad, al ser terrenos que presentan problemas para aplicar las técnicas de pozos con sistema de vacío convencional.  El sistema no es efectivo en arenas finas con permeabilidades inferiores a 3·10-3 cm/s.  Este sistema de drenaje difiere de otros procedimientos en que el movimiento del agua no se produce por efecto de la gravedad sino por el efecto de un campo eléctrico. Con el proceso de electroósmosis se genera desaturación en el suelo, se aumenta la resistencia y se consolida el suelo, como un efecto principal, y en consecuencia, se mejoran las condiciones del terreno con su estabilización.

El agua fluye de los ánodos (+) a los cátodos (-) en un medio poroso saturado (Figuras 2 y 3). Dan buenos resultados colocando cátodos de un diámetro de 120 mm cada 3-5 m y ánodos intercalados de 100 mm de diámetro. En el cátodo se coloca un wellpoint o un pozo drenante. Los ánodos y cátodos son tubos abiertos por el fondo. Los gradientes de potencial varían entre 30 y 180 V. A mayor voltaje, mayor el volumen de agua drenada, aunque pueden producirse fenómenos de hidrólisis, por lo que deben hacerse ensayos para establecer los parámetros energéticos más convenientes. Este proceso de movimiento del agua genera consolidación, con un aumento temporal de las tensiones efectivas.

La conductividad eléctrica del agua depende de su salinidad y ello influye en la eficiencia de la corriente y el voltaje aplicado. En un suelo con mayor salinidad, el volumen de agua drenada con la electroósmosis es mayor y la consolidación es más eficiente y rápida.

Figura 2. Disposición del equipo para el drenaje

 

Figura 3. Disposición del equipo para el drenaje (Bell, 1993)

 

Las desventajas de este método radican en el alto costo de la energía necesaria y en los problemas que pueden derivarse en relación a la seguridad y salud por el hecho de trabajar con un circuito de corriente continua. Este tipo de tratamiento, debido a los elevados costes de ejecución y a la poca práctica en su uso, puede presentarse como alternativa en casos especiales siempre que el caudal a evacuar sea escaso. Su uso más frecuente es en la mejora permanente en las propiedades de los cimientos o en la estabilidad de los taludes. En la Figura 4 se muestra el principio de la electroósmosis empleado en el drenaje previo a la excavación de un túnel.

Figura 4. Tratamiento por electroósmosis previo a la excavación de un túnel (Bielza, 1999)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.