Técnicas de inyección del terreno

Figura 1. Tipos principales de inyección del terreno

En un artículo anterior se habló de los materiales empleados en la inyección de terrenos. Como decíamos, esta técnica consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos. En este artículo nos centraremos en las técnicas de inyección del terreno.

Todo proceso de inyección presenta dos facetas características (Sanz, 1981):

  1. Introducción y distribución en el medio de la mezcla de inyección. Para que ello sea posible debe adecuarse, de acuerdo con la morfología de los huecos del terreno, de una red de perforación auxiliar y de unas presiones de inyección adecuadas.
  2. Transformación de la mezcla, que endurece según un proceso químico que puede ser desde el fraguado en el caso del cemento, a la transformación sol-gel, en el caso de inyecciones químicas.

Las técnicas de inyección se pueden dividir en los siguientes grupos (Figura 1):

  • Rellenos de huecos y fisuras: Se inyecta lechada en las fracturas, diaclasas o discontinuidades de las rocas; o se rellenan los huecos con una lechada con un alto contenido de partículas. En este caso, el producto se introduce básicamente por gravedad hasta colmatar los huecos. Con grandes huecos, conviene introducir en las lechadas áridos o productos de alto rendimiento volumétrico.
  • Inyecciones de impregnación: No existe rotura del terreno. Se emplean mezclas muy penetrantes, cuyo objetivo principal es disminuir la permeabilidad del terreno rellenando poros y fisuras. Se sustituye el agua o el gas intersticial con una lechada inyectada a baja presión para no producir desplazamientos de terreno.
  • Inyecciones de compactación o de desplazamiento: Se introducen morteros de alta fricción interna que comprimen el terreno flojo y lo desplaza lateralmente de forma controlada, sin que el material inyectado se mezcle con él.
  • Inyecciones de fracturación hidráulica o por tubos manquito: Se fractura el terreno mediante la inyección de la lechada a una presión que supere su resistencia a tracción y su presión de confinamiento. La lechada no penetra en los poros, sino que se introduce en las fisuras creadas por la presión utilizada, formándose lentejones que recomprimen el terreno. Esta técnica también se llama hidrofracturación, hidrofisuración, “hidrojacking” o “claquage”. Son útiles en inyecciones de consolidación, de compensación de asientos, e inyecciones armadas. Para ello se suelen realizar con tubos manguito.
  • Inyección de alta presión: Se excava y mezcla el terreno con un chorro de lechada a alta velocidad (jet-grouting).

Las propiedades más importantes de las mezclas de inyección son las siguientes (Muzas, 2007):

  • Estabilidad y posibilidad de segregación: una velocidad pequeña del fluido puede sedimentar la mezcla y paralizar la inyección.
  • Viscosidad del producto: determina la presión y la velocidad de inyección.
  • Propiedades reológicas: comportamiento de la lechada a lo largo del tiempo.
  • Tiempo de fraguado: limita el plazo de utilización del producto en la inyección.
  • Volumen del producto fraguado: en las mezclas con agua, puede haber decantación o pérdida de agua al terreno contiguo, con disminución del volumen final.
  • Resistencia del producto fraguado.
  • Durabilidad: permanencia del producto fraguado a largo plazo.

En cuanto a los parámetros de la inyección, los más importantes son la velocidad de la inyección, el volumen de inyección, y la presión de inyección. La presión está muy relacionada con el tipo de terreno y con la viscosidad del producto, aconsejándose un valor límite.

Figura 2. Esquemas de algunas técnicas de inyecciones (ROM 5.05)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • MINISTERIO DE FOMENTO (2005). Recomendaciones Geotécnicas para Obras Marítimas y Portuarias. ROM 0.5-05. Puertos del Estado, Madrid.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales empleados en la inyección de terrenos

Figura 1. Proceso de colmatación de los huecos mediante inyección del terreno

La presencia de suelos con permeabilidad muy alta o macizos rocosos muy fracturados pueden hacer que los bombeos sean excesivamente costosos y se precisen otro tipo de técnicas para controlar el nivel freático. Una forma de cambiar la permeabilidad de un terreno, y por tanto, contener mediante barrera el agua subterránea, es mediante la inyección del terreno. La técnica, muy utilizada también como mejora del terreno, consiste en introducir en el medio una mezcla fluida que reacciona con las partículas de suelo mediante una reacción hidráulica o química. De esta forma se conforma una masa de mayor resistencia mecánica y permeabilidad, así como menor deformabilidad, pues se consigue aumentar la compacidad, disminuyendo el índice de huecos (Figura 1).

El tratamiento del terreno con inyecciones depende tanto de las peculiaridades del medio a tratar como de las características del producto de inyección, así como de la forma en la que este producto se introduce en el medio.

Este procedimiento constructivo se inició en Francia, siendo su inventor Charles Bérigny en 1802, quien inyectó morteros de cemento, alguna vez asociados con puzolanas. Si bien al principio solo se pretendían rellenar huecos colocando el mortero líquido por gravedad, poco a poco se perfeccionaron las inyecciones, a partir de 1920-1930, donde la construcción de ferrocarriles abrió paso a las grandes obras hidráulicas.

Las aplicaciones más frecuentes de la inyección del terreno son los tratamientos de las cimentaciones de presas, el refuerzo de cimentaciones o recalce de edificios, así como la construcción de túneles. Sin embargo, hay que ser prudentes con estos procedimientos, pues la inyección de grandes volúmenes de material en el terreno puede causar desplazamientos. Además, el material inyectado tiende a moverse a través de las capas más permeables o a través de grietas débiles, surgiendo a menudo a distancias considerables del punto de inyección.

En el caso de las inyecciones de impermeabilización, el objetivo fundamental es reducir la permeabilidad del terreno. Son tratamientos muy habituales en presas, en túneles y en excavaciones en general, cuando se realizan trabajos bajo nivel freático. Se emplean como mezclas de inyección lechadas y productos químicos como los geles de silicato, aunque también es posible realizar inyecciones de colmatación de huecos mediante arenas sin cemento con objeto de disminuir la permeabilidad, permitiendo el drenaje. A medida que la permeabilidad del medio disminuye, se deben emplear fluidos de menor viscosidad para conseguir la suficiente penetración en el terreno.

Al fluido inyectado se le conoce como mortero de inyección, los cuales pueden ser conglomerados hidráulicos, materiales arcillosos, arenas y filleres, agua y productos químicos. El componente más habitual en las inyecciones es el cemento, el cual puede ir acompañado por distintos productos. Los materiales utilizados en la inyección son los siguientes:

  • Conglomerantes hidráulicos: Incluyen los cementos y productos similares empleados en suspensión cuando se preparan las lechadas. La granulometría del conglomerante hidráulico de la lechada es un factor importante, pues guarda relación con las dimensiones de los huecos o fisuras o huecos existentes.
  • Materiales arcillosos: Las arcillas naturales, de tipo bentonítico, activadas o modificadas, se utilizan en las lechadas elaboradas con cemento, pues reducen la sedimentación y varían la viscosidad y la cohesión de la lechada, mejorando la bombeabilidad.
  • Arena y filleres: Se adicionan a las lechadas de cemento y a las suspensiones de arcilla para variar su consistencia, mejorando de esta forma su comportamiento frente a la acción del agua, su resistencia mecánica y su deformabilidad. Generalmente se utilizan arenas naturales o gravas, filleres calcáreos o silíceos, puzolanas y cenizas volantes, exentos de elementos perjudiciales.
  • Agua
  • Productos químicos: Se utilizan silicatos y sus reactivos, resinas acrílicas y epoxi, materiales procedentes de lignina y poliuretanos, siempre que cumplan la legislación ambiental vigente. Los aditivos son productos orgánicos e inorgánicos que se añaden, en general en cantidades reducidas, a la lechada para modificar sus propiedades y controlar la viscosidad, el tiempo de fraguado y la estabilidad, durante la inyección, además de la resistencia, cohesión y permeabilidad una vez colocada la lechada. Como aditivos se utilizan, entre otros, superplastificantes, productos para retener agua y productos para arrastrar aire.

En la Tabla 1 se relacionan los distintos tipos de productos:

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • KUTZNER, C. (1996). Grouting of rock and soil. A.A. Balkema, Rotterdam.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyección de lechadas químicas

Figura 1. Inyección en presa Los Caracoles, San Juan (Argentina). www.fundacionesespeciales.com

La inyección de morteros líquidos se les conoce también por inyecciones químicas. Las lechadas químicas, también llamadas mezclas químicas, son soluciones puras sin partículas en suspensión, salvo que se añadan con alguna finalidad específica. Se caracterizan por su baja viscosidad, cercana al agua, por lo que penetran en los huecos por donde el agua puede filtrarse. Normalmente penetran en arenas finas, limos arenosos y fisuras de hasta 0,01 mm de apertura. La mezcla gelifica al cabo de cierto tiempo al cambiar bruscamente la viscosidad. Su mayor inconveniente es su alto precio, por lo que suelen utilizarse en casos específicos o combinados con otras técnicas, donde antes se ha inyectado con cemento.

Las mezclas líquidas se caracterizan por su viscosidad, que determina su penetrabilidad, por el tiempo que transcurre desde la fabricación de la mezcla hasta el comienzo de su gelificación y por las características del gel final como aglomerante del medio que recibe la inyección (Figura 2). Estas características se ven afectadas por las proporciones de la mezcla, incluida el agua y también de la temperatura, que modifica el tiempo de gelificación.

Figura 2. Cambio de viscosidad de algunas mezclas químicas (Sanz, 2000)

Las inyecciones químicas se componen de una base de inyección, un reactivo y un catalizador. Así, en el método de Joosten, una solución de silicato de sodio reacciona con una solución alcalina de cloruro cálcico para formar un concentrado de sílice, el llamado gel de sílice. Sin embargo, aparte de los geles de sílice, se pueden clasificar las mezclas químicas en otros tipos de genes y en resinas y espumas.

Se utilizan dos procesos de aplicación de las lechadas químicas. Las de doble acción (two-shot) consiste en inyectar el silicato sódico concentrado y luego una solución de cloruro cálcico que se inyecta a presión elevada que actúa como gelificante. Este procedimiento supone el coste de dos inyecciones y de los sondeos correspondientes. Para evitar esto, se utiliza el proceso de acción simple (one-shot) supone una única inyección de todos los productos, que se mezclan antes de inyectarse, pero diseñando la reacción de forma que la lechada solidifique o se convierta en gel en los huecos del suelo. Este segundo caso corresponde al caso de la reacción del silicato con acetato de etilo, formalmida, etc., o bien utilizando subproductos del tratamiento de las maderas, tales como las lejías lignosulfáticas coaguladas por adición de bicromatos alcalinos.

Los tipos más comunes de lechadas químicas son las siguientes (García Valcarce et al., 2003):

  • Geles duros (reactivos orgánicos):
    • A base de silicato de sodio
    • Mezcla de un lignosulfito y bentonita
  • Geles plásticos (reactivos inorgánicos):
    • A base de silicato de sodio y bentonita desfloculada
    • Geles de bentonita, arcilla o cemento
    • Resinas orgánicas
    • Monómeros acuosos, polímeros precondensados

Estas inyecciones no se aplican a terrenos con poros muy pequeños, como las arcillas y limos, que prácticamente no se pueden inyectar. Se podrían aplicar a arenas finas o loess, pero con costes muy elevados. Tampoco servirían con terrenos con huecos demasiado grandes ni cuando la mezcla presente una viscosidad elevada.

A continuación se describen los tres grandes grupos de lechadas químicas:

  • Geles de sílice: La base habitual es el silicato de sodio disuelto en agua. Esta base se mezcla con un reactivo endurecedor orgánico (geles duros) o mineral (gel o espuma), que, en función de la dosificación, regula la duración del fraguado. Las lechadas químicas de este tipo son las de mayor viscosidad, y su aplicación es adecuada en arenas finas o muy finas (k ϵ [10-3, 10-6] m/s). En roca se emplea cuando las fisuras son finas. Como reactivo inorgánico (fabricación de gel plástico), se usa principalmente el bicarbonato sódico, lo cual forma un gel blando de gelificación retardada, suficiente para la impermeabilización. Entre los reactivos orgánicos se puede mencionar el acetato de etilo, aunque hoy día se ha desplazado por otros productos, muchos bajo marcas comerciales.
  • Otros geles: Para aplicaciones particulares, se pueden utilizar otros tipos de lechadas químicas:
    • Geles mixtos: Mezcla de gel de sílice y resina acrílica, empleado para el tratamiento de fisuras activas.
    • Geles de arcilla: Mezcla de bentonita, silicato y un reactivo, muy utilizado en la impermeabilización de depósitos aluviales, para el remate de pantallas impermeables, así como proceso posterior a la inyección de lechadas de bentonita-cemento. También se utiliza cuando es difícil impermeabilizar con lechadas de cemento y cuando no se justifica el uso de gel.
    • Geles lignocromos: Mezclas de lignosulfatos que contienen un exhalante de cromo, altamente tóxico. Es habitual el lignosulfato de calcio y dicromato de sodio. Se usan también en la impermeabilización de depósitos aluviales complementando a las inyecciones de bentonita-cemento.
  • Resinas: Suelen ser soluciones de productos orgánicos en agua o en disolventes no acuosos, que polimerizan a temperatura ambiente en lugares cerrados. Se utiliza cuando no se puede inyectar otro producto por su viscosidad demasiado elevada. Se emplea en la impermeabilización de terrenos granulares finos o en el cierre de grietas de obras, especialmente presas y túneles. En estos últimos casos, o en la inyección en fisuras den estructuras de hormigón, aunque son muy caras, se pueden usar colas inyectadas, que son resinas de alta viscosidad como pueden ser las resinas epoxi especiales, poliéster, o productos acrílicos, que una vez polimerizan proporcionan mecánicas superiores a las del hormigón. Habría que hacer mención a los productos espumantes que incrementan su volumen con la formación de burbujas de gas (resinas de poliuretano). Un caso especial son los productos “sensibles al agua”, que permanecen líquidos hasta ser inyectados. Están formados por coloides orgánicos (poliol-isocianato) que pasan a espuma de poluiretano, en contacto con el agua, incrementando su volumen en más de 20 veces. Son las resinas de poluiretano acuarreactivas (resinas P.A.).

En la Figura 3 se representa el campo de aplicación de distintas inyecciones químicas en función de la permeabilidad del terreno. Puede verse que las mezclas químicas, especialmente las resinas acrílicas y fenólicas, presentan un mayor rango de aplicabilidad que las inyecciones de lechada de cemento o de arcilla-cemento. Los polímeros dan buen resultado cuando se requiere inyectar fracturas abiertas con agua en circulación, taponándose temporalmente las grietas para inyectar entonces las suspensiones de cemento, morteros y lechadas, que son más resistentes y de mayor durabilidad.

Figura 3. Tipos de inyecciones según la permeabilidad (Pérez Valcárcel, 2004)

En la Figura 4 se observa, con carácter orientativo, el límite de inyectabilidad en función de la permeabilidad del suelo y los diámetros de los granos de lechada (Cambefort, 1968).

Figura 4. Penetrabilidad de los morteros en función de la permeabilidad del medio (Cambefort, 1968)

En la Figura 5 se han representado los materiales que se emplearían en la inyección de acuerdo con el tamaño de los granos del terreno.

Figura 5. Materiales de inyección de acuerdo con el tamaño de las partículas (Bell, 1978)

A parte del coste de este tipo de tratamientos, hay que señalar que el agua marina puede modificar sustancialmente el tiempo de gelificación de varias soluciones de este tipo. Además, normalmente este tipo de tratamientos son provisionales, útiles durante la fase constructiva, pues la durabilidad de este tipo de productos puede ser muy variable.

Referencias:

  • BELL, F.G. (1978). Foundation engineering in difficult ground. Butterworths, London.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • GARCÍA VALCARCE, A. et al. (1995). Manual de Edificación. Derribos y demoliciones. Actuaciones sobre el terreno. Ediciones Universidad de Navarra, Pamplona, 472 pp.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. 2004.844. Valencia.
  • SANZ, J.M. (1981). Procedimientos generales de construcción. Sondeos y perforaciones, inyecciones, pilotes, pantallas continuas. E.T.S. Ingenieros de Caminos, Madrid.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Soil nailing o suelo claveteado

Soil nailing
Figura 1. Gunitado sobre ladera claveteada

La técnica del soil nailing, o claveteado de suelos,  consiste en reforzar un talud, a medida que desciende la excavación, mediante la introducción de anclajes de refuerzo pasivos o activos, generalmente subhorizontales, que trabajan principalmente a tracción, pero también pueden tomar cargas de flexión y corte. Estos refuerzos se complementan a medida que baja la excavación con un paramento superficial que puede ser rígido o flexible que impide el deslizamiento del suelo entre los puntos que se encuentran las barras instaladas. Este refuerzo del terreno permite mejorar su resistencia al corte a lo largo de superficies potenciales de falla.

Las barras se colocan en unos sondeos perforados previamente y que luego se rellenan con una lechada o mortero de inyección. Posteriormente se ejecuta un paramento vertical que impida la caída de tierra entre los puntos donde se sitúan las inclusiones. Esto suele realizarse mediante hormigón proyectado (gunita), que suele reforzarse mediante una malla de acero.

Este procedimiento no se puede aplicar bajo nivel freático, ni tampoco cuando el suelo es blando o muy blando, pues entonces no es rentable su uso.

Figura 2. Procedimiento constructivo del suelo claveteado. https://civilengineeringbible.com/article.php?i=107

Os paso unos cuantos vídeos informativos al respecto. Espero que os sean de utilidad.

 

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Inyecciones de fracturación

Figura 1. Inyección de fracturación para mejorar terreno bajo cimentación de aerogenerador

Las inyecciones de fracturación (también llamadas hidrofisuración, hidro-fracturación, hidrojacking o claquage), son inyecciones de lechada de cemento a media/alta presión que rompen el terreno, produciendo su densificación y rigidización, creando una red estructuradora.  Se introduce un material de baja viscosidad que busca la rotura del terreno para la posterior introducción de la lechada de pronto fraguado para reestructurarle. El tipo de lechada o mortero a emplear, así como los aditivos y dosificaciones dependerán tanto del tipo de inyección que vayamos a realizar como del resultado que estemos buscando con la intervención.

La técnica se realiza mediante la inyección con un tubo-manguito, inyectándose pequeños volúmenes en cada fase. El producto de inyección no es capaz de penetrar en los poros del terreno, sino que se introduce por las fisuras que se van creando por efecto de la presión. Se crean lentejones del material inyectado, que recomprimen transversalmente el terreno. Al crear una nueva estructura de terreno reforzado se consigue un doble efecto de densificación y rigidización. Esto se debe a que el suelo queda cosido por la red de fracturas cementadas inducidas en el mismo.

Esta técnica suele utilizase en las inyecciones de compensación, utilizadas éstas para controlar los movimientos que puedan generar las obras subterráneas sobre edificios en superficie. Asimismo, se suele utilizar para conseguir  una mejora de las características resistentes del terreno ya que se densifica éste y se generan unas ramificaciones de material resistente a modo de “armado” del terreno.

 

Las fases características de este tipo de inyección son las siguientes:

  1. Instalación del tubo manguito e inyección de la vaina: El tubo manguito se coloca en la perforación efectuada, rellenando con una mezcla de bentonita-cemento, el espacio anular entre la pared del sondeo y el tubo manguito.
  2. Fracturación del suelo: Para permitir la inyección de la suspensión se inserta en un obturador doble, que independiza cada uno de los manguitos durante su inyección.
  3. Inyección múltiple: Los manguitos pueden inyectarse una o varias veces, de acuerdo con los requisitos técnicos. El volumen de lechada, la presión máxima de inyección y, en el caso de una inyección repetitiva, la velocidad de inyección, se mantiene de acuerdo con las instrucciones. Los tubos manguitos pueden reutilizarse.

 

Figura 2. Esquema de inyección por fracturación
Figura 3. Fases de la inyección por fracturación
Os paso una animación de la empresa HAYWARD BAKER que espero os guste.

Referencias:

AENOR (2001). UNE-EN 12715. Ejecución de trabajos geotécnicos especiales. Inyecciones. Madrid.

Dirección General de Carreteras (2002). Guía de cimentaciones en obras de carretera.  Ministerio de Fomento, Madrid.

Puertos del Estado (2005). ROM 0.5-05. Recomendaciones geotécnicas para obras marítimas y portuarias.  Ministerio de Fomento, Madrid.

Muzas, F. (2003). Inyecciones de fracturación y compactación. Jornada sobre mejora del terreno de cimentación. Intevía. (link)

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columna de grava mediante vibrosustitución

KellerTerra muestra en un vídeo de 5 minutos cómo se ejecuta una columna de grava (vibrosustitución) en la obra de la Central de Ciclo Combinado de la Bahía de Escombreras, Murcia. Después de visualizarlo, contesta a las siguientes preguntas:

  1. ¿Qué es una central de ciclo combinado?
  2. ¿Qué circunstancias del terreno hicieron recomendable la mejora del suelo mediante columnas de gravas?
  3. ¿Qué características se querían conseguir del terreno mejorado?
  4. ¿De qué partes consta un tubo vibrador?
  5. ¿Pará qué sirve el tamiz que se encuentra en la tolva donde la cargadora descarga grava?
  6. ¿Qué hace el aire comprimido en la cámara de descarga?
  7. ¿Qué diámetros de columna de grava se ejecutaron?

Otro vídeo de interés sobre la vibrosustitución es el siguiente:

Inyecciones de alta presión: Jet grouting

http://www.interempresas.net/Mineria/Articulos/146294-Diametro-columnas-jet-grouting-funcion-energias-especificas-perforacion-inyeccion.html

El Jet-Grouting es un proceso que consiste en la desagregación del suelo (o roca poco compacta), mezclándolo, y parcialmente sustituyéndolo, por un agente cementante (normalmente cemento). La desagregación se consigue mediante un fluido con alta energía, que puede incluir el propio agente cementante. Esta técnica de alta presión consigue desagregar el suelo o la roca poco compacta, mezclándolo y sustituyéndolo por cemento, así se van llenando huecos y discontinuidades. Básicamente se expulsan chorros de lechada de cemento (grout) a través de unas toberas a velocidades muy altas, logrando así la rotura del terreno y su íntima mezcla con el mismo. La técnica del Jet-Grouting tiene múltiples aplicaciones (mejora del terreno, impermeabilización, túneles, etc.), siendo el fluido de perforación también variable (cemento, bentonita, mezclas químicas, etc.)

Os paso varios vídeos al respecto, empezando por una animación sobre del Jet grouting de triple fluido:

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Electroósmosis como técnica de drenaje del terreno

Figura 1. Proceso de electroósmosis (Terrancorp.com, 2014)

Muchos problemas de ingeniería tienen que ver con la estabilidad de los terrenos. Para solucionar estos problemas se utilizan distintos métodos que permiten aumentar la resistencia del mismo mediante tratamientos de tipo granular, químico o térmico. Una forma de estabilizar los suelos finos saturados o parcialmente saturados es la electroósmosis, que no solo permite mejorarlos, sino también se utiliza con técnica de drenaje. Otro de los usos habituales de este técnica es para combatir la humedad por capilaridad, con lo que se combaten las eflorescencias. Sin embargo, en este artículo nos centraremos en el uso de la electroósmosis como técnica de mejora del terreno y como técnica de drenaje del nivel freático.

La electroósmosis es un fenómeno basado en la precipitación eléctrica de sustancias coloidales en suspensión, observado por el físico Reuss (1808) quien introdujo dos tubos verticales abiertos en sus extremos dentro de un bloque de arcilla húmeda llenándolos de agua hasta la mitad de su altura. Después de situar un par de electrodos en su interior, hizo pasar por ellos una corriente eléctrica comprobando que el nivel de agua subía en uno de los tubos mientras descendía en el otro. Esto demostraba la existencia de un flujo de agua de un tubo al otro a través de la arcilla.

Más tarde Casagrande (1.952) llevó a la práctica el sistema aplicándolo para consolidar un suelo arcilloso en la excavación de un talud. Para ello colocó como cátodos, dos series de tubos porosos de 10 cm de diámetro y 7 m de profundidad en tomo a los cuales situó un relleno de gravilla para facilitar la entrada del agua. Entre cada dos cátodos separados 9 m se intercalaron como ánodos, tubos de 12 mm de diámetro. El paso de una corriente de 90 voltios y una potencia de 1,5 kw provocó la acumulación del agua en los tubos porosos (cátodos) de los cuales se pudo extraer fácilmente por bombeo.

La electroósmosis constituye una técnica de drenaje, también llamado método de drenaje eléctrico, que se emplea en la estabilización de arcillas blandas y limos (0,06-0,002 mm), incrementando de este modo su resistencia por la reducción de su contenido de humedad, al ser terrenos que presentan problemas para aplicar las técnicas de pozos con sistema de vacío convencional.  El sistema no es efectivo en arenas finas con permeabilidades inferiores a 3·10-3 cm/s.  Este sistema de drenaje difiere de otros procedimientos en que el movimiento del agua no se produce por efecto de la gravedad sino por el efecto de un campo eléctrico. Con el proceso de electroósmosis se genera desaturación en el suelo, se aumenta la resistencia y se consolida el suelo, como un efecto principal, y en consecuencia, se mejoran las condiciones del terreno con su estabilización.

El agua fluye de los ánodos (+) a los cátodos (-) en un medio poroso saturado (Figuras 2 y 3). Dan buenos resultados colocando cátodos de un diámetro de 120 mm cada 3-5 m y ánodos intercalados de 100 mm de diámetro. En el cátodo se coloca un wellpoint o un pozo drenante. Los ánodos y cátodos son tubos abiertos por el fondo. Los gradientes de potencial varían entre 30 y 180 V. A mayor voltaje, mayor el volumen de agua drenada, aunque pueden producirse fenómenos de hidrólisis, por lo que deben hacerse ensayos para establecer los parámetros energéticos más convenientes. Este proceso de movimiento del agua genera consolidación, con un aumento temporal de las tensiones efectivas.

La conductividad eléctrica del agua depende de su salinidad y ello influye en la eficiencia de la corriente y el voltaje aplicado. En un suelo con mayor salinidad, el volumen de agua drenada con la electroósmosis es mayor y la consolidación es más eficiente y rápida.

Figura 2. Disposición del equipo para el drenaje

 

Figura 3. Disposición del equipo para el drenaje (Bell, 1993)

 

Las desventajas de este método radican en el alto costo de la energía necesaria y en los problemas que pueden derivarse en relación a la seguridad y salud por el hecho de trabajar con un circuito de corriente continua. Este tipo de tratamiento, debido a los elevados costes de ejecución y a la poca práctica en su uso, puede presentarse como alternativa en casos especiales siempre que el caudal a evacuar sea escaso. Su uso más frecuente es en la mejora permanente en las propiedades de los cimientos o en la estabilidad de los taludes. En la Figura 4 se muestra el principio de la electroósmosis empleado en el drenaje previo a la excavación de un túnel.

Figura 4. Tratamiento por electroósmosis previo a la excavación de un túnel (Bielza, 1999)

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • PREENE, M.; ROBERTS, T.O.L.; POWRIE, W. (2016). Groundwater Control – Design and Practice, 2nd Edition. Construction Industry Research and Information Association, CIRIA Report C750, London.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844. Valencia
  • YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Springsol: mejora de terrenos mediante columnas de suelo-cemento

Figura 1. http://www.tectonica-online.com/

Springsol es una técnica especialmente útil en el tratamiento del terreno en trabajos de rehabilitación o refuerzo de estructuras, terrenos bajo losas de naves industriales, terraplenes en infraestructuras de comunicación, etc. Se encuentra a medio camino entre el pilote de mortero, las columnas de suelo-cemento realizadas mediante jet grouting y las columnas de mortero inyectado a presión controlada ejecutadas mediante intrusiones rígidas o compaction grouting.

Se trata de un procedimiento donde se crea una columna de suelo-cemento por medios mecánicos, con unas aspas o alas que giran y amasan el suelo. Utiliza equipos de tamaño reducido realizando perforaciones de pequeños diámetros (de 100 a 150 mm). Esta característica permite minimizar el efecto sobre losas, soleras o zapatas, siendo posible perforar estratos intermedios no perforables con barrenas, dejando los primeros metros sin tratamiento. Además, evita la inyección a altas presiones, susceptibles de afectar a las estructuras. Además, permite ejecutar la columna a partir de una profundidad concreta (con, por ejemplo tapones, de fondo).

Una aplicación especialmente interesante es el tratamiento de taludes ferroviarios atravesando el balasto, evitando su contaminación, con una mínima afección al servicio.

Figura 2. Aspecto de la columna formada. http://www.rodiokronsa.es/
Figura 3. A- Perforación con ligante. B- Mezcla suelo-ligante (rechazo). C- Apertura de alas bajo tubería. D- Perforación, mezcla suelo-ligante. Diámetro de columna 400 mm. http://www.tectonica-online.com/
Figura 4. http://actions-incitatives.ifsttar.fr/

Os paso a continuación una animación donde se puede ver con mayor claridad cómo funciona este tratamiento.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp.

La precarga como técnica para la mejora de terrenos

Precarga en dársena del puerto de Escombreras. http://opweb.carm.es/premiosingenieriacivil/faces/vervistaprevia.xhtml?codigo=E201646
Precarga en dársena del puerto de Escombreras. http://opweb.carm.es/premiosingenieriacivil/faces/vervistaprevia.xhtml?codigo=E201646

La precarga consiste en aplicar al terreno una carga igual o superior a la que producirá en servicio la estructura que se proyecta apoyar en él, provocando su consolidación, lo que se traduce en un aumento de la resistencia del terreno y una disminución de los asientos postconstructivos. En algunas ocasiones es necesario realizar la precarga cuando la obra está acabada o semiacabada, como en tanques de almacenamiento de líquidos.

Este tratamiento es un método de mejora destinado, en principio, a suelos cohesivos blandos. Estos suelos son susceptibles de sufrir asientos importantes bajo sobrecargas pequeñas, con una evolución lenta de estos asientos, y, dada su baja resistencia al corte, procesos de rotura (deslizamiento de terraplenes, hundimiento de cimentaciones superficiales, etc.).

En un suelo blando los asientos son irreversibles casi en su totalidad, aunque las cargas aplicadas sean retiradas el terreno no vuelve a su posición original. Si se vuelve a cargar hasta el mismo valor de la carga previa, o no hay asientos o son mucho menores.

La Figura 1 representa la curva de asientos de un suelo precargado bajo un terraplén. Durante la precarga el suelo asienta según la curva descrita hasta llegar al punto 1, correspondiente al instante del inicio de la retirada del terraplén. Así, la curva describe esta descarga hasta llegar al punto 2 donde el suelo ya no tiene carga, pero los asientos remanentes, son casi iguales a los producidos por la carga del terraplén.

precarga-1
Figura 1. Curva carga-asiento de un suelo precargado bajo un terraplén

Al recargar el suelo con una carga igual a la del terraplén (punto 3 de la Figura 2) el suelo describe una curva similar a la de descarga, pero de sentido contrario. Se observa como los asientos inducidos por la recarga son pequeños, debido a la memoria de carga del suelo.

Figura 2. Curva carga-asiento tras la retirada del terraplén
Figura 2. Curva carga-asiento tras la retirada del terraplén

Lo que se ha descrito es la finalidad de la precarga, preconsolidar un suelo compresible para que cuando vuelva a ser cargado por la estructura definitiva sufra los menores asientos, además de aumentar su resistencia.

Casi todos los tipos de suelos, tanto secos como saturados, pueden ser mejorados con buenos resultados por medio de la precarga. Ésta ha sido aplicada en suelos naturales, como arenas sueltas y limos, arcillas limosas blandas, limos orgánicos, turbas y depósitos aluviales erráticos, al igual que en suelos artificiales formados de materiales dragados sin compactar, residuos industriales (cenizas) y depósitos de residuos urbanos. Los suelos sobreconsolidados (sometidos a una carga mayor que la actual) no responden tan bien a la precarga, puesto que su comportamiento es más elástico que los normalmente consolidados.

El método más común de aplicar la precarga es apilar el material de relleno sobre el terreno original, usando camiones y extendedoras, y dejando la carga un cierto tiempo. Una vez alcanzada la consolidación, el material se retira con medios auxiliares similares, procediendo a continuación a la construcción de la nueva obra, considerando que las deformaciones con que responderá el terreno ya sean admisibles para su funcionamiento. El material retirado puede utilizarse para otra precarga de la obra o para la construcción de terraplenes. Existen otros métodos de precarga que consisten en bajar el nivel freático mediante pozos filtrantes, zanjas, bombeo al vacío en pozos, y el fenómeno de electroósmosis.

Como ventajas de la aplicación de este método pueden destacar:

  • Bajo coste. Entre un 10-20% respecto a otros métodos. Entre un 20-40% si la precarga se realiza con drenes.
  • Los equipos utilizados son sencillos y baratos (equipos de movimiento de tierras)
  • Se evalúan los efectos de un modo directo e inmediato. Equivale a un ensayo a escala natural.
  • En zonas sensibles a la sismicidad, se reduce el riesgo de licuefacción en suelos arenosos finos.

 

 

Figura 3. Precompresión del terreno
Figura 3. Precompresión del terreno

Uno de los factores más limitantes de esta técnica es el tiempo necesario para que se produzca la consolidación, por lo que a veces no se dispone siquiera de unos pocos meses para que funcione la precarga. Esto puede evitarse con una buena previsión del trabajo, anticipándose la ejecución de la precarga a la finalización del proyecto o comienzo de las obras. Como factores limitantes de la precarga, además del tiempo, puede considerarse: el límite de la capacidad de soporte del suelo, el efecto sobre estructuras próximas (asientos, empujes laterales del terreno, rozamiento negativo) y posibles costes elevados de auscultación y control.

Para acelerar la consolidación y así reducir el tiempo de precarga, puede ser económico realizar tratamientos adicionales que mejoren el drenaje del terreno, reduciendo el camino del agua a zonas más permeables y modificando las direcciones de flujo. Estos métodos son:

  1. Inclusiones verticales por columnas de grava. Esta técnica, además de acelerar el proceso de consolidación, supone un refuerzo del terreno.
  2. Instalación de drenes verticales en el terreno. Los fines buscados con este método son alcanzar un grado de consolidación suficiente dentro de un plazo aceptable en el proyecto, modificando las variables de consolidación y tiempo. Con ello se provocan asientos de forma anticipada, con asientos postconstructivos insignificantes.

Referencia:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

 

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.