El aprendizaje profundo (deep learning) en la optimización de estructuras

Figura 1. Relación de pertenencia entre la inteligencia artificial, el aprendizaje automático y el aprendizaje profundo

En este artículo vamos a esbozar las posibilidades de la inteligencia artificial en la optimización de estructuras, en particular, el uso del aprendizaje profundo. El aprendizaje profundo (deep learning, DL) constituye un subconjunto del aprendizaje automático (machine learning, ML), que a su vez lo es de la inteligencia artificial (ver Figura 1). Si la inteligencia artificial empezó sobre los años 50, el aprendizaje automático surgió sobre los 80, mientras que el aprendizaje profundo nació en este siglo XXI, a partir del 2010, con la aparición de grandes superordenadores y por el aumento de los datos accesibles. Como curiosidad, uno de los grandes hitos del DL se produjo en 2012, cuando Google fue capaz de reconocer un gato entre los más de 10 millones de vídeos de Youtube, utilizando para ello 16000 ordenadores. Ahora serían necesarios muchos menos medios.

En cualquiera de estos tres casos, estamos hablando de sistemas informáticos capaces de analizar grandes cantidades de datos (big data), identificar patrones y tendencias y, por tanto, predecir de forma automática, rápida y precisa. De la inteligencia artificial y su aplicabilidad a la ingeniería civil ya hablamos en un artículo anterior.

Figura 2. Cronología en la aparición de los distintos tipos de algoritmos de inteligencia artificial. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Si pensamos en el cálculo estructural, utilizamos modelos, más o menos sofistificados, que permiten, si se conocen con suficiente precisión las acciones, averiguar los esfuerzos a los que se encuentran sometidos cada uno de los elementos en los que hemos dividido una estructura. Con dichos esfuerzos se identifican una serie de estados límite, que son un conjunto de situaciones potencialmente peligrosas para la estructura y comparar si la capacidad estructural del elemento analizado, dependiente de las propiedades geométricas y de sus materiales constituyentes, supera el valor último de la solicitación a la que, bajo cierta probabilidad, puede llegar a alcanzar el elemento estructural analizado.

Estos métodos tradicionales emplean desde hipótesis de elasticidad y comportamiento lineal, a otros modelos con comportamiento plástico o no lineales más complejos. Suele utilizarse, con mayor o menos sofisticación, el método de los elementos finitos (MEF) y el método matricial de la rigidez. En definitiva, en determinados casos, suelen emplearse los ordenadores para resolver de forma aproximada, ecuaciones diferenciales parciales muy complejas, habituales en la ingeniería estructural, pero también en otros campos de la ingeniería y la física. Para que estos sistemas de cálculo resulten precisos, es necesario alimentar los modelos con datos sobre materiales, condiciones de contorno, acciones, etc., lo más reales posibles. Para eso se comprueban y calibran estos modelos en ensayos reales de laboratorio (Friswell y Mottershead, 1995). De alguna forma, estamos retroalimentando de información al modelo, y por tanto “aprende”.

Figura 2. Malla 2D de elementos finitos, más densa alrededor de la zona de mayor interés. Wikipedia.

Si analizamos bien lo que hacemos, estamos utilizando un modelo, más o menos complicado, para predecir cómo se va a comportar la estructura. Pues bien, si tuviésemos una cantidad suficiente de datos procedentes de laboratorio y de casos reales, un sistema inteligente extraería información y sería capaz de predecir el resultado final. Mientras que la inteligencia artificial debería alimentarse de una ingente cantidad de datos (big data), el método de los elementos finitos precisa menor cantidad de información bruta (smart data), pues ha habido una labor previa muy concienzuda y rigurosa, para intentar comprender el fenómeno subyacente y modelizarlo adecuadamente. Pero, en definitiva, son dos procedimientos diferentes que nos llevan a un mismo objetivo: diseñar estructuras seguras. Otro tema será si éstas estructuras son óptimas desde algún punto de vista (economía, sostenibilidad, etc.).

La optimización de las estructuras constituye un campo científico donde se ha trabajado intensamente en las últimas décadas. Debido a que los problemas reales requieren un número elevado de variables, la resolución exacta del problema de optimización asociado es inabordable. Se trata de problemas NP-hard, de elevada complejidad computacional, que requiere de metaheurísticas para llegar a soluciones satisfactorias en tiempos de cálculo razonables.

Una de las características de la optimización mediante metaheurísticas es el elevado número de iteraciones en el espacio de soluciones, lo cual permite generar una inmensa cantidad de datos para el conjunto de estructuras visitadas. Es el campo ideal para la inteligencia artificial, pues permite extraer información para acelerar y afinar la búsqueda de la solución óptima. Un ejemplo de este tipo es nuestro trabajo (García-Segura et al., 2017) de optimización multiobjetivo de puentes cajón, donde una red neuronal aprendía de los datos intermedios de la búsqueda y luego predecía con una extraordinaria exactitud el cálculo del puente, sin necesidad de calcularlo. Ello permitía reducir considerablemente el tiempo final de computación.

Sin embargo, este tipo de aplicación es muy sencilla, pues solo ha reducido el tiempo de cálculo (cada comprobación completa de un puente por el método de los elementos finitos es mucho más lenta que una predicción con una red neuronal). Se trata ahora de dar un paso más allá. Se trata de que la metaheurística sea capaz de aprender de los datos recogidos utilizando la inteligencia artificial para ser mucho más efectiva, y no solo más rápida.

Tanto la inteligencia artificial como el aprendizaje automático no son una ciencia nueva. El problema es que sus aplicaciones eran limitadas por la falta de datos y de tecnologías para procesarlas de forma rápida y eficiente. Hoy en día se ha dado un salto cualitativo y se puede utilizar el DL, que como ya hemos dicho es una parte del ML, pero que utiliza algoritmos más sofisticados, construidos a partir del principio de las redes neuronales. Digamos que el DL (redes neuronales) utiliza algoritmos distintos al ML (algoritmos de regresión, árboles de decisión, entre otros). En ambos casos, los algoritmos pueden aprender de forma supervisada o no supervisada. En las no supervisadas se facilitan los datos de entrada, no los de salida. La razón por la que se llama aprendizaje profundo hace referencia a las redes neuronales profundas, que utilizan un número elevado de capas en la red, digamos, por ejemplo, 1000 capas. De hecho, el DL también se le conoce a menudo como “redes neuronales profundas”. Esta técnica de redes artificiales de neuronas es una de las técnicas más comunes del DL.

Figura. Esquema explicativo de diferencia entre ML y DL. https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/

Una de las redes neuronales utilizadas en DL son las redes neuronales convolucionales, que es una variación del perceptrón multicapa, pero donde su aplicación se realiza en matrices bidimensionales, y por tanto, son muy efectivas en las tareas de visión artificial, como en la clasificación y segmentación de imágenes. En ingeniería, por ejemplo, se puede utilizar para la monitorización de la condición estructural, por ejemplo, para el análisis del deterioro. Habría que imaginar hasta dónde se podría llegar grabando en imágenes digitales la rotura en laboratorio de estructuras de hormigón y ver la capacidad predictiva de este tipo de herramientas si contaran con suficiente cantidad de datos. Todo se andará. Aquí os dejo una aplicación tradicional típica (Antoni Cladera, de la Universitat de les Illes Balears), donde se explica el modelo de rotura de una viga a flexión en la pizarra y luego se rompe la viga en el laboratorio. ¡Cuántos datos estamos perdiendo en la grabación! Un ejemplo muy reciente del uso del DL y Digital Image Correlation (DIC) aplicado a roturas de probetas en laboratorio es el trabajo de Gulgec et al. (2020).

Sin embargo, aquí nos interesa detenernos en la exploración de la integración específica del DL en las metaheurísticas con el objeto de mejorar la calidad de las soluciones o los tiempos de convergencia cuando se trata de optimizar estructuras. Un ejemplo de este camino novedoso en la investigación es la aplicabilidad de algoritmos que hibriden DL y metaheurísticas. Ya hemos publicado algunos artículos en este sentido aplicados a la optimización de muros de contrafuertes (Yepes et al., 2020; García et al., 2020a, 2020b). Además, hemos propuesto como editor invitado, un número especial en la revista Mathematics (indexada en el primer decil del JCR) denominado “Deep learning and hybrid-metaheuristics: novel engineering applications“.

Dejo a continuación un pequeño vídeo explicativo de las diferencias entre la inteligencia artificial, machine learning y deep learning.

Referencias:

FRISWELL, M.; MOTTERSHEAD, J. E. (1995). Finite element model updating in structural dynamics (Vol. 38). Dordrecht, Netherlands: Springer Science & Business Media.

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020a). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020b). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0

GULGEC, N.S.; TAKAC, M., PAKZAD S.N. (2020). Uncertainty quantification in digital image correlation for experimental evaluation of deep learning based damage diagnostic. Structure and Infrastructure Engineering, https://doi.org/10.1080/15732479.2020.1815224

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty

Figura 1. Defensa de tesis doctoral de Vicent Penadés Plà.

Hoy 12 de marzo de 2020 ha tenido lugar la defensa de la tesis doctoral de D. Vicent Penadés Plà titulada “Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty“, dirigida por Víctor Yepes Piqueras y Tatiana García Segura. La tesis recibió la calificación de “Sobresaliente cum laude” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Actualmente existe una tendencia hacia la sostenibilidad, especialmente en los países desarrollados donde la preocupación de la sociedad por el deterioro ambiental y los problemas sociales ha aumentado. Siguiendo esta tendencia, el sector de la construcción es uno de los sectores que mayor influencia tiene debido a su alto impacto económico, ambiental y social. Al mismo tiempo, existe un incremento en la demanda de transporte que provoca la necesidad de desarrollo y mantenimiento de las infraestructuras necesarias para tal fin. Con todo esto, los puentes se convierten en una estructura clave, y por tanto, la valoración de la sostenibilidad a lo largo de toda su vida es esencial.

El objetivo principal de esta tesis es proponer una metodología que permita valorar la sostenibilidad de un puente bajo condiciones iniciales inciertas (subjetividad del decisor o variabilidad de parámetros iniciales) y optimizar el diseño para obtener puentes óptimos robustos. Para ello, se ha realizado una extensa revisión bibliográfica de todos los trabajos en los que se realiza un análisis de la sostenibilidad mediante la valoración de criterios relacionados con sus pilares principales (económico, medio ambiental o social). En esta revisión, se ha observado que la forma más completa de valorar los pilares medioambientales y sociales es mediante el uso de métodos de análisis de ciclo de vida. Estos métodos permiten llevar a cabo la valoración de la sostenibilidad durante todas las etapas de la vida de los puentes. Todo este procedimiento proporciona información muy valiosa a los decisores para la valoración y selección del puente más sostenible. No obstante, las valoraciones subjetivas de los decisores sobre la importancia de los criterios influyen en la evaluación final de la sostenibilidad. Por esta razón, es necesario crear una metodología que reduzca la incertidumbre asociada y busque soluciones robustas frente a las opiniones de los agentes implicados en la toma de decisiones.

Además, el diseño y toma de decisiones en puentes está condicionado por los parámetros inicialmente definidos. Esto conduce a soluciones que pueden ser sensibles frente a pequeños cambios en dichas condiciones iniciales. El diseño óptimo robusto permite obtener diseños óptimos y estructuralmente estables frente a variaciones de las condiciones iniciales, y también diseños sostenibles y poco influenciables por las preferencias de los decisores que forman parte del proceso de toma de decisión. Así pues, el diseño óptimo robusto se convierte en un proceso de optimización probabilística que requiere un gran coste computacional. Por este motivo, el uso de metamodelos se ha integrado en la metodología propuesta. En concreto, se ha utilizado hipercubo latino para la definición de la muestra inicial y los modelos kriging para la definción de la aproximación matemática. De esta forma, la optimización heurística basada en kriging ha permitido reducir más de un 90% el coste computacional respecto a la optimización heurística conveniconal obteniendo resultados muy similares.

El estudio del diseño óptimo y estructuralmente estable frente a variaciones de las condiciones iniciales se ha llevado a cabo variando tres parámetros iniciales (módulo de elasticidad, sobrecarga, y fuerza de pretensado). El objetivo del caso de estudio analizado ha sido obtener el diseño más económico y con menor variación de la respuesta estructural. De esta forma, se consigue una frontera de Pareto que permite seleccionar la solución óptima, la solución más robusta o una solución de compromiso entre las dos. Por otro lado, el estudio de diseños sostenibles y poco influenciables por las preferencias de los decisores se ha llevado a cabo generando una gran cantidad de decisores aleatorios para cubrir todas las posibles preferencias de los interesados. El objetivo del caso de estudio ha sido reducir la participación subjetiva de los decisores. De esta forma, se ha podido reducir todo el abanico de diseños posibles a un número reducido de diseños concretos, y seleccionar aquel diseño con mejor media sostenible o menor variabilidad en la valoración.

Esta tesis proporciona en primer lugar, una amplia revisión bibliográfica, tanto de los criterios utilizados para la valoración de la sostenibilidad en puentes como de los diferentes métodos de análisis de ciclo de vida para obtener un perfil completo de los pilares ambientales y sociales. Posteriormente, se define una metodología para la valoración completa de la sostenibilidad, usando métodos de análisis de ciclo de vida. Asimismo, se propone un enfoque que permite obtener estructuras poco influenciables por los parámetros estructurales, así como por las preferencias de los diferentes decisores frente a los criterios sostenibles. La metodología proporcionada en esta tesis es aplicable a cualquier otro tipo de estructura.

Palabras clave:

Sostenibilidad, Toma de decisiones, Análisis de ciclo de vida, Métodos de valoración del impacto del análisis de ciclo de vida, ReCiPe, Ecoinvent, SOCA, Metamodelos, Kriging, Diseño óptimo robusto, Puentes.

Figura 2. De izquierda a derecha: Julián Alcalá, Tatiana García, Víctor Yepes, Vicent Penadés, Salvador Ivorra y Rasmus Rempling

Referencias:

La geometría fractal en la ingeniería: las estructuras de Voronoi y el diseño paramétrico

Figura 1. Rascacielos Voronoi. https://naukas.com/2011/12/23/cada-uno-en-su-region-y-voronoi-en-la-de-todos/

La naturaleza siempre ha servido de inspiración para arquitectos, ingenieros y diseñadores. La tecnología informática ha facilitado las herramientas para analizar y simular la complejidad observada en la naturaleza y aplicarla a formas estructurales de construcción y los mecanismos de organización urbana. Entre ellas destacamos la geometría fractal y el diagrama de Voronoi.

La geometría fractal no ha dejado de evolucionar desde las investigaciones del matemático polaco nacionalizado francés y estadounidense, Benoît Mandelbrot en los años 70 del siglo pasado. Un fractal es un objeto geométrico cuya estructura básica, fragmentada o aparentemente irregular, se repite a diferentes escalas. Lo interesante es que la forma de los fractales parecen describir la Naturaleza y encuentra su geometría una gran variedad de aplicaciones en urbanismo, arquitectura, computación o ingeniería estructural (Figura 1).

El diagrama de Voronoi (nombre que se debe al matemático ruso Gueorgui Voronói) se crea al unir los puntos entre sí, trazando las mediatrices de los segmentos de unión (Figura 2). Las intersecciones de estas mediatrices determinan una serie de polígonos en un espacio bidimensional alrededor de un conjunto de puntos de control, de manera que el perímetro de los polígonos generados sea equidistante a los puntos vecinos y designan su área de influencia.

Figura 2. Diagrama de Voronoi. https://es.wikipedia.org/wiki/Pol%C3%ADgonos_de_Thiessen#/media/Archivo:Euclidean_Voronoi_diagram.svg

Hasta mediados de los ochenta, la mayoría de las implementaciones para computar el diagrama de Voronoi usaban el algoritmo incremental cuadrático, admitiendo su mayor lentitud para evitar la complejidad del código divide y vencerás (Figura 3). En 1985 Fortune inventó un inteligente algoritmo de barrido plano que resulta tan simple como el incremental, pero en tiempo O(n log n). Para los más curiosos, podéis utilizar MATLAB para realizar ejemplos sobre los diagramas de Voronoi utilizando la funciónvoronoin. El enlace lo tenéis aquí: https://es.mathworks.com/help/matlab/math/voronoi-diagrams.html

Figura 3. Pasos fundamentales del algoritmo “divide y vencerás” para construir el diagrama de Voroni. http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm

La profesora de la Universidad de Sevilla, Clara Grima, nos describe en un artículo de divulgación, “El diagrama de Voronoi, la forma matemática de dividir el mundo“, algunas aplicaciones del diagrama de Voronoi, que van desde la distribución de farmacias en una ciudad, a el mapa del cólera de John Snow o a la ventaja posicional de un equipo de fútbol.

Pero aquí lo interesante es saber que, basándose en este diagrama, se pueden diseñar estructuras y espacios urbanos de gran interés. En la Figura 4 podemos ver la oficina central de Alibaba. Este tipo de estructuras resultan agradables, estáticamente eficientes y adecuadas para trabajar como un sistema estructural espacial. Además, la estructura se puede modelar por un conjunto de puntos y admite el diseño paramétrico. Se denomina diseño paramétrico a un proceso de diseño basado en un esquema algorítmico que permite expresar parámetros y reglas que definen, codifican y aclaran la relación entre los requerimientos del diseño y el diseño resultante.

Figura 4. Oficina central de Alibaba. https://www.idealista.com/news/finanzas/emprendedores/2014/04/16/727627-asi-es-la-cueva-de-alibaba-el-tesoro-mejor-guardado-de-china

En la Figura 5 se observa la posibilidad de estos diagramas en el caso de pantallas arquitectónicas. Como vemos, las posibilidades estructurales son de un gran interés.

Figura 5. Ejemplo de uso arquitectónico de los diagramas Voronoi. https://www.carroceriasibiza.com/

Aquí tenemos una explicación de los diagramas de Voronoi. También el vídeo explica cómo construir a partir de una serie de puntos generadores los famosos Polígonos de Thiessen que conforman el diagrama antes mencionado.

En el presente vídeo se explican los fractales.

Os dejo también un artículo sobre el diagrama de Voronoi como herramienta de diseño, de María Loreto Flores. Espero que os sea de interés

Descargar (PDF, 527KB)

Problemas en la adopción del BIM en la rehabilitación estructural

La Arquitectura, la Ingeniería y la Construcción ha estado cambiando durante los últimos años por varias razones. La aparición de nuevas tecnologías como BIM y técnicas como Lean Construction o el Análisis del Ciclo de Vida están creando nuevas tendencias y oportunidades que alteran el metodologías de esta industria. De estas técnicas hemos tenido oportunidad de hablar en artículos anteriores en este blog. Además, en los últimos años el modelo de negocio está también sufriendo cambios. La rehabilitación está ganando cada vez más importancia en el sector. A continuación os dejo un capítulo del libro “Reactive proactive architecture” que trata sobre estos problemas. El libro recoge los resultados de la primera edición del Valencia International Biennial of Research in Architecture VIBRArch. Espero que os sea de interés.

 

Referencia:

FERNÁNDEZ-MORA, V.; YEPES, V. (2018). Problems in the adoption of BIM for structural rehabilitation, in CABRERA, I. et al. (Eds.): Reactive proactive architecture. Editorial Universitat Politècnica de València, pp. 284-289.  ISBN 978-84-9048-713-6. Valencia.

Descargar (PDF, 165KB)

Os dejo también un vídeo de 5 minutos mostrando el uso de Heritage BIM aplicado a la conservación de puentes En este caso el puente romano de Alcántara. Espero que os guste.

El uso de las técnicas de optimización en ingeniería civil

Los que sois seguidores habituales de mi blog conocéis mis artículos y trabajos de investigación en optimización heurística. Esta aventura, además de ser gratificante, te permite conocer gente de gran talento y colegas en el ámbito internacional. Y, a veces, nos juntamos y escribimos alguna cosa conjunta, como es el caso de esta recopilación de artículos sobre el uso de técnicas de optimización en el ámbito de la ingeniería civil. Esta recopilación sirve de muestra de las posibilidades de la optimización y también puede aportar referencias de interés a aquellos que estén iniciándose en estos temas. Os dejo este artículo en abierto que acabamos de publicar en abierto.

Referencia:

DEDE, T.; KRIPKA, M.; TOGAN, V.; YEPES, V:, VENKATA RAO, R. (2019). Usage of optimization techniques civil engineering during the last two decades. Current Trends in Civil & Structural Engineering, 2(1): 1-17.

Descargar (PDF, 513KB)

Algunas conclusiones de nuestros trabajos en optimización multiobjetivo de puentes

Hoy hace justo un año que realicé mi defensa pública de la plaza de Catedrático de Universidad en el Área de Ingeniería de la Construcción. Tuve en aquel momento la oportunidad de exponer como parte de la prueba un trabajo de investigación, basado fundamentalmente en los trabajos realizados por nuestro grupo. Se trataba del diseño eficiente de puentes de hormigón postesado de sección en cajón unicelular mediante una optimización multiobjetivo basada en criterios sostenibles. Las conclusiones que aquí se resumen son fruto de varios estudios previos para examinar el uso de cementos con adiciones, la importancia de la carbonatación en la captura de CO2 y en la durabilidad, la reutilización del hormigón, el uso del hormigón autocompactante, los diseños sostenibles de puentes artesa prefabricados de hormigón pretensado, la relación entre el coste y el CO2, así como la energía, los diseños sostenibles de pasarelas de hormigón postesado, los algoritmos heurísticos y las técnicas de toma de decisiones para analizar y reducir el conjunto óptimo de Pareto. Los resultados de estos estudios previos fueron la base del trabajo presentado. Se planteó una optimización multiobjetivo basada en criterios económicos, ambientales, de durabilidad y de seguridad. Además, se formuló una herramienta informática que permitió el uso de software comercial para realizar el análisis del puente con elementos finitos, en un proceso de diseño automático. Al final de la entrada os he dejado referencias directamente relacionadas con la investigación de nuestro grupo en optimización multiobjetivo y toma de decisión multicriterio de puentes a lo largo de su ciclo de vida.

En primer lugar, se estudió el diseño óptimo de puentes de carreteras de hormigón postesado de sección en cajón considerando los costes, las emisiones de CO2 y el coeficiente de seguridad global. Para aplicar la metodología propuesta, se realizó un estudio de caso de un puente continuo de tres vanos situado en una zona costera. Los resultados mostraron que tanto el coste económico como la reducción de las emisiones de CO2 conducen a una reducción en el consumo de material y por lo tanto, son objetivos alineados. Ello indica que la optimización de costes es un buen enfoque para lograr un diseño respetuoso con el medio ambiente. El análisis de la frontera de Pareto indicó las variables más eficientes para mejorar la seguridad con el coste mínimo y las emisiones de CO2. Dado que el coste y las emisiones estaban estrechamente relacionados, el desafío se tradujo en la conversión de las limitaciones estructurales de seguridad y durabilidad en funciones objetivo. Este enfoque permitió encontrar múltiples soluciones alternativas que, con un incremento muy pequeño en el coste, consiguen mayor seguridad y durabilidad. Además, se destacó la eficiencia del aumento de la resistencia y del recubrimiento del hormigón para prolongar la vida útil. La frontera de Pareto se utilizó posteriormente para seleccionar planes de mantenimiento del puente óptimos, basados en su nivel inicial de seguridad y durabilidad. Este planteamiento es consistente con el argumento de que el proceso de deterioro puede causar una reducción en la seguridad estructural. Este estudio permitió analizar las ventajas que presenta un diseño optimizado para prolongar la vida útil de la estructura y mejorar su seguridad. Se llevó a cabo una optimización de la vida útil sostenible a través de un enfoque probabilístico. El plan de mantenimiento óptimo tiene como objetivo minimizar los impactos económicos, ambientales y sociales mientras se satisface el objetivo de fiabilidad durante una vida útil. Finalmente, se compararon los costes del ciclo de vida y las emisiones entre las distintas alternativas.

En paralelo, se desarrolló un metamodelo basado en redes neuronales, para reducir el tiempo de cálculo. Las ANNs se entrenaron para predecir la respuesta estructural en términos de los estados límite en función de las variables de diseño, sin necesidad de un análisis completo del puente. Se propuso una metaheurística mejorada basada en la búsqueda de la armonía multiobjetivo. Se mejoró la diversificación y la intensificación en la búsqueda de soluciones para mejorar la convergencia. Finalmente, se propuso una técnica de toma de decisiones llamada AHP-VIKOR bajo incertidumbre para reducir la frontera de Pareto a un conjunto de soluciones preferidas. Este método permite al decisor introducir fácilmente las preferencias en un criterio específico sujeto a incertidumbre.

Las conclusiones generales de este trabajo de investigación fueron las siguientes:

  • La minimización de costes y emisiones de CO2 conduce a un diseño de puente que favorece la eficiencia estructural minimizando la cantidad de materiales. La inclusión del objetivo de seguridad destaca las mejores variables para mejorar la seguridad y por lo tanto, la robustez de cada variable para el diseño eficiente. El objetivo de durabilidad, evaluado como el inicio de la corrosión, estableció la mejor combinación de resistencia y recubrimiento del hormigón para alcanzar un objetivo de vida de servicio.
  • El canto, el espesor de la losa inferior, las armaduras activas y la armadura pasiva longitudinal son las variables principales que proporcionan la resistencia a flexión. Sin embargo, no se recomienda un incremento de espesor de la losa superior y del ala para mejorar la seguridad estructural, pues conduce a pesos propios adicionales. Para mejorar el comportamiento a flexión transversal, se incrementa el espesor del arranque del ala y se disminuye la longitud del ala. La inclinación del alma puede ser constante, pues tanto la profundidad como la anchura de inclinación del alma aumentan en paralelo para mejorar la seguridad. El espesor del alma no es la variable más económica para aumentar la resistencia a esfuerzo cortante; por el contrario, se incrementa la armadura de refuerzo.
  • El uso de hormigón de alta resistencia puede reducir el canto o la cantidad de armadura. Sin embargo, las restricciones relativas a los estados límite de servicio y las cuantías mínimas de armadura condicionan estas variables. Por lo tanto, el hormigón de alta resistencia no es la mejor solución para mejorar la seguridad. Sin embargo, este resultado cambia cuando se tiene en cuenta el ciclo de vida. Un incremento en la resistencia del hormigón alarga la vida útil de servicio, pues se retrasa el inicio de la corrosión. Por otro lado, el incremento en la resistencia del hormigón presenta mejores resultados a lo largo del ciclo de vida para diseños con inicios de corrosión similares, en comparación con el incremento del recubrimiento de hormigón.
  • Un diseño inicial que incorpore la durabilidad como objetivo y no como restricción resulta especialmente beneficioso si se quiere alargar el ciclo de vida de la estructura. Diseños que retrasen el inicio de la corrosión implican un menor coste del ciclo de vida, incluso con costes iniciales más altos. Sin embargo, un nivel de seguridad inicial más alto no siempre ofrece como resultado un mejor rendimiento del ciclo de vida.

 

A partir de los estudios, se extrajeron estas conclusiones específicas:

  • El empleo de cementos con adiciones conlleva una reducción en la captura de carbono y en la vida útil debido a la carbonatación. A pesar de esto, los cementos con adiciones disminuyen las emisiones anuales. El hormigón autocompactante no es aconsejable desde el punto de vista medioambiental. En términos de coste, se obtienen pocas diferencias entre el hormigón vibrado convencional y el hormigón autocompactante.
  • Es fundamental reutilizar el hormigón como gravas en material de relleno para lograr una completa carbonatación y reducir las emisiones de CO2.
  • En el puente postesado estudiado, la reducción del coste en 1 euro disminuye las emisiones de CO2 en 2,34 kg. En cuanto al coeficiente de seguridad global, se obtienen tres relaciones lineales entre el coste y este objetivo. Para aumentar el coeficiente de seguridad global de 1,0 a 1,4, los costes aumentan en 12,5%. Después de este punto, los resultados de mejora de la seguridad son más caros. Con respecto al inicio de la corrosión, con pequeños incrementos de coste se consiguen retrasos significativos.
  • El estado límite de descompresión es restrictivo y condiciona variables como el canto y el número de torones de pretensado. Dado que estas variables también influyen en la flexión, este estado límite no es restrictivo hasta que el coeficiente de seguridad global alcanza 1,4.
  • La relación entre el coste y el CO2 se mantiene para todos los niveles de seguridad y por lo tanto, la optimización de costes es un buen enfoque para minimizar las emisiones independientemente del nivel de seguridad.
  • En estructuras con un espacio de soluciones factibles pequeños, el coste y la emisión se encuentran muy relacionados. Sin embargo, las estructuras de hormigón armado, que presentan espacios factibles mayores, conducen a diseños medioambientales con mayores secciones, mayor cantidad de hormigón, menor acero y horigones con la menor resistencia característica.
  • El plan de mantenimiento óptimo es aquel que presenta menos operaciones que reparen simultáneamente todas las superficies deterioradas. A pesar de que existe un deterioro diferente para cada una de las caras de la sección expuesta, los resultados recomiendan reparar todas las superficies conjuntamente. Las operaciones de mantenimiento deben programarse al mismo tiempo para reducir el impacto de las interrupciones del tráfico.
  • Por lo general, la optimización del coste de mantenimiento también conduce a la minimización de las emisiones de CO2. Esto se atribuye al hecho de que tanto las emisiones como los costes pretenden reducir el número total de operaciones de mantenimiento. Sin embargo, la optimización de costes intenta retrasar la fecha de la primera reparación. Por lo tanto, la determinación del número de operaciones y el retraso de la primera fecha de mantenimiento, reduce también el coste al mínimo.
  • Las redes neuronales constituyen una buena herramienta para predecir la respuesta de la estructura, proporcionar una buena dirección de búsqueda y reducir el coste computacional. Sin embargo, al final del proceso de búsqueda, se necesitan modelos de análisis completo para converger más cerca de la frontera de Pareto real.
  • La transición de la diversificación a la intensificación, que elimina progresivamente la combinación de soluciones y la selección aleatoria, mejora el rendimiento del algoritmo.
  • El método AHP-VIKOR bajo incertidumbre redujo el conjunto de Pareto a pocas soluciones preferidas. Para este estudio de caso, se prefieren las soluciones con el mayor tiempo de inicio de la corrosión, pues la mejora de la durabilidad no implica grandes diferencias de costes.

 

Referencias:

  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  • NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2019). Reliability-based maintenance optimization of corrosion preventive designs under a life cycle perspective. Environmental Impact Assessment Review, 74:23-34. DOI:1016/j.eiar.2018.10.001
  • GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196: 698-713. DOI:10.1016/j.jclepro.2018.06.110
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. DOI:1016/j.eiar.2018.05.003
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI:1016/j.jclepro.2018.03.022
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. DOI:3390/su10030845
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects. Journal of Cleaner Production, 176:521-534. DOI:1016/j.jclepro.2017.12.140
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. DOI:1007/s00158-017-1653-0
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects. Environmental Impact Assessment Review, 65:41-53. DOI:10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI:10.1016/j.acme.2017.02.006
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI:10.1016/j.engstruct.2016.07.012
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridgesEngineering Structures, 92:112-122. DOI:10.1016/j.engstruct.2015.03.015
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Design of open reinforced concrete abutments road bridges with hybrid stochastic hill climbing algorithms. Informes de la Construcción, 67(540), e114. DOI:10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. DOI:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2014). Automated design of prestressed concrete precast road bridges with hybrid memetic algorithms. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 145-154. DOI:10.1016/j.rimni.2013.04.010
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7):1190 – 1205. DOI: 1590/S1679-78252014000700007
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI:10.1007/s11367-013-0614-0
  • MARTÍ-VARGAS, J.R.; FERRI, F.J.; YEPES, V. (2013). Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 12(2):187-209. DOI:10.12989/cac.2013.12.2.187
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99.
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics, 45(6): 723-740. DOI: 12989/sem.2013.45.6.723
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures, 48:342-352. DOI:10.1016/j.engstruct.2012.09.014
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI:10.1631/jzus.A1100304
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437.
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88(5-6): 375-386. DOI:10.1016/j.compstruc.2009.11.009
  • YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. DOI:10.1016/j.advengsoft.2007.07.007

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

El acero como material estructural

Se define como acero estructural al producto de la aleación de hierro, carbono y pequeñas cantidades de otros elementos tales como silicio, fósforo, azufre y oxígeno, que le aportan características específicas. Tal y como indica el Real Decreto 751/2011 de 27 de mayo, por el que se aprueba la Instrucción de Acero Estructural (EAE), “las estructuras destinadas a obras de ingeniería civil y de edificación construidas en acero, junto con las realizadas en hormigón y las ejecutadas conjuntamente en acero y hormigón, constituyen la inmensa mayoría de las estructuras existentes construidas en el último siglo y de las nuevas que se proyectan actualmente en nuestro país“.

El acero se obtiene a través de un proceso industrial complejo. Existen, por tanto, en el mercado una gran variedad de aceros disponibles para su empleo en las estructuras, definidos por su forma y calidad, y su transformación por las técnicas habituales de corte y unión. Por ello es importante que el ingeniero estructural tenga en cuenta cómo se fabrica el material, los requisitos para su uso en proyecto y sus aplicaciones. Además de las propiedades mecánicas, tales como el esfuerzo de fluencia y la resistencia a la tensión, es importante considerar la ductilidad y la resistencia a la fractura, así como la composición química, la metalurgia y la soldabilidad. Con carácter general, las clases de acero utilizables en estructuras para perfiles y chapas, son aceros laminados en calientes, aceros con características especiales y aceros conformados en frío.

A continuación os dejo un vídeo educativo de la profesora Arianna Paola Guardiola, de la Universitat Politècnica de València, donde se explica en 9 minutos las clases y tipos de acero estructural, las secciones de acero laminado y su uso y se indican aplicaciones prácticas. Espero que os sea de interés.

 

 

 

 

Optimización del diseño sostenible de puentes bajo incertidumbre

Nos acaban de publicar en la revista de Elsevier del primer decil, Journal of Cleaner Production, un artículo donde se propone una nueva metodología en la toma de decisiones del diseño óptimo de un puente bajo criterios de sostenibilidad y bajo incertidumbre. Este artículo forma parte de nuestra línea de investigación BRIDLIFE en la que se pretenden optimizar estructuras atendiendo no sólo a su coste, sino al impacto ambiental y social que generan a lo largo de su ciclo de vida.

El artículo lo podéis descargar GRATUITAMENTE hasta el 16 de octubre de 2018 en el siguiente enlace:

https://authors.elsevier.com/c/1XdSi3QCo9R4pK

Abstract:

Today, bridge design seeks not only to minimize cost, but also to minimize adverse environmental and social impacts. This multi-criteria decision-making problem is subject to variability of the opinions of stakeholders regarding the importance of criteria for sustainability. As a result, this paper proposes a method for designing and selecting optimally sustainable bridges under the uncertainty of criteria comparison. A Pareto set of solutions is obtained using a metamodel-assisted multi-objective optimization. A new decision-making technique introduces the uncertainty of the decision-maker’s preference through triangular distributions and thereby ranks the sustainable bridge designs. The method is illustrated by a case study of a three-span post-tensioned concrete box-girder bridge designed according to the embodied energy, overall safety and corrosion initiation time. In this particular case, 211 efficient solutions are reduced to two preferred solutions which have a probability of being selected of 81.6% and 18.4%. In addition, a sensitivity analysis validates the influence of the uncertainty regarding the decisionmaking. The approach proposed allows actors involved in the bridge design and decision-making to determine the best sustainable design by finding the probability of a given design being chosen.

Keywords:

  • Sustainable criteria
  • Uncertainty
  • Decision-making
  • Multi-objective optimization
  • Energy efficiency

 

Reference:

GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177

 

 

¿Qué es el Análisis del Ciclo de Vida?

Nuestro grupo de investigación está en estos momentos muy centrado en aspectos relacionados con el análisis del ciclo de vida y con la sostenibilidad de las infraestructuras. Proyectos como BRIDLIFE y DIMALIFE inciden especialmente es estos temas. He considerado, por tanto, de gran interés para el lector, resumir brevemente el concepto, los tipos, algo de historia y proporcionar unas pequeñas referencias al respecto. Espero que os sean de interés.

El Análisis del Ciclo de Vida clásico constituye una metodología objetiva que trata de evaluar las cargas ambientales asociadas a un producto, proceso o actividad, identificando y cuantificando el uso de materia y energía además de las emisiones al entorno (Olivera et al., 2016).

Sus orígenes se remontan a finales de los años 60. Dos investigadores del Instituto de Investigación del Medio Oeste (MRI), Robert Hunt y William Franklin empezaron a trabajar en una técnica que permitiese cuantificar la energía demandada y los recursos, así como las emisiones de gases de efecto invernadero (GEI) por parte de las industrias (Trusty y Deru, 2005). Esta técnica paso a llamarse como Análisis de Perfil Ambiental y de Recursos (REPA) y se utilizó por primera vez en 1969 por el MRI junto a la compañía Coca-Cola para analizar y seleccionar los materiales más ecológicos y como tratarlos en su final de vida (Gerilla et al., 2007).

La primera expansión del uso de esta tecnología tuvo lugar durante la crisis energética de los años 70, para estudiar el consumo energético de productos de embalaje de plástico o cartón. A finales de los 80’s y principios de los 90’s tuvo de nuevo un gran alcance como herramienta de marketing (Owens, 1996).

Con los avances metodológicos de la herramienta y la proliferación de resultados muy dispares en los diferentes estudios realizados, se decidió llevar a cabo una armonización del ACV. Con dicha finalidad aparecieron diversas directrices, destacando la holandesa y la nórdica, que también incluían recomendaciones contradictorias.

A inicios de los 90’s, la Sociedad de Toxicología Ambiental y Química (SETAC) alcanzó a un consenso mediante grupos consultivos de América del Norte y Europa y elaboraron el “Código de práctica para la evaluación del ciclo de vida”. Paralelamente, surgieron otras iniciativas como la Guía LCA Z-760 de la Asociación de Estandarización Canadiense.

Finalmente, a finales de los años 90, surgieron los procesos de estandarización más reconocidos por parte de la Organización Internacional de Normalización (ISO) (Russell et al., 2005).

La ISO emitió los estándares internacionales más relevantes en 1997, definiendo el ACV como “un método para resumir y evaluar la carga ambiental de un producto (o servicio) en todo el ciclo de vida, y el impacto o influencia potencial sobre el medio ambiente” en la serie de normas ISO 14040 (AENOR, 2006). Esta metodología es compatible con la evaluación de los impactos socioeconómicos, puesto que comparten ciertos elementos que aportan datos comparativos muy útiles para la toma de decisiones frente a nuevos proyectos o acciones de mejora.

De este modo quedan las tres dimensiones del análisis del ciclo de vida:

  • Análisis del Ciclo de Vida Ambiental (ACV-A): Metodología ya presentada que contempla la carga ambiental producida por un producto o servicio durante todo el ciclo de vida.
  • Coste del Ciclo de Vida (CCV): Este análisis se centra en la etapa de diseño de un producto, analizando los costes directos y los beneficios de las actividades económicas, como los costes para la prevención de la contaminación, los costes de las materias primas, los impuestos y los intereses sobre el capital entre otros, en resumen, es una recopilación y evaluación de todos los costes relacionados con un producto a lo largo de todo su ciclo de vida.
  • Análisis del Ciclo de Vida Social (ACV-S): Se trata de una herramienta de evaluación de impactos sociales cuyo objetivo es analizar los aspectos sociales y socio-económicos de los productos y sus impactos potenciales (positivos y negativos) durante todo el ciclo de vida.

 

Como combinación de las tres tipologías, se plantea el Análisis del Ciclo de Vida de la Sostenibilidad (ACV-SOS) realizando un análisis integrado de cualquier producto o servicio.

La Comisión Europea planteó una guía de ruta a esta situación, por medio del proyecto CALCAS (Coordination for innovation in Life Cycle for Sustainability) desde el 2006, con el fin de organizar las distintas modalidades que han surgido mediante una futura norma ISO ACV, que englobara un análisis multicriterio sobre sostenibilidad (van der Giesen et al., 2013).

Aunque la metodología de las tres dimensiones del ACV está basada en la norma ISO 14040, esta no tiene dentro de su alcance el estudio del impacto económico y social, por lo que es necesario combinarla con otras herramientas para profundizar ese análisis. Os dejo a continuación una serie de referencias bibliográficas por si os interesa profundizar más en el tema.

Referencias

  • AENOR (2006). ISO 14040:2006. Gestión ambiental. Análisis del ciclo de vida. Principios y marco de referencia. Madrid.
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GERILLA, G. P.; TEKNOMO, K.; HOKAO, K. (2007). An environmental assessment of wood and steel reinforced concrete housing construction. Building and Environment, 42(7), 2778–2784.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle cost assessment of preventive strategies applied to prestressed concrete bridges exposed to chlorides. Sustainability, 10(3):845. doi:10.3390/su10030845 (link).
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2018). Social life cycle assessment of concrete bridge decks exposed to aggressive environments. Environmental Impact Assessment Review, 72:50-63. https://doi.org/10.1016/j.eiar.2018.05.003
  • NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2018). Life cycle impact assessment of corrosion preventive designs applied to prestressed concrete bridge decks. Journal of Cleaner Production, 196:698-713. https://doi.org/10.1016/j.jclepro.2018.06.110
  • OLIVERA, A.; CRISTOBAL, S.; SAIZAR, C. (2016). Análisis de ciclo de vida ambiental, económico y social. INNOTEC, 7, 20–27.
  • OWENS, J. W. (1996). LCA Methodology LCA Impact Assessment Categories Technical Feasibility and Accuracy. International Journal of Life Cycle Assessment, 1(3), 151–158.
  • PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method. Journal of Cleaner Production, 113:884-896. DOI:10.1016/j.jclepro.2015.11.010
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420.  https://doi.org/10.1016/j.jclepro.2018.04.268
  • RUSSELL, A.; EKVALL, T.; BAUMANN, H. (2005). Life cycle assessment – Introduction and overview. Journal of Cleaner Production, 13(13–14), 1207–1210.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2016). Social sustainability in the life cycle of Chilean public infrastructure.Journal of Construction Engineering and Management, 142(5):  05015020. DOI: 10.1061/(ASCE)CO.1943-7862.0001099.
  • SIERRA, L.A.; PELLICER, E.; YEPES, V. (2017). Method for estimating the social sustainability of infrastructure projects.Environmental Impact Assessment Review, 65:41-53. DOI: 10.1016/j.eiar.2017.02.004
  • SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2017). Assessing the social sustainability contribution of an infrastructure project under conditions of uncertainty. Environmental Impact Assessment Review, 67:61-72. DOI:10.1016/j.eiar.2017.08.003 (link)
  • SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513. DOI: 10.1016/j.jclepro.2018.03.022.
  • TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E.; YEPES, V.; VIDELA, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record, 2523:56-63. DOI:10.3141/2523-07
  • TORRES-MACHÍ, C.; CHAMORRO, A.; YEPES, V.; PELLICER, E. (2014). Current models and practices of economic and environmental evaluation for sustainable network-level pavement management. Revista de la Construcción, 13(2): 49-56. http://dx.doi.org/10.4067/S0718-915X2014000200006 
  • TRUSTY, W.; DERU, M. (2005). The U.S. LCI database project and its role in Life Cycle Assessment. Building Design and Construction, 1, 26–29.
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI: 10.3846/13923730.2015.1120770
  • ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

La optimización multiobjetivo y la toma de decisiones multicriterio en ingeniería estructural

By retocada por Yeza de la versión original de Alonsoquijano [Public domain], from Wikimedia Commons

Actualmente existe una tendencia clara hacia la evaluación de los impactos en todas las etapas del ciclo de vida de un producto. Esta tendencia ha llegado a los proyectos de estructuras, donde la evaluación de las repercusiones sociales, ambientales y económicas de las distintas alternativas no deriva en una decisión clara y unívoca de la mejor solución, sobre todo cuando los objetivos que se pretenden se encuentran enfrentados entre sí (Jato-Espino et al., 2014; Penadés-Plà et al., 2016; Zamarrón-Mieza et al., 2017; Sierra et al., 2018). El problema de seleccionar la mejor opción en el ámbito del proyecto de puentes ha supuesto una línea de investigación que se ha desarrollado enormemente en las últimas décadas. Balali et al. (2014) expusieron que los problemas relacionados con la toma de decisiones a lo largo del ciclo de vida de un puente se pueden enmarcar dentro de las siguientes fases: (a) proyecto, (b) construcción, y (c) uso y mantenimiento. Estas fases son las que se consideran habitualmente por otros autores (Malekly et al, 2010), que además añaden una última fase en el ciclo de vida de un puente: (d) reciclado o demolición.

Así pues, el proyecto de puentes se caracteriza por la presencia de múltiples objetivos de diseño -muchos contradictorios entre sí-, y la selección de la mejor opción entre distintas alternativas. La calidad, la constructibilidad, la seguridad, el impacto ambiental y el coste son los aspectos que normalmente se consideran en el diseño y la planificación de las operaciones de mantenimiento de un puente. La optimización multiobjetivo (Multi-Objective Optimization, MOO) resulta una herramienta útil cuando varios objetivos desean optimizarse simultáneamente. MOO proporciona un conjunto de soluciones eficaces, constituyendo la denominada frontera de Pareto. Las soluciones que forman parte de la frontera de Pareto no pueden mejorarse sin que empeore cualquier otra solución de dicho conjunto. Koumousis y Arsenis (1998) utilizaron MOO para el diseño de estructuras de hormigón. Liao et al (2011) revisaron los estudios que utilizaron metaheurísticas para problemas relacionados con el ciclo de vida de un proyecto de construcción. Por su parte, Zavala et al. (2013) estudiaron las metaheurísticas utilizadas en la optimización multiobjetivo de las estructuras.

Se pueden reseñar varios estudios que han utilizado la optimización multiobjetivo para comparar el diseño de estructuras de hormigón armado (Reinforced Concrete, RC) atendiendo a la reducción de las emisiones de gases de efecto invernadero y la reducción de costes (Martínez-Martín et al., 2012; García-Segura et al., 2014, 2016; Yepes et al, 2015). Payá et al. (2008) optimizaron pórticos de edificación de RC utilizando como función objetivo la constructibilidad, los costes económicos, el impacto ambiental y la seguridad general de la estructura. Martínez-Martín et al. (2012) optimizaron las pilas RC de un puente considerando como funciones objetivo el coste económico, la congestión de las armaduras pasivas y las emisiones de CO2. Yepes et al. (2015) incorporaron como función objetivo la vida útil en el diseño de una viga de sección en I confeccionada con hormigón de alta resistencia. García-Segura et al. (2014) incluyeron, además, un factor que evalúa la seguridad global en esa misma estructura.

A pesar de que los diseños deben garantizar cierta durabilidad, esta función objetivo suele utilizarse más en el ámbito de la gestión del mantenimiento de infraestructuras ya existentes. Así, Liu y Frangopol (2005) emplearon la optimización multiobjetivo en puentes deteriorados atendiendo a su estado, a los niveles de seguridad y al coste de mantenimiento de la estructura a lo largo del ciclo de vida. Sabatino et al. (2015) optimizaron las operaciones de mantenimiento de la estructura a lo largo de su ciclo de vida bajo los objetivos simultáneos de reducción del coste de mantenimiento y la utilidad mínima anual asociada con un indicador relacionado con la sostenibilidad. Torres-Machi et al. (2015) optimizaron la gestión sostenible de un pavimento considerando simultáneamente aspectos económicos, técnicos y ambientales.

Otro aspecto de interés en el ámbito de la investigación son los procedimientos que permiten seleccionar una solución de un conjunto de opciones posibles atendiendo a múltiples criterios. Las técnicas de toma de decisiones proporcionan un procedimiento racional a las decisiones basadas en cierta información, experiencia y juicio. Estas técnicas pueden clasificarse de acuerdo con la forma en la que el decisor articula sus preferencias. En un proceso “a priori”, los expertos asignan los pesos de cada criterio en la etapa inicial. El proceso “a posteriori” no requiere una definición previa de las preferencias. Por ejemplo, la optimización multiobjetivo genera una gama de soluciones óptimas, que se consideran igualmente buenas –frontera de Pareto-. En este caso, la toma de decisiones tiene lugar “a posteriori”. Este enfoque permite el análisis de las mejores soluciones según cada objetivo, lo cual proporciona información sobre la relación entre los objetivos y las soluciones. Jato-Espino et al. (2014) presentaron una revisión del desarrollo de los métodos de decisión multicriterio aplicados a la construcción. Existen numerosas técnicas de toma de decisiones multicriterio. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution), VIKOR (Multi-criteria Optimization and Compromise Solution), MAUT (Multi-Attribute Utility Theory), AHP (Analytical Hierarchy Process), ANP (Analytical Network Process), PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations), DEA (Data Envelopment Analysis), COPRAS (Complex Proportional Assessment) o QFD (Quality Function Deployment), son, entre otras, las más extensamente utilizadas.

Abu Dabous y Alkass (2010) presentaron una estructura jerárquica para la toma de decisiones en la gestión de puentes basados en MAUT y AHP. Sabatino et al. (2015) recurrieron a la teoría de utilidad de múltiples atributos para evaluar diversos aspectos de la sostenibilidad estructural considerando los riesgos asociados a los fallos en el puente y las actitudes frente al riesgo de los decisores. Ardeshir et al. (2014) emplearon un AHP difuso para seleccionar la ubicación para la construcción de un puente. Aghdaie et al. (2012) emplearon AHP y COPRAS para calcular la importancia relativa de los criterios y clasificar las alternativas en la selección de ubicaciones para construir nuevas pasarelas. Balali et al. (2014) seleccionaron el material, el procedimiento constructivo y la tipología estructural de un puente mediante la técnica PROMETHEE. Tanto VIKOR (Opricovic, 1998) como TOPSIS (Hwang y Yoon, 1981) son métodos que seleccionan soluciones basadas en la distancia más corta a la solución ideal. Opricovic y Tzeng (2004) compararon VIKTOR y TOPSIS y mostraron que presentan algunas diferencias en relación con la función de agregación y los efectos de normalización. La técnica difusa (fuzzy) (Zadeh, 1965) es una técnica útil para representar la incertidumbre inherente en la vida real. Joshi et al. (2004) evaluaron un conjunto de criterios para seleccionar la cimentacion más adecuada mediante fuzzy. AHP se combina con fuzzy (Jakiel y Fabianowski, 2015, Wang et al., 2001) para seleccionar entre distintas tipologías de puentes RC y alternativas de plataforma offshore, respectivamente. Abu Dabous y Alkass (2010) indicaron la dificultad en establecer la importancia relativa entre dos elementos con planteamientos deterministas, debido a la incertidumbre inherente al comportamiento de los diferentes elementos.

Se han propuesto muchos métodos para reducir el conjunto de soluciones procedentes de la frontera de Pareto (Hancock y Mattson, 2013). El método de la región de “rodilla” (Rachmawati y Srinivasan, 2009) constituye un método “a posteriori” que distingue los puntos para los cuales una mejora en un objetivo da lugar a un empeoramiento significativo de al menos otro objetivo. Una región de “rodilla” en el frente óptimo de Pareto, visualmente es una protuberancia convexa en la parte delantera, la cual es importante para la toma de decisiones en contextos prácticos, pues a menudo constituye el óptimo en equilibrio. Los métodos de agrupación se centran en ensamblar soluciones en grupos y seleccionar soluciones representativas (Saha y Bandyopadhyay, 2009). Los métodos de filtrado eliminan las soluciones de Pareto que ofrecen poca información al decisor (Mattson et al., 2004). Yepes et al. (2015a) propusieron un procedimiento sistemático “a posteriori” para filtrar la frontera de Pareto, a la vez que proporcionaba conocimiento relevante derivado del proceso de resolución. Esta técnica simplifica la elección de la solución preferente. Para ello se combinan matrices AHP aleatorias con la minimización de la distancia para seleccionar la solución más cercana a la ideal.

Se puede consultar una revisión bibliográfica reciente sobre la aplicación de las herramientas de decisión multicriterio al ciclo de vida de los puentes en el trabajo de Penadés-Plà et al. (2016). En este trabajo se comprueba cómo no existe una métrica universalmente aceptada para medir la diversidad de objetivos de todo tipo que se utilizan en la selección de la mejor opción de proyecto de un puente para un caso determinado. Para ello se analizaron un total de 77 artículos publicados desde 1991. El estudio aplicó un análisis multivariante de correspondencias (ver Figura). De este modo, se recogen los métodos de decisión multicriterio que debe aplicar el ingeniero para la selección de alternativas según la fase del ciclo de vida del puente, así como los criterios que se han considerado en dichos trabajos. La relación más obvia se ha identificado entre la lógica difusa y la fase de uso y mantenimiento. También se observa que el método AHP es ampliamente usado en las tres primeras fases del ciclo de vida de un puente. Finalmente la fase de demolición o reciclado es la menos estudiada, asociándose principalmente al método ANP.

Figura. Análisis de correspondencias entre la toma de decisiones y el ciclo de vida (Penadés-Plà et al., 2016)

Referencias:

Abu Dabous, S.; Alkass, S. (2010). A multi‐attribute ranking method for bridge management. Engineering, Construction and Architectural Management, 17(3), 282–291.

Aghdaie, M.H.; Zolfani, S.H.; Zavadskas, E.K. (2012). Prioritizing constructing projects of municipalities based on AHP and COPRAS-G: A case study about footbridges in Iran. The Baltic Journal of Road and Bridge Engineering, 7(2), 145–153.

Ardeshir, A.; Mohseni, N.; Behzadian, K.; Errington, M. (2014). Selection of a bridge construction site using Fuzzy Analytical Hierarchy Process in Geographic Information System. Arabian Journal for Science and Engineering, 39(6), 4405–4420.

Balali, V.; Mottaghi, A.; Shoghli, O.; Golabchi, M. (2014). Selection of appropriate material, construction technique, and structural system of bridges by use of multicriteria decision-making method. Transportation Research Record: Journal of the Transportation Research Board, 2431, 79–87.

García-Segura, T.; Yepes, V.; Alcalá, J. (2014). Sustainable design using multiobjective optimization of high-strength concrete I-beams. In The 2014 International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI (Vol. 137, pp. 347–358). Ostend, Belgium.

García-Segura, T.; Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336.

Hancock, B.J.; Mattson, C. A. (2013). The smart normal constraint method for directly generating a smart Pareto set. Structural and Multidisciplinary Optimization, 48(4), 763–775.

Hwang, C.L.; Yoon, K. (1981). Multiple Attributes Decision Making Methods and Applications. Springer, Berlin Heidelberg.

Jakiel, P.; Fabianowski, D. (2015). FAHP model used for assessment of highway RC bridge structural and technological arrangements. Expert Systems with Applications, 42(8), 4054–4061.

Jato-Espino, D.; Castillo-López, E.; Rodríguez-Hernández, J.; Canteras-Jordana, J.C. (2014). A review of application of multi-criteria decision making methods in construction. Automation in Construction, 45, 151–162.

Joshi, P.K.; Sharma, P.C.; Upadhyay, S.; Sharma, S. (2004). Multi objective fuzzy decision making approach for selection of type of caisson for bridge foundation. Indian Journal Pure Application Mathematics.

Koumousis, V.K., Arsenis, S.J. (1998). Genetic Algorithms in Optimal Detailed Design of Reinforced Concrete Members. Computer-Aided Civil and Infrastructure Engineering, 13(1), 43–52.

Liao, T.W.; Egbelu, P.J.; Sarker, B.R.; Leu, S.S. (2011). Metaheuristics for project and construction management – A state-of-the-art review. Automation in Construction, 20(5), 491–505.

Liu, M.; Frangopol, D. M. (2005). Multiobjective maintenance planning optimization for deteriorating bridges considering condition, safety, and life-cycle cost. Journal of Structural Engineering, 131(5), 833–842.

Malekly, H.; Meysam Mousavi, S.; Hashemi, H. (2010). A fuzzy integrated methodology for evaluating conceptual bridge design, Expert Systems with Applications, 37, 4910-4920.

Martínez-Martín, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University: Science A, 13(6), 420–432.

Mattson, C.A.; Mullur, A.A.; Messac, A. (2004). Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Engineering Optimization, 36(6), 721–740.

Opricovic, S. (1998). Multicriteria Optimization of Civil Engineering Systems. Faculty of Civil Engineering, Belgrade.

Opricovic, S.; Tzeng, G.H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455.

Payá, I.; Yepes, V.; González-Vidosa, F.; Hospitaler, A. (2008). Multiobjective optimization of reinforced concrete building frames by simulated annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596–610.

Penadés-Plà, V.; García-Segura, T.; Martí, J.V.; Yepes, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12), 1295.

Rachmawati, L.; Srinivasan, D. (2009). Multiobjective evolutionary algorithm with controllable focus on the knees of the Pareto front. IEEE Transactions on Evolutionary Computation, 13(4), 810–824.

Sabatino, S.; Frangopol, D.M.; Dong, Y. (2015). Sustainability-informed maintenance optimization of highway bridges considering multi-attribute utility and risk attitude. Engineering Structures, 102, 310–321.

Saha, S.; Bandyopadhyay, S. (2009). A new multiobjective clustering technique based on the concepts of stability and symmetry. Knowledge and Information Systems, 23(1), 1–27.

Sierra, L.A.; Yepes, V.; Pellicer, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.

Torres-Machi, C.; Chamorro, A.; Pellicer, E.; Yepes, V.; Videla, C. (2015). Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transportation Research Record: Journal of the Transportation Research Board, 2523, 56–63.

Wang, H.L.; Zhang, Z.; Qin, S.F.; Huang, C.L. (2001). Fuzzy optimum model of semi-structural decision for lectotype. China Ocean Engineering, 15(4), 453–466.

Yepes, V.; García-Segura, T.; Moreno-Jiménez, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4), 1024–1036.

Yepes, V. (2017). Trabajo de investigación. Concurso de Acceso al Cuerpo de Catedráticos de Universidad. Universitat Politècnica de València, 110 pp.

Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

Zamarrón-Mieza, I.; Yepes, V.; Moreno-Jiménez, J.M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147:217-230.

Zavala, G.R.; Nebro, A.J.; Luna, F.; Coello Coello, C. A. (2013). A survey of multi-objective metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimization, 49(4), 537–558.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.