Primer aniversario de la DANA de Valencia: Anatomía de un desastre

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

Hoy, 29 de octubre de 2025, se cumple el primer aniversario de la DANA de Valencia de 2024, un evento que ha sido catalogado como una de las mayores catástrofes naturales ocurridas en España en décadas. La tragedia se produjo por unas precipitaciones históricas que pulverizaron récords nacionales, con máximos de más de 770 l/m² acumulados en 24 horas en Turís, lo que demuestra que el riesgo cero no existe en un contexto de cambio climático. El desastre no se explica únicamente por la cantidad de lluvia caída, sino por la trágica multiplicación entre el evento extremo, sobrealimentado por el calentamiento global, y el fallo estructural de un urbanismo que, durante décadas, ha ignorado las zonas de riesgo. Aunque la respuesta inmediata y los esfuerzos por restablecer las infraestructuras críticas han sido notables, la ingeniería de la reconstrucción no puede limitarse a reponer lo perdido, ya que replicar el estado previo implica aceptar que los efectos se repetirán. En este contexto, un medio de comunicación me ha solicitado una entrevista para abordar si, un año después, hemos avanzado hacia las soluciones de resiliencia y prevención que el conocimiento técnico lleva tiempo demandando. Os dejo la entrevista completa, por si os resulta de interés.

¿Cómo describiría desde un punto de vista técnico lo que ocurrió el 29 de octubre en Valencia? ¿Qué falló?

Desde el punto de vista técnico e ingenieril, el suceso del 29 de octubre en Valencia fue un evento de inundación extremo provocado por una DANA con un carácter pluviométrico extraordinario, ya que se registraron cifras extremas, como los 771,8 l/m² en 24 horas en Turís, y caudales en la Rambla del Poyo de hasta 2.283 m³/s antes de que los sensores fueran arrastrados, superando con creces cualquier expectativa de diseño y demostrando que el riesgo cero no existe. La magnitud del impacto fue consecuencia de una serie de factores concurrentes. El factor principal se produjo en la cuenca de la Rambla del Poyo, donde la virulencia del agua (con caudales medidos superiores a 2.200 m³/s y estimaciones simuladas que superan los 3.500 m³/s) se encontró con la ausencia de infraestructuras hidráulicas suficientes para la laminación de avenidas y otras medidas complementarias. Los proyectos de defensa contra inundaciones, que llevaban años planificados y con estudios previos, no se ejecutaron a tiempo. En contraste, el Nuevo Cauce del Turia y las presas de Forata y Buseo funcionaron eficazmente, protegiendo la ciudad de Valencia y otras poblaciones. Además de estas vulnerabilidades latentes, el impacto humano y material se vio agravado por desafíos en la respuesta, incluyendo la efectividad en los sistemas de alerta temprana (SAIH) bajo condiciones tan extremas y en la implantación de los planes de emergencia municipales, así como en la emisión de avisos con suficiente antelación a la población, impidiendo que esta pudiera reaccionar a tiempo.

¿Qué papel jugaron las infraestructuras y la planificación urbana en la magnitud de los daños? ¿Hubo zonas especialmente vulnerables o mal planificadas?

Las infraestructuras y la planificación urbana jugaron un papel determinante en la magnitud de los daños. Por un lado, las obras estructurales, como el Nuevo Cauce del Turia y las presas de Forata y Buseo, resultaron fundamentales, mitigando las inundaciones y protegiendo la ciudad de Valencia y otras poblaciones. Sin embargo, la magnitud de los daños se vio agravada por la ausencia de medidas integrales de defensa diseñadas para la laminación de avenidas, especialmente en la cuenca de la Rambla del Poyo, donde los proyectos planificados no se ejecutaron a tiempo. Los caudales extraordinarios superaron con creces la capacidad existente. Además, las infraestructuras lineales (carreteras, ferrocarriles y puentes) actuaron como puntos de estrangulamiento, reteniendo arrastres y aumentando el nivel de destrucción. Las zonas más vulnerables se concentraron en el cono aluvial de L’Horta Sud, una zona de alto riesgo urbanizada principalmente entre la riada de 1957 y la década de 1970, sin planificación adecuada ni infraestructuras de saneamiento suficientes. La falta de unidad de criterio en la ordenación territorial municipal y la prevalencia de intereses de desarrollo sobre las directrices de restricción de usos en zonas inundables (a pesar de instrumentos como el PATRICOVA) aumentaron la vulnerabilidad social y material del territorio. Aunque algunos hablan de emergencia hidrológica, probablemente sea más adecuado hablar de un profundo desafío urbanístico y de ordenación territorial.

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

Desde entonces, ¿qué medidas reales se han tomado —si las hay— para reducir el riesgo de que vuelva a suceder algo similar?

Desde la DANA de octubre de 2024, las medidas adoptadas se han enfocado en la reconstrucción con criterios de resiliencia y atención a urgencias, aunque las soluciones estructurales de gran calado, que requieren plazos de ejecución más largos, siguen mayormente pendientes. En la fase inmediata, se activaron obras de emergencia, destacando la reparación y refuerzo de infraestructuras críticas como las presas de Forata y Buseo, y la recuperación de cauces y del canal Júcar-Turia. Un ejemplo de reconstrucción en curso es la mejora de la red de drenaje de Paiporta, que forma parte de las primeras actuaciones tras la catástrofe. En el ámbito normativo, el Consell aprobó el Decreto-ley 20/2024 de medidas urbanísticas urgentes y se ha puesto sobre la mesa la revisión de normativas como el Código Técnico de la Edificación (CTE) para incluir requisitos para edificaciones en zonas inundables. También se prevé que los sistemas de comunicación y alerta estén coordinados en todas las cuencas mediterráneas, lo que podría evitar muertes en caso de repetirse el fenómeno. Sin embargo, es un hecho que, meses después, la legislación urbanística de fondo sigue sin cambios estructurales y que, en cuanto a las obras hidráulicas estructurales de prevención, como las presas de laminación, sus plazos de tramitación y ejecución impiden que se hayan materializado avances significativos todavía, dificultando el avance de proyectos críticos. Por tanto, existe una etapa de reconstrucción que debería ser inteligente y no dejar las infraestructuras como estaban antes de la DANA, pues eso implicaría asumir los mismos riesgos, y otra a medio y largo plazo que permita defender a la población, minimizando los riesgos.

¿Qué actuaciones considera urgentes o prioritarias para evitar repetir los errores del pasado?

Para evitar repetir los errores del pasado, es necesario un cambio de modelo que combine inversión estructural urgente con planificación territorial resiliente. En ingeniería hidráulica, la acción prioritaria es acelerar e implementar las obras de laminación contempladas en la planificación hidrológica, como la construcción de presas en las cuencas de la Rambla del Poyo y el río Magro, y destinar recursos extraordinarios para construir las estructuras de prevención necesarias y corregir el déficit de infraestructuras de prevención. También es prioritario eliminar obstáculos urbanísticos, como puentes y terraplenes insuficientes, y reconstruir infraestructuras lineales con criterios resilientes, permitiendo el paso seguro del agua. En urbanismo, la enseñanza principal es devolverle el espacio al agua, retirando estratégicamente infraestructuras de las zonas de flujo preferente para reducir la exposición al riesgo más elevado e iniciando un plan a largo plazo para reubicar infraestructuras críticas y viviendas vulnerables. Se recomienda revisar la normativa sobre garajes subterráneos en llanuras de inundación. Asimismo, es esencial invertir en sistemas de alerta hidrológica robustos, con más sensores y modelos predictivos que traduzcan la predicción en avisos concretos y accionables. Por último, es fundamental que la gobernanza supere la inercia burocrática mediante un modelo de ejecución de urgencia que priorice el conocimiento técnico y garantice que el riesgo no se convierta de nuevo en catástrofe humana.

Vista del barranco del Poyo, en Paiporta, 17 de octubre de 2025. Imagen: V. Yepes

¿Hasta qué punto Valencia está preparada para afrontar lluvias torrenciales o fenómenos extremos de este tipo en el futuro?

Desde una perspectiva técnica e ingenieril, a día de hoy, la vulnerabilidad de fondo persiste y no estamos preparados para afrontar una nueva DANA de la magnitud de la ocurrida en 2024. La situación es similar a la de una familia que circula en coche por la autopista a 120 km/h sin cinturones de seguridad: bastaría un obstáculo inesperado (una DANA) para que el accidente fuera mortal. Aceptar la reposición de lo perdido sin añadir nuevas medidas de protección estructural implicaría aceptar que los efectos del desastre se repetirán, algo inasumible. El problema principal es que prácticamente no se han ejecutado las grandes obras de laminación planificadas, especialmente en las cuencas de la Rambla del Poyo y del Magro, que constituyen la medida más eficaz para proteger zonas densamente pobladas mediante contención en cabecera. La DANA expuso un problema urbanístico severo. Meses después, mientras no se modifique la legislación territorial de fondo y se actúe sobre el territorio, el riesgo latente de la mala planificación persiste ante el próximo fenómeno extremo. La única forma de eliminar esta vulnerabilidad es mediante una acción integral que combine inversión urgente en obras estructurales con retirada estratégica de zonas de flujo preferente.

Os dejo un pequeño vídeo didáctico donde se resume lo acontecido en la DANA del 29 de octubre de 2024.

En las noticias de hoy, aparezco en varios reportajes:

En el Telediario de TVE, en horario de máxima audiencia, a las 21:00 h, se hizo un programa especial sobre la DANA donde tuve la ocasión de participar. Os dejo un trozo del vídeo.

 

Reconstruir Valencia un año después: “cirugía urbana” y zonas verdes para protegerse de futuras danas

Un año después de la DANA del 29-O, los expertos advierten: “Podría volver a pasar”

Valencia: expertos advierten que la región aún no está preparada para afrontar otro episodio climático extremo

Valencia se blinda frente al agua: garajes elevados e ingeniería verde tras la DANA

One year after Valencia’s deadly flooding experts warn ‘it could happen again’

Një vit pas përmbytjeve vdekjeprurëse në Valencia, ekspertët paralajmërojnë se ‘mund të ndodhë përsëri’

Egy évvel a valenciai árvíz után a szakértők figyelmeztetnek: “Ez újra megtörténhet”

Egy évvel a spanyol árvizek után: Tanulságok és kihívások a Valenciai Közösség számára

 

También os dejo los artículos que he ido escribiendo sobre este tema en este blog. Espero que os resulten de interés.

Lo que la catástrofe de Valencia nos obliga a repensar: cuatro lecciones. 30 de septiembre de 2025.

Resiliencia en las infraestructuras: cómo prepararnos para un futuro de incertidumbre. 26 de septiembre de 2025.

Iniciativa Legislativa Popular para la Modificación de la Ley de Aguas. 17 de julio de 2025.

Posibles consecuencias de una nueva DANA en el otoño de 2025. 16 de julio de 2025.

Discurso de apertura en el evento Innotransfer “Infraestructuras resilientes frente a eventos climáticos extremos”. 26 de mayo de 2025.

Ya son 6 meses desde el desastre de la DANA en Valencia. 29 de abril de 2025.

Jornada sobre infraestructuras resilientes al clima. 8 de abril de 2025.

Entrevista en Levante-EMV sobre la reconstrucción tras la DANA. 17 de marzo de 2025.

La ingeniería de la reconstrucción. 6 de marzo de 2025.

Lecciones aprendidas: proteger a la población es la prioridad. 25 de diciembre de 2024.

DANA 2024. Causas, consecuencias y soluciones. 3 de diciembre de 2024.

Qué es una presa. “La via verda”, À Punt. 28 de noviembre de 2024.

Aplicación del modelo del queso suizo en la gestión de desastres. 10 de noviembre de 2024.

Gestión del riesgo de inundación en infraestructuras críticas: estrategias y medidas de resiliencia. 8 de noviembre de 2024.

Presas y control de inundaciones: estrategias integradas para la reducción de riesgos hídricos. 7 de noviembre de 2024.

Defensa integral contra inundaciones: un esbozo de las estrategias para la gestión de riesgos. 6 de noviembre de 2024.

Introducción a las crecidas en ingeniería hidráulica. 5 de noviembre de 2024.

Precipitación en ingeniería hidráulica: conceptos, medición y análisis. 4 de noviembre de 2024.

Efectos de las inundaciones en las estructuras de las edificaciones. 2 de noviembre de 2024.

Valencia frente a la amenaza de una nueva inundación: análisis, antecedentes y estrategias para mitigar el riesgo. 1 de noviembre de 2024.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Ingeniería y resiliencia: la clave de los sistemas de apoyo a la decisión en la gestión de desastres.

En el panorama actual, marcado por una mayor complejidad e interconexión a nivel mundial, los efectos de los desastres son cada vez más graves. El cambio climático, por ejemplo, actúa como un multiplicador de riesgos, intensificando los peligros existentes y generando otros nuevos. Ante esta realidad, el concepto de resiliencia comunitaria se ha convertido en un elemento clave de las estrategias de gestión del riesgo de desastres. La misión de la ingeniería es proporcionar a las comunidades las herramientas necesarias para resistir, adaptarse y recuperarse de estos eventos. En este contexto, los sistemas de apoyo a la decisión (DSS) emergen como herramientas indispensables que transforman la manera en que abordamos la protección de las ciudades y sus ciudadanos.

¿Qué entendemos por resiliencia comunitaria?

En el ámbito de la ingeniería civil y la planificación urbana, la resiliencia se define como la capacidad de un sistema, comunidad o sociedad expuesta a peligros para resistir, absorber, adaptarse, transformarse y recuperarse de manera oportuna y eficiente de los efectos de un evento adverso. Esto incluye la preservación y restauración de sus estructuras y funciones básicas esenciales mediante una gestión de riesgos adecuada. Una comunidad resiliente es aquella que, tras un terremoto, una inundación o una ola de calor extrema, logra mantener operativas o recuperar rápidamente sus infraestructuras críticas —desde la red eléctrica hasta los hospitales—, minimizando el impacto en la vida de sus habitantes.

La gestión del riesgo de desastres (DRM) incluye las fases de prevención, preparación, respuesta y recuperación. La resiliencia está intrínsecamente vinculada a todas estas fases. Por ejemplo, la implementación de códigos de construcción más estrictos o sistemas de control de inundaciones es una medida de prevención que aumenta la resiliencia. La preparación, por su parte, permite que las comunidades se adapten mejor a una situación de desastre y se recuperen con mayor rapidez.

Sistemas de apoyo a la decisión (DSS): herramientas inteligentes para la gestión de crisis.

Los DSS son herramientas informáticas diseñadas para ayudar a los responsables de la toma de decisiones, ya que proporcionan análisis, información y recomendaciones, e incluso permiten simular diferentes escenarios. Son fundamentales para mejorar la resiliencia comunitaria, puesto que ofrecen soluciones rápidas y eficientes a los problemas relacionados con los desastres, integrando diversas fuentes de datos y perspectivas de múltiples interesados. Además, los DSS facilitan la operacionalización de la resiliencia, es decir, permiten traducir este concepto abstracto en acciones y modelos analíticos concretos en los que están implicados todos los actores clave, lo que ofrece una comprensión más profunda del proceso de resiliencia. Esto, a su vez, conduce a una toma de decisiones más objetiva y basada en pruebas, que mitiga la subjetividad humana.

Las técnicas de modelización en los DSS: un arsenal de estrategias.

Los DSS se construyen utilizando diversas técnicas de modelización, cada una con sus propias fortalezas. Entre ellas, las técnicas de optimización son las más utilizadas. Estas técnicas permiten encontrar la mejor solución a un problema teniendo en cuenta múltiples factores y restricciones, a menudo mediante algoritmos matemáticos que identifican la opción más eficiente o efectiva. Por ejemplo, se utilizan para decidir la asignación óptima de recursos para la reparación de infraestructuras tras un terremoto o para la gestión de intervenciones en infraestructuras interdependientes.

Otras técnicas destacadas incluyen:

  • Modelado espacial (SIG): utiliza sistemas de información geográfica (SIG) para capturar relaciones espaciales, analizar, predecir y visualizar la influencia de los factores geográficos en los procesos y las decisiones. Esta técnica resulta muy útil para visualizar la distribución de riesgos y recursos en una ubicación específica, lo que facilita la comprensión del estado de resiliencia.
  • Análisis de decisiones multicriterio (MCDA): ayuda a los responsables de la toma de decisiones a ponderar diferentes factores y evaluar alternativas frente a múltiples criterios, a menudo conflictivos, para identificar la opción más adecuada en función de las prioridades y los objetivos. Es idóneo para la toma de decisiones en grupo y para capturar aspectos cualitativos de un problema.
  • Simulación: crea un modelo digital para imitar sistemas o procesos del mundo real, lo que permite la experimentación y el análisis en un entorno controlado. Es excelente para probar el impacto de diversas políticas y decisiones en el comportamiento del sistema antes de su implementación real.
  • Teoría de grafos: estudia las relaciones entre objetos, que se representan como nodos y aristas en un grafo. Es fundamental para analizar la conectividad de las redes interdependientes, como las infraestructuras de transporte o suministro, y para encontrar rutas óptimas, por ejemplo, para la distribución de ayuda humanitaria.
  • Minería de texto: extrae conocimiento e información de grandes volúmenes de datos textuales mediante métodos computacionales. Un ejemplo práctico es el uso de chatbots que procesan datos de redes sociales para ofrecer información en tiempo real durante un desastre.

Aplicación de los DSS en las fases de gestión de desastres.

Es interesante observar que los DSS tienden a centrarse más en las fases de preparación y respuesta que en las de recuperación y mitigación. Por ejemplo, el modelado espacial se utiliza mucho en la fase de preparación (en el 80 % de los artículos consultados) para tomar decisiones estratégicas, como determinar la ubicación óptima de los refugios o cómo distribuir los recursos. Durante la fase de respuesta, los DSS espaciales permiten visualizar la situación en tiempo real, identificar rutas bloqueadas y distribuir la ayuda humanitaria de manera eficiente mediante algoritmos que calculan la ruta más corta.

La optimización, por su parte, se utiliza principalmente en la fase de recuperación (en el 75 % de los artículos consultados), particularmente en las decisiones relativas a la rehabilitación y reconstrucción de infraestructuras dañadas. Las técnicas de MCDA son adecuadas para la fase de preparación (el 75 % de los artículos), ya que permiten comparar planes y políticas alternativas con el tiempo necesario para su análisis. Los modelos de simulación también se utilizan en la fase de respuesta para imitar el comportamiento del sistema y de los individuos durante una catástrofe.

Desafíos en el desarrollo y la implementación de los DSS.

A pesar de su potencial, el desarrollo e implementación de sistemas de apoyo a la decisión para la resiliencia no están exentos de desafíos significativos. Uno de los principales desafíos es la disponibilidad y calidad de los datos. La modelización de la resiliencia es un proceso complejo en el que los datos, tanto cuantitativos como cualitativos, son fundamentales. A menudo, la información proviene de múltiples fuentes con diferentes niveles de precisión, lo que dificulta su integración. En los países menos desarrollados, el acceso a los datos públicos (censos, informes, etc.) es aún más complicado, lo que limita la aplicación de ciertos modelos.

Otro obstáculo es la incertidumbre inherente al contexto de un desastre y la necesidad de gestionar cambios en tiempo real. También es una preocupación crucial la privacidad de los datos sensibles sobre infraestructuras críticas o planes de emergencia.

Por último, la colaboración interdisciplinar es imprescindible, pero difícil de conseguir, y la integración de estos sistemas en las operaciones diarias de las organizaciones de emergencia sigue siendo un reto considerable.

La colaboración con los interesados es clave para el éxito.

La implicación de los diversos actores o partes interesadas (stakeholders) es fundamental en el ciclo de vida de un DSS para la resiliencia. Se identifican tres enfoques principales:

  1. Como fuente de datos: recopilando sus opiniones y datos (mediante entrevistas, encuestas o incluso información compartida en redes sociales).
  2. Participación en el diseño: involucrándolos en la identificación de problemas, la construcción del modelo y el desarrollo del sistema para garantizar que la herramienta sea relevante y práctica para sus necesidades reales
  3. Incorporación de preferencias en el modelo: reflejando sus prioridades como parámetros o funciones objetivo en los modelos matemáticos, lo que influirá directamente en las soluciones propuestas. Por ejemplo, se pueden integrar las preferencias comunitarias como restricciones en un modelo de optimización.

Conclusiones y futuras direcciones en ingeniería resiliente.

Los sistemas de apoyo a la decisión suponen un avance significativo en nuestra capacidad para crear comunidades más resilientes frente a los desastres. Aunque hemos logrado grandes avances, especialmente en las fases de preparación y respuesta, y con el uso intensivo de modelos de optimización, aún queda mucho por hacer. Es imperativo ampliar el enfoque a las fases de recuperación y mitigación e investigar cómo integrar fuentes de datos en tiempo real y tecnologías IoT para mejorar la capacidad de respuesta de los DSS en entornos dinámicos. Además, debemos seguir profundizando en la modelización de las interacciones entre los diversos actores de la comunidad para fomentar una colaboración más sólida y, en última instancia, crear un entorno más seguro y resiliente para todos.

Referencias:

Elkady, S., Hernantes, J., & Labaka, L. (2024). Decision-making for community resilience: A review of decision support systems and their applicationsHeliyon10(12).

Salas, J., & Yepes, V. (2020). Enhancing sustainability and resilience through multi-level infrastructure planningInternational Journal of Environmental Research and Public Health17(3), 962.

Zhou, Z. W., Alcalà, J., & Yepes, V. (2023). Carbon impact assessment of bridge construction based on resilience theoryJournal of Civil Engineering and Management29(6), 561-576.

Os dejo un audio que resume bien el artículo anterior. Espero que os sea de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre ciclos de trabajo y producción de la maquinaria de construcción

Figura 1. Pala sobre neumáticos cargando dúmper. Imagen: V. Yepes

1. ¿Qué es un ciclo de trabajo y cuáles son sus componentes principales?

Un ciclo de trabajo se define como la secuencia de operaciones elementales necesarias para completar una tarea. El tiempo total necesario para realizar estas operaciones se denomina «tiempo del ciclo». Se descompone en tres tipos principales:

  1. Tiempo fijo: Duración de operaciones que requieren un tiempo determinado, como la carga, la descarga y las maniobras.
  2. Tiempo variable: Duración de las operaciones que dependen de las condiciones de trabajo, como la distancia en un ciclo de transporte.
  3. Tiempo muerto de inactividad: Tiempo de espera de una máquina mientras otra está realizando una operación en un equipo coordinado.
Figura 2. Esquema de los ciclos acoplados de máquinas trabajando en equipo. Tiempo muerto en la máquina principal

2. ¿Cómo se calcula la producción de un equipo por unidad de tiempo y qué factores la afectan?

La producción por unidad de tiempo o rendimiento de un equipo se calcula multiplicando la capacidad de producción en un ciclo por el número de ciclos realizados en ese período.

La producción de una máquina o conjunto de máquinas está influenciada por múltiples factores, como el clima, la dureza del trabajo, los turnos, el estado de las máquinas, el dimensionamiento de los equipos, la habilidad del operador y la existencia de incentivos. Para estimar la producción real a partir de la producción teórica, hay que multiplicar la producción teórica por una serie de factores de producción.

3. ¿Qué es el «cuello de botella» en un equipo de máquinas y por qué es importante identificarlo?

El «cuello de botella» es el recurso o máquina que limita la producción total del equipo. Identificarlo es fundamental porque cualquier cambio en su funcionamiento afectará directamente a la capacidad de producción de todo el equipo. Por ejemplo, en un sistema de cargadora y camiones, si la cargadora espera a los camiones, estos son el cuello de botella. Si los camiones esperan a la cargadora, entonces la cargadora es el cuello de botella.

4. ¿Qué es el factor de acoplamiento (match factor) y cuál es su valor óptimo para el coste de producción?

El factor de acoplamiento es la relación entre la producción máxima posible de los equipos auxiliares y la producción máxima posible de los equipos principales, suponiendo que no hay tiempos de espera. El coste de producción más bajo se logra con factores de acoplamiento cercanos a la unidad, pero ligeramente por debajo de ella. Esto se debe a las variaciones estadísticas en los ciclos de trabajo, por lo que, incluso con un equipo bien dimensionado y un factor de acoplamiento de uno, siempre habrá tiempos de espera.

5. ¿Cómo se determina el número de máquinas principales y auxiliares necesarias para un trabajo concreto?

Este número se puede estimar conociendo los tiempos de ciclo de cada tipo de máquina. En una unidad de tiempo (por ejemplo, una hora), el número total de ciclos realizados por las máquinas principales debe ser igual al número total de ciclos realizados por las máquinas auxiliares. Esta relación se puede generalizar para múltiples tipos de máquinas.

6. ¿Cuáles son los tiempos improductivos necesarios para operar una máquina?

Se trata de tiempos imprescindibles para el desarrollo normal de un trabajo, aunque no contribuyen directamente a la producción. Incluyen:

  • Tiempo preparativo-conclusivo: Revisión, arranque, traslado y protección de la máquina.
  • Tiempo de interrupciones tecnológicas: Necesidades de la tecnología implicada, como el cambio de posición de una cuchilla.
  • Tiempo de servicio: Mantenimiento y atención diaria del equipo durante la jornada.
  • Tiempo de descanso y necesidades personales: Tiempo para prevenir la fatiga del operador y atender sus necesidades básicas.

7. ¿Qué es la «producción tipo» y cómo se relaciona con la producción real?

La «producción tipo» es la producción obtenida durante 54 minutos ininterrumpidos de trabajo, siguiendo un método específico, en condiciones determinadas y con una habilidad media del operador. Se utilizan 54 minutos por hora para estimar las pérdidas de tiempo ajenas al trabajo. En esencia, se trata de una producción teórica en condiciones específicas.

Para estimar la producción real a partir de la producción tipo, se multiplica la producción tipo por una serie de factores de producción que tienen en cuenta las condiciones reales. La producción por hora de trabajo productivo en una obra concreta se relaciona con la producción tipo mediante el factor de eficacia.

Figura 3. Determinación del tiempo tipo de un trabajo

8. ¿Cuáles son los principales factores que modifican la producción tipo y de qué depende?

Los principales factores que modifican la producción tipo para estimar la producción real son los siguientes:

  • Factor de disponibilidad: Relación entre el tiempo disponible y el tiempo laborable real. Depende de la máquina y del equipo de mantenimiento.
  • Factor de utilización: Vincula el tiempo de utilización con el de disposición. Indica la calidad de la organización y planificación de la obra.
  • Eficiencia horaria, factor de eficacia o factor operacional: Cociente entre la producción media por hora de utilización y la producción tipo. Considera tiempos no productivos como traslados y preparación. Depende de la selección del personal y el método de trabajo.

Es importante señalar que solo el factor de disponibilidad depende directamente de la máquina; los demás están vinculados a la organización de la obra, la selección del personal y el método de trabajo.

Os dejo un audio que recoge estas ideas. Espero que os sea interesante.

También un vídeo explicativo del contenido.

Glosario de términos clave

  • Ciclo de trabajo: Serie completa de operaciones elementales necesarias para realizar una tarea o labor.
  • Tiempo del ciclo: Duración total invertida en completar un ciclo de trabajo.
  • Tiempo fijo: Parte del tiempo del ciclo que corresponde a operaciones de duración constante, independientemente de las condiciones de trabajo (ej., carga, descarga).
  • Tiempo variable: Parte del tiempo del ciclo que depende de las condiciones específicas de la operación (ej., distancia de transporte).
  • Tiempo muerto de inactividad: Período de espera de una máquina, usualmente debido a la necesidad de sincronización con otra máquina en una operación conjunta.
  • Cuello de botella: El recurso dentro de un equipo de trabajo que limita la producción total del conjunto.
  • Factor de acoplamiento (Match Factor): Relación entre la máxima producción posible de los equipos auxiliares y la máxima producción posible de los equipos principales, idealmente sin tiempos de espera.
  • Producción: La transformación de elementos para obtener productos terminados o resultados útiles, a menudo asociados a unidades de obra en construcción.
  • Capacidad de producción: Cantidad de producto generado en un solo ciclo de trabajo.
  • Rendimiento: Producción por unidad de tiempo de un equipo.
  • Producción teórica: La producción esperada de un equipo bajo condiciones ideales o de diseño.
  • Producción real: La producción efectiva de un equipo, considerando las condiciones y factores operativos reales en una obra.
  • Factores de producción: Coeficientes utilizados para ajustar la producción teórica y obtener una estimación más precisa de la producción real, considerando diversas variables de la obra.
  • Tiempo productivo: Tiempo en el que el equipo trabaja directamente en la ejecución de una operación, ya sea principal o auxiliar.
  • Tiempos improductivos necesarios: Tiempos no productivos, pero esenciales para el desarrollo normal del trabajo (ej., preparativo-conclusivo, interrupciones tecnológicas, servicio, descanso).
  • Producción tipo: Producción obtenida en 54 minutos ininterrumpidos de trabajo bajo un método y condiciones específicas, con un operador de habilidad media. (Referencia a la hora reducida de 54 minutos útiles).
  • Factor de disponibilidad: Relación entre el tiempo que una máquina está disponible para trabajar y el tiempo laborable real. Refleja el estado mecánico y de mantenimiento.
  • Factor de utilización: Relación entre el tiempo que una máquina es utilizada efectivamente y el tiempo que está disponible. Refleja la organización y planificación de la obra.
  • Eficiencia horaria / Factor de eficacia: Cociente entre la producción media por hora de utilización y la producción tipo. Considera los tiempos de trabajo no productivo dedicados a tareas auxiliares y la habilidad del personal.
  • Producción media por hora laborable real: La producción promedio de un equipo durante una hora efectiva de trabajo, considerando todos los factores de corrección.
  • Índice de paralizaciones: Relación entre las interrupciones debidas a la organización, mal acoplamiento o averías de otras máquinas, y el tiempo laborable real.
  • Factor de aprovechamiento: Cociente entre el tiempo de utilización de una máquina y el tiempo laborable real. Es el producto del factor de disponibilidad y el factor de utilización.
  • Equipo en cadena: Un conjunto de máquinas donde la producción de una está ligada al trabajo de la que le precede, y la paralización de una detiene toda la cadena.
  • Equipo en paralelo: Un conjunto de máquinas iguales que trabajan simultáneamente, y la producción total es la suma de las producciones individuales o la probabilidad de que un cierto número de ellas esté activa.
  • Disponibilidad intrínseca: La disponibilidad de una máquina individual en un conjunto paralelo, sin considerar las interrupciones por organización.

Referencias:

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente nº 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442. ISBN: 978-84-1396-046-3

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Preguntas sobre la productividad y el estudio del trabajo

¿Qué es la productividad y por qué es crucial para una empresa?

La productividad se define como la relación entre los bienes y servicios producidos y los recursos empleados para ello. Es un indicador vital para cualquier actividad empresarial, ya que las empresas que no mejoran su productividad con respecto a la de sus competidores están abocadas a desaparecer. Un aumento de la producción no siempre implica un aumento de la productividad; para conseguirlo, es necesario buscar la eficiencia en todos los procesos de la empresa. La mejora de la productividad conlleva una reducción de costes y plazos, lo que incrementa la competitividad a largo plazo.

¿Cuál es la diferencia entre productividad y rendimiento?

La productividad se refiere a la relación entre la producción y los recursos consumidos. El rendimiento, por otro lado, es el cociente entre lo realizado y lo previsto, ya sea en relación con la producción o con el tiempo dedicado a una actividad. El rendimiento contribuye a aumentar o disminuir la productividad modificando la eficiencia de los medios de producción, pero no los medios en sí mismos. La pérdida de productividad a menudo se debe a ineficiencias en el tiempo total invertido en una operación.

¿Cómo se puede aumentar la productividad de una empresa, según la OIT?

De acuerdo con la Organización Internacional del Trabajo (OIT), existen dos categorías principales de medios directos para aumentar la productividad.

  • Inversión de capital: Esto incluye idear nuevos procedimientos básicos o mejorar fundamentalmente los existentes, así como instalar maquinaria o equipo más moderno y de mayor capacidad, o modernizar los ya existentes.
  • Mejor dirección: Implica reducir el contenido de trabajo del producto, reducir el contenido de trabajo del proceso y reducir el tiempo improductivo, ya sea imputable a la dirección o a los trabajadores.

¿Qué es el estudio del trabajo y cuáles son sus componentes principales?

El estudio del trabajo es un término que engloba técnicas para examinar tareas humanas en todos sus contextos con el fin de investigar sistemáticamente los factores que influyen en la eficiencia y la economía, y así poder introducir mejoras. Se trata de una herramienta fundamental para alcanzar objetivos y tomar decisiones. Consta de dos técnicas interrelacionadas:

  • Estudio de métodos: Se enfoca en cómo se realiza un trabajo, buscando formas más sencillas y eficientes para reducir costes.
  • Medición del trabajo: Su objetivo es determinar cuánto tiempo se requiere para ejecutar una tarea definida por un trabajador calificado, según normas y rendimientos preestablecidos.

¿Cuáles son los objetivos principales del estudio de métodos?

El estudio de métodos busca registrar y examinar críticamente de forma sistemática los factores y recursos involucrados en los sistemas de ejecución existentes y propuestos. Sus objetivos son:

  • Mejorar los procesos y los procedimientos.
  • Optimizar la disposición del lugar de trabajo, el diseño del equipo y las instalaciones.
  • Economizar el esfuerzo humano y reducir la fatiga innecesaria.
  • Mejorar la utilización de materiales, máquinas y mano de obra.
  • Crear mejores condiciones de trabajo.

¿Cuáles son las fases clave para implementar un estudio de mejora de métodos?

Para abordar y llevar a la práctica un estudio de mejora de métodos, se siguen cinco fases generales:

  1. Elección y definición del problema: Identificar el trabajo a analizar que ofrecerá la mayor rentabilidad.
  2. Observación y registro del método actual: Recopilar datos sobre cómo se realiza el trabajo actualmente.
  3. Análisis del método actual: Cuestionar sistemáticamente cada aspecto del método actual (qué, dónde, cuánto, quién, cómo, cuándo) para identificar ineficiencias.
  4. Desarrollo del método mejorado: Basándose en el análisis, buscar posibilidades como eliminar trabajo innecesario, combinar operaciones, cambiar el orden de ejecución o simplificar las operaciones.
  5. Aplicación y mantenimiento del nuevo método: Una vez aprobado por la dirección, implementar el nuevo método y vigilar periódicamente su cumplimiento.

¿Qué son los diagramas de proceso y qué tipos se mencionan?

Los diagramas de procesos (o cursogramas) son representaciones gráficas de los eventos que ocurren durante una serie de acciones u operaciones, junto con información relevante. Durante un proceso, se identifican cinco tipos de acciones: operación, transporte, inspección, demora y almacenamiento. Entre los tipos de diagramas de proceso se incluyen:

  • Diagrama de las operaciones del proceso (operation process-chart): Muestra los puntos donde se introducen los materiales, la secuencia de inspecciones y todas las operaciones (excepto el manejo de materiales), incluyendo tiempo y localización. Útil para procesos complicados o nuevos.
  • Diagrama del análisis del proceso del recorrido (flow process-chart): Representa todas las operaciones, transportes, inspecciones, demoras y almacenajes, con información sobre tiempo requerido y distancia recorrida. Se construye determinando el producto y unidad, anotando fases, uniendo símbolos, y midiendo distancias y duraciones.
  • Diagramas planimétricos de flujo o diagrama de recorrido: Representación gráfica sobre un plano del área de actividad, mostrando la ubicación de los puestos de trabajo y el trazado de movimientos de hombres y/o materiales. Ayuda a identificar áreas congestionadas, avances y retrocesos, y a mejorar la distribución de la planta. Se utiliza la misma simbología que el diagrama de proceso.

¿Qué son los gráficos de actividades simultáneas y cuál es su propósito?

Los gráficos de actividades simultáneas o múltiples son herramientas que se utilizan para registrar y estudiar las actividades interdependientes de personas y máquinas. Su objetivo principal es reducir el número y la duración de los tiempos improductivos (paradas y esperas). La técnica consiste en representar el trabajo de cada recurso en una escala de tiempos común para visualizar las interrelaciones entre ellos y examinar y analizar el método con el fin de eliminar los periodos de inactividad.

Referencias:

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

YEPES, V. (1997). Equipos de movimiento de tierras y compactación. Problemas resueltos. Colección Libro Docente n.º 97.439. Ed. Universitat Politècnica de València. 256 pág. Depósito Legal: V-4598-1997. ISBN: 84-7721-551-0.

YEPES, V. (2022). Gestión de costes y producción de maquinaria de construcción. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 243 pp. Ref. 442.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376.

Curso:

Curso de gestión de costes y producción de la maquinaria empleada en la construcción.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

RESILIFE: Optimización resiliente de estructuras híbridas en condiciones extremas

En este artículo se explica el proyecto RESILIFE, cuyos investigadores principales son Víctor Yepes y Julián Alcalá, de la Universitat Politècnica de València. Se trata de un proyecto de investigación de carácter internacional en el que también colaboran profesores de Brasil, Chile y China. Además, se están realizando varias tesis doctorales de estudiantes de Cuba, Perú, México y Ecuador, así como de estudiantes españoles. A continuación, se describe brevemente el proyecto y se incluye una comunicación reciente donde se explica con más detalle.

El proyecto RESILIFE se centra en optimizar de forma resiliente el ciclo de vida de estructuras híbridas y modulares para conseguir una alta eficiencia social y medioambiental, especialmente en condiciones extremas. La investigación aborda la necesidad de diseñar, construir y mantener infraestructuras que puedan resistir y recuperarse rápidamente de desastres naturales o provocados por el ser humano, minimizando las pérdidas y el impacto en la sociedad y el medioambiente. Para ello, el estudio propone utilizar inteligencia artificial, metaheurísticas híbridas, aprendizaje profundo y teoría de juegos en un enfoque multicriterio. El objetivo es mejorar la seguridad, reducir costes y optimizar la recuperación, alineándose con los Objetivos de Desarrollo Sostenible (ODS). La metodología integral incluye el análisis del ciclo de vida, así como la aplicación de lógica neutrosófica y redes bayesianas para la toma de decisiones.

¿Qué problema aborda el proyecto RESILIFE y por qué es urgente?

El proyecto RESILIFE aborda el desafío crítico que supone diseñar y mantener infraestructuras resilientes y sostenibles frente a desastres naturales y provocados por el ser humano. La urgencia es evidente debido a las enormes pérdidas humanas y económicas causadas por estos eventos (más de 1,1 millones de muertes y 1,5 billones de dólares en pérdidas entre 2003 y 2013), lo que subraya la necesidad de estructuras de alto rendimiento que protejan vidas y economías, al tiempo que se alinean con los Objetivos de Desarrollo Sostenible (ODS) de las Naciones Unidas. Además, los errores de diseño y construcción, así como la falta de mantenimiento, han demostrado ser causas significativas de colapso estructural, y solo el 50 % de las reparaciones de hormigón resultan efectivas en Europa.

¿Cuál es el objetivo principal de RESILIFE?

El objetivo general del proyecto RESILIFE es optimizar el diseño, el mantenimiento y la reparación de estructuras híbridas y modulares (MMC) de alta eficiencia social y medioambiental para que puedan resistir condiciones extremas. Para ello, se deben abordar problemas complejos de toma de decisiones en los ámbitos público y privado, integrando criterios de sostenibilidad social y medioambiental durante todo el ciclo de vida de las estructuras y teniendo en cuenta la variabilidad e incertidumbre inherentes al mundo real. El objetivo es que estas estructuras sean tan seguras como las tradicionales, pero con una mayor capacidad de recuperación rápida y un menor impacto social y medioambiental.

 

¿Qué tipos de estructuras son el foco de RESILIFE y por qué?

El proyecto se centra en estructuras híbridas (que combinan, por ejemplo, acero y hormigón) y en estructuras basadas en métodos modernos de construcción (MMC), especialmente las modulares. Estas estructuras se han elegido como objeto de estudio debido a su gran potencial para mejorar la resiliencia estructural, la eficiencia en la construcción (al reducir las interrupciones en obra y mejorar el control de calidad) y la sostenibilidad. A pesar de sus ventajas, se han identificado lagunas en la investigación sobre su optimización para eventos extremos y su aplicación en estructuras complejas, aspectos que el proyecto RESILIFE busca subsanar.

¿Qué metodologías innovadoras utiliza RESILIFE para lograr sus objetivos?

RESILIFE emplea un enfoque multidisciplinario e innovador que integra diversas técnicas avanzadas:

¿Cómo aborda RESILIFE la incertidumbre y la variabilidad en el diseño y mantenimiento de estructuras?

El proyecto aborda la incertidumbre y la variabilidad mediante varias estrategias:

  • Análisis de funciones de distribución de eventos extremos: Para el diseño óptimo basado en fiabilidad.
  • Metamodelos y metaheurísticas híbridas basadas en fiabilidad: Permiten manejar la aleatoriedad de los parámetros y asegurar que los proyectos optimizados no sean inviables ante pequeños cambios en las condiciones.
  • Técnicas de decisión multicriterio (lógica neutrosófica y redes bayesianas): Integran aspectos inciertos y criterios subjetivos en la toma de decisiones.
  • Análisis de sensibilidad: De los escenarios presupuestarios y las hipótesis del ciclo de vida para identificar las mejores prácticas.

¿Qué se entiende por “resiliencia” en el contexto de RESILIFE y cómo se cuantifica?

En el contexto de RESILIFE, la resiliencia se define como la capacidad de una estructura para resistir eventos extremos, mantener su funcionalidad o recuperarla rápidamente con reparaciones mínimas tras sufrir daños, y con un bajo coste social y medioambiental. El objetivo es ir más allá de la simple resistencia y centrarse en la capacidad de adaptación y recuperación. El proyecto tiene como objetivo desarrollar procedimientos explícitos para cuantificar la resiliencia de las estructuras e infraestructuras en el contexto de múltiples amenazas, un aspecto que actualmente presenta una laguna en la investigación. Esto incluye tener en cuenta la funcionalidad técnico-socioeconómica y los impactos a lo largo de toda su vida útil.

¿Qué tipo de casos de estudio se aplican en la metodología RESILIFE?

La metodología de RESILIFE se aplica a varios casos de estudio clave:

  • Optimización de pórticos de edificios altos: Con estructura de acero híbrido y hormigón armado, sometidos a un fuerte incremento de temperatura, o ante el fallo completo de soportes para evitar el colapso progresivo.
  • Viviendas sociales prefabricadas en zonas sísmicas: Optimizando su resistencia a acciones extremas y su capacidad de reparación rápida.
  • Mantenimiento y reparación de patologías: Resultantes de eventos extremos en diversas estructuras.
  • Otras estructuras como puentes mixtos y estructuras modulares: Ampliando el alcance más allá de las viviendas. Estos casos de estudio permiten validar la aplicabilidad de las metodologías propuestas en situaciones reales y complejas.

¿Cuáles son las principales contribuciones esperadas de RESILIFE a la ingeniería estructural y la sostenibilidad?

Las principales contribuciones esperadas de RESILIFE son:

  • Desarrollo de soluciones constructivas innovadoras: Como conexiones especiales y estructuras fusibles para aumentar la resiliencia y evitar el colapso progresivo.
  • Formulación de metodologías de participación social: Para integrar criterios objetivos y subjetivos en decisiones multicriterio.
  • Propuesta de técnicas de optimización multiobjetivo avanzadas: Basadas en metaheurísticas híbridas de deep learning, teoría de juegos y fiabilidad.
  • Introducción de nuevas métricas: Que prioricen soluciones resilientes en la frontera de Pareto.
  • Identificación de políticas presupuestarias efectivas: Y definición de buenas prácticas de diseño, reparación y mantenimiento robusto en construcciones MMC y estructuras híbridas.
  • Avances en la modelización y evaluación: De la sostenibilidad a largo plazo y el impacto ambiental de las infraestructuras, contribuyendo a normativas y software de diseño más eficientes.

Descargar (PDF, 391KB)

Glosario de términos clave

  • Resiliencia (estructural): Capacidad de una estructura para absorber, resistir, adaptarse y recuperarse de un evento extremo, manteniendo o recuperando su funcionalidad rápidamente y con costes mínimos.
  • Estructuras híbridas: Estructuras que combinan dos o más materiales estructurales diferentes, como acero y hormigón, para optimizar sus propiedades y rendimiento.
  • Estructuras modulares: Estructuras compuestas por unidades o módulos prefabricados que se ensamblan en el lugar de la construcción, ofreciendo ventajas en velocidad de construcción y control de calidad.
  • Eventos extremos: Desastres naturales (terremotos, tsunamis, inundaciones) o provocados por humanos (explosiones, impactos) que causan daños significativos a las estructuras y la sociedad.
  • Optimización del ciclo de vida: Proceso de diseño, construcción, mantenimiento y reparación de una estructura, considerando su impacto total (económico, social, ambiental) a lo largo de toda su vida útil.
  • Sostenibilidad: Principio que busca satisfacer las necesidades actuales sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades, integrando aspectos ambientales, sociales y económicos.
  • Inteligencia artificial (IA): Campo de la informática que dota a las máquinas de la capacidad de aprender, razonar y resolver problemas, utilizada aquí para evaluar y mejorar la resiliencia.
  • Metaheurísticas híbridas: Algoritmos de optimización que combinan diferentes técnicas heurísticas o metaheurísticas para encontrar soluciones eficientes a problemas complejos, especialmente en la optimización multiobjetivo.
  • Aprendizaje profundo (Deep Learning – DL): Subcampo del aprendizaje automático que utiliza redes neuronales artificiales con múltiples capas para aprender representaciones de datos, aplicado para mejorar la toma de decisiones y reducir tiempos de cálculo.
  • Teoría de juegos: Rama de las matemáticas que estudia las interacciones estratégicas entre agentes racionales, aplicada en la optimización multiobjetivo para el diseño de estructuras.
  • Lógica neutrosófica: Marco matemático para tratar la indeterminación y la inconsistencia, utilizado en la toma de decisiones multicriterio para manejar la incertidumbre.
  • Redes bayesianas: Modelos gráficos probabilísticos que representan relaciones de dependencia condicional entre variables, empleadas en el análisis multicriterio y la gestión de incertidumbre.
  • Colapso progresivo: Fenómeno en el cual un daño inicial localizado en una estructura se propaga a otras partes, llevando al colapso desproporcionado de una gran porción o de toda la estructura.
  • Modern Methods of Construction (MMC): Métodos de construcción modernos que incluyen tecnologías de prefabricación, construcción modular e impresión 3D, buscando mayor eficiencia y control de calidad.
  • BIM (Building Information Modeling / Modelos de Información en la Construcción): Proceso de creación y gestión de un modelo digital de un edificio o infraestructura, que facilita la integración del proyecto estructural y la toma de decisiones a lo largo del ciclo de vida.
  • Metamodelo (o modelo subrogado): Modelo simplificado de un sistema complejo que permite realizar cálculos más rápidos y eficientes, crucial para reducir los tiempos de computación en la optimización.
  • Diseño óptimo basado en fiabilidad: Enfoque de diseño que considera la probabilidad de fallo y las incertidumbres inherentes para optimizar las estructuras, garantizando un nivel de seguridad predefinido.
  • Frontera de Pareto: Conjunto de soluciones óptimas en problemas de optimización multiobjetivo, donde ninguna de las funciones objetivo puede mejorarse sin degradar al menos otra función objetivo.

Agradecimientos:

Grant PID2023-150003OB-I00 funded by MCIN/AEI/10.13039/501100011033, and the European Regional Development Fund (ERDF), a program of the European Union (EU).

Ya son 6 meses desde el desastre de la DANA en Valencia

Hoy se cumplen seis meses desde aquel fatídico 29 de octubre de 2024, en el que una inundación catastrófica causó cientos de muertes y graves daños materiales en varias comunidades autónomas, pero especialmente, en la valenciana.

Ahora estamos en fase de reconstrucción. A este respecto, os paso algunas reflexiones que he realizado y también unos apuntes en prensa escrita sobre este tema. Espero que el mensaje vaya calando.

 

https://theconversation.com/la-ingenieria-ante-la-dana-la-reconstruccion-no-basta-si-se-repiten-los-errores-del-pasado-250852

https://www.elperiodico.com/es/sociedad/20250427/victor-yepes-catedratico-ingenieria-dana-critico-construccion-116784837

https://www.laprovincia.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784827.html

https://www.farodevigo.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784828.html

https://www.eldia.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784831.html

https://www.diariodeibiza.es/sociedad/2025/04/27/victor-yepes-catedratico-ingenieria-dana-116784834.html

https://www.laopiniondemurcia.es/sociedad/2025/04/27/seis-meses-dana-reconstruccion-dimensiones-historicas-millar-infraestructuras-dana-116781571.html

https://www.levante-emv.com/comunitat-valenciana/2025/04/27/reconstruccion-dana-construimos-igual-volvera-ocurrir-catastrofe-repensar-planificacion-116721432.html

 

La ingeniería de la reconstrucción

Imagen del desastre provocado por la DANA. Imagen: V.J. Yepes (10 de noviembre de 2024)

Las catástrofes naturales y humanas han acompañado a la civilización a lo largo de su historia, poniendo a prueba su capacidad de adaptación. Sin embargo, la forma en que se afronta la reconstrucción tras un desastre no puede limitarse a la reposición de lo perdido. El caso de las recientes inundaciones en Valencia el 29 de octubre de 2024 ilustra una realidad que se repite con cada evento extremo: la urgencia de reconstruir suele imponerse a la necesidad de reflexionar. No obstante, si la ingeniería de la reconstrucción se reduce a restablecer el estado previo a la catástrofe, se estaría desperdiciando una oportunidad para corregir vulnerabilidades y minimizar futuros daños.

El primer desafío tras un desastre es la respuesta inmediata. En esta fase, la prioridad es el rescate de personas y la provisión de recursos esenciales. Una vez atendidas estas necesidades básicas, la atención se centra en la recuperación de infraestructuras críticas, como hospitales, redes de agua potable, suministro eléctrico y comunicaciones. Este proceso es complejo, ya que estas infraestructuras no solo deben ponerse en funcionamiento lo antes posible, sino que, en muchos casos, han sufrido daños estructurales que comprometen su funcionalidad.

A partir de este punto surge la cuestión clave: ¿debe la reconstrucción reproducir las mismas condiciones previas a la catástrofe? Desde el punto de vista técnico y económico, esta estrategia es cuestionable. Si las infraestructuras y edificaciones han fallado ante un fenómeno extremo, replicarlas sin modificaciones implica asumir que volverán a fallar en el futuro. En el caso concreto de Valencia, se ha observado que algunos puentes obstaculizaron el flujo del agua y los sedimentos, generando represas que agravaron la crecida. Este problema no es nuevo; estructuras similares han provocado efectos equivalentes en inundaciones anteriores y, sin embargo, su diseño se sigue repitiendo. Por tanto, es necesario un enfoque distinto que incorpore criterios de resiliencia y sostenibilidad en la reconstrucción. En el caso de los puentes, esto podría traducirse en reducir el número de apoyos en el cauce, cimentaciones más profundas para reducir su vulnerabilidad a la erosión y revisar los coeficientes de empuje hidráulico en los cálculos estructurales.

El reto no solo consiste en corregir errores del pasado, sino también en prepararse para escenarios futuros más complejos. El cambio climático está alterando la frecuencia e intensidad de los eventos extremos, lo que obliga a replantear tanto la planificación territorial como la normativa vigente. Lo que antes se consideraba un fenómeno extraordinario puede convertirse en una amenaza recurrente, por lo que es necesario aplicar criterios de diseño más exigentes y estrategias de mitigación más ambiciosas. No se trata únicamente de reforzar las infraestructuras, sino de adaptar las ciudades y las redes de transporte a una realidad en la que las precipitaciones intensas, las sequías prolongadas y el aumento del nivel del mar serán cada vez más frecuentes. La planificación basada en registros históricos ya no es suficiente; la ingeniería debe integrar modelos predictivos y diseñar soluciones flexibles y adaptativas.

Sin embargo, en la reconstrucción tras una catástrofe suele predominar un enfoque táctico, con decisiones orientadas a mostrar una respuesta inmediata a la ciudadanía. La rapidez en la ejecución de ciertas obras genera la percepción de una gestión eficaz, pero este proceder puede ocultar la ausencia de una estrategia que optimice las actuaciones a largo plazo. Si bien es imprescindible contar con equipos de intervención inmediata para hacer frente a la emergencia, también es esencial disponer de un equipo de reflexión que establezca directrices fundamentadas y evite reconstrucciones apresuradas que perpetúen los mismos errores. Algo así como un «ministerio del pensamiento» que sea capaz de analizar las lecciones aprendidas y convertirlas en políticas y proyectos de reconstrucción con criterios sólidos de sostenibilidad y resiliencia.

Esta misma lógica se aplica a la planificación territorial y urbana. Rehabilitar zonas inundables sin considerar estrategias de mitigación perpetúa la exposición al riesgo. En este sentido, la ingeniería tiene el deber de plantear soluciones basadas en evidencia científica y en experiencias previas. La adaptación a eventos extremos no solo implica reforzar estructuras, sino también reconsiderar su localización y función. En muchos casos, las medidas no requieren inversiones desmesuradas, sino una gestión más eficiente del territorio. La creación de zonas de amortiguamiento, la mejora en la capacidad de drenaje y la regulación del uso del suelo son estrategias que pueden marcar la diferencia en futuras catástrofes.

Además, la sostenibilidad a largo plazo implica tener en cuenta a las personas en la ecuación que gobierna los impactos de las actuaciones. No basta con evaluar los efectos sobre las infraestructuras o el medio ambiente, sino que es necesario considerar cómo influyen estas decisiones en la calidad de vida de las personas que habitan los territorios afectados. La reconstrucción debe ir más allá de la restitución de bienes materiales y tener en cuenta también aspectos sociales, económicos y psicológicos. Por ejemplo, esto implicaría reubicar comunidades en zonas seguras, garantizar el acceso equitativo a los servicios básicos y minimizar el impacto de las obras sobre la población más vulnerable. Si la ingeniería no tiene en cuenta estos factores, existe el riesgo de generar soluciones técnicamente eficientes, pero socialmente insostenibles.

Uno de los mayores obstáculos en estos procesos es la fragmentación de competencias. La reconstrucción implica a múltiples actores, desde administraciones locales hasta organismos estatales e internacionales. En muchas ocasiones, la superposición de responsabilidades y la falta de coordinación provocan retrasos y contradicciones en la toma de decisiones. Para evitar este problema, una alternativa viable sería la creación de un consorcio específico encargado de gestionar la reconstrucción, en el que las distintas administraciones deleguen temporalmente parte de sus competencias. Este modelo permitiría una planificación más coherente y una ejecución de proyectos con criterios unificados, lo que evitaría la dispersión de recursos y la toma de decisiones inconexas.

La reconstrucción no es solo un proceso técnico, sino también una oportunidad para transformar el entorno de manera más racional y sostenible. Es indispensable actuar con rapidez, pero no se debe hacer a costa de repetir errores del pasado. La ingeniería, como disciplina, no puede limitarse a solucionar problemas inmediatos, sino que debe anticiparse a los riesgos futuros y ofrecer respuestas fundamentadas en el conocimiento acumulado. Una reconstrucción bien planificada no solo restituye lo destruido, sino que contribuye a construir una sociedad más segura y preparada para afrontar los desafíos futuros.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gestión y sostenibilidad de las playas en la Comunidad Valenciana: un análisis del turismo y la erosión costera

De Siocaw – Trabajo propio, Dominio público, https://commons.wikimedia.org/w/index.php?curid=3782634

El turismo es un pilar económico esencial para España, ya que representa el 12,8 % del Producto Interior Bruto (PNB) y el 12,6 % del empleo directo en 2023. Entre las distintas formas de turismo, el modelo de «sol y playa» ocupa un lugar privilegiado gracias a las favorables condiciones climáticas y a la riqueza natural de sus costas. En este contexto, la Comunidad Valenciana se posiciona como una de las principales zonas receptoras de turistas nacionales e internacionales gracias a sus playas, que suponen un recurso tanto económico como medioambiental.

Sin embargo, este modelo de desarrollo se enfrenta a importantes desafíos. La erosión costera, la presión urbanística y la sobreexplotación de recursos están poniendo en peligro la sostenibilidad de las playas, que constituyen el núcleo de la oferta turística de la región. Este informe, basado en el análisis de Yepes y Medina (2005), profundiza en los modelos turísticos, identifica las causas principales de la erosión costera y propone soluciones para garantizar el equilibrio entre desarrollo económico y conservación ambiental. Aunque este artículo tiene 20 años, algunos datos deberían actualizarse, su contenido sigue siendo plenamente vigente. No obstante, algunas de las conclusiones del estudio pueden sorprender a quienes no conocen este sector. Por tanto, recomiendo leer el artículo completo para comprenderlo mejor.

El turismo como motor económico

España es uno de los destinos turísticos más visitados del mundo, compitiendo con Estados Unidos y Francia, que en 2004 recibieron 85,7 millones de turistas extranjeros y generaron 37 250 millones de euros, lo que convierte al turismo en un sector clave para la economía nacional, ya que cubre más de la mitad del déficit comercial. En este contexto, la Comunidad Valenciana destaca por su litoral de 454 km y su clima privilegiado, con 4,9 millones de turistas internacionales y 15,9 millones de viajeros nacionales en 2004, que sumaron más de 151 millones de pernoctaciones, gracias a sus playas, sus 3000 horas de sol anuales y las temperaturas del agua, entre 13 °C y 29 °C.

Modelos de desarrollo turístico

El desarrollo turístico de las zonas litorales de la Comunidad Valenciana se puede dividir en dos modelos principales: intensivo y extensivo. Ambos tienen características distintivas que afectan a su impacto económico, medioambiental y social.

El modelo intensivo se caracteriza por estancias cortas en hoteles o apartamentos de alquiler, con alta densidad urbana y elevados niveles de gasto diario. Benidorm es un ejemplo destacado por su rentabilidad y sostenibilidad. Entre sus principales ventajas se encuentran una alta productividad económica, con ingresos de hasta 12 000 €/m², un menor consumo de recursos como agua, energía y suelo por turista, y la capacidad de operar durante todo el año, lo que reduce significativamente la estacionalidad.

El modelo extensivo se basa en estancias prolongadas en segundas residencias, con baja densidad urbana y un gasto diario reducido. Torrevieja es un ejemplo destacado por su predominio de viviendas vacacionales. Entre sus principales desventajas se encuentran un uso ineficiente de recursos, ya que se requieren hasta catorce veces más suelo por turista que en el modelo intensivo, altos costes en servicios públicos debido a la dispersión geográfica y baja densidad poblacional, así como una limitada capacidad para generar empleo y dinamismo económico local.

El análisis de Yepes y Medina demuestra que los modelos intensivos son superiores desde las perspectivas económica y medioambiental. Por ejemplo, un turista en un modelo intensivo consume cuatro veces menos agua y requiere un 93 % menos de superficie que un turista en un modelo extensivo. Además, los gastos diarios del modelo intensivo son un 60 % más altos, lo que contribuye a dinamizar el sector servicios y a crear empleo.

Erosión costera: una amenaza crítica

La erosión costera es uno de los mayores desafíos para el turismo y la sostenibilidad ambiental en la Comunidad Valenciana, donde se ha perdido arena a un ritmo de 3 millones de m³ al año desde la década de 1950, lo que supone la reducción de 200 000 m² de playas cada año y afecta al 58 % de sus 178 km de playas arenosas. Entre sus principales causas se incluyen la construcción de represas, como los 187 embalses del río Ebro, que han reducido casi totalmente su aporte de sedimentos, antes de 15 millones de m³ anuales; las barreras costeras, como espigones y rompeolas en los puertos de Valencia, Sagunto y Castellón, que generan desequilibrios sedimentarios; y la urbanización, que disminuye los reservorios naturales de sedimentos y agrava la erosión durante tormentas.

Propuestas de soluciones sostenibles

Las soluciones sostenibles para mitigar la erosión costera incluyen la recuperación de sedimentos fluviales mediante sistemas de bypass en presas y el drenaje de sedimentos acumulados en embalses para reabastecer las playas. También se proponen proyectos de regeneración de playas mediante la alimentación artificial con sedimentos marinos y fluviales, priorizando zonas críticas como la costa sur de Benidorm, que cuenta con 20 millones de m³ disponibles. Además, se recomienda restringir el desarrollo urbano en áreas vírgenes de la costa, implementando planes de ordenación territorial que equilibren turismo y conservación ambiental. Finalmente, se sugiere promover el modelo intensivo, replicando casos de éxito como el de Benidorm, e incentivar el uso eficiente de recursos mediante políticas y normativas específicas.

Impacto futuro de la inacción

La falta de medidas efectivas para abordar la erosión y la presión urbanística podría tener consecuencias desastrosas. Si no se actúa, las playas continuarán retrocediendo a un ritmo alarmante, y los recursos críticos, como el espacio litoral y la arena, se agotarán. Esto no solo afectará al turismo, sino también a la biodiversidad costera y al bienestar de las comunidades locales.

Conclusiones

El turismo costero en la Comunidad Valenciana es un recurso de incalculable valor económico y ambiental. Sin embargo, la erosión costera, la presión urbanística y la falta de estrategias de manejo sostenible están poniendo en peligro este modelo. Las soluciones deben centrarse en:

  • Restablecer el transporte natural de sedimentos.
  • Limitar la expansión urbana en áreas críticas.
  • Promover modelos turísticos intensivos más eficientes.

Si se implementan estas medidas, se puede garantizar la sostenibilidad a largo plazo de las playas valencianas, protegiendo su riqueza natural y asegurando su viabilidad económica para futuras generaciones.

Referencias

  • Yepes, V. & Medina, J.R. (2005). Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49, 83-88.
  • Organización Mundial del Turismo (2004). Tourism Highlights Edition 2004.

Os dejo el artículo completo para su consulta:

Descargar (PDF, 72KB)

Optimización de programas de mantenimiento vial: eficiencia y estrategias a largo plazo con algoritmos heurísticos.

Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm

El artículo, titulado «Optimal pavement maintenance programs based on a hybrid Greedy Randomized Adaptive Search Procedure Algorithm», escrito por Víctor Yepes, Cristina Torres-Machí, Alondra Chamorro y Eugenio Pellicer, y publicado en el Journal of Civil Engineering and Management, presenta una innovadora herramienta para la gestión eficiente del mantenimiento vial. Este trabajo aborda cómo diseñar programas que maximicen la efectividad a largo plazo (Long-Term Effectiveness, LTE) en redes viales, superando las limitaciones presupuestarias y el desgaste progresivo de las infraestructuras. Para ello, se desarrolla un enfoque híbrido que combina los algoritmos Greedy Randomized Adaptive Search Procedure (GRASP) y Threshold Accepting (TA), lo que permite optimizar la asignación de recursos y cumplir con restricciones técnicas y económicas. Entre los resultados más destacados, se encuentra una mejora del 40 % en la LTE en comparación con estrategias reactivas, que también subraya la importancia de priorizar inversiones tempranas y de implementar tratamientos preventivos como la opción más eficiente a largo plazo.

Introducción

La infraestructura vial es uno de los activos más valiosos de cualquier nación, ya que tiene un impacto directo en el desarrollo económico y social al facilitar el transporte de bienes y personas, por lo que es necesario realizar un mantenimiento adecuado para evitar el deterioro y el incremento de los costes futuros de rehabilitación. Sin embargo, los presupuestos de las agencias públicas son limitados y no alcanzan a cubrir las necesidades de conservación, lo que genera una brecha cada vez mayor entre el estado actual de las infraestructuras y los niveles de inversión requeridos. En Estados Unidos, un tercio de las carreteras están en condiciones mediocres o deficientes, y uno de cada nueve puentes presenta deficiencias estructurales. En España, las necesidades de mantenimiento vial superan los 5500 millones de euros, pero los presupuestos se redujeron un 20 % en 2012, lo que agravó aún más la situación. Este mantenimiento tardío no solo incrementa los riesgos estructurales, sino que también triplica los costes de rehabilitación y los gastos operativos de los vehículos, lo que plantea un problema central: decidir cómo asignar los fondos disponibles de forma óptima para maximizar el rendimiento a largo plazo de las infraestructuras, respetando restricciones técnicas y económicas, y considerando los beneficios acumulados para los usuarios.

Metodología

Formulación del problema de optimización

El problema se define como la maximización de la LTE, un indicador que mide los beneficios acumulados derivados de una infraestructura bien mantenida durante su ciclo de vida.

  1. Función objetivo:
    • Maximizar el área bajo la curva de rendimiento de las infraestructuras (Area Bounded by the Performance Curve, ABPC). Este área refleja la calidad y el nivel de servicio de la infraestructura a lo largo del tiempo.
  2. Restricciones:
    • Presupuestaria: Garantizar que los costos anuales de mantenimiento no excedan el presupuesto disponible en cada año del periodo de planificación.
    • Técnica: Mantener las secciones de la red en una condición mínima aceptable. Esto se evalúa mediante indicadores como el Urban Pavement Condition Index (UPCI, Índice de Condición del Pavimento Urbano), que clasifica la calidad del pavimento en una escala del 1 (peor) al 10 (mejor).
  3. Variables de diseño:
    • Determinar qué secciones de la red deben tratarse, qué tratamiento aplicar y en qué momento realizarlo durante el horizonte de planificación.
  4. Parámetros:
    • Inventario: Datos sobre el tipo de pavimento, su longitud y ancho, condiciones climáticas y características del tráfico.
    • Técnicos: Condición inicial del pavimento, modelos de deterioro a lo largo del tiempo y el conjunto de tratamientos disponibles.
    • Económicos: Costos unitarios de mantenimiento para cada tratamiento.
    • Estratégicos: Periodo de planificación, tasa de descuento y estándares mínimos requeridos.
Las actividades de mantenimiento conllevan un aumento de la vida útil del firme (ΔSL) y, por tanto, una mejora inmediata de su estado (ΔUPCI) en el momento de su aplicación

Algoritmo GRASP-TA

El enfoque híbrido combina dos estrategias complementarias:

  1. GRASP (Procedimiento de Búsqueda Aleatoria Codiciosa Adaptativa):
    • Genera una población inicial de soluciones viables considerando una relajación controlada de las restricciones presupuestarias.
    • Utiliza funciones de priorización para evaluar el impacto de cada posible tratamiento en la LTE y seleccionar las mejores alternativas mediante un proceso probabilístico.
  2. TA (Aceptación de Umbral):
    • Realiza una optimización local a las soluciones generadas por GRASP.
    • Permite aceptar soluciones ligeramente peores en las primeras iteraciones para evitar quedarse atrapado en óptimos locales.
    • Ajusta iterativamente las restricciones presupuestarias relajadas en GRASP para cumplir con las condiciones originales.
Efecto del tratamiento sn para construir la solución en el año t con el algoritmo GRASP

Caso de estudio: red urbana en Santiago, Chile

La red analizada se encuentra en Santiago de Chile. Está compuesta por 20 secciones con pavimentos flexibles (asfálticos) y rígidos (hormigón). El clima de la región es mediterráneo, lo que influye en los patrones de deterioro del pavimento. La condición inicial media de la red es 6,8, según el Índice de Condición del Pavimento Urbano (UPCI), lo que indica una calidad intermedia.

Para los pavimentos asfálticos, los tratamientos evaluados incluyeron opciones de preservación, mantenimiento y rehabilitación. En preservación, el sellado de fisuras aumenta la vida útil en 2 años y tiene un coste de 0,99 USD/m². En el mantenimiento, el fresado y la repavimentación funcional ofrecen 10 años de vida útil por 23,24 USD/m². En rehabilitación, la rehabilitación en frío alcanza los 13 años con un coste de 36,50 USD/m².

Para los pavimentos de hormigón, los tratamientos incluyeron preservación y rehabilitación. El pulido con diamante aumenta la vida útil en 10 años y tiene un coste de 15,39 USD/m². La reconstrucción completa proporciona 25 años de servicio por un coste de 134,60 USD/m². Estos tratamientos representan opciones para diferentes niveles de deterioro y requisitos estructurales.

El programa optimizado mostró un impacto significativo en la efectividad a largo plazo (LTE). Se logró una mejora del 40 % en la LTE en comparación con las estrategias reactivas. Los tratamientos preventivos dominaron las decisiones, seleccionándose en el 80 % de los casos, lo que evidencia su mayor efectividad frente a opciones correctivas o de rehabilitación.

En términos de coste-eficacia, no se seleccionaron los tratamientos reciclados. Aunque ofrecen beneficios similares en términos de vida útil, su alto coste los hace menos competitivos frente a alternativas más económicas, lo que destaca la importancia de equilibrar costes y beneficios en el diseño de programas de mantenimiento.

Análisis de escenarios

1. Escenarios de inventario:

Se analizaron redes con diferentes proporciones de pavimentos asfálticos y de hormigón, con configuraciones del 25 %, 50 % y 75 % para cada tipo. También se estudiaron tres condiciones iniciales de las redes: buenas, intermedias y deficientes. Este análisis permitió evaluar la influencia de las características estructurales y del estado inicial en la optimización de los programas de mantenimiento.

En todos los casos, los resultados mostraron que la optimización mediante el algoritmo GRASP-TA era superior a las estrategias reactivas tradicionales. Esto demostró que el método es altamente adaptable a diversas configuraciones de red y capaz de ofrecer soluciones efectivas en términos de LTE, independientemente de las características de la red o de su estado inicial.

2. Escenarios presupuestarios:

El análisis incluyó variaciones en el presupuesto total, con incrementos y reducciones de hasta el 20 %, así como cambios en la distribución de los fondos a lo largo del tiempo. Se evaluaron dos configuraciones principales para entender su impacto en el rendimiento a largo plazo.

El escenario con mayor inversión en los primeros años mostró un aumento significativo de la LTE. Esto puso de manifiesto que la asignación temprana de fondos mejora sustancialmente los resultados del mantenimiento. Por el contrario, los aumentos progresivos anuales redujeron la LTE en un 15 % respecto al caso base, lo que indica que posponer la inversión perjudica el rendimiento de la red.

Conclusiones

Asignar más recursos durante los primeros años de un programa de mantenimiento es fundamental para optimizar el rendimiento a largo plazo de las infraestructuras. Este análisis pone de manifiesto la importancia de una planificación presupuestaria estratégica, ya que señala que el momento en que se invierten los recursos tiene un impacto considerable en los beneficios acumulados de la red.

  1. Eficiencia del método GRASP-TA: Diseña programas que maximizan la LTE bajo restricciones técnicas y económicas reales.
  2. Importancia de la prevención: Las actividades preventivas son significativamente más rentables a largo plazo.
  3. Estrategias presupuestarias: Es esencial priorizar mayores inversiones en los primeros años del programa para maximizar su impacto.
  4. Limitaciones de los tratamientos reciclados: Aunque presentan beneficios ambientales, su alto costo relativo limita su inclusión en las soluciones optimizadas cuando solo se consideran aspectos técnicos y económicos.

Como recomendaciones futuras habría que integrar criterios de sostenibilidad, como impactos ambientales y sociales, y extender el análisis a redes más grandes y diversas.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Aquí os dejo el artículo por si os resulta de interés.

Descargar (PDF, 1.2MB)

 

Qué es una presa. “La via verda”, À Punt

En el programa «La via verda», de la televisión autonómica valenciana À Punt, intervine para explicar qué es una presa, sus características y su efecto laminador en caso de una avenida. Aquí dejo un pequeño resumen del vídeo, que también dejo al final para su visualización completa.

El vídeo de este programa aborda la importancia de las presas de Forata y Buseo durante el episodio de lluvias torrenciales ocurrido en la provincia de Valencia el 29 de octubre de 2024. Se explica cómo estas presas alcanzaron su capacidad máxima y tuvieron que liberar agua de manera controlada. Se proporcionan datos específicos sobre los caudales de entrada y salida, así como sobre la capacidad de almacenamiento de las presas. También se destaca el papel crucial de las presas en la reducción de las crecidas y la mitigación de las inundaciones, y se explica cómo han ayudado a evitar daños potenciales aguas abajo.

Papel fundamental de las presas durante episodios de lluvias torrenciales

Las presas son fundamentales para regular el agua, especialmente en situaciones críticas como lluvias torrenciales. Su capacidad para manejar grandes volúmenes de agua permite reducir significativamente el riesgo de desbordamientos e inundaciones y proteger las zonas cercanas. Estas infraestructuras pueden manejar caudales extremos y minimizar el impacto negativo en las zonas inundables.

Funcionamiento y contribución durante inundaciones

Las presas de una cuenca hidrográfica cumplen funciones clave, como el almacenamiento de agua y la regulación del flujo durante las lluvias intensas. Cuando se producen precipitaciones torrenciales, estas estructuras aumentan su capacidad operativa para evitar desbordamientos y proteger las zonas situadas aguas abajo. Además de suministrar agua para consumo humano y actividades agrícolas, las presas actúan como barreras contra las inundaciones, lo que demuestra su valor multifuncional en la gestión hídrica.

Reducción de zonas inundables y el efecto laminador

Una de las funciones más destacadas de las presas es su capacidad para regular el flujo de agua en función de las precipitaciones, lo que reduce el impacto de las inundaciones. Este efecto laminador reduce el caudal de agua que fluye hacia las zonas urbanas y rurales, lo que disminuye significativamente las zonas inundables. Además, la capacidad de almacenamiento de estas infraestructuras permite gestionar mejor las aguas torrenciales y evitar así daños mayores en las comunidades.

Desafíos y necesidad de adaptación ante el cambio climático

Aunque las presas han demostrado su eficacia para prevenir desastres, también entrañan riesgos si no se gestionan adecuadamente. Un fallo en una presa podría tener consecuencias catastróficas, donde se ha comparado el impacto potencial con el de un tsunami. Esto pone de manifiesto la importancia de contar con un sistema de planificación y evacuación adecuado para proteger a la población en caso de emergencias.

En un contexto de cambios climáticos extremos, con sequías severas y lluvias torrenciales alternándose, es crucial reevaluar y adaptar el uso de las presas. La planificación y el mantenimiento de estas infraestructuras deben centrarse en garantizar su resiliencia frente a condiciones climáticas variables para asegurar que sigan cumpliendo su función de manera efectiva y segura.

El vídeo del programa lo tenéis aquí. Aunque está en valenciano, mis intervenciones son en castellano. Espero que os sea de interés.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.