Estudio de los puentes de las cinco mayores regiones económicas de China

Acaban de publicarnos un artículo en la revista International Journal of Environmental Research and Public Health (revista indexada en el JCR, en el primer cuartil) donde se estudia el ciclo de vida completo de seis puentes atirantados en las más importantes regiones económicas de China.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

ABSTRACT

The construction industry of all countries in the world is facing the issue of sustainable development. How to make effective and accurate decision-making on the three pillars (Environment; Economy; Social influence) is the key factor. This manuscript is based on an accurate evaluation framework and theoretical modelling. Through a comprehensive evaluation of six cable-stayed highway bridges in the entire life cycle of five provinces in China (from cradle to grave), the research shows that life cycle impact assessment (LCIA), life cycle cost assessment (LCCA), and social impact life assessment (SILA) are under the influence of multi-factor change decisions. The manuscript focused on the analysis of the natural environment over 100 years, material replacement, waste recycling, traffic density, casualty costs, community benefits and other key factors. Based on the analysis data, the close connection between high pollution levels and high cost in the maintenance stage was deeply promoted, an innovative comprehensive evaluation discrete mathematical decision-making model was established, and a reasonable interval between gross domestic product (GDP) and sustainable development was determined.

KEYWORDS

sustainable development; LCIA; LCCA; SILA; cable-stayed bridge; GDP.

REFERENCE:

ZHOU, Z.; ALCALÁ, J.; YEPES, V. (2021). Environmental, economic and social impact assessment: study of bridges in China’s five major economic regions. International Journal of Environmental Research and Public Health, 18(1):122. DOI:10.3390/ijerph18010122

Descargar (PDF, 3.24MB)

El Puente de Serranos sobre el viejo cauce del Turia en Valencia. Una aproximación histórica, estética y constructiva

El actual Puente de Serranos, de piedra tallada del siglo XVI, tiene precedentes en estructuras anteriores que fueron desapareciendo por los recurrentes embates del río Turia. Su nombre podría explicarse a que, en tiempo de la conquista por Jaime I, las huestes oriundas de la serranía de Teruel se establecieron en sus cercanías, aunque también puede deberse a que era el paso que se daba a los comerciantes procedentes de Sagunto, Maestrazgo o de la serranía de Valencia. Las crónicas musulmanas narran cómo el acceso a la ciudad se realizaba por Bab al-Qantara, que significaba “la puerta del puente”. Esta puerta árabe se encontraba en la actual plaza dels Furs, algo más al interior de la ciudad que las actuales torres de Serranos. En la época cristiana, la puerta también se conoció como Roters, Caldedería y Ferrisa (Coscollá, 2003:61).

Artículo completo descargable.

Puente de Serranos. Imagen: V. Yepes (2010)

Referencia:

YEPES, V. (2010). El puente de Serranos sobre el viejo cauce del Río Turia en Valencia. Una aproximación histórica, estética y constructiva. Universitat Politècnica de València, 32 pp. DOI: 10.13140/RG.2.2.12043.72485

 

Descargar (PDF, 3.9MB)

 

Terminan los dos primeros estudiantes del Doble Máster en Ingeniería de Caminos e Ingeniería del Hormigón

 

¡Han acabado los dos primeros estudiantes con el Doble Máster de Ingeniería de Caminos, Canales y Puertos e Ingeniería del Hormigón de la Universitat Politècnica de València! En efecto, hoy 10 de diciembre de 2020, Lorena Yepes Bellver y Alejandro Brun Izquierdo han presentado sus Trabajos Final de Máster correspondientes. El TFM de Alejandro Brun fue “Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging”, mientras que el de Lorena Yepes fue “Diseño óptimo de tableros de puentes losa pretensados aligerados frente a emisiones de CO2 utilizando metamodelos”. Ambos obtuvieron la máxima calificación de 10 Matrícula de Honor y fueron tutorados por el profesor Julián Alcalá, de nuestro grupo de investigación. ¡Enhorabuena a todos ellos!

El Máster Universitario en Ingeniería de Caminos, Canales y Puertos (en adelante MUICCP) habilita para ejercer la profesión de Ingeniero de Caminos, Canales y Puertos, mientras que el Máster Universitario en Ingeniería del Hormigón (en adelante MUIH) está orientado al campo de la ingeniería del hormigón, tanto desde el punto de vista de los materiales constituyentes como desde el punto de vista estructural, tanto desde el punto de vista profesional como científico. En este caso concreto un alumno que quiera adquirir las competencias profesionales para ejercer como Ingeniero de Caminos, Canales y Puertos y, además, quiera una especialización profesional o investigadora en ingeniería del hormigón, debería cursar ambos másteres.

En consecuencia, el doble título permite adquirir las competencias de ambos másteres a través de una trayectoria académica integrada. Todo ello con un coste temporal y económico inferior al que representa la obtención de ambos másteres de manera individualizada. De este modo, un estudiante del MUICCP, en lugar de cursar los 120 ECTS del MUICCP y los 90 ECTS del MUIH, cursa únicamente un total de 165 ECTS, representando así un ahorro de 45 ECTS y de un cuatrimestre docente.

Lo que nos dice un dendrograma sobre los puentes losa postesados aligerados

Figura 1. Paso superior sobre la N-II. https://ingedis.es/puentes.htm

Como ya habréis observado, en muchos de mis artículos os doy pistas sobre cómo utilizar determinadas herramientas que nos permiten, si sabemos utilizarlas, obtener información relevante y muchas veces no evidente de nuestras bases de datos. En esta ocasión os voy a hablar de los métodos jerárquicos de análisis cluster, y en particular, de los dendrogramas. En el contexto de la minería de datos, se consideran los algoritmos de agrupamiento (clustering), como una técnica de aprendizaje no supervisado.

Los llamados métodos jerárquicos buscan formar agrupaciones de elementos de forma sucesiva, de modo que se minimice alguna distancia o maximice alguna medida de similitud. Estos métodos se dividen, a su vez, en métodos aglomerativos -también llamados ascendentes- que comienzan con tantos grupos como individuos haya, formándose grupos de forma ascendente, de forma que al final todos los casos se engloban en un mismo aglomerado. Por contra, los métodos disociativos -descendentes- hacen lo contrario, comienzan con un conglomerado que engloba todos los casos y, con sucesivas divisiones, se forman grupos cada vez más pequeños hasta llegar a tantas agrupaciones como casos.

Un dendrograma es una representación gráfica de los datos en forma de árbol que los organiza en subcategorías que se van dividiendo hasta llegar al nivel de detalle deseado. Para formar este diagrama se forman conglomerados de observaciones en cada paso y sus niveles de similitud. El nivel de similitud se mide en el eje vertical (aunque también se puede mostrar el nivel de distancia), y las diferentes observaciones se especifican en el eje horizontal.

Veamos cómo se puede utilizar dicha herramienta. Para eso vamos a utilizar los datos recopilados de 61 puentes losa postesados aligerados (Yepes et al., 2009). Utilizamos el software Minitab para este análisis. En la Figura 2 se ha realizado un análisis para las 61 observaciones. Aunque permite determinar qué puentes son más parecidos entre sí, la verdad es que la información que nos deja es difícil de manejar.

Figura 2. Dendrograma obtenido por conglomerado de las 61 observaciones de puentes losa (Yepes et al., 2009)

En cambio, si realizamos el mismo análisis respecto a las variables que definen el puente y a su coste, obtenemos información relevante, tal y como se puede observar en la Figura 3. El conglomerado de variables a sí obtenido comienza con todas las variables separadas, cada una formando su propio conglomerado. En el primer paso, las dos variables más cercanas entre sí se unen. En el siguiente paso, una tercera variable se une a las primeras dos u otras dos variables se unen para formar un conglomerado diferente. Este proceso continuará hasta que todos los conglomerados se unan en un solo conglomerado. En el caso estudiado, se ha utilizado como medición de la distancia la correlación y el método de vinculación completo. De esta forma conseguimos que un conglomerado se encuentre dentro de una distancia máxima, tendiéndose a producir conglomerados con diámetros similares.

Figura 3. Dendrograma realizado con las variables que definen los 61 puentes losa postesados (Yepes et al., 2009)

La Figura 3 ya nos permite interpretar cómo se relacionan las variables de un puente losa postesado, siendo un análisis que es coherente con los resultados obtenidos en Yepes et al. (2009). Se observa que el coste está muy relacionado con la cuantía de armadura activa, y también, con la cuantía de hormigón empleado. También se observa la estrecha relación entre el canto y la luz del puente, que junto con la cuantía del aligeramiento interior, se aglomeran a otro nivel para configurar el coste. Otras relaciones son evidentes, como que la longitud total del puente y el número de vanos son magnitudes muy relacionadas, o cómo la anchura del tablero se relaciona con el número de apoyos existentes en el estribo.

Referencias:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Papel de la dimensión social en la optimización del mantenimiento orientado a la sostenibilidad de los puentes en entornos costeros

http://www.revistacyt.com.mx/index.php/tecnologia/324-at-reparacion-de-pilotes-submarinos-proteccion-de-estructuras-en-contacto-con-el-medio-marino

En los objetivos de desarrollo sostenible recientemente establecidos se reconoce la importancia de las infraestructuras para lograr un futuro sostenible. A lo largo de su ciclo de vida, las infraestructuras generan una serie de impactos cuya reducción ha sido uno de los principales focos de atención de los investigadores en los últimos años. La optimización de los intervalos de mantenimiento de las estructuras, como los puentes, ha despertado la atención del sector de la ingeniería civil, pues la mayoría de los impactos de las infraestructuras se producen durante la fase de servicio. Así pues, actualmente los puentes se proyectan para atender a los efectos económicos y ambientales derivados de las actividades de mantenimiento. Sin embargo, en esos análisis se suele descuidar el pilar social de la sostenibilidad. Dado que todavía no existe una metodología universalmente aceptada para su evaluación, la dimensión social no se incluye de forma efectiva en las evaluaciones del ciclo de vida de las infraestructuras. En la presente comunicación se evalúan los efectos del ciclo de vida de diseños alternativos de los tableros de hormigón de los puentes en un ambiente costero que requiere mantenimiento. Los intervalos de mantenimiento derivados de la fiabilidad se optimizan primero minimizando los impactos económicos y ambientales. En una segunda etapa del análisis, se incluye la dimensión social en el proceso de optimización y se comparan los resultados. Los resultados de optimización de estas evaluaciones combinadas se obtienen aplicando la técnica de toma de decisiones multicriterio AHP-TOPSIS. En este trabajo se muestra cómo la inclusión de la dimensión social puede conducir a estrategias de mantenimiento óptimo diferentes y más orientadas a la sostenibilidad. El enfoque tridimensional que se aplica aquí ha dado lugar a que se prefieran otras alternativas a las derivadas de la evaluación convencional que considera las perspectivas económica y ambiental. Esa conclusión apoya la idea de que se requieren evaluaciones holísticas del ciclo de vida para el diseño sostenible de las infraestructuras y de que es necesario hacer más esfuerzos urgentes para integrar la dimensión social en las evaluaciones de la sostenibilidad de las estructuras.

Referencia:

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Role of the social dimension on the sustainability-oriented maintenance optimization of bridges in coastal environments. 10th International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2020, pp. 205-215, 3-5 June 2020, Prague, Czech Republic.

Descargar (PDF, 469KB)

Las juntas de dilatación en estructuras, ¿son absolutamente necesarias?

Figura 1. Junta de dilatación en un edificio. http://www.trabver.com/juntas-dilatacion-trabajos-verticales-valencia.htm

El aumento o la disminución de la temperatura en las estructuras ocasiona cambios de volumen que deben tenerse en cuenta. En el caso de un pavimento, la pequeña relación entre el espesor y el área superficial implica un incremento de longitud más que evidente. Si dicho elemento se encuentra confinado, aumentan los esfuerzos de compresión y pueden ocasionar efectos como alabeo en las placas o introducir esfuerzos en las estructuras adyacentes. Un efecto similar ocurre en el caso de la retracción y la fluencia del hormigón, por lo que muchas veces se estudian conjuntamente estos efectos con los cambios térmicos. Es por ello que se suele dejar una separación estructural que permita los movimientos diferenciales, tanto horizontales como verticales. A este tipo de juntas se les denomina “juntas de expansión”, “juntas de dilatación” o “juntas de aislamiento”. ¿Pero son absolutamente necesarias?

El tipo de estructura, su geometría y dimensiones, los materiales utilizados o las circunstancias ambientales, entre otros factores, influyen en el comportamiento que tenga la estructura ante las variaciones térmicas. Incluso la presencia de agua, si se congela, puede incrementar de forma significativa la acción expansiva.

La omisión de este tipo de juntas de dilatación provoca daños en los elementos estructurales (zapatas, muros de sótano, pavimentos, fábricas de ladrillo, etc.). Es por ello que las juntas de dilatación deben considerarse desde el mismo momento del proyecto de la estructura. Normalmente se usan elementos tales como cintas de espuma impregnada para sellar las juntas de dilatación, aunque también se pueden dejar abiertas.

El rango de movimiento de una junta se puede calcular multiplicando el coeficiente de dilatación del material por la dimensión inicial del elemento y por la diferencia esperada de temperaturas. No obstante, el Código Técnico de Edificación (CTE SE-AE 3.4) establece que, en los edificios habituales con elementos estructurales de hormigón o acero, pueden no considerarse las acciones térmicas cuando se dispongan juntas de dilatación de forma que no existan elementos continuos de más de 40 m de longitud, aunque la experiencia nos dice que si son menos de 40 m, mejor. En el caso de edificios de hasta 4 plantas, en zona no sísmica, la junta puede tener 2,5 cm; debiéndose calcular cuando se dan otras condiciones. Para edificios de planta rectangular y estructura a base de fábrica de ladrillo la distancia entre juntas debe ser menor de 30 m. Si la planta tiene alas en forma de “L” o “U”, de longitud mayor a 15 m (50% de 30 m), el CTE (SE-F, 2.2 Juntas de movimiento) establece que se debe disponer de juntas de dilatación cerca de sus líneas de encuentro.

Con todo, hay estudios que demuestran que se pueden superar distancias mayores a las indicadas en el CTE siempre que se cuiden los detalles constructivos de los elementos no estructurales. De hecho, la técnica permite incluso construir edificios de hasta 300 m sin este tipo de juntas. En el caso de estructuras en obras civiles, por ejemplo en puentes, es habitual ver tramos de luces mucho mayores a los 40 m del CTE sin establecer ningún tipo de junta. Incluso en el ámbito de los ferrocarriles, ya está superado el uso de la barra largo soldada, sin juntas. Pero hay que recordar que se deben tener en cuenta en el cálculo los efectos de la temperatura.

Además, no hay que olvidar que cualquier tipo de junta en una estructura supone un problema, tanto en la ejecución, como en el mantenimiento. Un argumento más para considerar los efectos térmicos, de retracción y fluencia en el cálculo  estructural e intentar evitar este tipo de juntas. El problema es la dificultad de encontrar herramientas comerciales que permitan el análisis de los efectos termohigrométricos (fluencia, retracción y cambios térmicos) junto con la fisuración, lo que lleva a que muchos técnicos se decanten por cumplir los requerimientos expuestos en el CTE.

Pero creo que lo mejor es que veáis esta clase de Juan Carlos Arroyo, que seguro, os aclarará muchas de vuestras dudas. Incluso tiene un curso sobre el tema por si a alguno le interesa: https://ten.ingenio.xyz/p/masterclass-juntas-de-dilatacion-en-estructuras

 

Toma de decisiones aplicada a la construcción de un puente mixto en cajón

Os dejo a continuación un ejemplo sencillo de aplicación de la técnica AHP de toma de decisiones dirigida a la selección de alternativas en la construcción de un puente mixto en cajón. Se trata de un caso que utilizamos con nuestros estudiantes para enseñar la técnica. Tratamos de evitar que, en los estudios de soluciones, los estudiantes recurran siempre a las matrices de valoración ponderada, donde los pesos de cada criterio siempre se ponen de forma más o menos arbitraria, o bien para justificar la solución preferida. Este tipo de problemas también suelen aparecer en los concursos de licitación de obras públicas.

Referencia:

YEPES, V.; MARTÍNEZ-MUÑOZ, D.; ATA-ALI, N.; MARTÍ, J.V. (2019). Multi-criteria decision analysis techniques applied to the construction of a composite box-girder bridge. 13th annual International Technology, Education and Development Conference (INTED 2019), Valencia, 11th, 12th and 13th of March, 2019, 1458-1467. ISBN: 978-84-09-08619-1

Descargar (PDF, 441KB)

 

Correlación y modelo de regresión lineal. Problema resuelto en puentes losa

Figura 1. Modelo lineal simple de un tablero de puente losa postesado macizo (Yepes et al., 2009)

Uno de los temas básicos que se estudia en la asignatura de estadística de cualquier grado de ingeniería es la inferencia y los modelos de regresión lineal (Figura 1). A pesar de su sencillez, muchos estudiantes y profesionales aplican, sin más, este tipo de regresiones para interpolar valores en múltiples campos de la ingeniería, la economía, la salud, etc. El conocimiento de algunas nociones básicas nos permitiría evitar errores de bulto. Uno de ellos es intentar forzar las predicciones más allá de las observaciones realizadas. Otro error es confundir la correlación con la regresión. Buscar relaciones donde no las hay (relación espuria, Figura 2). Y por último, uno de los aspectos más descuidados es la no comprobación de las hipótesis básicas que se deben cumplir para que un modelo de regresión lineal sea válido.

Figura 2. Relaciones espuria entre el consumo de chocolate y el número de premios Nobel

Dicho de otra forma, valorar la calidad del ajuste mediante el coeficiente de determinación no equivale a valorar el cumplimiento de las hipótesis básicas del modelo. Si las hipótesis del modelo no se cumplen, se pueden estar cometiendo graves errores en las conclusiones de las inferencias. Así, las hipótesis básicas del modelo de regresión son las siguientes:

  • Linealidad: los parámetros y su interpretación no tienen sentido si los datos no proceden de un modelo lineal
  • Normalidad de los errores: se asume que la distribución de los errores es normal
  • Homocedasticidad: la varianza del error es constante
  • Independencia de los errores: las variables aleatorias que representan los errores son mutuamente independientes
  • Las variables explicativas son linealmente independientes

Para aclarar las ideas, he analizado un caso de regresión lineal simple con datos reales procedentes de 26 puentes losa postesados macizos (Yepes et al., 2009). Se trata de conocer la relación que existe entre la luz principal de este tipo de puentes y el canto del tablero. Utilizaremos los programas siguientes: MINITAB, SPSS, EXCEL y MATLAB. También os dejo un vídeo explicativo, muy básico, pero que espero sea de interés. Dejo los detalles matemáticos aparte. Los interesados pueden consultar cualquier manual básico de estadística al respecto.

Descargar (PDF, 817KB)

Referencias:

YEPES, V.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J. (2009). Statistical Characterization of Prestressed Concrete Road Bridge Decks. Revista de la Construcción, 8(2):95-109.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Toma de decisiones multicriterio en el análisis sostenible del ciclo de vida de los puentes

Acaban de publicarnos un artículo en la revista Journal of Civil Engineering and Managament, indexada en Q2 del JCR. Se trata de una revisión del estado del arte de la toma de decisiones multicriterio en el análisis sostenible del ciclo de vida de los puentes.

El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El diseño sostenible de las infraestructuras se ha convertido en un importante tema de estudio desde el reciente establecimiento de la Agenda 2030. En este artículo se ofrece una revisión sistemática de la bibliografía sobre la utilización de las técnicas de toma de decisiones basadas en criterios múltiples utilizadas hasta ahora para el proyecto sostenible de puentes. También se presta especial atención a la forma en que los estudios evalúan el comportamiento sostenible de los diseños de los puentes a lo largo de su ciclo de vida desde las perspectivas económica, ambiental y social. Aunque SAW y AHP se utilizan de manera recurrente en la evaluación sostenible de los puentes, el análisis de los artículos más recientes muestra que la aplicación de las técnicas TOPSIS y PROMETHEE están adquiriendo cada vez más relevancia para tal fin. La mayoría de los estudios se centran en la investigación de la construcción y la etapa de mantenimiento de los puentes. Sin embargo, se identifica la necesidad de un análisis más profundo cuando se trata de evaluar los impactos resultantes de la etapa del fin del ciclo vital de los puentes desde un punto de vista sostenible. Se ha detectado el uso de la lógica intuitiva y neutrosófica como alternativas emergentes al enfoque difuso de los problemas de toma de decisiones.

ABSTRACT

Sustainable design of infrastructures has become a major matter of study since the recent establishment of the Agenda 2030. This paper provides a systematic literature review on the use of multi-criteria decision making techniques used so far for the sustainable design of bridges. Special attention is put as well on how the reviewed studies assess the sustainable performance of bridge designs along their life cycle from the economic, the environmental and the social perspective. Although SAW and AHP are recurrently used in the sustainable assessment of bridges, the analysis of the most recent articles show that the application of TOPSIS and PROMETHEE techniques are gaining increasing relevance for such purpose. Most of the studies focus on the research of the construction and the maintenance stage of bridges. However, a need for further analysis is identified when it comes to the assessment of the impacts resulting from the End of Life cycle stage of bridges from a sustainable point of view. The use of intuitionistic and neutrosophic logic have been detected as emerging alternatives to the fuzzy approach of decision making problems.

KEYWORDS:

Decision making, sustainability, bridge design, state of the art, MCDM, life cycle assessment.

REFERENCE:

NAVARRO, I.J.; PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; REMPLING, R.; YEPES, V. (2020). Life cycle sustainability assessment for multi-criteria decision making in bridge design: A review. Journal of Civil Engineering and Management, 26(7):690-704. DOI:10.3846/jcem.2020.13598

Descargar (PDF, 962KB)

Vigas armadas híbridas de acero

Figura 1. Viga armada de acero. https://www.renedometal.es/

Las vigas armadas son estructuras de acero están compuestas por placas soldadas entre sí que conforman sus alas y almas, añadiéndose rigidizadores transversales y longitudinales allí donde sea necesario. El uso de este elemento estructural es habitual en grandes luces o con cargas importantes, donde las vigas laminadas no pueden absorber las tensiones que se originan. Es habitual su empleo en edificación para grandes lucen y también en puentes metálicos para salvar vanos entre 18 y 300 m. En el caso de puentes de ferrocarril o siempre que existan grandes cargas, este tipo de vigas compiten económicamente para luces entre 15 y 45 m (Marco, 1997).

Un caso muy habitual es la construcción de puentes metálicos mediante las técnicas de lanzamiento o empuje. Durante estos procesos, la viga se encuentra sometida a altos niveles de esfuerzos cortantes y de cargas concentradas. Otra fase crítica en la construcción de puentes metálicos mixtos es el vertido de hormigón en los tableros, momento en el que las vigas soportan una carga elevada, hasta que el hormigón endurece y es capaz de soportar sus esfuerzos.

Figura 2. Viga de lanzamiento utilizada en la construcción de un puente sobre el río Colastiné. https://jornadasaie.org.ar/jornadas-aie-anteriores/2014/contenidos/trabajos/005.pdf

La geometría de estas vigas suele hacerse a medida, soldando chapas de acero, que dan lugar a secciones en doble T o en cajón. No obstante, la sección doble T suele ser la más habitual, pues normalmente es la más económica al requerir menos soldaduras, pudiéndose ejecutar éstas de forma automática. No obstante, la sección doble T presenta una menor resistencia a flexiones transversales y a la torsión, en comparación con las secciones en cajón. Además, si las alas son excesivamente esbeltas, se puede presentar una pérdida significativa de su eficacia.

Una forma de reducir el canto de las vigas armadas es emplear aceros de alta resistencia en las partes más solicitadas, que normalmente son las alas en la flexión de la viga. En el alma podría utilizarse un acero de un límite elástico menor, pues su misión principal es absorber el cortante. A este tipo de vigas que utilizan diferentes límites elásticas de acero en las chapas de alas y alma, se denominan vigas armadas híbridas.

El uso de aceros de alto o muy alto límite elástico deben cumplir con determinadas características de dureza ductilidad y soldabilidad para evitar roturas frágiles. En Europa se utilizan aceros de alto límite elástico (HSS) desde los 460 hasta los 690 MPa, que aunque no son ampliamente utilizados. No obstante, en otros países como Japón, Estados Unidos o Suecia, se utilizan estos aceros HSS desde hace varias décadas.

Según Chacón (2014), la investigación realizada sobre las vigas híbridas comenzó en la década de los 60-70 con el foco puesto en la investigación experimental. Durante la década de los 80-90 bajó el interés en este campo, pero en la década de los 2000, se relanzó la investigación, tanto experimental como numérica.

La ventaja de las vigas armadas híbridas es la disminución del espesor de las chapas de mayor límite elástico, lo cual supone una reducción de peso por unidad de longitud de la sección transversal, sin que ello disminuya el canto de la pieza (Chacón, 2014). Sin embargo, la reducción del espesor puede acarrear la disminución de la capacidad de la sección ante otros fenómenos, como es el caso de la inestabilidad. Se debe garantizar un buen comportamiento de las vigas a cortante, estudiando su inestabilidad, a cargas concentradas y a pandeo lateral. Por tanto, nos encontramos ante un caso de optimización de gran interés.

En el siguiente vídeo podemos observar la fabricación de una viga carrilera de 50 toneladas.

En este otro vídeo podemos ver el resumen de una campaña de ensayos sobre vigas armadas híbridas de acero realizada en la UPC.

Referencias:

CHACÓN, R. (2014). Vigas armadas híbridas de acero. Estado del conocimiento. Revista Ciencia e Ingeniería, 35(2):95-102.

CHACÓN, R.; ROJAS-BLONVAL, J. E. (2015). Evaluación de la resistencia a abolladura por cortante de vigas armadas híbridas de acero según la norma venezolana COVENIN 1618:1998. Informes de la Construcción, 67(538): e075, doi: http://dx.doi.org/10.3989/ic.13.111.

MARCO, J. (1997). Fundamentos para el cálculo y diseño de estructuras metálicas de acero laminado. Comportamiento del material y esfuerzos básicos. McGraw Hill, Madrid.

TERREROS, A. (2014). Estudio de la interacción flector cortante en vigas híbridas de acero. Tesis de máster, Universitat Politècnica de Catalunya.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.