Vídeo informativo del Máster Universitario en Ingeniería del Hormigón

A continuación os mando un vídeo que se ha elaborado para difundir el Máster Universitario en Ingeniería del Hormigón. Se trata de un máster acreditado por EUR-ACE, que constituye un posgrado de 90 créditos impartido en la Universitat Politècnica de València, siendo responsabilidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil.

Pero lo más interesante es que, si estás interesado, puedes solicitar la preinscripción en el siguiente enlace: http://www.masterenhormigon.com/matricula/preinscripcion/solicitud

También os paso un pequeño vídeo que elaboré en su día, cuando era el Director Académico del Máster, explicando brevemente el contenido y objetivos de este máster:

Constructividad, constructibilidad, constructabilidad, ¿todo lo mismo?

Figura 1. Capacidad de influir en el coste durante el proceso proyecto-construcción (Serpell, 2002)

Todo el mundo está de acuerdo en que la industria de la construcción es un motor del desarrollo económico de una sociedad, pues permite crear infraestructuras que soportan las actividades económicas y viviendas. Pero para ello se requieren recursos intensivos, tanto públicos como privados que, en muchas ocasiones, no se utilizan de forma efectiva. Se trata de un sector con amplio margen de mejora en cuanto a productividad se refiere y que, de momento, y con carácter general, no aprovecha todas las oportunidades que brinda el desarrollo tecnológico.

Todos los agentes que participan en la industria de la construcción, desde proyectistas, constructores, suministradores de materiales y equipos, etc., se ven abocados a utilizar de forma efectiva y eficiente todos los recursos a su alcance para mejorar de este modo la productividad y los resultados empresariales. Ello supone, no solo utilizar bien los recursos disponibles, sino alcanzar con ellos los objetivos empresariales, que pasan por la satisfacción de las necesidades de los clientes en cuanto a calidad, costes y plazos.

En la Figura 1 se puede observar cómo, en el proceso proyecto-construcción, las primeras fases son las que presentan mayor capacidad de influencia en el coste final de un proyecto (Serpell, 2002). Sobre este asunto ya hablamos en un artículo anterior: La “Ley de los Cincos” de Sitter. Las estadísticas europeas señalan (ver Calavera, 1995) que el proyecto es el responsable del 35-45% de los problemas en construcción. A este respecto Sitter (véase Rostman, 1992) ha introducido al llamada “Ley de los Cincos”, postulando que un dólar gastado en fase de diseño y construcción elimina costes de 5 dólares en mantenimiento preventivo, 25 dólares en labores de reparación y 125 en rehabilitación.

Por tanto, mejorar el diseño de un proyecto constructivo es clave, no solo para conseguir satisfacer los requerimientos del cliente, sino para mejorar los resultados de todos los agentes involucrados en el proceso proyecto-construcción. Sobre este aspecto la bibliografía de origen anglosajón habla de Constructability o Buildability, que se ha traducido al español como “constructabilidad” o “constructibilidad”, incluso “constructividad”. Sin embargo, son palabras que no las recoge la Real Academia Española de la Lengua. Simplificando, podríamos hablar de que una obra puede construirse de forma más o menos fácil y efectiva. Ello va a depender de muchos factores, pero uno de los más importantes va a ser el propio proyecto constructivo. Por cierto, no vamos a utilizar aquí el concepto de “coeficiente de constructibilidad“, que en el ámbito del urbanismo, se refiere a un número que fija el máximo de superficie posible a construir en un ámbito determinado.

En la Figura 2 he elaborado un mapa conceptual para aclarar las ideas. Como puede verse, tanto la constructividad como la constructibilidad tienen como objetivo último satisfacer las necesidades del cliente en cuanto a calidad, costes, plazos, estética, etc., además de cumplir con otro tipo de objetivos relativos al contexto (requerimientos ambientales, sociales, legales, etc.), de forma que los agentes involucrados en la construcción sean capaces de mejorar sus resultados empresariales. Sin embargo, el enfoque de ambos conceptos es diferente. Veamos con algo de detalle las diferencias.

 

Figura 2. Mapa conceptual sobre constructividad y constructibilidad. Elaboración propia.

La constructividad define el grado con el cual un proyecto facilita el uso eficiente de los recursos para facilitar su construcción, satisfaciendo tanto los requerimientos del cliente como otros asociados al proyecto. Como se puede ver, se trata de un concepto directamente ligado a la fase del proyecto, y por tanto, depende fuertemente del equipo encargado del diseño.

Por otra parte, la constructibilidad es un concepto relacionado con la gestión que involucra a todas las etapas del proyecto y que, por tanto, depende tanto de los proyectistas, de los gestores del proyecto y de los constructores. Aunque se trata de un concepto también relacionado con las etapas del diseño del proyecto, la diferencia estriba en la incorporación de personal en esta etapa preliminar de personal con experiencia y conocimiento en construcción con el fin de mejorar la aptitud constructiva de una obra.

Quizá un ejemplo sea clarificador. Supongamos un equipo de arquitectura que está proyectando un edificio complejo, como por ejemplo un hospital. Este equipo, con mayor o menor experiencia en obra, tratará de diseñar un edificio que se pueda construir. El proyecto se licitará y una empresa constructora se encargará de su ejecución. Resulta evidente que, en función de los problemas de obra, el proyecto podrá modificarse para adaptarse a problemas que no quedaron resueltos en el proyecto o a cambios no previstos durante la ejecución. Se trata de un ejemplo donde los proyectistas han incorporado, en la medida de lo posible, aspectos relacionados con la constructividad.

Por otra parte, podría darse el caso de un concurso de proyecto y construcción, donde el adjudicatario participara, a su riesgo, del proceso proyecto-construcción. En este caso, es muy posible que al equipo redactor del proyecto se incorporaran personas con amplia experiencia en la ejecución de este tipo de proyectos. Por ejemplo, jefes de obra o producción de la empresa que hubiesen realizado proyectos similares, podrían aportar conocimientos para mejorar el proyecto, de forma que éste fuera fácilmente construible con los medios disponibles por la propia empresa. En este caso, estamos refiriéndonos a una gestión del proyecto donde se incorporan aspectos relacionados con la constructibilidad.

Para terminar, tenemos ejemplos claros de la diferencia entre estos dos conceptos en el caso de los proyectos que nuestros estudiantes elaboran durante sus estudios, por ejemplo, en el Grado de Ingeniería Civil o en el Máster en Ingeniería de Caminos, Canales y Puertos (donde imparto docencia). Un alumno brillante puede desarrollar un proyecto formalmente correcto, pero es muy habitual encontrar detalles mal resueltos porque son difíciles de construir. No se debe a que ha aplicado mal sus conocimientos, más bien se trata de falta de experiencia en obra que impide volcar en el proyecto soluciones que faciliten la construcción de la obra. Este problema, desgraciadamente, se repite en numerosas empresas de proyectos, donde la falta de experiencia de los proyectistas en la ejecución de la obra supone posteriormente problemas que ya se comentaron anteriormente cuando hablábamos de la regla de Sitter. La consecuencia de todo ello es clara: la importancia de que los proyectistas presenten experiencia dilatada en la ejecución de obra. La segunda derivada también es clara: los profesores en escuelas técnicas que forman a futuros ingenieros o arquitectos, deberían tener cierta experiencia en obra real. Igual es hora de balancear la importancia de la investigación y la experiencia en el mundo real a la hora de evaluar el perfil de los profesores que se dedican a formar a los futuros técnicos. Pero ese es otro tema.

Os dejo algún vídeo al respecto para ampliar conceptos.

Referencias:

CALAVERA, J. (1995). Proyectar y controlar proyectos. Revista de Obras Públicas num. 3.346. Madrid, septiembre.

PELLICER, E., CATALÁ, J., SANZ, A.(2002). La administración pública y el proceso proyecto-construcción. Actas del VI Congreso Internacional de Ingeniería de Proyectos, Departamento de Proyectos de Ingeniería de la Universidad Politécnica de Cataluña y AEIPRO, Barcelona, página 35.

PELLICER, E.; YEPES, V.; TEIXEIRA, J.C.; MOURA, H.P.; CATALÁ, J. (2014). Construction Management. Wiley Blackwell, 316 pp. ISBN: 978-1-118-53957-6.

SERPELL, A. (2002). Administración de operaciones de construcción. Alfaomega, 292 pp.

ROSTMAN, S. (1992). Tecnología moderna de durabilidad. Cuadernos Intemac, 5.

YEPES, V. (1998). La calidad económica. Qualitas Hodie, 44: 90-92.

YEPES, V. (2003). Sistemas de gestión de la calidad y del medio ambiente en las instalaciones náuticas de recreo.Curso Práctico de Dirección de Instalaciones Náuticas de Recreo. Ed. Universidad de Alicante. Murcia, pp. 219-244.

YEPES, V. (2015). Coste, producción y mantenimiento de maquinaria para construcción. Editorial Universitat Politècnica de València, 155 pp.

YEPES, V.; PELLICER, E. (2003). ISO 10006 “Guidelines to quality in project management” application to construction. VII International Congress on Project Engineering. 10 pp. ISBN: 84-9769-037-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Vídeo y presentación completa conferencia sobre toma de decisiones en puentes

El 23 de mayo de 2019 tuve la oportunidad de impartir una conferencia en el Centro de Estudios Avanzados y Extensión de la Pontificia Universidad Católica de Valparaíso, en su sede de Santiago (Chile). El título de la charla coincide con el proyecto DIMALIFE, que en este momento tenemos en marcha dentro de nuestro grupo de investigación de la Universitat Politècnica de València: “Toma de decisiones en la gestión del ciclo de vida de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”. En este enlace podéis ver una nota de prensa sobre la misma: http://www.pucv.cl/pucv/noticias/primera-persona/investigador-de-la-universitat-politecnica-de-valencia-realiza/2019-05-27/164204.html

La conferencia se pudo ver también por streaming en directo. Agradezco a la PUCV la grabación de la misma. Os paso a continuación no solo el vídeo sino también la presentación del PowerPoint utilizado en la misma. Espero que os sea de interés.

Descargar (PDF, 7.01MB)

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Entrevista sobre la investigación en optimización y toma de decisiones en puentes e infraestructuras viarias

Con motivo de mi visita a la Pontificia Universidad Católica de Valparaíso (Chile), me hicieron una entrevista sobre el trabajo realizado por nuestro grupo de investigación en la Universitat Politècnica de València.

Dicha entrevista la podéis encontrar en el siguiente enlace: http://icc.pucv.cl/noticias/investigador-de-la-universitat-politecnica-de-valencia-realiza-conferencia-sobre-optimizacion-y-toma-de-decisiones-en-puentes-e-infraestructuras-viarias

 

Desde mi blog agradezco tanto a la Escuela de Ingeniería en Construcción, como a la Escuela de Ingeniería Informática la invitación realizada, y en especial al profesor Matías Andrés Valenzuela Saavedra. Os paso a continuación un resumen de dicha entrevista y el reportaje fotográfico.

NOTICIAS

INVESTIGADOR DE LA UNIVERSITAT POLITÈCNICA DE VALÈNCIA REALIZA CONFERENCIA SOBRE OPTIMIZACIÓN Y TOMA DE DECISIONES EN PUENTES E INFRAESTRUCTURAS VIARIAS

  • Víctor Yepes Piqueras es Doctor Ingeniero de Caminos, Canales y Puertos; catedrático de Universidad en el área de Ingeniería de la Construcción, y fue invitado por las Escuelas de Ingeniería Informática e Ingeniería en Construcción a dictar estas conferencias.

Tanto en Valparaíso, como en Santiago, el ingeniero Dr. Víctor Yepes fue invitado a dictar la Charla “Diseño y mantenimiento óptimo robusto y basado en fiabilidad de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos”.

La primera actividad se llevó a cabo el miércoles 22 en el Aula Mayor del Edificio IBC de la Facultad de Ingeniería, mientras que en Santiago se realizó el jueves 23 en el Centro de Estudios Avanzados y Extensión PUCV, asistiendo en ambas jornadas, un gran número de participantes, entre quienes se encontraban estudiantes, profesionales de la industria, académicos e investigadores.

“Gracias a la invitación de la PUCV, he tenido la oportunidad para venir a mostrar y explicar las líneas de investigación que en la Universitat Politècnica de València, en particular, desde la Escuela de Ingeniería de Caminos, Canales y Puertos, estamos haciendo en relación a la optimización de infraestructuras, específicamente, de puentes”, refiere el Dr. Yepes en relación a su visita.

Durante sus conferencias, el académico centró sus presentaciones en la investigación que lleva realizando por más de 10 años, y cuyo objetivo es apoyar a las administraciones públicas, y sobre todo, a los profesionales que se dedican al diseño de puentes y este tipo de infraestructura, para que sean capaces de acertar en las decisiones que tienen que tomar a la hora del diseño.

“No estamos hablando sólo de hacer puentes o carreteras más económicas, sino también que estas supongan un mínimo impacto ambiental y que además, supongan un impacto social favorable, lo cual es algo que no se ha estudiado mucho hasta ahora y que creo que es una de las novedades que estamos aportando al mundo de la investigación”, señaló sobre la materia.

Por otra parte, señaló la importancia que reviste difundir estas líneas de investigación, puesto “es muy posible que existan líneas conjuntas de colaboración, y podamos aunar las cosas que estamos haciendo nosotros desde España, con otras que desde luego son muy importantes, y están desarrollando en esta Universidad”.

Además de dichas conferencias, el Dr. Yepes complementó su visita con una agenda de reuniones con académicos de la PUCV, profesionales y representantes del Ministerio de Obras Públicas.

 

 

Conferencias en Chile sobre optimización y toma de decisiones en puentes e infraestructuras viarias

La Pontificia Universidad Católica de Valparaiso y su Escuela de Ingeniería en Construcción, a través del profesor Matias Andrés Valenzuela Saavedra, me han invitado a impartir varias conferencias sobre toma de decisiones en la gestión del ciclo de vida de puentes e infraestructuras viarias de alta eficiencia social y medioambiental bajo presupuestos restrictivos. Estas conferencias, que tendrán lugar en Valparaiso el 22 de mayo de 2019 y en Santiago el 23 de mayo, se complementarán con varias reuniones con diversos profesores y con representantes del Ministerio de Obras Públicas de Chile. Os paso a continuación los folletos anunciadores de las charlas, por si alguno de vosotros se encuentra allí la próxima semana y quiere venir a las mismas.

 

 

Problema de selección de una cimentación. Desarrollo del pensamiento crítico

http://cimentacioneslevante.es/muros-pantalla/

Desde el proceso de Bolonia, muchos cambios han habido en nuestras universidades y planes de estudios. Uno de ellos es la necesidad de desarrollar y evaluar las competencias del título correspondiente a través de cada una de las asignaturas y comprobar que se adquieren los resultados de aprendizaje. De este tema ya hemos hablado varias veces. Hoy os traigo un problema que me sirve para evaluar, a través de una rúbrica, la competencia transversalPensamiento Crítico” en la asignatura de Procedimientos de Construcción II, del grado de Ingeniería Civil de la Universitat Politècnica de València. Espero que os sea de interés.

También os dejo una presentación que hice en un congreso docente donde explico cómo realizamos esta evaluación.

ENUNCIADO:

Se quiere construir un edificio de 30 plantas de altura más seis sótanos (altura de 3,00 m cada sótano) en una ciudad de 500000 habitantes. El solar se encuentra entre dos medianerías, y tiene una superficie rectangular de 20 x 35 m, siendo las medianerías los lados de 20 m. Existe la posibilidad de utilizar un solar anejo para realizar la obra, de 44 x 35 m. Hay acceso directo tanto al solar donde se va a realizar el edificio como al solar disponible, según se observa en la Figura 1. El clima es atlántico, con lluvias abundantes, con temperaturas que se supone oscilan entre 5 y 25 ºC, y se tienen 10 horas de luz de media durante la construcción de la cimentación.

Figura 1. Esquema de la situación del solar del edificio, del solar disponible y de los edificios construidos

Se ha realizado un sondeo y se ha determinado un corte del terreno que se muestra en la Figura 2. Se observa que el nivel freático se encuentra a 3,50 m de la superficie. Existe un sustrato duro de areniscas de 4,00 m de espesor situado entre dos capas de limos arcillosos con trazas de arenas y gravas. A 22 m de profundidad existe una capa de calizas sanas, de al menos 15 m de potencia. Los primeros 2,20 m son un relleno antrópico donde existen tocones de árboles, basura y una mezcla de limos arcillosos y gravas.

Figura 2. Esquema básico del corte geológico

La solución a proyectar debe conjugar la posibilidad técnica de ejecución, el impacto ambiental y social sobre el entorno (contaminación, ruidos, vibraciones, etc.), la facilidad constructiva y la viabilidad económica, Use los datos del enunciado que considere importantes y, en el caso de necesitar datos, razone adecuadamente el uso de información adicional.

Preguntas de grupo:

  1. Indique qué tipo de cimentación sería la más conveniente.
  2. Razone dos procesos constructivos que podrían ser aplicados y cuál de los dos cree que será más eficaz. La respuesta debe ser de consenso entre los miembros del grupo.
  3. Define los principales pasos en la construcción de dichas cimentaciones.
  4. Descarte, justificando las razones, al menos tres procesos constructivos de cimentación que no sean aplicables a este caso.
  5. Indique si ha tenido que consultar otras fuentes para la elección de la tipología y el proceso constructivo (en dicho caso indicar cuál), o ha sido suficiente con el temario de la asignatura.

 

Preguntas individuales:

  1. Critique los dos procesos constructivos de la pregunta 2, indicando si está de acuerdo con lo consensuado por el grupo. Se valorará especialmente su opinión crítica personal justificada y si hay diversidad de opiniones entre los miembros del grupo.
  2. Realice una crítica sobre el ejercicio 1, indicando aquellas cosas con las que está de acuerdo con el grupo o no. Se valorará la justificación crítica de la respuesta.
  3. Indique los cinco riesgos para las personas más importantes que supone el procedimiento constructivo elegido y qué medidas preventivas debería utilizar.

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

YEPES, V. (2018). Correspondencia jerárquica entre las competencias y los resultados de aprendizaje. El caso de “Procedimientos de Construcción”. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2018, Valencia, pp. 1-15. ISSN 2603-5863

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

GARCÍA-SEGURA, T.; YEPES, V.; MOLINA-MORENO, F.; MARTÍ, V. (2017). Assessment of transverse and specific competences in civil engineering studies: ‘Critical thinking’. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3683-3692. ISBN: 978-84-617-8491-2

MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Assessment of the argumentative ability in innovation management of civil engineering studies. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 3904-3913. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; MOLINA-MORENO, F. (2017). Transverse competence ‘critical thinking’ in civil engineering graduate studies: preliminary assessment. 11th annual International Technology, Education and Development Conference (INTED 2017), Valencia, 6th, 7th and 8th of March, 2017, pp. 2639-2649. ISBN: 978-84-617-8491-2

YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2016). Desarrollo y evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. Congreso Nacional de Innovación Educativa y Docencia en Red IN-RED 2016, Valencia, pp. 1-14. ISBN: 978-84-9048-541-5.

MARTÍ, J.V.; YEPES, V. (2016). Valoración de la competencia transversal “Pensamiento crítico” por los alumnos de GIOP (2015). XIV  Jornadas de Redes de Investigación en Docencia Universitaria 2016

MARTÍ, J.V.; YEPES, V. (2016). Evaluación de la competencia transversal “pensamiento crítico” en el grado de ingeniería civil. XIV  Jornadas de Redes de Investigación en Docencia Universitaria 2016

YEPES, V.; SEGADO, S.; PELLICER, E.; TORRES-MACHÍ, C. (2016). Acquisition of competences in a Master Degree in Construction Management. 10th International Technology, Education and Development Conference (INTED 2016), March, Valencia, pp. 718-727. ISBN: 978-84-608-5617-7.

MARTÍ, J.V.; YEPES, V. (2015). Pensamiento crítico como competencia transversal en el grado de Ingeniería de Obras Públicas: valoración previa. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-12. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1560 (link)

JIMÉNEZ, J.; SEGADO, S.; YEPES, V.; PELLICER, E. (2015). Students’ guide as a reference for a common case study in a master degree in construction management. 9th International Technology, Education and Development Conference INTED 2015, Madrid, 2nd-4th of March, 2015,  pp. 4850-4857. ISBN: 978-84-606-5763-7.

YEPES, V.; MARTÍ, J.V. (2015). Competencia transversal ‘pensamiento crítico’ en el grado de ingeniería civil: valoración previa. XIII Jornadas de Redes de Investigación en Docencia Universitaria, Alicante, 2 y 3 de julio,  pp. 2944-2952. ISBN: 978-84-606-8636-1. (link)

YEPES, V.; MARTÍ, J.V. (2015). La competencia transversal de comunicación efectiva en estudios de máster en el ámbito de la ingeniería civil y la construcción. Congreso In-Red 2015, Universitat Politècncia de València, pp. 1-14. ISBN: 978-84-9048-396-1. Doi:: http://dx.doi.org/10.4995/INRED2015.2015.1540 (link)

JIMÉNEZ, J.; SEGADO, S.; PELLICER, E.; YEPES, V. (2014). Strategic evaluation of a M.Sc. degree in construction management: a faculty vs. students comparison. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain), 10-12 March, pp. 1974-1984. ISBN: 978-84-616-8412-0  (link)

YEPES, V. (2014). El uso del blog y las redes sociales en la asignatura de Procedimientos de Construcción. Jornadas de Innovación Educativa y Docencia en Red IN-RED 2014. 15-16 de julio, Valencia, pp. 1-9. ISBN: 978-84-90482711.

SEGADO, S.; YEPES, V.; CATALÁ, J.; PELLICER, E. (2014). A portfolio approach to a M.Sc. degree in construction management using a common project. 8th International Technology, Education and Development Conference, INTED 2014, Valencia (Spain),  10-12 March,  pp. 2020-2029. ISBN: 978-84-616-8412-0 (link)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

STARSOL: Pilotes con hélice continua mejorada

Figura 1. Pilotes Starsol. http://www.soletanche-bachy.com.ar

Dentro de los pilotes de extracción de barrena continua podemos distinguir un procedimiento mejorado denominado STARSOL. Se trata de un sistema desarrollado por el grupo francés SOTELANCHE-BACHY, al cual pertenece la empresa española RODIO, por lo que también se llama este procedimiento Rodiostar/Starsol. Con este sistema se resuelven dos problemas que tenían procedimientos anteriores: la perforación de capas duras y la ejecución y control de la calidad del hormigonado. La perforación en capas duras se realiza mediante un motor de gran potencia, con un par de 90000 N·m, incorporando un útil de corte bajo el eje de la hélice, con lo que puede atravesar o empotrase en terrenos de 35 a 50 N/mm2 de resistencia a rotura. Ello hace innecesario el uso de trépano. Tampoco se necesitan lodos ni camisa porque el hormigonado se realiza a través del tubo interno, que funciona a modo de Tremie. El mayor problema es que las armaduras deben introducirse después del hormigonado, aunque este problema se podría resolver definitivamente con hormigones armados con fibras de acero. Los diámetros habituales de este tipo de pilotes se encuentran entre 0,40 y 1,00 m, con una profundidad máxima normal de 30 m. La potencia total instalada ronda los 250 KVA.

Los elementos principales del equipo son los siguientes:

  • Grúa dotada de grupo hidráulico
  • Mástil guía
  • Cabeza de rotación hidráulica
  • Manguera de introducción del hormigón al tubo interior
  • Barrena continua alrededor del tubo exterior
  • Tubo central con desplazamiento por el interior del tubo exterior
  • Sistema de gatos que permite el desplazamiento vertical del tubo central hasta 1,50 m
  • Útil de limpieza

En la Figura 2 se muestran las fases constructivas del método. El procedimiento comienza con la perforación mediante rotación de la barrena. Una vez llega a la profundidad requerida, se para la rotación, se levanta el conjunto y se comienza a bombear hormigón a presión. La distancia entre las bases de la barrena y del tubo sumergido es de 1,50 m. Por último, una vez hormigonado el pilote, se coloca la armadura, incluso con vibradores si fuera necesario. La armadura se puede introducir con este método fácilmente hasta 15 m, aunque el mejor registro de 17 m se consiguió en 1988.

La diferencia entre el procedimiento STARSOL y los pilotes de barrena continua convencionales es que en los primeros el hormigón se bombea a presión (de al menos 0,1 MPa, lo que asegura un excelente contacto en cualquier terreno), de forma que dicha presión y el volumen de hormigón se encuentran controlados. Esto garantiza que el primer hormigón vertido es el único que ha estado en contacto con el terreno y el único que puede estar contaminado. En el caso de los pilotes de barrena continua clásica, el hormigón se vierte a través del tubo central de la barrena y directamente sobre el anterior, mientras que en el sistema STARSOL, se realiza mediante un tubo telescópico introducido por dicha barrena hueca, el cual puede quedar introducido hasta 1,0 m por debajo de la lámina libre de hormigón, de ahí la mayor presión de bombeo y la gran ventaja con respecto al CPI-8 convencional; pues se evita la posibilidad de cortes en el hormigón.

Figura 2. Esquema del proceso de ejecución del pilote STARSOL

A continuación os dejo algunos vídeos explicativos que creo de interés.

Referencias:

GARCÍA-VALCARCE, A.; SACRISTÁN, J.A.; GONZÁLEZ, P.; HERNÁNDEZ, R.J.; PASCUAL, R.; SÁNCHEZ-OSTIZ, A.; IRIGOYEN, D. (2003). Manual de edificación. Mecánica de los terrenos y cimentaciones. Editorial CIE Dossat 2000, 710 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de entibación con cajones de blindaje o escudos

Figura 1. Detalle de cajones de blindaje Robust BOX. Fuente: www.atenko.com

Se utilizan los escudos o cajones de blindaje cuando se busca no sólo un sostenimiento del terreno, sino una buena protección a los trabajadores. Se trata de dos paneles unidos por codales de longitud regulable (Figura 20). La longitud de la plancha oscila entre los 2,00 y 6,00 m. Además, no es apta para entibar con presencia transversal de servicios.

Los blindajes se ensamblan en obra, fuera de la zanja, con anchuras regulables en función de la zanja. Cuando se trata de zanjas profundas, se colocan unos blindajes encima de otros, unidos mediante guías. Los cajones de blindajes se pueden utilizar hasta 4 m de profundidad, incluso en terrenos no cohesivos. A mayor profundidad los cajones se extraen con dificultad, pues se originan grandes esfuerzos sobre los codales y pueden aparecer descompensaciones del terreno totalmente desaconsejables. A partir de ahí, y hasta 6 m, deberían utilizarse cámaras con tablestacas.

Se distinguen dos tipos de sistemas de colocación de cajones de entibación: el método de descenso directo y el método de descenso escalonado.

El método de descenso directo, también llamado método de ajuste, consiste en introducir la entibación hasta el fondo en la zanja ya excavada. Esto es posible con paredes estables, verticales y con una excavación que presente la misma anchura que la entibación (ver Figura 2). El espacio entre la cara exterior del blindaje y el frente de excavación debe ser el mínimo posible, debiéndose rellenar para evitar los movimientos laterales del cajón. Estos escudos se montan en obra con una simple retroexcavadora o con una grúa pequeña.

Figura 2. Montaje del sistema de entibación con cajones de blindaje mediante descenso directo. Fuente: http://www.iguazuri.com/catalogos/entibacion_general.pdf

El método de descenso escalonado, también llamado de “corte y bajada”, se utiliza para la colocación de cajones provistos de bordes cortantes. Consiste en empujar cada panel con la cuchara de una pala excavadora a uno y otro lado de la entibación, alternando el descenso con la excavación y retirada del suelo (Figura 22). El avance en el descenso no debe exceder 0,50 m del borde inferior de la plancha.

Figura 3. Montaje del sistema de entibación con cajones de blindaje mediante el método de “corte y bajada”. Fuente: UNE-EN 13331-1

En el siguiente vídeo se muestra cómo se monta el sistema mediante el método de “corte y bajada”.

Referencias:

OSALAN (2009). Seguridad práctica en la construcción. Instituto Vasco de Seguridad y Salud Laborales, Bilbao, 466 pp.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas de entibación por presión hidráulica

Entibadora hidráulica Pressbox Serie 800. Cortesía SBH Tiefbautechnick

El sistema de entibación por presión hidráulica está formado por una cámara compuesta por paneles, del tipo tablestacas. Su profundidad recomendada de trabajo es de hasta 7 m y su anchura máxima de 1,70 a 4,70 m. Una viga accionada hidráulicamente hinca e iza los paneles, por lo que no se recomienda en terrenos rocosos o con bolos. Ambas caras de la cámara están apuntaladas y sostenidas por unas secciones especiales situadas en los bordes.

Es un sistema especialmente diseñado para reparar conductos o instalar tuberías. También se recomienda para trabajos de arqueología y en cascos antiguos, pues no transmite vibraciones. Una vez instaladas las tuberías, una excavadora mueve la cámara a lo largo de unos carriles hasta la siguiente sección.

Entibación por presión hidráulica. https://www.sbh-verbau.de/es/entibacion-trench-shoring-perfiles-sbh/entibacion/pressbox.html

Referencias:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Problemas con la perforación o la hinca de pilotes ante información confusa del terreno

Reconocimiento geotécnico. https://www.arqhys.com/construccion/reconocimiento-geotecnico.html

En algunos artículos anteriores hemos descrito algunos procedimientos constructivos de los distintos tipos de pilotes. También se han comentado en artículos anteriores algunas técnicas relacionadas con los informes geotécnicos.

Podéis consultar el siguiente documento realizado por Juan Herrera y Jorge Castilla, de la UPM: “Utilización de técnicas de sondeos en estudios geotécnicos“:  http://oa.upm.es/10517/1/20120316_Utilizacion-tecnicas-sondeos-geotecnicos.pdf

 

Sin embargo, aquí quiero resaltar algunos casos concretos donde los informes geotécnicos pueden confundir al constructor y llevarlo a errores durante la perforación o hinca de los pilotes (Rodríguez Ortiz, 1982):

  1. Capas delgadas de arenisca floja o vetas de arena cementadas. Las coronas de sondeo las traspasan y disgregan, confundiéndose con arenas. Las barrenas que perforan los pilotes son de diámetro mayor y no tienen potencia suficiente para romper estas capas, con lo que se hace necesario un trépano. En el caso de hinca, se suele dar rechazo al llegar a estas capas, deteniéndose la hinca, lo que supone un riesgo de punzonamiento bajo las cargas de trabajo.
  2. Las vetas carbonatadas y costras, de naturaleza evaporítica y de espesores variables, con elevadas resistencias. Los sondeos a rotación disgregan las gravas presentes, otras veces se sacan testigos rocosos que se confunden con gravas o bolos calcáreos. Son errores de apreciación que, unido a la difícil correlación entre los cortes geotécnicos, provocan que pasen desapercibidas estas vetas y causen problemas en la hinca y en la perforación.
  3. Las vetas silicatadas se confunden con los cantos de sílex. Son capas de extraordinaria dureza que hace difícil la penetración de los pilotes, incluso con espesores de pocos centímetros.
  4. Bloques erráticos u obstáculos de tamaño similar al diámetro del pilote. Pueden dificultar enormemente el hincado o la perforación.
  5. Confusión entre roca sana y alterada en el apoyo del pilote, que puede magnificar o infravalorar la capacidad portante prevista.
  6. Evaluación de la resistencia de una capa rocosa para predecir si la excavación debe realizarse con trépano, tricono o elementos de corte rotativo.
  7. La estructura del substrato rocoso debe caracterizarse geológicamente y con reconocimientos puntuales para determinar si las fracturas impiden la perforación rotativa para un determinado diámetro.
  8. Los sondeos pueden interpretar una estabilidad de las paredes diferente a la perforación del pilote, pues los diámetros son diferentes. Si el terreno lo permite, se prefieren los sondeos helicoidales, pues se aproximan mejor a las condiciones de perforación del pilote.
  9. La permeabilidad del terreno y la presencia de capas granulares abiertas pueden impedir la perforación con lodos, debiéndose recurrir a la entubación. Un sondeo convencional puede pasar por alto este aspecto, salvo que se hagan pruebas de bombeo o permeabilidad.

Veamos este vídeo de geotecnia.ONLINE sobre las cinco cosas que debemos hacer antes de empezar con los sondeos o perforaciones de un estudio del terreno. El contenido se relaciona con lo que hemos contado anteriormente.

 

Referencias:

RODRÍGUEZ ORTIZ, J.M. (1982). Reconocimientos del terreno para pilotajes, en ROMANA, M. (Ed.): Apuntes sobre pilotes. Universidad Politécnica de Valencia.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.