La ingeniería humanitaria y la teoría del cisne negro: Totalán, DANA, Zaldibar y el coronavirus nos dan las claves

Fotografía con Ángel García Vidal, en la Escuela de Ingeniería de Caminos de Valencia

La primera vez que oí a alguien hablar de “ingeniería humanitaria” fue a Ángel García Vidal en una conferencia que impartió, junto con Mauricio Delgado, en la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia el 24 de septiembre de 2019. Tal fue la impresión que me causó su relato de la tragedia de Totalán, que escribí un artículo en The Conversation sobre las lecciones aprendidas del rescate de Julen.

Después de ese día, Ángel y yo hemos conversado largo y tendido sobre el tema. Ángel intuía que el concepto de “ingeniería humanitaria” era especialmente importante, pero que se tenía que profundizar más en él. Todas nuestras conversaciones, junto con la de otros compañeros como Eugenio Pellicer, le hicieron reflexionar en una mesa redonda que tuvo lugar en el VIII Congreso Nacional de Ingeniería Civil que tuvo lugar en Madrid los días 17 y 18 de febrero de 2020. El escritor y articulista del diario El País Manuel Jabois escribía el 23 de enero de 2019 lo siguiente en referencia al concepto de Ingeniería Civil Humanitaria haciendo referencia a Ángel en una declaración que queda en las hemerotecas para la historia: “Esto no es una operación de rescate, sino una obra de Ingeniería Civil Humanitaria“.

Un cisne de la especie Cygnus atratus, desconocido en Occidente hasta el siglo XVIII. Wikipedia

Desde esos días de enero de 2019 han pasado muchos acontecimientos que deberían ocurrir solo de muy de vez en cuando. Según la teoría del cisne negro, desarrollada por el investigador Nassim Taleb, esta teoría es una metáfora que describe un suceso sorpresivo (para el observador), de gran impacto socioeconómico y que, una vez pasado el hecho, se racionaliza por retrospección (haciendo que parezca predecible o explicable, y dando impresión de que se esperaba que ocurriera).

Las características de la teoría del cisne negro es que determinados acontecimientos ocurren de forma sorpresiva, pues como los cisnes negros, son sucesos muy extraños. Estos acontecimientos presentan un alto impacto desproporcionado y es difícil de predecir, teniendo un papel dominante en la historia. Sin duda, la crisis actual del coronavirus (COVID-19) es un cisne negro.

Sin embargo, en solo unos meses, además han ocurrido impactos tales como el DANA (Depresión Aislada en Niveles Altos) que puso en jaque a nuestro país, con grandes desastres económicos y pérdidas de vidas humanas, o la desgracia del vertedero de Zaldibar, donde en estos momentos aún siguen dos personas sepultadas.

Todo parece indicar que sucesos de emergencia local, regional o global van a ser recurrentes y pueden poner en muy alto riesgo no solo vidas humanas, sino la economía y el futuro de las generaciones actuales y futuras.

¿Y cuál es el papel de la ingeniería ante estos sucesos que son emergentes? ¿Qué es la ingeniería civil humanitaria? Tras muchas reflexiones, aquí escribo alguna de ellas. Animo a Ángel a que publique el texto íntegro de su comunicación en el congreso al que hice antes referencia.

¿Cómo se podría definir el concepto de ingeniería civil humanitaria? Se trata de una idea que, si bien de una u otra forma existía de forma difusa desde el origen de los tiempos, cuando los humanos usaban su ingenio y su rudimentaria tecnología en ayudar al resto de sus congéneres, ha cobrado una gran actualidad con motivo del rescate del niño Julen en Totalán.

Pero antes de intentar dar una definición, debemos aclarar unas cuantas ideas y, sobre todo, debemos descartar algunas cosas que no deberían incluirse en este concepto. No toda la ingeniería civil tiene carácter humanitario, y es justamente el adjetivo humanitario el que permite caracterizar mejor esa parte de la ingeniería que tiene ciertas características que la diferencia del resto de ingeniería que hacemos los ingenieros civiles. Por otra parte, tampoco el carácter humanitario es exclusivo de la ingeniería civil. Otros ámbitos de la ingeniería, de la técnica y de cualquier actividad humana también puede tener este carácter. Por tanto, hay que buscar entre las características de una ingeniería muy específica, que es la civil, qué rasgos o características definen su carácter humanitario.

Humanitario es un adjetivo que, según la Real Academia de la Lengua, tiene tres acepciones. La primera nos dice “que mira o se refiere al bien del género humano”. Esta primera acepción entraría de lleno en los objetivos de la ingeniería civil en general. En efecto, si la ingeniería civil tiene como objeto el diseño, construcción y mantenimiento de todo tipo de infraestructuras, éstas son el soporte del progreso y bienestar de la sociedad y, por tanto, toda la ingeniería civil sería humanitaria con esta primera acepción. Por tanto, no es esta acepción la que nos interesa destacar.

La segunda acepción identifica humanitario con “benigno, caritativo, benéfico”. En nuestro caso se trataría de la ingeniería civil que es solidaria con el sufrimiento ajeno, que presta auxilio a los necesitados. De alguna forma, se trata de una ingeniería que dispone de los recursos técnicos y materiales que ayuda a aquellos que la necesitan. Esta idea se relaciona también con la tercera acepción del diccionario donde humanitario tiene “como finalidad aliviar los efectos que causan la guerra u otras calamidades en las personas que las padecen”.

Por tanto, en todas las acepciones humanitario siempre se relaciona con el auxilio a personas que necesitan dicha ayuda. Sin embargo, hay un aspecto de especial relevancia, y es que la ayuda sea desinteresada. En caso contrario, se trata de la ingeniería civil habitual, es decir, una actividad económica que, si bien tiene como fin el bien común, precisa de un beneficio económico para mantenerse en el tiempo. ¿Pero puede existir una ingeniería civil desinteresada que ayude a los demás?

Para responder a esta pregunta, antes hay que contestar otra más importante. Se trata de saber si, como dicen algunos, el hombre es malo por naturaleza y gracias al Estado reprime su impulso egoísta. Esta es una tesis del filósofo Thomas Hobbes que, afortunadamente, no se puede afirmar que sea cierta. En efecto, algunas investigaciones realizadas con niños han demostrado que más del 95% de ellos ayudaban a los demás sin recibir ningún tipo de orden o instrucción (https://www.elmundo.es/elmundo/2012/11/16/ciencia/1353063447.html). Esta tendencia innata al altruismo ya está presente en los ancestros comunes que tenemos los humanos con los chimpancés, que también tienen esta tendencia altruista. Impacta saber que un mono prefiere quedarse sin comer varios días antes que ver a los compañeros sufrir. Algunos han justificado este comportamiento de cooperación como una de las claves de nuestra supervivencia como especie. Por tanto, la cooperación, el altruismo y la moral, forman parte de lo más profundo de nuestro cableado humano. No obstante, contraejemplos de maldad intrínseca se encuentran por doquier, pero ello no justifica la maldad intrínseca del ser humano.

Otro de los aspectos que también interesa sacar a colación es averiguar si la ingeniería civil humanitaria tiene que estar planificada o bien debe actuar de forma inmediata ante un problema puntual. Pues las dos cosas.

Cuando existe un problema importante en una comunidad, por ejemplo, falta de agua por sequía, carencias de infraestructuras sanitarias o educativas, la ingeniería civil se pone al servicio de los programas de ayuda humanitaria y, de forma planificada, con recursos escasos, pero bien dirigidos, se pueden realizar infraestructuras que generan un beneficio extraordinario a la comunidad que los recibe.

Por otra parte, y es el caso de la tragedia de Totalán, una emergencia requiere de toda la voluntad y recursos disponibles para, de forma urgente, ayudar en lo posible a resolver un grave problema humanitario. Aquí la ingeniería civil actúa, como se ha podido comprobar, de forma directa con todos los recursos técnicos disponibles.

En ambos casos, con proyectos planificados o en situación de emergencia, la ingeniería civil ofrece todos sus recursos técnicos, humanos y materiales para ayudar, de forma desinteresada, a otras personas.

Pues bien, aquí tenemos una de las claves del concepto de ingeniería civil humanitaria. Se podría definir como el conjunto de recursos técnicos, humanos y materiales disponibles por la ingeniería civil para ayudar, de forma desinteresada, a las personas que lo necesitan, ya sea en forma de proyectos de ayuda o en situaciones de emergencia.

Todo esto es posible gracias a la naturaleza intrínsecamente buena del ser humano y al avance en la técnica disponible de la ingeniería civil puesta al servicio de la sociedad por parte de personas que, sin esperar nada a cambio, se ofrecen para auxilio de los demás.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tesis doctoral: Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty

Figura 1. Defensa de tesis doctoral de Vicent Penadés Plà.

Hoy 12 de marzo de 2020 ha tenido lugar la defensa de la tesis doctoral de D. Vicent Penadés Plà titulada “Life-cycle sustainability design of post-tensioned box-girder bridge obtained by metamodel-assisted optimization and decision-making under uncertainty“, dirigida por Víctor Yepes Piqueras y Tatiana García Segura. La tesis recibió la calificación de “Sobresaliente” por unanimidad. Presentamos a continuación un pequeño resumen de la misma.

Resumen:

Actualmente existe una tendencia hacia la sostenibilidad, especialmente en los países desarrollados donde la preocupación de la sociedad por el deterioro ambiental y los problemas sociales ha aumentado. Siguiendo esta tendencia, el sector de la construcción es uno de los sectores que mayor influencia tiene debido a su alto impacto económico, ambiental y social. Al mismo tiempo, existe un incremento en la demanda de transporte que provoca la necesidad de desarrollo y mantenimiento de las infraestructuras necesarias para tal fin. Con todo esto, los puentes se convierten en una estructura clave, y por tanto, la valoración de la sostenibilidad a lo largo de toda su vida es esencial.

El objetivo principal de esta tesis es proponer una metodología que permita valorar la sostenibilidad de un puente bajo condiciones iniciales inciertas (subjetividad del decisor o variabilidad de parámetros iniciales) y optimizar el diseño para obtener puentes óptimos robustos. Para ello, se ha realizado una extensa revisión bibliográfica de todos los trabajos en los que se realiza un análisis de la sostenibilidad mediante la valoración de criterios relacionados con sus pilares principales (económico, medio ambiental o social). En esta revisión, se ha observado que la forma más completa de valorar los pilares medioambientales y sociales es mediante el uso de métodos de análisis de ciclo de vida. Estos métodos permiten llevar a cabo la valoración de la sostenibilidad durante todas las etapas de la vida de los puentes. Todo este procedimiento proporciona información muy valiosa a los decisores para la valoración y selección del puente más sostenible. No obstante, las valoraciones subjetivas de los decisores sobre la importancia de los criterios influyen en la evaluación final de la sostenibilidad. Por esta razón, es necesario crear una metodología que reduzca la incertidumbre asociada y busque soluciones robustas frente a las opiniones de los agentes implicados en la toma de decisiones.

Además, el diseño y toma de decisiones en puentes está condicionado por los parámetros inicialmente definidos. Esto conduce a soluciones que pueden ser sensibles frente a pequeños cambios en dichas condiciones iniciales. El diseño óptimo robusto permite obtener diseños óptimos y estructuralmente estables frente a variaciones de las condiciones iniciales, y también diseños sostenibles y poco influenciables por las preferencias de los decisores que forman parte del proceso de toma de decisión. Así pues, el diseño óptimo robusto se convierte en un proceso de optimización probabilística que requiere un gran coste computacional. Por este motivo, el uso de metamodelos se ha integrado en la metodología propuesta. En concreto, se ha utilizado hipercubo latino para la definición de la muestra inicial y los modelos kriging para la definción de la aproximación matemática. De esta forma, la optimización heurística basada en kriging ha permitido reducir más de un 90% el coste computacional respecto a la optimización heurística conveniconal obteniendo resultados muy similares.

El estudio del diseño óptimo y estructuralmente estable frente a variaciones de las condiciones iniciales se ha llevado a cabo variando tres parámetros iniciales (módulo de elasticidad, sobrecarga, y fuerza de pretensado). El objetivo del caso de estudio analizado ha sido obtener el diseño más económico y con menor variación de la respuesta estructural. De esta forma, se consigue una frontera de Pareto que permite seleccionar la solución óptima, la solución más robusta o una solución de compromiso entre las dos. Por otro lado, el estudio de diseños sostenibles y poco influenciables por las preferencias de los decisores se ha llevado a cabo generando una gran cantidad de decisores aleatorios para cubrir todas las posibles preferencias de los interesados. El objetivo del caso de estudio ha sido reducir la participación subjetiva de los decisores. De esta forma, se ha podido reducir todo el abanico de diseños posibles a un número reducido de diseños concretos, y seleccionar aquel diseño con mejor media sostenible o menor variabilidad en la valoración.

Esta tesis proporciona en primer lugar, una amplia revisión bibliográfica, tanto de los criterios utilizados para la valoración de la sostenibilidad en puentes como de los diferentes métodos de análisis de ciclo de vida para obtener un perfil completo de los pilares ambientales y sociales. Posteriormente, se define una metodología para la valoración completa de la sostenibilidad, usando métodos de análisis de ciclo de vida. Asimismo, se propone un enfoque que permite obtener estructuras poco influenciables por los parámetros estructurales, así como por las preferencias de los diferentes decisores frente a los criterios sostenibles. La metodología proporcionada en esta tesis es aplicable a cualquier otro tipo de estructura.

Palabras clave:

Sostenibilidad, Toma de decisiones, Análisis de ciclo de vida, Métodos de valoración del impacto del análisis de ciclo de vida, ReCiPe, Ecoinvent, SOCA, Metamodelos, Kriging, Diseño óptimo robusto, Puentes.

Figura 2. De izquierda a derecha: Julián Alcalá, Tatiana García, Víctor Yepes, Vicent Penadés, Salvador Ivorra y Rasmus Rempling

Referencias:

  • PENADÉS-PLÀ, V.; YEPES, V.; GARCÍA-SEGURA, T. (2020). Robust decision-making design for sustainable pedestrian concrete bridges. Engineering Structures, (accepted, in press). DOI:10.1016/j.engstruct.2019.109968
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2020). Robust design optimization for low-cost concrete box-girder bridge. Mathematics, 8: 398; DOI:10.3390/math8030398
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; YEPES, V. (2019). Accelerated optimization method for low-embodied energy concrete box-girder bridge design. Engineering Structures, 179:556-565. DOI:10.1016/j.engstruct.2018.11.015
  • GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202: 904-915. DOI:1016/j.jclepro.2018.08.177
  • PONS, J.J.; PENADÉS-PLÀ, V.; YEPES, V.; MARTÍ, J.V. (2018). Life cycle assessment of earth-retaining walls: An environmental comparison. Journal of Cleaner Production, 192:411-420. DOI:1016/j.jclepro.2018.04.268
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. DOI:3390/su10030685
  • PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. DOI:10.3390/su9101864
  • PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295

Optimización del diseño robusto de puentes en cajón

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo tratamos de solucionar uno de los problemas que presentan las estructuras óptimas, que es su cercanía a los estados límite y demás restricciones. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

En efecto, el diseño de una estructura se lleva a cabo generalmente según un enfoque determinista. Sin embargo, todos los problemas estructurales tienen asociados parámetros iniciales inciertos que pueden diferir del valor de diseño. Esto se vuelve importante cuando el objetivo es alcanzar estructuras optimizadas, pues una pequeña variación de estos parámetros inciertos iniciales puede tener una gran influencia en el comportamiento estructural. El objetivo de la optimización de un diseño robusto es obtener un diseño óptimo con la menor variación posible de las funciones objetivas. Para ello, es necesaria una optimización probabilística para obtener los parámetros estadísticos que representen el valor medio y la variación de la función objetivo considerada. Sin embargo, una de las desventajas del diseño robusto óptimo es su alto costo de cálculo. En el presente artículo, la optimización del diseño robusto se aplica al diseño de un puente peatonal continuo de sección en cajón  que sea óptimo en cuanto a su costo y robusto en cuanto a la estabilidad estructural. Además, se utiliza el muestreo de hipercubo latino y el metamodelo de kriging para hacer frente al alto costo computacional. Los resultados muestran que las principales variables que controlan el comportamiento estructural son la profundidad de la sección transversal y la resistencia a la compresión del hormigón y que se puede llegar a una solución de compromiso entre el coste óptimo y la robustez del diseño.

Abstract

The design of a structure is generally carried out according to a deterministic approach. However, all structural problems have associated initial uncertain parameters that can differ from the design value. This becomes important when the goal is to reach optimized structures, as a small variation of these initial uncertain parameters can have a big influence on the structural behavior. The objective of robust design optimization is to obtain an optimum design with the lowest possible variation of the objective functions. For this purpose, a probabilistic optimization is necessary to obtain the statistical parameters that represent the mean value and variation of the objective function considered. However, one of the disadvantages of the optimal robust design is its high computational cost. In this paper, robust design optimization is applied to design a continuous prestressed concrete box-girder pedestrian bridge that is optimum in terms of its cost and robust in terms of structural stability. Furthermore, Latin hypercube sampling and the kriging metamodel are used to deal with the high computational cost. Results show that the main variables that control the structural behavior are the depth of the cross-section and compressive strength of the concrete and that a compromise solution between the optimal cost and the robustness of the design can be reached.

Keywords

Robust design optimization; RDO; post-tensioned concrete; box-girder bridge; structural optimization; metamodel; kriging

Reference:

Penadés-Plà, V.; García-Segura, T.; Yepes, V. Robust Design Optimization for Low-Cost Concrete Box-Girder BridgeMathematics 20208, 398.

Descargar (PDF, 1.11MB)

 

Curso en línea de “Procedimientos de contención y control del agua subterránea en obras de ingeniería civil y edificación”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso online sobre “Procedimientos de Construcción de cimentaciones y estructuras de contención y control del agua subterránea en obra civil y edificación”. El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Empieza el 23 de marzo de 2020 y termina el 4 de mayo de 2020. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-procedimientos-de-contencion-y-control-del-agua-subterranea-en-obras/?fbclid=IwAR0d1Ga2q6tuY_AfplyREj4TIOjMztLSRsy6aykXT-X4X903Mc8ERBw6TyY

Os paso un vídeo explicativo y os doy algo de información tras el vídeo: https://www.youtube.com/watch?v=Z1mkod8SPns

Este es un curso básico de procedimientos de contención y control del agua subterránea en obras civiles y de edificación. Se trata de un curso que no requiere conocimientos previos especiales y está diseñado para que sea útil a un amplio abanico de profesionales con o sin experiencia, estudiantes de cualquier rama de la construcción, ya sea universitaria o de formación profesional. Además, el aprendizaje se ha escalonado de modo que el estudiante puede profundizar en aquellos aspectos que más les sea de interés mediante documentación complementaria y enlaces de internet a vídeos, catálogos, etc.

En este curso aprenderás las distintas tipologías y aplicabilidad de los procedimientos de contención y control del agua utilizados en obras de ingeniería civil y de edificación. El curso índice especialmente en la comprensión de los procedimientos constructivos y la maquinaria específica necesaria para la ejecución de los distintos tipos de sistemas de control del agua (ataguías, pantallas, escudos, drenajes superficiales, bombeos profundos, congelación del suelo, electroósmosis, inyecciones, etc.). Es un curso de espectro amplio que incide especialmente en el conocimiento de la maquinaria y procesos constructivos, y por tanto, resulta de especial interés desarrollar el pensamiento crítico del estudiante en relación con la selección de las mejores soluciones constructivas para un problema determinado. El curso trata llenar el hueco que deja la bibliografía habitual donde los aspectos de proyecto, geotecnia, hidrogeología, estructuras, etc., oscurecen los aspectos puramente constructivos. Además, está diseñado para que el estudiante pueda ampliar por sí mismo la profundidad de los conocimientos adquiridos en función de su experiencia previa o sus objetivos personales o de empresa.

El contenido del curso está organizado en 50 lecciones, que constituyen cada una de ellas una secuencia de aprendizaje completa. La dedicación aproximada para cada lección se estima en 1-2 horas, en función del interés del estudiante para ampliar los temas con el material adicional. Además, al finalizar cada Lección didáctica, el estudiante afronta una batería de preguntas cuyo objetivo fundamental es afianzar los conceptos básicos y provocar la duda o el interés por aspectos determinados del tema abordado. Al final se han diseñado tres unidades adicionales cuyo objetivo fundamental consiste en afianzar los conocimientos adquiridos a través del desarrollo de casos prácticos, donde lo importante es desarrollar el espíritu crítico y la argumentación a la hora de decidir la conveniencia de un procedimiento de control del agua u otro. Por último, al finalizar el curso se realiza una batería de preguntas tipo test cuyo objetivo es conocer el aprovechamiento del curso, además de servir como herramienta de aprendizaje.

El curso está programado para una dedicación de 75 horas de dedicación por parte del estudiante. Se pretende un ritmo moderado, con una dedicación semanal en torno a las 10-15 horas, dependiendo de la profundidad de aprendizaje requerida por el estudiante, con una duración total de 6 semanas de aprendizaje.

Éste curso único impartido Víctor Yepes, Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València, se presenta mediante contenidos multimedia interactivos y de alta calidad dentro de la plataforma virtual Moodle, combinado con la realización de ejercicios prácticos. Así mismo, se realizarán clases en directo mediante videoconferencias, que podrán ser vistas en diferido en caso de no poder estar presente en las mismas.

Objetivos

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de los procedimientos de contención y control del agua en obras de ingeniería civil y de edificación
  2. Evaluar y seleccionar el mejor tipo de procedimiento necesario para una construcción con problemas de agua en unas condiciones determinadas, considerando la economía, la seguridad y los aspectos medioambientales

Programa

  • – Lección 1. Conceptos básicos del agua en medio poroso
  • – Lección 2. El problema del agua en las excavaciones
  • – Lección 3. La magia de las tensiones efectivas en geotecnia
  • – Lección 4. El sifonamiento en las excavaciones: el efecto Renard
  • – Lección 5. Clasificación de las técnicas de control del agua en excavaciones
  • – Lección 6. Selección del sistema de control del nivel freático
  • – Lección 7. Drenaje de excavaciones mediante bombeos superficiales y sumideros
  • – Lección 8. Drenaje de excavaciones mediante zanjas perimetrales
  • – Lección 9. Descenso del nivel freático por bombeo: fórmula de Dupuit-Thiem
  • – Lección 10. Cálculo de un agotamiento mediante pozos
  • – Lección 11. Tipología de las estaciones de bombeo
  • – Lección 12. Altura neta positiva de aspiración de una bomba
  • – Lección 13. Bombas empleadas en el control del nivel freático de una excavación
  • – Lección 14. Procedimientos constructivos de pozos profundos para drenaje
  • – Lección 15. Drenaje en excavaciones sobre acuíferos confinados: pozos de alivio
  • – Lección 16. Drenaje de excavaciones mediante bombeo desde pozos filtrantes
  • – Lección 17. Drenaje de excavaciones mediante bombeo desde pozos eyectores
  • – Lección 18. Drenajes horizontales instalados mediante zanjadoras
  • – Lección 19. Pozos horizontales ejecutados mediante perforación horizontal dirigida
  • – Lección 20. Drenes de penetración transversal: drenes californianos
  • – Lección 21. Control del nivel freático mediante lanzas de drenaje (wellpoints)
  • – Lección 22. Drenaje horizontal con pozos radiales
  • – Lección 23. Galerías de drenaje en el control del nivel freático
  • – Lección 24. Electroósmosis como técnica de drenaje del terreno
  • – Lección 25. Procedimientos para la contención del agua
  • – Lección 26. Evaluación aproximada de caudales de bombeo en excavación de solares
  • – Lección 27. Contención de aguas mediante ataguías en excavaciones
  • – Lección 28. Contención del agua mediante ataguías de tierras y escollera
  • – Lección 29. Contención del agua mediante tablestacas
  • – Lección 30. Contención del agua mediante ataguías celulares
  • – Lección 31. Contención del agua mediante cajones indios
  • – Lección 32. Contención del agua mediante cajones de aire comprimido
  • – Lección 33. Contención del agua mediante muros pantalla
  • – Lección 34. Contención del agua mediante pantallas de pilotes secantes
  • – Lección 35. Contención del agua mediante pantallas plásticas de bentonita-cemento
  • – Lección 36. Contención del agua mediante pantallas de suelo-bentonita
  • – Lección 37. Contención del agua mediante pantallas de suelo-cemento con hidrofresa
  • – Lección 38. Contención del agua mediante pantallas de lodo autoendurecible armado
  • – Lección 39. Contención del agua mediante pantallas realizadas por mezcla profunda de suelos
  • – Lección 40. Contención del agua mediante pantallas delgadas de lodo ejecutadas mediante vibración de perfiles
  • – Lección 41. Contención del agua mediante pantallas de geomembranas
  • – Lección 42. Contención del agua mediante inyección del terreno
  • – Lección 43. Contención del agua mediante inyección de lechadas de cemento
  • – Lección 44. Contención del agua mediante inyección de lechadas de arcilla
  • – Lección 45. Contención del agua mediante inyección de lechadas químicas
  • – Lección 46. Contención del agua mediante inyecciones de alta presión: jet-grouting
  • – Lección 47. Contención del agua mediante congelación de suelos
  • – Lección 48. Contención del agua mediante escudos presurizados con aire comprimido
  • – Lección 49. Contención del agua mediante escudos presurizados con lodos
  • – Lección 50. Contención del agua mediante escudos de presión de tierras
  • – Supuesto práctico 1.
  • – Supuesto práctico 2.
  • – Supuesto práctico 3.
  • – Batería de preguntas final

Profesorado

Víctor Yepes Piqueras

Doctor Ingeniero de Caminos, Canales y Puertos. Universitat Politècnica de València

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Su experiencia profesional se ha desarrollado fundamentalmente en Dragados y Construcciones S.A. (1989-1992) como jefe de obra y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 5 proyectos de investigación competitivos. Ha publicado más de 87 artículos en revistas indexadas en el JCR. Autor de 8 libros, 22 apuntes docentes y más de 250 comunicaciones a congresos. Ha dirigido 14 tesis doctorales, con 4 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Tiene experiencia contrastada en cursos a distancia, destacando el curso MOOC denominado “Introducción a los encofrados y las cimbras en obra civil y edificación”, curso que ya ha tenido cuatro ediciones. También destaca el curso sobre “Procedimientos de construcción de cimentaciones y estructuras de contención en obra civil y edificación”, que ya va por su segunda edición.

Vídeos de las Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción

Hace pocos días que tuvo lugar las “Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción (Formación, I+D+i y Transferencia)”. He de decir que las jornadas fueron todo un éxito y que, afortunadamente, se pudieron grabar en streaming las conferencias principales. Os dejo a continuación ambas conferencias por el interés que despertaron. La grabación es completa, por lo que podéis avanzar o retroceder a aquellos minutos que os resulten de mayor interés. Podéis pulsar sobre la imagen de cada vídeo o directamente sobre el enlace que os he puesto. Espero que os gusten.

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=0dc5b890-36df-11ea-b29c-ddfb8fbe85af

https://engage.videoapuntes.upv.es/paella/ui/watch.html?id=68eef880-36df-11ea-b29c-ddfb8fbe85af

La geometría fractal en la ingeniería: las estructuras de Voronoi y el diseño paramétrico

Figura 1. Rascacielos Voronoi. https://naukas.com/2011/12/23/cada-uno-en-su-region-y-voronoi-en-la-de-todos/

La naturaleza siempre ha servido de inspiración para arquitectos, ingenieros y diseñadores. La tecnología informática ha facilitado las herramientas para analizar y simular la complejidad observada en la naturaleza y aplicarla a formas estructurales de construcción y los mecanismos de organización urbana. Entre ellas destacamos la geometría fractal y el diagrama de Voronoi.

La geometría fractal no ha dejado de evolucionar desde las investigaciones del matemático polaco nacionalizado francés y estadounidense, Benoît Mandelbrot en los años 70 del siglo pasado. Un fractal es un objeto geométrico cuya estructura básica, fragmentada o aparentemente irregular, se repite a diferentes escalas. Lo interesante es que la forma de los fractales parecen describir la Naturaleza y encuentra su geometría una gran variedad de aplicaciones en urbanismo, arquitectura, computación o ingeniería estructural (Figura 1).

El diagrama de Voronoi (nombre que se debe al matemático ruso Gueorgui Voronói) se crea al unir los puntos entre sí, trazando las mediatrices de los segmentos de unión (Figura 2). Las intersecciones de estas mediatrices determinan una serie de polígonos en un espacio bidimensional alrededor de un conjunto de puntos de control, de manera que el perímetro de los polígonos generados sea equidistante a los puntos vecinos y designan su área de influencia.

Figura 2. Diagrama de Voronoi. https://es.wikipedia.org/wiki/Pol%C3%ADgonos_de_Thiessen#/media/Archivo:Euclidean_Voronoi_diagram.svg

Hasta mediados de los ochenta, la mayoría de las implementaciones para computar el diagrama de Voronoi usaban el algoritmo incremental cuadrático, admitiendo su mayor lentitud para evitar la complejidad del código divide y vencerás (Figura 3). En 1985 Fortune inventó un inteligente algoritmo de barrido plano que resulta tan simple como el incremental, pero en tiempo O(n log n). Para los más curiosos, podéis utilizar MATLAB para realizar ejemplos sobre los diagramas de Voronoi utilizando la funciónvoronoin. El enlace lo tenéis aquí: https://es.mathworks.com/help/matlab/math/voronoi-diagrams.html

Figura 3. Pasos fundamentales del algoritmo “divide y vencerás” para construir el diagrama de Voroni. http://asignatura.us.es/fgcitig/contenidos/gctem3ma.htm

La profesora de la Universidad de Sevilla, Clara Grima, nos describe en un artículo de divulgación, “El diagrama de Voronoi, la forma matemática de dividir el mundo“, algunas aplicaciones del diagrama de Voronoi, que van desde la distribución de farmacias en una ciudad, a el mapa del cólera de John Snow o a la ventaja posicional de un equipo de fútbol.

Pero aquí lo interesante es saber que, basándose en este diagrama, se pueden diseñar estructuras y espacios urbanos de gran interés. En la Figura 4 podemos ver la oficina central de Alibaba. Este tipo de estructuras resultan agradables, estáticamente eficientes y adecuadas para trabajar como un sistema estructural espacial. Además, la estructura se puede modelar por un conjunto de puntos y admite el diseño paramétrico. Se denomina diseño paramétrico a un proceso de diseño basado en un esquema algorítmico que permite expresar parámetros y reglas que definen, codifican y aclaran la relación entre los requerimientos del diseño y el diseño resultante.

Figura 4. Oficina central de Alibaba. https://www.idealista.com/news/finanzas/emprendedores/2014/04/16/727627-asi-es-la-cueva-de-alibaba-el-tesoro-mejor-guardado-de-china

En la Figura 5 se observa la posibilidad de estos diagramas en el caso de pantallas arquitectónicas. Como vemos, las posibilidades estructurales son de un gran interés.

Figura 5. Ejemplo de uso arquitectónico de los diagramas Voronoi. https://www.carroceriasibiza.com/

Aquí tenemos una explicación de los diagramas de Voronoi. También el vídeo explica cómo construir a partir de una serie de puntos generadores los famosos Polígonos de Thiessen que conforman el diagrama antes mencionado.

En el presente vídeo se explican los fractales.

Os dejo también un artículo sobre el diagrama de Voronoi como herramienta de diseño, de María Loreto Flores. Espero que os sea de interés

Descargar (PDF, 527KB)

Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción

Los que leéis frecuentemente mi blog habéis visto como mezclo constantemente aspectos técnicos, docentes y de investigación. En este último caso, la labor de nuestro grupo de investigación es muy intensa a través del proyecto DIMALIFE. Además, nuestro equipo pertenece, de una u otra forma al Departamento de Ingeniería de la Construcción, al ICITECH y al programa de doctorado del departamento. Asimismo, participamos activamente en el Máster Universitario en Ingeniería del Hormigón.

Si tenéis curiosidad de lo que hacemos, puedes acceder a los enlaces que os he dejado. Os puede interesar las líneas de investigación de nuestro grupo: https://victoryepes.blogs.upv.es/2014/09/11/mis-lineas-de-investigacion-en-el-programa-de-doctorado-en-ingenieria-de-la-construccion/

Pues bien, os anuncio una jornada gratuita que va a tratar de todo ello, en la que van a participar, entre otros, Antonio Martínez Cutillas y José Romo Martín. Os dejo los folletos anunciadores y os animo a venir a visitarnos y a participar.

Las jornadas se retransmitirán online a través del siguiente link:

https://videoapuntes.upv.es/streaming/4ffe3ef0-aa40-11e6-871f-9161f5b643ea

El Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil (DICPIC) y el Instituto Universitario de Ciencia y Tecnología del Hormigón (ICITECH) se complacen en anunciar las “Primeras Jornadas FIDiT en el ámbito de la Ingeniería de la Construcción (Formación, I+D+i y Transferencia)” que se celebrarán el 18 de febrero de 2020 en el Salón de Actos del Edificio 4H de la ETSI Caminos, Canales y Puertos de la Universitat Politècnica de València.

Estas jornadas reunirán a profesionales, profesores e investigadores relacionados con la formación, investigación, desarrollo, innovación y transferencia en el ámbito de la Ingeniería de la Construcción. Durante este encuentro se fomentará el contacto entre estudiantes de doctorado, másteres y grado, profesores y profesionales, así como la difusión de trabajos de investigación realizados en el Programa de Doctorado en Ingeniería de la Construcción y en el Máster Universitario en Ingeniería del Hormigón (MUIH).

Jornadas gratuitas y abiertas a todos los públicos sin necesidad de reserva previa.

Descargar (PDF, 2.52MB)

Descargar (PDF, 2.51MB)

 

 

 

 

Ranking de investigadores en ingeniería civil 2020

https://labibliotecainforma.wordpress.com/

Hoy día se hacen listas de todo tipo, especialmente en las redes sociales. Se catalogan a las universidades, a las empresas, a las personas. También se hace lo mismo con los investigadores. Son listas en las que los criterios de evaluación son a veces discutibles, especialmente en el ámbito científico.

En un artículo anterior discutí brevemente el índice h como indicador de la calidad investigadora de un científico. Basándose en este índice, viene siendo habitual que a principios de cada año se publiquen listados sobre los “influencers” en investigación científica en España. Una de las páginas más famosas es http://indice-h.webcindario.com/

Lo interesante de esta página es su metodología de evaluación, que se puede consultar aquí:  http://indice-h.webcindario.com/P+F.html. Se trata de una página elaborada por el Grupo para la Difusión del Índice h (DIH), que intenta dar a conocer a los científicos con mayor índice h de entre los que trabajan en España. Según sus autores, este índice aumenta con la calidad de la investigación que se publica y, por tanto, permite establecer rankings de los mejores investigadores. La información la elaboran de una base de datos de gran prestigio (ISI Web of Knowledge).

Pues bien, en el ámbito de la ingeniería civil, los investigadores con mayor índice h en España, a fecha de hoy, son los siguientes (se limita el número de investigadores a aquellos que tengan un valor mínimo de h que sea la mitad del que encabeza la lista):

 

Special Issue “Trends in Sustainable Buildings and Infrastructure”

High visibility: indexed by the Science Citation Index Expanded, the Social Sciences Citation Index (Web of Science) and other databases. Impact Factor: 2.468 (2018)

Special Issue “Trends in Sustainable Buildings and Infrastructure”

A special issue of International Journal of Environmental Research and Public Health (ISSN 1660-4601).

Deadline for manuscript submissions: 31 October 2020.

Special Issue Editors

Guest Editor

Prof. Dr. Víctor Yepes
Concrete Science and Technology Institute (ICITECH), Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multi-objective optimization; life-cycle assessment; decision-making; sustainability; concrete structures; CO2 emissions; construction management

Guest Editor

Dr. Ignacio J. Navarro
Department of Construction Engineering and Civil Engineering Projects, Universitat Politècnica de València Valencia, Spain
Interests: multicriteria decision making; reliability-based maintenance optimization; sustainability of infrastructures; social impacts of infrastructures

Special Issue Information

Dear Colleagues,

The recently established Sustainable Development Goals call for a paradigm shift in the way buildings and infrastructures are conceived. The construction industry is a main source of environmental impacts, given its great material consumption and energy demands. It is also a major contributor to the economic growth of regions through the provision of useful infrastructure and generation of employment, among others. Conventional approaches underlying current building design practices fall short of covering the relevant environmental and social implications derived from inappropriate design, construction, and planning. The development of adequate sustainable design strategies is therefore becoming extremely relevant with regard to the achievement of the United Nations 2030 Agenda Goals for Sustainable Development.

This Special Issue aims to increase knowledge on sustainable design practices by highlighting the actual research trends that explore efficient ways to reduce the environmental consequences related to the construction industry while promoting social wellbeing and economic development. These objectives include but are not limited to:

  • Life-cycle-oriented building and infrastructure design;
  • Design optimization based on sustainable criteria;
  • Maintenance design towards sustainability;
  • Inclusion of social impacts in the design of buildings and infrastructures;
  • Resilience and sustainability;
  • Use of sustainable materials;
  • Decision-making processes that effectively integrate economic, environmental, and social aspects.

Papers selected for this Special Issue will be subject to a rigorous peer-review procedure with the aim of rapid and wide dissemination of research results, developments, and applications.

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Environmental Research and Public Health is an international peer-reviewed open access semimonthly journal published by MDPI.

Keywords

  • Sustainable design and construction
  • Life cycle assessment
  • Sustainability in decision making
  • Green buildings
  • Sustainable maintenance
  • Resilient structures
  • Sustainable materials
  • Social life cycle assessment
  • Sustainable management of infrastructures
  • Multiobjective optimization for sustainable development

La ingeniería clásica y su influencia en el urbanismo actual

Fernando Sáenz Ridruejo. https://www.juaneloturriano.com/noticias/2019/01/17/fernando-saenz-ridruejo.-colegiado-de-honor

Quisiera dejaros en mi blog la última clase magistral de D. Fernando Sáenz Ridruejo, profesor de la ETS Caminos Canales y Puertos de la Universidad Politécnica de Madrid.

Sáenz Ridruejo es Colegiado de Honor de los Ingenieros de Caminos, Canales y Puertos. Fernando Gutiérrez de Vera, en su laudatio, afirmó con rotundidad que “Fernando es el historiador de los ingenieros de Caminos, el relator de sus obras, su entrega y sacrificio, sus intereses y campos de desarrollo. Así, ha puesto a nuestra disposición un caudal único de conocimiento sobre sus hombres y sus realizaciones, colaborando en más de 200 obras, con 5 libros propios, doblando su tarea de historiador con la de académico correspondiente y profesor en la Escuela de Madrid”.

La clase trata sobre la ingeniería clásica y su influencia en el urbanismo actual. Es un vídeo producido por el Gabinete de Tele-Educación de dicha universidad. Espero que os guste.