Criterios básicos de elección del tipo de cimentación

Figura 1. Colocación de armadura en zapata. Imagen: V. Yepes

El tipo de cimentación se selecciona en función el tipo de terreno, del tipo de estructura y de la interacción con los edificios próximos. El terreno influye por su capacidad portante, por su deformabilidad, por la existencia de nivel freático, por su excavabilidad o alterabilidad, entre otros. En el tipo de estructura son determinantes las cargas, las tolerancias a los asientos y la presencia de sótanos. Son muy susceptibles aquellos edificios cercanos antiguos con cimentación somera o cuando las cargas van a ser muy diferentes entre los edificios próximos.

La cimentación por zapatas constituye la solución tradicional por economía y facilidad de ejecución. Es una buena solución cuando la resistencia del terreno es de media a alta, sin estratos blandos interpuestos. Es la cimentación ideal si el terreno presenta una cohesión suficiente para mantener verticales las excavaciones, no existe afluencia de agua y el nivel de apoyo se encuentra a menos de 1,5 m, si bien se puede rellenar la diferencia con un hormigón pobre en el caso de mayores profundidades. En edificios ligeros y muros de carga se utilizaban zapatas de hormigón en masa, si bien hoy día se realizan con hormigón armado. Cada pilar asienta de forma independiente sobre cada zapata. Como inconveniente cabe citar la escasa resistencia a giros y a desplazamientos horizontales, que pueden resolverse con riostras, zapatas combinadas o vigas de cimentación.

Figura 2. Desencofrado de zapata. Imagen: I. Serrano (www.desdeelmurete.com)

La cimentación por losa se utiliza en terrenos menos resistentes o heterogéneos, especialmente para tensiones admisibles menores a 0,15 N/mm2. Es económica si la superficie de la cimentación supera la mitad de la extensión que ocupa el edificio. Una ventaja adicional es que anula o reduce los asientos diferenciales. Asimismo se aconseja cuando el edificio presenta un sótano bajo el nivel freático, combinado con muros pantalla. La facilidad constructiva sugiere losas de canto constante, salvo en edificios con zonas cargadas de forma diferente para garantizar la compatibilidad de las deformaciones.

Figura 3. Hormigonado de una losa de cimentación. Fuente: edificio7000.obrasonline.com

Se recurre a la cimentación por pilotaje cuando no existe firme a una profundidad alcanzable mediante zapatas o pozos, normalmente más de 5 m. Los pilotes reducen los asientos de la estructura, cuando la permeabilidad u otras condiciones del terreno impiden la ejecución de cimentaciones superficiales, existen cargas muy fuertes o concentradas o bien se pretende evitar la influencia sobre cimentaciones adyacentes.

Figura 4. Sistema Omega de ejecución de pilotes. Imagen: W. Van Impe (http://scon.persianblog.ir/post/121/)

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Concepto y clasificación de las cimentaciones

Figura 1. Cargas sobre una cimentación superficial (Yepes, 2016)

La cimentación es aquella parte de la estructura, generalmente enterrada, que transmite al terreno su propio peso y las cargas recibidas, de modo que la estructura que soporta sea estable, la presión transmitida sea menor a la admisible y los asientos se encuentren limitados (ver Figura 1). La cimentación debe resistir las cargas y sujeta la estructura frente a acciones horizontales como el viento y el sismo, conservando su integridad. La interacción entre el suelo y la estructura depende de la naturaleza del propio suelo, de la forma y tamaño de la cimentación y de la flexibilidad de la estructura.

Las cimentaciones se diseñan para no alcanzar los estados límites últimos o de servicio. Los primeros llevan a la situación de ruina (estabilidad global, hundimiento, deslizamiento, vuelco o rotura del elemento estructural), mientras que los segundos limitan su capacidad funcional, estética, etc. (por ejemplo, movimientos excesivos). Se denomina capacidad portante a la máxima presión que transmite una cimentación sin alcanzar el estado último, mientras la presión admisible es aquella que no se alcanza en ningún estado límite, ya sea último o de servicio, presentando un coeficiente de seguridad respecto a la capacidad portante. Llamaremos firme al plano horizontal del estrato del terreno sobre el que se apoye la cimentación.

Otros problemas a considerar son la estabilidad de la excavación, los problemas de ataques químicos al hormigón, la posibilidad de heladas, el crecimiento de vegetación que deteriore la cimentación, los agrietamientos y levantamientos asociados a las arcillas expansivas, la disolución cárstica, la socavación, los movimientos del nivel freático, los daños producidos a construcciones existentes (Figura 2) o futuras, las vibraciones de maquinaria o los efectos sísmicos sobre el terreno, especialmente cuando existe posibilidad de licuefacción.

Los procedimientos constructivos influyen notablemente en el comportamiento de una cimentación. Hay que tener en cuenta que la construcción de la cimentación altera el terreno circundante, lo cual puede modificar algunas de las hipótesis de cálculo. A modo de ejemplo, los pilotes perforados descomprimen el terreno influyendo en la resistencia por fuste. La hinca de pilotes en limos y arenas sueltas saturadas aumenta la presión intersticial, lo que disminuye temporalmente la capacidad del pilote e incluso causar la licuefacción del terreno.

Figura 2. Descalce de una cimentación vecina durante la excavación. Imagen: E. Valiente

La cimentación puede clasificarse atendiendo a la profundidad a la que se realiza (ver Figura 3). Así, si llamamos D a la profundidad a la que se encuentra el contacto entre la cimentación y el terreno y B la dimensión menor de la cimentación, éstas se pueden clasificar en:

  • Cimentación superficial o directa:

D/B < 4

D < 3 m

  • Cimentación semiprofunda o pozos:

4 ≤ D/B ≤ 8

3 m ≤ D ≤ 6 m

  • Cimentación profunda o pilotaje:

D/B > 8

D > 6 m

Figura 3. Clasificación de las cimentaciones en función de la profundidad de apoyo (Yepes, 2016)

Existen distintos tipos de cimentaciones superficiales, tal y como se aprecia en la Figura 4.

Figura 4. Algunos tipos de cimentaciones superficiales. Imagen elaborada a partir de: http://www.generadordeprecios.info/

En la Tabla 1 se ha asignado a cada cimiento directo el tipo de elemento estructural al que sirve de cimentación.

Referencia:

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Editorial Revista Digital Estructurando nº 3 año 2014

Con el nuevo año ha nacido la Revista Digital Estructurando. Creo que es una muy buena noticia y no tengo más que congratularme por ello. Con este motivo, me invitaron a escribir un editorial que encabezase el nº 3 de la revista. Os remito a la misma en este enlace y además o paso el texto que escribí con dicho motivo: http://estructurando.net/revista-estructurando-no-3-ano-2014/

 

“Cuando José Antonio Agudelo me propuso escribir un pequeño texto para la revista Estructurando, revisando el año 2014, rápidamente me percaté de cómo pasa el tiempo y cuántas cosas pasan sin apenas darnos cuenta.

Lo primero que debo hacer, sin duda, es agradecer la labor de divulgación técnica realizada por Estructurando desde su creación, ya en el año 2012. Sin duda, se trata de uno de los blogs de referencia en el ámbito de las estructuras en lengua española. Dicho año coincide con el lanzamiento del “Blog de Víctor Yepes”, cuya primera entrada tuvo lugar el 5 de marzo de ese año. Me quedan menos de 10 entradas para llegar a las 1000. ¡Quién lo iba a decir! Por tanto, ambos blogs empezaron, de casualidad, el mismo año, y se han centrado en divulgar aspectos muy relacionados entre sí, la ingeniería de la construcción y las estructuras.

Lo segundo, resaltar la importancia de la divulgación seria de la ingeniería. Desgraciadamente, internet es muy grande y existen demasiadas páginas donde se tratan los aspectos técnicos de forma superficial, incluso incorrecta en conceptos muy básicos. Por este motivo se agradece el rigor y la seriedad que presenta Estructurando en sus publicaciones. Referentes como éste, de gran calidad, desgraciadamente se copian, replican e incluso tergiversan el contenido en páginas que plagian, cortan, pegan y, lo que es peor, sirven de guía a futuros ingenieros y profesionales en activo que, lejos de cotejar y comprobar los contenidos, los aplican sin más en obras que requieren del conocimiento y la experiencia de los especialistas para asegurar la seguridad y buen funcionamiento de las infraestructuras.

Del año 2014 son algunos de los artículos más leídos de Estructurado. Cabe resaltar “Una sencilla regla para predimensionar pilares de hormigón”. Se trata de un artículo breve, pero de gran interés para los calculistas en estructuras de edificación. Otra entrada muy consultada es la referente a “Un nuevo forjado reticular con huecos que ahorra un 20% de hormigón”. En ambos casos resulta de gran interés no solo leer el artículo en sí mismo, sino los comentarios que dejan los lectores al respecto. En este sentido, resulta conveniente avivar el pensamiento crítico del lector al respecto de los comentarios que se realizan. Casi todos son bienintencionados, pero algunos presentan graves errores conceptuales que podrían propagarse como la pólvora en un medio de difusión de tanto alcance como es éste.

Todo ello nos lleva a reflexiones de gran calado respecto a la influencia, positiva o negativa, de internet y de las redes sociales. ¿Hasta qué punto se deben censurar comentarios fuera de lugar, faltos de rigor o con errores conceptuales? ¿Se deben actualizar los artículos y entradas de este tipo de blog técnico? ¿Quién avala el contenido de lo que se dice en estos blogs? ¿Cómo se protege la propiedad intelectual de lo que se dice o comenta? ¿Hasta qué punto la publicidad no interfiere en la independencia del medio? ¿Qué responsabilidad tiene este tipo de blogs si se aplican conceptos o consejos erróneos o no aplicables a casos concretos? Como vemos, este tipo de preguntas inciden directamente con la ética de la comunicación y con la responsabilidad social que tiene la divulgación técnica y científica. La revisión de los contenidos por pares podría ser una buena forma de garantizar la calidad de la divulgación técnica de este tipo de herramientas de uso masivo. La creación de una asociación de páginas de divulgación técnica seria, con un código ético compartido, podría ser una buena idea para garantizar la labor social de este tipo de medios. Y como éstas, seguro que existen más ideas al respecto.

Estructurando es un buen ejemplo de blog de divulgación técnica. Basta leer y revisar sus artículos para comprender la importancia social que tiene este medio de comunicación y el rigor con el que se tratan los temas. Por tanto, animo a sus editores a continuar por esta línea y a mejorar, en la medida de lo posible, sus enfoques y contenidos. Si no existiera Estructurando, habría que inventarlo”.

 

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Impacto de la crisis económica en la construcción: lo que opinan los estudiantes

ABSTRACT:

The current economic crisis has specially affected the Spanish construction industry, causing the loss of 1.2 million jobs in the last four years. The increase in the unemployment rate is particularly worrisome for recent graduates in the construction industry. This fact leads to changes in the university degrees related to construction: undergraduate students should be prepared for a new professional environment and recent graduate find it hard to enter the labor market. Low employment opportunities entail a lack of motivation that can cause a significant decrease in the achievement of learning outcomes. This paper seeks to analyze the impact of the crisis in the construction industry from the point of view of the students of a M.Sc. in Construction Management, analyzing the evolution of student’s perception on unemployment and their motivations to enroll in the master degree. For this purpose, a questionnaire was handed out to students of three consecutive classes of the M.Sc. in Construction Management at the Universitat Politècnica de València (Spain) from 2010 to 2012. A statistical analysis of the survey was developed. This way, some interesting points can be highlighted on the impact of crisis on young construction professionals.

KEYWORDS:

Construction; Economic Crisis; Employment; Motivation; Labor Market; M.Sc. Degree

REFERENCIA:

TORRES-MACHÍ, C.; PELLICER, E.; YEPES, V.; PICORNELL, M. (2013). Impact of the economic crisis in construction: a perspective from graduate students. Procedia – Social and Behavioral Sciences, 89:640-645.

Descargar (PDF, 199KB)

 

 

Esto me suena… ¿Son seguros nuestros puentes?

Puente de la Constitución de 1812, Cádiz, en agosto de 2015. TCadizwiki [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

Os dejo en esta presentación una nueva entrevista que me ha realizado el periodista José Antonio García Muñoz, conocido como Ciudadano García, sobre temas de ingeniería. Como ya he comentado en alguna entrada anterior, la labor de divulgación de las ciencias, y en particular de la ingeniería, resulta una tarea agradable y enriquecedora.

La entrevista, en este caso, se ha centrado en la seguridad y el mantenimiento de nuestros puentes. En efecto, una noticia aparecida el 9 de diciembre de 2018 en El País con el siguiente titular “Fomento admite que hay 66 puentes con graves problemas de seguridad” abrió cierta inquietud en la opinión pública sobre la seguridad de nuestros puentes. Esta inquietud irrumpió el agosto pasado con el derrumbe de un puente en Génova (Italia). La pregunta que se hace el ciudadano de a pié es saber si cuando circula por carretera o por ferrocarril nuestras infraestructuras son lo suficientemente seguras.

Tener la oportunidad de comunicar aspectos de nuestra profesión a más de 300.000 oyentes supone todo un reto, más si lo que se busca es transmitir de forma sencilla y para todo el mundo, aspectos técnicos que, a veces, solo somos capaces de hacerlo con colegas o estudiantes. Insisto, todo un reto y una oportunidad que se agradece.

Pues de todo ello hablamos el pasado viernes 14 de diciembre de 2018. Os dejo la entrevista, realizada en directo. Espero que os guste.

Morfología de tableros aligerados de canto constante postesados para puentes carreteros y ferroviarios

Prueba de carga en puente de canto constante postesado

RESUMEN: En el trabajo se aborda una caracterización estadística de una muestra de 82 tableros reales tipo losa pretensada de canto constante para carreteras y ferrocarriles. El objetivo principal es encontrar fórmulas de predimensionamiento con el mínimo número de datos posible que permita mejorar el diseño previo de estas estructuras. Para ello se ha realizado un análisis exploratorio y otro multivariante de las variables geométricas determinantes, de las cuantías de materiales y del coste de los tableros. Los modelos de regresión han permitido deducir que el canto queda bien explicado por la luz y el aligeramiento exterior. El canto es la variable que mejor explica el coste por unidad de superficie de tablero en losas para carreteras (51,9%), mientras que en las de ferrocarriles sólo lo explica en un 23,4%, por lo que se necesitan más variables para su explicación. La luz principal y los voladizos bastan para el diseño previo de losas para carreteras; si además se incluye el número de vanos y la longitud total, se pueden predimensionar las losas de ferrocarril, con errores razonables en la estimación económica.

PALABRAS CLAVE: Puentes pretensados, Puentes carreteros, Puentes ferroviarios, Análisis multivariante, Predimensionamiento económico.

REFERENCIA:

YEPES, V.; ALCALÁ, J.; DÍAZ, J.; GONZÁLEZ-VIDOSA, F. (2011). Morfología de tableros aligerados de canto constante postesados para puentes carreteros y ferroviarios. Ingeniería Civil, 161:61-72. [Post-stressed constant depth beam concrete road and railway bridge voided decks morphology].

Descargar (PDF, 332KB)

El puente de San Miguel, en Jaca, hace 75 años que fue declarado Monumento Nacional

Figura 1. Arco apuntado del puente de San Miguel (Jaca). http://www.aspejacetania.com/lugares.php?Id=89

Siempre que tenemos un aniversario de algún evento relacionado con la ingeniería civil, aprovecho la oportunidad para escribir una pequeña entrada en mi cuaderno de bitácora. Ese es el caso del puente de San Miguel (Jaca), que en 1943, ahora hace 75 años, se declaró Monumento Nacional y actualmente es Bien de Interés Cultural.

Sobre el río Aragón, en el camino antiguo a que une Jaca con Ainsa, se encuentra un puente de perfil alomado, muy pronunciado (Figura 1), que delata su origen medieval. Era una época donde, a lo que se refiere a puentes, eran las ciudades quienes decidían la necesidad de su construcción. Aunque la fecha de su construcción no se conoce con exactitud, es muy probable que se erigiera en el siglo XV, aunque fue restaurado en 1608 y en 1816, debido a los daños de las habituales avenidas del río Aragón. En la década de 1950, el puente fue restaurado por el arquitecto Miguel Fisac, aunque la última ya se realizó en los años 2002 y 2003.

El puente facilitó durante siglos la comunicación entre Jaca y los valles occidentales del Pirineo aragonés, perteneciendo al ramal del Camino de Santiago que penetra en España por el puerto oscense de Canfranc.

Figura 2. Puente de San Miguel (Jaca). En rouge [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

La obra consiste en tres bóvedas de sillería, de las cuales dos son de cañón, con una luz libre de 9,4 m, y la tercera apuntada, con una luz libre de 21,6 m. Los arcos más pequeños funcionan como aliviaderos en caso de avenidas. El resto de la fábrica es de mampostería, reforzada a base de sillería en los tajamares triangulares, rematados con un sombrerete escalonado. Se aprecian materiales usados en diferentes épocas; así los tímpanos presentan huellas de las diferentes rasantes superpuestas , y que al corresponder a fábricas de distintos momentos históricos se han separado abriendo importantes juntas entre ellas. Se trata de un puente asimétrico, de 97,5 m de longitud, con espesores de pilas de  5,0 m y 3,2 m y una altura máxima de la rasante de 18,6 m. El tablero, que apenas presenta una anchura de 4,0 m, se encuentra empedrado con cantos rodados rejuntados con mortero de cemento.

Os dejo algunos vídeos sobre el puente. Espero que os gusten.

 

 

 

 

La revolución de la digitalización en la ingeniería civil

En una entrada anterior que denominé “La ingeniería de caminos en el siglo XXI, ¿quo vadis?, puse de manifiesto la incertidumbre que suponía la desaparición de la titulación de ingeniero de caminos, canales y puertos con motivo de la reestructuración de las enseñanzas universitarias en grado y máster. Las preguntas que dejaban en el aire adquirían un tinte dramático cuando se contextualizaban en una situación de profunda crisis económica, especialmente fuerte en el sector de la construcción.

Otra reflexión sobre el futuro de la profesión la dejé en la entrada “¿Qué entendemos por “Smart Construction”? ¿Una nueva moda?“. Allí dejé constancia de las modas que igual que aparecen, desaparecen, pero que suponen cambios sustanciales en una profesión como la de ingeniero civil. Allí expresé mi esperanza de que el término de “construcción inteligente” tuviera algo más de recorrido y pudiera suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos. Entre estos conceptos, uno que me interesa especialmente es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción.

Al hilo de estas reflexiones, me ha gustado especialmente el vídeo ganador del concurso de la Asociación de Ingenieros de Caminos, Canales y Puertos, ingeniería en 200 segundos, que presenta Juan Antonio Martínez Ortega, y que trata del impacto de la digitalización en la ingeniería civil. Atento al “diablillo de Laplace“. ¡Enhorabuena para Juan Antonio!

 

¿Es suficiente diseñar un puente para una vida útil de 100 años?

Man-Chung Tang, Dr., P.E. T.Y. Lin International, USA

Durante el último congreso IALCCE, que tuvo lugar en Gante en octubre de 2018, tuve la oportunidad de escuchar la lección magistral (Fazlur R. Khan Lecture) del doctor Man-Chung Tang, denominada “Durability of bridges“. Fue una conferencia brillante, donde la gran experiencia y conocimiento de este gran ingeniero de puentes, dejó muy claros algunos conceptos de gran importancia.

El doctor Tang, nacido en Zhaoqing (China), en 1938, es el Presidente del Consejo de Administración y el Director Técnico de la firma T.Y. Lin International ubicada en San Francisco (Estados Unidos). Se trata de una empresa multinacional en el ámbito de las infraestructuras e ingeniería de todo tipo, que emplea a más de 2500 ingenieros, arquitectos y científicos. Además, recibió el premio Senior Award del IALCCE del 2018 (al igual que Tatiana García Segura recibió el Junior Award).

 

 

La lección magistral, tal y como la introduce el propio Congreso, se presentaba de la siguiente forma:

In the past, life cycle cost of a bridge is usually defined as the sum of initial costs, operation costs, maintenance costs, rehabilitation costs and disposal costs. Today, we may add environmental costs and social costs to arrive at a more realistic “total life cycle cost”. But the total life cycle cost of a bridge by itself does not have much meaning unless we also know the service life of the bridge. The economic efficiency of the bridge is the total life cycle cost divided by the service life of the bridge. The main factor affecting the service life is the durability of the bridge.

Lo que más me llamó la atención es la llamada internacional a que los puentes se diseñen para una vida útil de 300 años. Se trata de una opinión que suscribo plenamente y que se debería llevar lo antes posible a los foros correspondientes. Son muchos ya los problemas de durabilidad y los accidentes que presentan estas estructuras para no tomar esta valiente decisión. Para ello hay que entender lo que significa la gestión del puente a lo largo de su ciclo de vida.

En efecto, muchas normas e instrucciones prescriben actualmente para la mayoría de los puentes una vida útil de 100 años para los grandes puentes y de 75 años para el resto. En España, la vida útil nominal indicada en la Instrucción de Hormigón Estructural EHE-08 es de 100 años para puentes de longitud total igual o superior a 10 metros y otras estructuras de ingeniería civil de repercusión económica alta.

Durante su lección magistral, el doctor Tang diferenció claramente la vida de servicio (service life) de un puente de lo que sería la vida útil para la que fue diseñada la estructura (design life). La vida de servicio se considera como el tiempo durante el cual un puente se puede utilizar de forma segura, de acuerdo con los criterios de diseño establecidos. Sin embargo, cuando se proyecta un puente, es difícil saber a ciencia cierta cuánto tiempo realmente dicho puente podrá estar en servicio. La vida de servicio, por tanto, no tiene por qué coincidir con la vida útil de diseño puesto que es evidente que un puente se puede encontrar en perfectas condiciones el día posterior a la caducidad de su vida de servicio, y no por ello debe procederse a su demolición. También es posible que, antes de alcanzar el fin de su vida útil, el puente quede fuera de servicio por múltiples motivos.

Por otra parte, un puente es durable si su vida de servicio es suficientemente larga. Como un puente debe ser seguro, funcional, económico y tener una buena presencia, ello implica que un puente será durable si es durable en cuanto a su seguridad, funcionalidad, economía y buena presencia. Este concepto de durabilidad, como es fácil de entender, está asociado a la probabilidad de incumplimiento de alguna de las funciones señaladas.

Además, hoy día el concepto de sostenibilidad implica un cambio radical en la forma de proyectar, construir y mantener los puentes. Si los romanos fueron capaces de construir puentes que han durado más de dos mil años, hoy es inconcebible que se proyecten puentes para una vida útil de 100 años.

El doctor Tang, basándose en sus observaciones y experiencia, expuso claramente su propuesta de elevar a 300 años la vida útil en el proyecto de los puentes. Ello no incrementaría en exceso el coste del puente. Además, muchos de los materiales empleados pueden durar esos 300 años si se realiza un mantenimiento conveniente. Nuestro grupo de investigación ha comprobado cómo realizando una optimización multiobjetivo de un puente se puede incrementar su vida útil muy por encima de los 100 años con incrementos muy pequeños en los costes (García-Segura et al., 2017).

Habrá quien argumente que antes de lo que esperamos la tecnología cambiará tanto que no tenga sentido el aumentar la vida útil de los puentes (coches voladores, por ejemplo). Sin embargo, ya hemos visto que desde el punto de vista de la sostenibilidad de los recursos naturales, desde el punto de vista económico, y sobre todo, para tratar de evitar tragedias como las que se han vivido recientemente, está más que justificada la revisión de la vida útil de diseño de las infraestructuras (no solo puentes, sino viviendas, obras hidráulicas, carreteras, puertos, etc.).

Por tanto, suscribo plenamente la opinión bien argumentada del doctor Tang: la vida útil de los puentes debe modificarse en las normas e instrucciones para subirla a un mínimo de 300 años.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

TANG, M.C. (2018). Durability of bridges, in Caspeele, Taerwe and Frangopol (eds.): Life-Cycle Analysis and Assessment in Civil Engineering: Towards an Integrated Vision. CRC Press, Taylor & Francis Group, London, UK, pp. 3-7.

 

Tatiana García Segura, Junior Award IALCCE 2018

Es un honor haber dirigido la tesis doctoral de Tatiana García Segura “Efficient design of post-tensioned concrete box-girder road bridges based on sustainable multi-objective criteria”. Esta joven doctora ingeniera de caminos acaba de recibir el Premio Internacional al mejor investigador joven del mundo en el ámbito del análisis de estructuras e infraestructuras a lo largo de su ciclo de vida. Se trata del Junior Award IALCCE 2018, que premia al mejor investigador, con una edad menor a 42 años. Es la primera vez que un español gana este galardón, lo cual es un hito para la Escuela de Ingenieros de Caminos de Valencia y para la Universitat Politècnica de València.

Tatiana, que fue becaria FPI del proyecto de investigación HORSOST e investigadora del ICITECH,  ya ganó el primer premio Cemex en sostenibilidad por su trabajo fin de máster “Métricas para el diseño eficiente de estructuras con hormigones no convencionales basados en criterios sostenibles multiobjetivo”Máster Universitario en Ingeniería del Hormigón, desarrollado dentro del . En este momento, es profesora ayudante doctor en el Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, e investigadora en los proyectos BRIDLIFE y DIMALIFE. Un futuro muy brillante para esta joven investigadora y profesora.

En la fotografía, de izquierda a derecha, Tatiana García Segura, Dan M. Frangopol y Víctor Yepes

A continuación os dejo un listado de los artículos científicos indexados en revistas de fuerte impacto del JCR donde ha participado Tatiana hasta este momento.

Referencias:

  1. GARCÍA-SEGURA, T.; PENADÉS-PLÀ, V.; YEPES, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty.  Journal of Cleaner Production, 202:904-915. https://doi.org/10.1016/j.jclepro.2018.08.177
  2. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2018). An optimization-LCA of a prestressed concrete precast bridge. Sustainability, 10(3):685. doi:10.3390/su10030685 (link)
  3. SIERRA, L.A.; YEPES, V.; GARCÍA-SEGURA, T.; PELLICER, E. (2018). Bayesian network method for decision-making about the social sustainability of infrastructure projects.  Journal of Cleaner Production, 176:521-534. https://doi.org/10.1016/j.jclepro.2017.12.140
  4. PENADÉS-PLÀ, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.;  YEPES, V. (2017). Life-cycle assessment: A comparison between two optimal post-tensioned concrete box-girder road bridges. Sustainability, 9(10):1864. Doi:10.3390/su9101864 (link)
  5. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  6. GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi:10.1007/s00158-017-1653-0
  7. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  8. MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  9. ZASTROW, P.; MOLINA-MORENO, F.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Life cycle assessment of cost-optimized buttress earth-retaining walls: a parametric study. Journal of Cleaner Production, 140:1037-1048. DOI: 10.1016/j.jclepro.2016.10.085
  10. PENADÉS-PLÀ, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2016). A review of multi-criteria decision making methods applied to the sustainable bridge design. Sustainability, 8(12):1295. DOI:10.3390/su8121295
  11. GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  12. MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  13. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  14. YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  15. YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  16. GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithmLatin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  17. GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J. (2014). Life-cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. International Journal of Life Cycle Assessment, 19(1):3-12. DOI 10.1007/s11367-013-0614-0 (link) (descargar versión autor)

 

Repercusión en la prensa:

https://www.lasprovincias.es/comunitat/mejor-ingeniera-civil-20181109011059-ntvo.html

https://www.lavanguardia.com/local/valencia/20181108/452802983492/una-ingeniera-de-la-upv-gana-un-premio-internacional-de-infraestructura-civil.html

https://www.elperiodic.com/valencia/noticias/592636_tatiana-garcia-primera-ingeniera-espanola-galardonada-international-association-life-cycle-civil-engineering-ialcce.html

https://www.20minutos.es/noticia/3486001/0/profesora-upv-primera-ingeniera-espanola-premiada-por-association-for-life-cycle-civil-engineering/

https://innovadores.larazon.es/es/not/una-espanola-mejor-investigadora-joven-del-mundo-en-infraestructura-civil

https://www.levante-emv.com/comunitat-valenciana/2018/11/08/profesora-upv-mejor-investigadora-joven/1792521.html

https://www.europapress.es/comunitat-valenciana/noticia-profesora-upv-primera-ingeniera-espanola-premiada-association-for-life-cycle-civil-engineering-20181108115129.html

http://www.upv.es/noticias-upv/noticia-10576-tatiana-garcia-es.html