Nos acaban de publicar en la Revista CIATEC-UPF (Revista de Ciências Exatas Aplicadas e Tecnológicas da Universidade de Passo Fundo, CIATEC-UPF – ISSN 2176-4565), un artículo relacionado con la optimización de pórticos de hormigón armado con sistemas de agrupación de columnas. Se trata de una colaboración con el profesor Moacir Kripka y está dentro del proyecto de investigación HYDELIFE.
Os paso a continuación el resumen y una copia descargable del artículo, pues está publicado en abierto. Espero que os sea de interés.
RESUMEN:
La perspectiva social es un aspecto fundamental en la construcción de infraestructuras sostenibles. Este estudio evalúa el análisis de ciclo de vida social de un marco articulado prefabricado de hormigón armado optimizado económicamente. Mediante el análisis de la contribución por fases al daño social total se identifica la fabricación como la etapa más influyente en el impacto social de la estructura. Adicionalmente, se verifica que la estructura modular presenta un impacto especialmente reducido en la etapa de construcción y final de vida útil. El análisis de los materiales y procesos más contribuyentes señala al acero de la armadura pasiva como el principal responsable tras el daño social de la estructura, seguido, pero en menor medida, por el hormigón y transporte. Los resultados destacan la importancia de considerar aspectos sociales en el desarrollo de la infraestructura de transporte, proporcionando información valiosa para responsables y partes interesadas en la toma de decisiones.
Palabras clave:
Marco articulado, prefabricado, análisis de ciclo de vida, optimización, sostenibilidad social
Acaban de publicarnos en la revista Journal of Building Engineering, que está en el primer decil del JCR, un artículo de revisión sobre el estado actual de los métodos modernos de construcción. Estos métodos, conocidos como “construcción inteligente“, son alternativas a la construcción tradicional. El gobierno del Reino Unido utilizó este término para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales se basan en tecnologías de construcción en fábrica. Este concepto abarca una amplia gama de tecnologías basadas en la fabricación modular, ya sea en el lugar de construcción o en otra ubicación, y está revolucionando la forma en que se construyen edificios de manera más rápida, rentable y eficiente. También se conoce comúnmente como construcción “off-site”. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El creciente interés por la sostenibilidad, las energías alternativas y los cambios en el estilo de vida debido a la pandemia ha impulsado la fabricación de edificaciones empleando los métodos modernos de construcción (Modern Methods of Construction, MMC), especialmente en el ámbito residencial. Estos métodos, que utilizan tecnologías innovadoras como alternativa inteligente a la construcción tradicional, han sido objeto de un exhaustivo estudio que busca clasificarlos, detectar tendencias y vacíos de conocimiento, y delinear futuras áreas de investigación. El análisis, basado en 633 publicaciones desde 1975 hasta 2022, revela seis grupos temáticos y 18 subcategorías, empleando una novedosa metodología mixta que incorpora el análisis de procesamiento de lenguaje natural (NLP). Si bien se destaca la presencia dominante de herramientas y tecnologías integradas en la Construcción 4.0 y los aspectos de gestión de la industria, también se identifican importantes lagunas de investigación, como la necesidad de aplicar más los MMC en la rehabilitación de edificios y abordar enfoques para mejorar el entorno construido a través del nuevo paradigma del diseño regenerativo. Este estudio exhaustivo ofrece una comprensión más profunda y rigurosa del estado del arte en el campo de la construcción inteligente mediante un mapeo y caracterización de la estructura conceptual del corpus bibliográfico y una evaluación sistemática basada en revisión de literatura. El artículo sugiere que se necesita más investigación para comprender los sistemas de construcción interdependientes mediante el uso de gemelos digitales.
Aspectos destacables:
El estudio utiliza aprendizaje automático combinado con una revisión sistemática de la literatura.
Se propone una novedosa metodología mixta que incorpora análisis de procesamiento de lenguaje natural.
Se recomienda una clasificación recientemente revisada para todos los MMC aplicados en edificios.
La literatura sobre MMC se clasificó en seis grandes áreas con 18 subcategorías.
Los temas se identifican mediante análisis de bigrama y agrupamiento, además del conocimiento experto.
Podéis descargar el artículo gratuitamente al tratarse de una publicación en acceso abierto:
The concerns surrounding sustainability, alternative energies, and lifestyle changes due to the pandemic have resulted in a surge in the manufacturing of buildings utilizing Modern Methods of Construction (MMC), particularly in housing. These methods involve using new technologies as smart building alternatives to traditional construction. Against the backdrop of Industry 4.0, there is an urgent need for a systematic literature review of MMCs in building construction to classify them, detect trends and gaps, and outline future research areas. This study analyzed 633 publications from 1975 to 2022 and grouped them into six thematic clusters and 18 subcategories, using a novel mixed methodology incorporating natural language processing (NLP) analysis. The qualitative analysis of the literature indicates that research in the field is dominated by tools and technologies integrated into Construction 4.0 and the industry’s management aspects. However, this review also highlights several gaps in research, including the need for more application of MMC to building retrofitting and the need for approaches to improve the built environment through the new paradigm of regenerative design. The high-level mapping and characterization of the bibliographic corpus’s conceptual structure and the classical evaluation process based on systematic literature review (SLR) have provided a more profound and rigorous state-of-the-art understanding.
Keywords:
Modern methods of construction; Industrialized buildings; Emerging technologies; Construction industry; Machine learning; Systematic literature review
Acaban de publicarnos un artículo en Materials, revista indexada en el primer cuartil del JCR. En este caso se ha realizado un estudio paramétrico de un marco prefabricado, articulado, de sección en U, empleando para ello tres metaheurísticas híbridas. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
En este artículo se aborda un estudio de las estructuras articuladas modulares viarias de coste óptimo. Se evalúa el rendimiento de tres metaheurísticas híbridas mediante un diseño factorial fraccionado de experimentos. Los resultados permiten seleccionar y calibrar el recocido simulado híbrido para resolver el problema de optimización combinatoria. Variando la luz horizontal de 8 a 16 m y la cobertura de tierra de 1 a 5 m, se estudian 25 configuraciones estructurales diferentes. La metodología calibrada se aplica para obtener nueve pórticos diferentes con costes óptimos para cada configuración. El estudio de las características económicas, medioambientales y geométricas de las 225 estructuras óptimas permite desarrollar un análisis de regresión. Con R2 cercanos a la unidad, las expresiones constituyen una valiosa herramienta para calcular el coste final, las emisiones asociadas, la energía incorporada y las características geométricas particulares. Las estructuras óptimas presentan diseños esbeltos y densamente reforzados. Además, algunas estructuras muestran reducciones considerables del refuerzo a cortante, algo que se soluciona con aumentos localizados del refuerzo longitudinal.
Marco articulado. https://bortubo.com/marcos-prefabricados-de-hormigon-armado-junta-plana-y-articulados/
Abstract:
This paper addresses a study of cost-optimal road modular hinged frames. The performance of three hybrid metaheuristics is assessed through a fractional factorial design of experiments. The results allow selecting and calibrating the hybrid simulated annealing to solve the combinatorial optimization problem. By varying the horizontal span from 8 to 16 meters and the earth cover from 1 to 5 meters, 25 different structural configurations are studied. The calibrated methodology is applied to obtain nine different frames with optimal costs for each configuration. The study of the economic, environmental, and geometrical characteristics of the 225 optimum structures allows for the development of a regression analysis. With R2 correlation coefficients close to the unit, the expressions form a valuable tool for calculating the final cost, associated emissions, embodied energy, and particular geometric characteristics. The optimum structures present slender and densely reinforced designs. In addition, some structures show considerable reductions in the shear reinforcement, something solved by localized increases in longitudinal reinforcement.
Acaban de publicarnos un artículo en Materials, revista indexada en el primer cuartil del JCR. En este caso se han optimizado las emisiones de CO₂ de un marco prefabricado articulado, de sección en U, empleando para ello varias metaheurísticas. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.
El desarrollo sostenible requiere mejoras en el uso de los recursos naturales. El objetivo principal del presente estudio es optimizar la utilización de materiales en la construcción de pórticos articulados prefabricados de hormigón armado. Se desarrolló un software propio en el lenguaje de programación Python. Esto permitió el cálculo, verificación y optimización de la estructura mediante la aplicación de técnicas metaheurísticas. El coste final es una representación directa del empleo de materiales. Así, se aplicaron tres algoritmos para resolver la optimización económica de la estructura. Mediante la aplicación de los algoritmos de recocido simulado, aceptación de umbrales y algoritmo del solterón, se consiguieron diseños sostenibles y no tradicionales. Estos hacen un empleo óptimo de los recursos naturales, manteniendo un coste final muy restringido. Para evaluar la mejora del impacto ambiental, se estudiaron las emisiones asociadas al dióxido de carbono y se compararon con una estructura de hormigón armado in situ de referencia. Los resultados mostraron diseños con una profundidad reducida de la losa superior y los muros laterales y un refuerzo pasivo denso. Con ellos se consiguió reducir hasta un 24% el coste final de la estructura, así como más del 30% de las emisiones asociadas.
Marco prefabricado articulado. https://forte.es/productos/marcos-articulados/
Abstract:
Sustainable development requires improvements in the use of natural resources. The main objective of the present study was to optimize the use of materials in the construction of reinforced concrete precast hinged frames. Proprietary software was developed in the Python programming language. This allowed the structure’s calculation, verification, and optimization by applying metaheuristic techniques. The final cost is a direct representation of the use of materials. Thus, three algorithms were applied to solve the economic optimization of the frame. By applying simulated annealing, threshold accepting, and old bachelor’s acceptance algorithms, sustainable, non-traditional designs were achieved. These make optimal use of natural resources while maintaining a highly restricted final cost. The carbon-dioxide-associated emissions were studied and compared with a reference cast-in-place reinforced concrete frame to evaluate the environmental impact improvement. The results showed designs with reduced upper slab and lateral wall depth and dense passive reinforcement. These were able to reduce up to 24% of the final cost of the structure, as well as over 30% of the associated emissions.
La construcción con hormigón prefabricado presenta claras ventajas económicas cuando se fabrican en taller piezas en grandes series. El ahorro en material y en mano de obra, la elevada calidad en el producto y el rápido montaje son razones que justifican, por sí solas, el uso de la construcción prefabricada. Sin embargo, hoy en día existen motivos adicionales basados en beneficios sociales y medioambientales que justifican la adopción de la tecnología del hormigón prefabricado. Asimismo, los proyectistas han tomado buena nota de las ventajas del prefabricado cuando se trata de construir puentes con luces moderadas, de 10 a 50 m. En estos casos, la disminución del peso resulta fundamental para reducir los costes de elevación y transporte de las piezas. En este contexto, la optimización estructural del coste necesario para construir un puente de vigas prefabricadas constituye un área de gran interés,especialmente cuando se realizan grandes series de piezas.
Siguiendo esta línea de trabajo, nuestro grupo de investigación se ha centrado en los últimos años en el diseño automatizado de puentes de vigas artesa prefabricadas de hormigón pretensado (HP) empleados como pasos superiores sobre vías de comunicación. Las luces vienen impuestas por las dimensiones de la vía inferior, con rangos habituales que oscilan entre los 20 y los 40 m. Estos puentes consisten en vigas de HP con forma de U con losa superior colaborante (Figura 2) y un tablero de hormigón, parcialmente prefabricado o construido “in situ”. Esta tipología cuenta a su favor, entre otras, con las ventajas derivadas de la prefabricación, como por ejemplo la construcción industrializada, los moldes reutilizables, los plazos reducidos de ejecución en obra y la baja interferencia con el tráfico inferior. La solución de viga en U permite eliminar completamente los poco agraciados cabezales sobre pila de los tableros de viga en doble T.
Figura 2. Esquema longitudinal del puente y sección transversal del tablero
Resulta interesante comparar la mejor solución alcanzada por alguno de los algoritmos desarrollados por nuestro gruporespecto a una estructura realmente construida y calculada mediante procedimientos habituales. Se han comprobado para casos similares ahorros apreciables en torno al 7-8%. Sin embargo, en algún caso extremo, como el caso del viaducto 1 del tramo Muro de Alcoy-Puerto de Albaida del proyecto de construcción de la autovía del Mediterráneo, el ahorro se ha estimado en un 50% (Martí et al., 2014). En este caso, el puente tenía una luz de 35 m y un ancho de tablero igual al de la solución optimizada, siendo el ahorro alcanzado tan importante a causa de las diferencias en la medición de las unidades de obra en materiales que pueden apreciarse en la Tabla 1.
Tabla 1. Comparación de las mediciones en las unidades de obra significativas correspondientes al viaducto 1 del tramo Muro de Alcoy-Puerto de Albaida, de luz 35 m, respecto a la solución optimizada (Martí et al., 2014)
Resulta evidente que los resultados alcanzados por nuestro grupo de investigación pueden ser de gran interés para su transferencia a las empresas de prefabricados, constructoras y proyectistas. Este diseño automatizado supone un auténtico revulsivo en la forma de entender el proyecto de las estructuras. No obstante, ciertas prácticas comunes como introducir en los proyectos estructuras prefabricadas sobredimensionadas y luego ajustarlas durante la obra (con los consiguientes ahorros para las partes) pueden verse afectadas por este tipo de diseño optimizado. Esta mala praxis puede ser un impedimento para que el diseño optimizado entre a formar parte de la práctica habitual en nuestro sector.
Os dejo a continuación un vídeo del GRUPO BERTOLÍN donde distintos técnicos nos explican las características de los puentes construidos con vigas artesas, sus partes principales y los procesos de ingeniería, mostrando como ejemplo diferentes estructuras en las que Bertolín trabaja actualmente: 4 estructuras en la variante norte de Bétera, acceso a Torrente por el barranco de Chiva, duplicación del puente de Malilla en Valencia y la mejora del acceso de la V30 a la V31.
A continuación os dejo las publicaciones científicas que ha realizado nuestro grupo de investigación al respecto de los puentes de vigas artesa. Estamos, cómo no, en disposición de realizar transferencia tecnológica a las empresas que así nos lo soliciten.
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges.Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI:10.1016/j.acme.2017.02.006
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2017). Design optimization of precast-prestressed concrete road bridges with steel fiber-reinforcement by a hybrid evolutionary algorithm.International Journal of Computational Methods and Experimental Measurements, 5(2):179-189.
MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI:10.1016/j.jclepro.2016.02.024
MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement.Journal of Structural Engineering, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058
YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm.Automation in Construction, 49:123-134. DOI:10.1016/j.autcon.2014.10.013
Figura 1. Laboratorio de materiales del Instituto de Ciencia y Tecnología del Hormigón (ICITECH)
En varios artículos anteriores detallamos los antecedentes, la motivación, las hipótesis de partida, así como la trascendencia del proyecto de investigación HYDELIFE. Ahora vamos a explicar los objetivos y la metodología de este proyecto, del cual soy investigador principal: Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos (PID2020-117056RB-I00). Los investigadores de este proyecto pertenemos al Instituto de Ciencia y Tecnología del Hormigón (ICITECH).
El objetivo general perseguido se basa en afrontar el reto social que supone la creación y la conservación de las construcciones modulares y puentes mixtos en escenarios de fuertes restricciones presupuestarias, mediante la resolución de los problemas complejos planteados en el ámbito de las decisiones públicas y privadas. Para ello se precisa un salto científico capaz de integrar a los distintos actores y grupos de expertos en la toma de decisiones considerando criterios de sostenibilidad social y ambiental a lo largo de todo el ciclo de vida de las infraestructuras considerando la variabilidad inherente al mundo real. Para integrar las incertidumbres que afectan al sistema, se propone aplicar técnicas metaheurísticas híbridas basadas en fiabilidad, aplicadas no sólo al proyecto de nuevas estructuras, sino al mantenimiento de las actuales. Un estudio de sensibilidad de los escenarios presupuestarios y de las hipótesis tomadas en los inventarios del análisis del ciclo de vida proporcionará conocimiento no trivial sobre las mejores prácticas. Esta metodología será aplicable también a otro tipo de infraestructuras.
El objetivo general se desarrollará mediante los objetivos específicos mostrados en la Figura 2 y que se describen a continuación, de los cuales será responsable el investigador principal:
OE-1: Análisis de funciones de distribución específicas para el diseño óptimo basado en fiabilidad que integre aspectos ambientales, sociales y económicos que sirva para la toma de decisión multicriterio.
OE-2: Determinación de indicadores clave basados en redes bayesianas y lógica neutrosófica para garantizar una efectiva integración de la sostenibilidad ambiental y social en la licitación de proyectos mantenimiento de construcciones modulares, puentes mixtos e híbridos.
OE-3: Identificación de estrategias de mantenimiento robusto óptimo de construcciones modulares y puentes mixtos y estructuras híbridas.
OE-4: Formulación y resolución del problema de optimización multiobjetivo que contemple el ciclo completo de construcciones modulares, puentes mixtos y estructuras híbridas mediante metaheurísticas híbridas.
OE-5: Comparación del diseño robusto óptimo respecto a la optimización heurística considerando incertidumbres en los escenarios presupuestarios y en las hipótesis del análisis del ciclo de vida.
OE-6: Difusión de resultados y redacción de informes.
Figura 2.- Objetivos específicos del proyecto HYDELIFE
Metodología propuesta en relación con los objetivos y con el estado del arte
El análisis del estado del arte alumbró dos huecos en la investigación, el empleo de metaheurísticas híbridas con Deep Learning y su aplicación a construcciones modulares, puentes mixtos y estructuras híbridas. Además, el empleo de la lógica neutrosófica y las redes bayesianas abre puertas en el ámbito de la decisión multicriterio. Estas novedades se combinan en la metodología con técnicas y disciplinas ya empleadas en otros proyectos: análisis del ciclo de vida, análisis basado en fiabilidad, diseño óptimo robusto, metamodelos y técnicas de minería de datos. Por tanto, se trata de una combinación integrada cuyo objetivo es la priorización del tipo de diseño, en el caso de estructuras de nueva planta, o bien de su mantenimiento, basándose en criterios de sostenibilidad social y ambiental bajo presupuestos restrictivos, considerando la variabilidad inherente a los problemas reales.
La Figura 3 muestra el esquema metodológico propuesto para HYDELIFE, relacionando las fases con los objetivos propuestos. Se utiliza un enfoque mixto e interactivo, donde el decisor proporciona información sobre las preferencias al analista que, tras una optimización multiobjetivo basada en fiabilidad y metamodelos, aporta un conjunto de soluciones eficientes que el responsable debe evaluar antes de tomar su decisión. Por tanto, la novedad de la propuesta metodológica trifase se basa en la integración de técnicas de información a priori, donde el decisor (grupos de interés) informa de las preferencias al analista (en cuanto a tipologías, métodos constructivos, conservación, etc.), produciéndose con esta información una optimización multiobjetivo capaz de generar alternativas eficientes utilizando la variabilidad en los parámetros, variables y restricciones. La última fase pasa por un proceso de información a posteriori para que el decisor contemple aspectos no considerados en la optimización para dar la solución final completa.
Figura 3.- Esquema metodológico diseñado para HYDELIFE en relación con los objetivos
Proyecto de Investigación:
Optimización híbrida del ciclo de vida de puentes y estructuras mixtas y modulares de alta eficiencia social y medioambiental bajo presupuestos restrictivos. (HYDELIFE). [Hybrid life cycle optimization of bridges and mixed and modular structures with high social and environmental efficiency under restrictive budgets]. PID2020-117056RB-I00. Financiado por el Ministerio de Ciencia e Innovación con fondos FEDER. Investigador Principal: Víctor Yepes.
En este momento llevamos seis meses de trabajo, pues el proyecto comenzó en septiembre del 2021. Pero ya podemos dar algunos resultados que se pueden ver en la siguiente lista de referencias.
Referencias:
MARTÍNEZ FERNÁNDEZ, P.; VILLALBA SANCHIS, I.; INSA FRANCO, R.; YEPES, V. (2022). Slab track optimisation using metamodels to improve rail construction sustainability. Journal of Construction Engineering and Management, (accepted, in press).
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2022). Multi-criteria decision-making applied to the sustainability of building structures based on Modern Methods of Construction.Journal of Cleaner Production, 330:129724. DOI:10.1016/j.jclepro.2021.129724
SÁNCHEZ-GARRIDO, A.J.; NAVARRO, I.J.; YEPES, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homes. Environmental Impact Assessment Review, 89:106572. DOI:10.1016/j.eiar.2021.106572
Figura 1. Construcción modular. https://www.draytonfox.com/modern-methods-of-construction/
La construcción modular y la prefabricación son técnicas ya veteranas en el ámbito de la ingeniería civil y la edificación. Desde que en 1936 Eugène Freyssinet construyera el primer puente de hormigón pretensado del mundo, en el que las vigas y tableros eran prefabricados, la tecnología ha experimentado un avance imparable. Por otra parte, la construcción modular tiene una larga historia en la gestión de la innovación (Simon, 1962). Sin embargo, la auténtica revolución que supone la inteligencia artificial, las tecnologías BIM y los retos de la sostenibilidad están cambiando radicalmente este concepto y lo está llevando a una nueva dimensión. En efecto, estamos ante la revolución de los métodos modernos de construcción. Este es el concepto del que vamos a hablar a continuación.
Los métodos modernos de construcción (Modern Methods of Construction, MMC) , o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Este concepto MMC lo utilizó el gobierno del Reino Unido para describir una serie de innovaciones en la construcción de viviendas, la mayoría de las cuales son tecnologías de construcción en fábrica (Gibb, 1999). Es un término que cubre una amplia gama de tecnologías basada en la fabricación modular, ya sea “in situ” o en otra ubicación, que está revolucionando la forma de construir edificios de forma más rápida, rentable y eficiente. También suele llamarse construcción “off-site”. Un ejemplo no muy lejano ha sido la construcción de dos hospitales de campaña en Wuhan (China) en solo 12 días debido a la epidemia del coronavirus. Por ejemplo, países como Suecia y Japón lideran la construcción MMC. En Suecia, casi la mitad de las viviendas de nueva construcción utilizan este método, llegando al 80% en el caso de viviendas unifamiliares. Japón, es el país donde se construye mayor número de viviendas nuevas con este método, aunque no llegan al 20% del total. Incluso podemos leer una noticia de hace unos días donde el alcalde de Londres apoya decididamente la aplicación de diseño de viviendas modulares.
Los diferentes métodos MMC incluyen el sistema de paneles planos prefabricados, módulos volumétricos 3D (Figuras 1 y 3), construcción con losas planas, paneles de cerramiento prefabricados (Figura 2), muros y forjados de hormigón, tecnología de doble pared (Figura 4), cimientos de hormigón prefabricado, aislamiento de encofrados de hormigón, entre otros. No obstante, la gestión de los sistemas 1D/2D respecto a los volumétricos 3D es muy diferente (López, 2017).
Tabla 1. Principales diferencias entre los sistemas modulares basados en elementos 1D y 2D frente a celdas 3D (López, 2017)
La reciente norma UNE 127050:2020 trata justamente de los sistemas constructivos industrializados para edificios construidos a partir de elementos prefabricados de hormigón, así como de los requisitos de comportamiento, fabricación, instalación y verificación.
Figura 2. Paneles de cerramiento prefabricados (precast cladding panels). https://www.designingbuildings.co.uk/wiki/Precast_concrete_cladding
Las ventajas de la construcción MMC frente a la construcción tradicional son evidentes. Los módulos permiten un ahorro de tiempo de hasta el 50%, pues éstos se elaboran en fábrica, sin incidencia del clima. Una vez llegan a la obra, se ensamblan, interrumpiendo al mínimo la propia obra, pues el 80% de la actividad de la construcción se ha realizado lejos de la obra. Permite el uso de materiales respetuosos con el medio ambiente, reduciéndose el desperdicio. Los módulos son de diseño atractivo e innovador, con materiales de elevada calidad, con un diseño a medida del cliente. La construcción en fábrica permite la fabricación con tolerancias estrictas, la reducción de los errores, promueve la seguridad, no estando los materiales a la intemperie durante la construcción. Además, permite el uso de materiales durables, que mejoran el aislamiento acústico, la protección contra incendios y la eficiencia energética. Sin embargo, en algunos países el uso de las MMC presenta costes más elevados que la construcción tradicional. Otras barreras son la falta de mano de obra especializada, la escasez de suministros o la regulación existente (Rahman, 2014). Con todo, la actual crisis del Covid-19 puede acelerar los cambios necesarios. De todos modos, los métodos MMC constituyen un producto diferente al del mercado de la construcción tradicional. La construcción modular, al tratarse de un producto alternativo, en lugar de competir, complementará el mercado tradicional. El objetivo es aumentar la productividad de los recursos disponibles mejorando la calidad, la eficiencia empresarial, la satisfacción del cliente, el rendimiento ambiental, el índice de sostenibilidad y el control de los plazos de entrega (Yepes et al., 2012; Pellicer et al., 2014, 2016).
Figura 3. Módulos volumétricos 3D (3D volumetric modules). http://www.ehu.eus/ehusfera/industrialized-architecture/page/4/
En la tabla siguiente, elaborada por Alejandro López, se pueden ver las diferencias más notables entre la construcción industrializada frente a la tradicional.
Tabla 2. Diferencias entre construcción tradicional e industrializada (Alejandro López).
Construcción tradicional
Construcción industrializada
Definición
Más posibilidades de cambios a lo largo de todo el proceso
Etapas claramente definidas, empezando desde el proyecto
Calidad
Elementos se manufacturan y/o ejecutan en la propia obra, mayor influencia del error humano (más rechazos)
Mayor control (cada pieza tiene su destino), menor influencia del error humano (se sustituyen los albañiles por montadores: la pieza tiene su lugar)
Precisión
Se admiten los errores. Las tolerancias se basan en centímetros
La precisión dimensional y espacial de los elementos es crucial. Las tolerancias se basan en milímetros
Mano de obra
Dependencia casi exclusiva de la capacitación técnica de la mano de obra humana disponible
Procesos más automatizados
Coste
En origen, normalmente menor. Pero mayor riesgo de imprevistos y desviaciones económicas
Precio cerrado en proyecto
Tiempo
El mayor grado de indefinición y la mayor interacción entre los distintos agentes provoca desviaciones en tiempo y, por tanto, en costes
Mayor grado de cumplimiento en la planificación de la obra, rápida apertura de tajos para otros gremios, menor dependencia de las condiciones climatológicas
Materiales
La obra es la fábrica al mismo tiempo. Muchos excedentes de materiales
Menor generación de residuos
Una de las claves que acelerará, sin duda, la adopción de los métodos MMC es la introducción de la metodología BIM en los proyectos de edificación o de infraestructuras. En España, las administraciones públicas ya van dando pasos hacia la exigencia de que los proyectos de edificación o infraestructuras se realicen bajo la metodología BIM. Tanto MMC como BIM aumentan claramente la calidad del producto, la sostenibilidad y la mejora del servicio a lo largo del ciclo de vida del activo. A este respecto, recomiendo leer la guía BIM para empresas de prefabricados de hormigón (ANDECE, 2020).
En la feria Construmat de Barcelona (mayo de 2019), McKinsey & Company presentó un informe en el que se detalla cómo la tecnología basada en datos podría ayudar a las empresas españolas de infraestructuras a tomar decisiones más inteligentes, reducir el riesgo y mejorar los resultados de los proyectos. Por tanto, BIM, la automatización de procesos, la inteligencia artificial, el Big Data, las tecnologías en la nube o la interacción con Internet de las Cosas suponen el revolución que lanzará definitivamente la construcción inteligente.
Figura 4. Tecnología de doble pared (twin wall technology). https://www.cornishconcrete.co.uk/products/twin-wall/
Dentro de nuestro grupo de investigación estamos trabajando en la tesis doctoral de Antonio Sánchez Garrido sobre este tipo de aspectos. En una de sus primeras publicaciones en revista indexada en el primer decil de JCR (Sánchez-Garrido y Yepes, 2020), se han aplicado técnicas analíticas de toma de decisiones multicriterio (MCDM) y análisis del ciclo de vida, a una tipología de construcción tradicional de una vivienda unifamiliar, y a dos alternativas diferentes basadas en MMC. Se propone un índice de sosteniblidad, que incluye atributos tangibles e intangibles, así como factores de incertidumbre y riesgos, que permite a los promotores priorizar soluciones que aseguren la sostenibilidad económica, social y medioambiental.
Os dejo algunos vídeos al respecto de esta nueva tecnología.
Os dejo como información complementaria un artículo de Alejandro López de hace apenas tres años, pero donde ya se empezaba a vislumbrar un crecimiento exponencial de la construcción modular.
DOWSETT, R.; GREEN, M.; SEXTON, M.; HARTY, C.,2019. Projecting at the project level: MMC supply chain integration roadmap for small house builders. Construction Innovation-England, 19 (2): 193-211.
PELLICER, E.; YEPES, V.; CORREA, C.L.; ALARCÓN, L.F. (2014). Model for Systematic Innovation in Construction Companies.Journal of Construction Engineering and Management, 140(4):B4014001.
PELLICER, E.; SIERRA, L.A.; YEPES, V. (2016). Appraisal of infrastructure sustainability by graduate students using an active-learning method.Journal of Cleaner Production, 113:884-896.
RAHMAN, M.M. (2014). Barriers of implementing modern methods of construction. Journal of Management in Engineering, 30(1):69-77.
SÁNCHEZ-GARRIDO, A.J.; YEPES, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home.Journal of Cleaner Production, 258: 120556.
SIMON, H.A. (1962). The arquitecture of complexity. Proceedings of the American Philosophical Society, 106(6):467-482.
YEPES, V.; PELLICER, E.; ORTEGA, J.A. (2012). Designing a benchmark indicator for managerial competences in construction at the graduate level. Journal of Professional Issues in Engineering Education and Practice, 138(1): 48-54.
Cimentación con cálices realizados in situ para pilares prefabricados. http://prefabricadoseguro.com/
La Norma UNE-EN 14991:2008 contempla los requisitos y los criterios básicos de prestaciones y especifica, donde sea aplicable, los valores mínimos de los elementos prefabricados para cimentaciones (comprende pilares con elementos de cimentación integrados, elementos de cimentación en cáliz, cálices, etc.) fabricados con hormigón armado de peso normal para estructuras de edificaciones de acuerdo con la Norma Europea EN 1992-1-1.
En una entrada anterior repasábamos algunos instrumentos y directrices para el desarrollo sostenible en la construcción. Aquí voy a recoger dos artículos firmados por Alejandro López Vidal, que es el Director Técnico de ANDECE y Secretario Técnico del Subcomité AENOR AEN/CTN 198/sc1 Edificación Sostenible, donde se explica en detalle qué son y para qué sirven las declaraciones ambientales de los productos prefabricados de hormigón. Espero que os sean de interés.
Se está poniendo de moda el concepto “inteligente” para nombrar todo tipo de cosas. Por ejemplo, “smart buildings“, “smart cities“, “smart beach“, “smart tourism destination“, “smart food“, etc. Como siempre, cada vez que se empieza a hacer viral un concepto, al final se acaba por difuminar y perder el sentido original de lo que se quería decir. Este tipo de modas ya han pasado por conceptos tan importantes como “calidad”, “sostenibilidad”, “innovación”, etc. Al final, aplicado a productos o servicios, se menoscaba el significado por culpa del marketing y con ello se quiere atraer al consumidor hacia lo “bueno”, “guay”, “saludable” o similares.
Espero que el término de “construcción inteligente” tenga algo más de recorrido y pueda suponer un punto de inflexión en nuestro sector. Este término presenta, como no podía ser de otra forma, numerosas interpretaciones y tantas más aplicaciones. Es un concepto que se asocia al diseño digital, a las tecnologías de la información y de la comunicación, la inteligencia artificial, al BIM, al Lean Construction, la prefabricación, los drones, la robotización y automatización, a la innovación y a la sostenibilidad, entre otros muchos conceptos.
Uno que me interesa mucho es la asociación con el de los nuevos métodos constructivos (término que incluye nuevos productos y nuevos procedimientos constructivos). Su objetivo es mejorar la eficiencia del negocio, la calidad, la satisfacción del cliente, el desempeño medioambiental, la sostenibilidad y la previsibilidad de los plazos de entrega. Por lo tanto, los métodos modernos de construcción son algo más que un enfoque particular en el producto. Involucran a la gente a buscar mejoras, a través de mejores procesos, en la entrega y ejecución de la construcción.
Sin embargo, y este es un punto crucial, para que se pueda hablar de verdad de “construcción inteligente”, no solo vamos a necesitar incorporar las nuevas tecnologías, sino que también va a ser necesario elaborar un sistema que permita la participación de todas las partes implicadas en el proceso proyecto-construcción, alimentando de información de calidad a este sistema de forma que soporte la toma de decisiones mediante la inteligencia artificial. El BIM puede ser un buen punto de partida para ello, pero se hace necesario integrar la inteligencia colectiva, de forma que, aunque se apoye el sistema de una rigurosa alimentación de datos en tiempo real, el decisor tome sus decisiones asumiendo la responsabilidad última de sus acciones.
Dejo abierto este tema por si alguno de mis estudiantes quieren realizar su Trabajo Fin de Máster, e incluso atreverse a la realización de una tesis doctoral sobre este tema.
Os voy a dejar algunos vídeos relacionados con el tema, algunos os gustarán más que otros, pero es una buena forma de acercarse al concepto de construcción inteligente.