Comunicaciones presentadas al 28th International Congress on Project Management and Engineering AEIPRO 2024

Durante los días 3-4 de julio de 2024 tiene lugar en Jaén (Spain) el 28th International Congress on Project Management and Engineering AEIPRO 2024. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

SÁNCHEZ-GARRIDO, A.; GUAYGUA, B.; VILLALBA, P.; YEPES, V. (2024). Ingeniería de proyectos basada en modelos de análisis multivariante. Aplicación al dimensionamiento de losas planas aligeradas. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Esta investigación propone una metodología para dimensionar losas innovadoras de hormigón armado sin vigas, que permiten el uso eficiente de materiales. Utilizando un enfoque estadístico y modelos de regresión lineal, se proporcionan criterios para calcular el espesor de la losa aligerada con esferas o discos plásticos presurizados, minimizando el número de variables. Este espesor puede estimarse a partir de la luz principal entre apoyos, la altura del disco o el diámetro de la esfera, así como el uso previsto del edificio. El modelo final ajustado logra explicar el 98% de la variabilidad en el espesor de la losa para luces comprendidas entre 5 m y 16 m. Este tipo de forjado contribuye a la reducción del consumo de hormigón y acero, lo que resulta en una disminución del peso y las cargas aplicadas. Esto impacta directamente en los costos y mejora los indicadores ambientales en comparación con los sistemas tradicionales. Se presenta como una alternativa eficiente para edificaciones, permitiendo la combinación de parámetros estructurales, constructivos y sostenibles.

SÁNCHEZ-GARRIDO, A.; YEPES-BELLVER, L.; SAIZ, D.; YEPES, V. (2024). Ingeniería de proyectos en Modernos Métodos de Construcción: El caso de edificios con losas planas mediante elementos aligerantes multiaxiales. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

Los métodos modernos de construcción (Modern Methods of Construction, MMC), o como algunos llaman “construcción inteligente“, constituyen alternativas a la construcción tradicional. Esta nueva forma de construir implica, necesariamente, un cambio en la forma de dirigir los proyectos, que pasan a ser industrializados, donde la eficiencia estructural, constructiva y la sostenibilidad ambiental y social son protagonistas. El objetivo del artículo es identificar los aspectos característicos de estas construcciones innovadoras que influyen en la ingeniería de proyectos, integrando a grupos multidisciplinares como arquitectos, ingenieros estructurales y empresas constructoras. Para ello se realizará un estudio para el caso de edificios construidos con losas planas aligeradas mediante elementos aligerantes multiaxiales. Los resultados muestran que estos diseños permiten integrar el proyecto, la fabricación de elementos y el procedimiento constructivo. El proyecto de estas construcciones permite aligerar y reducir las cuantías de hormigón y acero en aquellas zonas de las losas donde la capacidad portante es insignificante. Además, se ha comparado este diseño con otros tradicionales, destacando una reducción de costes y un aumento de la sostenibilidad a lo largo del ciclo de vida.

YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P.; ALCALÁ, J.; YEPES, V. (2024). Análisis del predimensionamiento de tableros óptimos de puentes losa pretensados aligerados y su incidencia en el proyecto estructural. 28th International Congress on Project Management and Engineering, AEIPRO, 3-4 de julio, Jaén (Spain)

El proyecto estructural normalmente se basa en la experiencia del proyectista. En ocasiones, dicha experiencia se plasma en fórmulas de predimensionamiento que, si bien ofrecen buenos resultados, en ocasiones arrastran ineficiencias cuando se comparan con técnicas actuales de optimización que tenga en cuenta las dimensiones económicas y ambientales. En este artículo se comparan reglas de dimensionamiento previo de estructuras basadas en la experiencia con técnicas de optimización. Se aplica al caso del proyecto de tableros de puentes tipo losa pretensados aligerados. El resultado de la investigación resalta la importancia de aplicar métodos basados en la optimización heurística y en metamodelos para actualizar la experiencia de los proyectistas y proponer nuevas fórmulas de predimensionamiento más ajustadas a la optimización económica y ambiental. Además, en el trabajo se ofrecen nomogramas de predimensionamiento, con el mínimo número de datos posible, que pueden ser de utilidad al proyectista en sus diseños previos.

Os paso el vídeo de presentación del congreso.

Premio para Mehrdad Hadizadeh-Bazaz en el IX Encuentro de Estudiantes de Doctorado

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del IX Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal. Es el segundo año consecutivo que Mehrdad consigue este premio.

Hoy en día, debido a los elevados costes de construcción, reparación y mantenimiento de grandes estructuras como los puentes, así como la creciente atención al ciclo de vida sostenible en todas las etapas, desde el diseño hasta el final de su vida útil, es crucial emplear diversos métodos para identificar daños y evaluar su eficacia en diferentes estructuras y condiciones. Esto no solo puede aumentar la vida útil de las estructuras y reducir los costes, sino también minimizar el impacto ambiental y social.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Descargar (PDF, 830KB)

Referencias:

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Life Cycle Assessment of a Coastal Concrete Bridge Aided by Non-Destructive Damage Detection Methods. Journal of Marine Science and Engineering, 11(9):1656. DOI:10.3390/jmse11091656

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023).  Life-cycle cost assessment using the power spectral density function in a coastal concrete bridgeJournal of Marine Science and Engineering, 11(2):433. DOI:10.3390/jmse11020433

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Power Spectral Density method performance in detecting damages by chloride attack on coastal RC bridge. Structural Engineering and Mechanics, 85(2):197-206. DOI:10.12989/sem.2023.85.2.197

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2022). Performance comparison of structural damage detection methods based on Frequency Response Function and Power Spectral Density. DYNA, 97(5):493-500. DOI:10.6036/10504

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¡Portada en Nature! Investigadores de la UPV idean un nuevo método de diseño de edificios que evita colapsos catastróficos

De vez en cuando se recibe una buena noticia que marca un punto de inflexión en la investigación. Es un honor para mí pertenecer al Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y a la Escuela Técnica Superior de Ingeniería de Caminos, Canales y Puertos de Valencia. En este contexto, el equipo del catedrático José Miguel Adam ha logrado un hito al publicar un artículo en la revista de mayor impacto por excelencia: NATURE. No solo eso, sino que, además, es portada de dicha revista. Mi más sincera enhorabuena a José Miguel y a su equipo. Os paso la noticia completa.

Un equipo del Instituto ICITECH de la Universitat Politècnica de València (UPV) ha publicado en Nature los últimos resultados de su “radical” propuesta para conseguir edificios ultrarresistentes, que sean capaces de aguantar situaciones extremas causadas por desastres naturales –riadas, inundaciones, deslizamiento de laderas…- explosiones, su propio envejecimiento, o un mantenimiento y conservación inadecuados. Esta propuesta añade al diseño de la estructura de los edificios una última línea de defensa para evitar colapsos catastróficos.

El nuevo método se inspira en cómo los lagartos se protegen de los depredadores al liberar sus colas cuando son atacados.

Los métodos de diseño actuales se basan en mejorar la conectividad entre los componentes de la estructura. En el caso de que algún componente falle, esta conectividad permite que las cargas que soportaban los componentes que fallan se redistribuyan al resto del sistema estructural. Aunque estos métodos resultan eficaces en el caso de pequeños fallos iniciales, pueden aumentar el riesgo de colapso progresivo tras grandes fallos iniciales, conduciendo así a colapsos completos o de gran magnitud. Así sucedió, por ejemplo, en las Champlain Towers y en el derrumbe de un edificio en Peñíscola en 2021, o en la ciudad iraní de Abadan en 2022. Y esto es lo que evita la propuesta surgida del ICITECH de la UPV.

“Nuestro novedoso método de diseño proporciona una solución para superar esta alarmante limitación y conseguir edificios más resilientes, capaces de aislar el colapso a solo la parte de la estructura que ha sufrido el fallo inicial, y salvaguardar el resto del edificio. El nuevo método de diseño ha sido verificado con un ensayo sobre un edificio real. Por tanto, se trata de la primera solución contra la propagación de colapsos en edificios tras grandes fallos iniciales que ha sido probado y verificado a escala real. Con la aplicación del nuevo método de diseño se conseguirá prevenir colapsos catastróficos, protegiendo así vidas humanas y minimizando los costes materiales que supondría un colapso completo de la estructura”, destaca José M. Adam, coautor de la publicación con Nirvan Makoond, Andri Setiawan y Manuel Buitrago; todos ellos miembros del ICITECH de la UPV.

Unos “fusibles” evitan el colapso total

La clave del método ideado por el equipo de la UPV reside en usar el concepto de fusible estructural, que permite aislar las partes dañadas de un edificio con el fin de evitar la propagación de grandes fallos a toda la construcción.

“Esta nueva filosofía es parecida a la forma en que las redes eléctricas se protegen frente a sobrecargas, al conectar diferentes segmentos de la red mediante fusibles eléctricos. Con nuestros diseños, el edificio presenta continuidad estructural bajo condiciones normales de funcionamiento, pero se segmenta cuando la propagación de un fallo es inevitable, reduciendo así el alcance del colapso y evitando el derrumbe total”, apunta Nirvan Makoond.

“La implementación del método repercutirá levemente, o incluso de forma despreciable, en el coste de la estructura, ya que utiliza detalles constructivos y materiales convencionales”, señala Andri Setiawan.

En su estado de desarrollo actual, el nuevo diseño de estos investigadores se puede aplicar a prácticamente cualquier edificio de nueva construcción. “Su eficacia ha sido verificada y demostrada para edificios con estructura prefabricada de hormigón. Actualmente, trabajamos en la aplicación de la metodología a edificios ejecutados con hormigón in situ y a edificios con estructura de acero”, concluye Manuel Buitrago.

Validado en un ensayo pionero a nivel mundial

El desarrollo de este nuevo método de diseño es uno de los resultados más destacados hasta la fecha del proyecto Endure, financiado por el European Research Council – ERC (Consejo Europeo de Investigación) con una ayuda Consolidator Grant de más de 2,5 millones de euros. Fue precisamente en el marco de este proyecto donde se llevó a cabo, en junio del año pasado, un ensayo pionero a nivel mundial que permitió validar sus prestaciones. Las pruebas se hicieron con un edificio completo, a escala real, en el que un gran fallo inicial en la estructura se aisló en una parte del edificio, evitando su propagación a toda la estructura. Cabe resaltar que la investigación se lleva a cabo al 100% en la UPV, siendo los cuatro autores de la publicación investigadores también de la UPV.

Portada de Nature

Nature ha publicado el trabajo del equipo del Instituto ICITECH de la UPV en la portada de su número de hoy. Además, es la primera vez que la revista publica un artículo de investigación en el campo del diseño y construcción de edificios.

Primeros pasos gracias a un proyecto financiado por la Fundación BBVA

El germen de este proyecto surgió de una Beca Leonardo que en 2017 otorgó la Fundación BBVA a José M. Adam. Ahora, siete años más tarde, el investigador del ICITECH – UPV continua con este proyecto revolucionario, de la mano del Consejo Europeo de Investigación, que permitirá levantar edificios más seguros y salvar vidas humanas.

Endure se desarrollará hasta 2026 en el laboratorio de estructuras del ICITECH de la Universitat Politècnica de València, uno de los mayores de Europa para el ensayo de grandes elementos estructurales.

Referencia

Makoond, N., Setiawan, A., Buitrago, M. et al. Arresting failure propagation in buildings through collapse isolation. Nature 629, 592–596 (2024). https://doi.org/10.1038/s41586-024-07268-5

Os dejo el vídeo y el artículo completo, pues está publicado en abierto.

Descargar (PDF, 23.79MB)

Marco normativo en seguridad y salud de encofrados y cimbras

Figura 1. Imagen: V. Yepes

En lo que respecta a la seguridad y salud en el uso de encofrados y cimbras, existen un conjunto de normativas, recomendaciones y buenas prácticas que incluyen normativas básicas, leyes y reglamentos de cumplimiento obligado. Además, se encuentran las normativas técnicas UNE, las cuales consisten en especificaciones técnicas no vinculantes, a menos que se indique lo contrario. Por último, se incluyen las Notas Técnicas de Prevención (NTP), que se presentan como guías de buenas prácticas y se consideran recomendaciones no obligatorias, a menos que se establezca lo contrario. Veamos estas normas a fecha de hoy (AFECI, 2021); no obstante, si se detecta que alguna está obsoleta o que existen nuevas normativas, se agradecería se comunicara para actualizar el listado:

Normativas básicas, leyes y reglamentos de obligado cumplimiento:

  • Constitución Española: en su artículo 40.2, encomienda a los poderes públicos velar por la seguridad e higiene en el trabajo.
  • Transposición de la Directiva Europea 89/391/CEE.
  • Ley 31/1995, de 8 de noviembre, de prevención de riesgos laborales.
  • Ley 54/2003, de 12 de diciembre, de reforma del marco normativo de la prevención de riesgos laborales.
  • Directiva 92/57/CEE del Consejo, de 24 de junio, relativa a las disposiciones mínimas de seguridad y de salud que deben aplicarse en las obras de construcción temporales o móviles.
  • Real Decreto 1627/1997, de 24 de octubre, por el que se establecen disposiciones mínimas de seguridad y de salud en las obras de construcción.
  • Real Decreto 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura.
  • Real Decreto 171/2004, de 30 de enero, por el que se desarrolla el artículo 24 de la Ley 31/1995, de 8 de noviembre, de prevención de riesgos laborales, en materia de coordinación de actividades empresariales.
  • Real Decreto 1801/2003, de 26 de diciembre, de seguridad general de los productos.
  • Real Decreto 604/2006, de 19 de mayo, por el que se modifican el R.D. 39/1997, de 17 de enero, por el que se aprueba el reglamento de los servicios de prevención, y el R.D. 1627/97, de 24 de octubre, por el que se establecen las disposiciones mínimas de seguridad y salud en las obras de construcción.
  • Orden Circular 3/2006 sobre medidas a adoptar en materia de seguridad en el uso de instalaciones y medios auxiliares de obra.

Normativas técnicas UNE

  • UNE 180201:2022 Encofrados. Diseño general, requisitos de comportamiento y verificaciones.
  • UNE-EN 795:2012 Protección contra caídas de altura: Dispositivos de anclaje. Requisitos y ensayos.
  • UNE-EN 341:2011 Equipos de protección individual contra caídas en altura: Dispositivos de rescate.
  • UNE-EN 353-1:2014 Equipos de protección individual contra caídas de altura. Dispositivos anticaídas deslizantes sobre línea de anclaje. Parte 1: Dispositivos anticaídas deslizantes sobre línea de anclaje rígida.
  • UNE-EN 353-2:2002 Equipos de protección individual contra caídas en altura Parte 1: Dispositivos anticaídas deslizantes sobre línea de anclaje flexible.
  • UNE-EN 354:2011 Equipos de protección individual contra caídas. Equipos de amarre.
  • UNE-EN 355:2002 Equipos de protección individual contra caídas en altura: Absorbedores de energía.
  • UNE-EN 360, 361, 362 y 363 Equipos de protección individual contra caídas de altura (dispositivos retráctiles, arneses, conectores y sistemas contra caídas, respectivamente).
  • UNE-EN 795:2012 Equipos de protección individual contra caídas. Dispositivos de anclaje.
  • UNE-EN 813:2009 Equipos de protección individual contra caídas. Arneses de asiento.
  • UNE-EN 1263-1:2014 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 1: Requisitos de seguridad y métodos de ensayo.
  • UNE-EN 1263-2:2016 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 2: Requisitos de seguridad para los límites de instalación.
  • UNE-EN 358:2018 Equipo de protección individual para sujeción en posición de trabajo y prevención de caídas de altura. Cinturones y equipos de amarre para posicionamiento de trabajo o de retención.
  • UNE-EN 360:2002 Equipos de protección individual contra caídas de altura. Dispositivos anticaídas retráctiles.
  • UNE-EN 13374-2013 Sistemas provisionales de protección de borde. Especificaciones del producto. Métodos de ensayo.
  • UNE-EN ISO 14122-4:2017 Seguridad de las máquinas. Medios de acceso permanentes a máquinas. Parte 4: Escalas fijas.
  • UNE-CEN/TR 15563 IN Equipamiento para trabajos temporales de obras. Recomendaciones de seguridad y salud.
  • UNE-EN 1263-1:2014 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 1: Requisitos de seguridad y métodos de ensayo.
  • UNE-EN 1263-2:2016 Equipamiento para trabajos temporales de obra. Redes de seguridad. Parte 2: Requisitos de seguridad para los límites de instalación.
  • UNE-EN 13414-1:2004+A2:2008 Eslingas de cables de acero. Seguridad. Parte 1: Eslingas para aplicaciones generales de elevación.

Notas técnicas de prevención NTP:

  • NTP 239: Escaleras manuales — Año 1989.
  • NTP 408: Escaleras fijas de servicio – Año 1996.
  • NTP 719: Encofrado horizontal. Puntales telescópicos de acero – Año 2006.
  • NTP 803: Encofrado horizontal. Protecciones colectivas (I) – Año 2008.
  • NTP 804: Encofrado horizontal. Protecciones colectivas (II) – Año 2008.
  • NTP 816: Encofrado horizontal. Protecciones individuales contra caídas de altura – Año 2008.
  • NTP 834: Encofrado vertical. Muro a dos caras, pilares, muros a una cara (I) – Año 2009.
  • NTP 835: Encofrado vertical. Muro a dos caras, pilares, muros a una cara (II) – Año 2009.
  • NTP 836: Encofrado vertical. Sistemas trepantes (I) – Año 2009.
  • NTP 837: Encofrado vertical. Sistemas trepantes (II) – Año 2009.

Referencias:

AFECI (2021). Guía sobre encofrados y cimbras. 3ª edición, Asociación de fabricantes de encofrados y cimbras, 76 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441. Valencia, 50 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio

Acaban de publicarnos en DYNA, revista indexada en el JCR, un artículo sobre la mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo contribuye al campo de la evaluación de la sostenibilidad de los puentes en entornos agresivos mediante la aplicación de técnicas de toma de decisiones grupales en el ámbito de los criterios múltiples. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras.
  • El estudio evalúa cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero utilizando cuatro técnicas de toma de decisiones (ANP, TOPSIS, COPRAS y VIKOR). Los resultados indican que los hormigones que contienen pequeñas cantidades de humo de sílice funcionan mejor a lo largo de su ciclo de vida que otras soluciones que suelen aumentar la durabilidad.
  • La investigación contribuye al desarrollo de herramientas y métodos para evaluar la sostenibilidad de las infraestructuras y guiar las futuras acciones de diseño en diversas estructuras. Se alinea con el enfoque en promover las iniciativas de economía circular y el cumplimiento de los requisitos ambientales y sociales específicos en las licitaciones de proyectos públicos

Abstract:

The construction industry is increasingly recognized as critical in achieving Sustainable Development Goals. Construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design a focal point of current research investigating how best to contribute to sustainability as society demands. Although methods exist to assess infrastructures’ economic, environmental, and social life cycle, the challenge remains in combining these dimensions into a single holistic indicator to facilitate decision-making. This study applies four decision-making techniques (ANP, TOPSIS, COPRAS, and VIKOR) to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. The results indicate that concretes containing even small amounts of silica fume perform better over their life cycle than other solutions usually considered to increase durability, such as water/cement ratio reduction or concrete cover increase.

Keywords:

Sustainable design, bridges, life cycle assessment, Analytic Network Process, TOPSIS, VIKOR, COPRAS, Multi-criteria decision-making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Enhancing sustainability assessment of bridges in aggressive environments through multi-criteria group decision-making. DYNA, 98(5):477-483. DOI:10.6036/10816

Os paso el artículo en abierto, tanto en inglés como en español.

Descargar (PDF, 520KB)

Descargar (PDF, 390KB)

Comunicaciones presentadas al 27th International Congress on Project Management and Engineering AEIPRO 2023

Durante los días 10-13 de julio de 2023 tiene lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Es una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presenta varias comunicaciones. A continuación os paso los resúmenes.

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

HADIZADEH-BAZAZ, M.; NAVARRO, I.J.; YEPES, V. (2023). Durability assessment and re-design of coastal concrete bridge through a non-destructive damage detection method. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

Los expertos y los gobiernos llevan tiempo centrándose en reducir los costes de reparación y mantenimiento de estructuras cruciales como los puentes mediante un mantenimiento y una reparación continuos. Este estudio explora la rentabilidad de dos métodos de predicción de daños mediante el método de densidad espectral de potencia (PSD) en comparación con el método convencional de detección de daños mediante el rediseño de diferentes espesores de recubrimiento de hormigón para un puente costero de hormigón armado. El estudio evalúa el impacto de los iones cloruro en la localización y extensión de los daños a lo largo de la vida útil del puente y compara los costes totales de mantenimiento y reparación. Los resultados muestran que, si bien el método PSD es eficaz para estructuras de hormigón con recubrimientos de hormigón bajos, el aumento del espesor del recubrimiento de hormigón puede dar lugar a mayores costes de reparación.

YEPES, V.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.J.; BLIGHT, T. (2023). Códigos abiertos basados en Python para la construcción de nomogramas y su aplicación en la ingeniería de proyectos. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain).

La Nomografía es una disciplina científica que se encarga de representar gráficamente fórmulas complejas mediante nomogramas, permitiendo el cálculo de tres o más variables matemáticas. Durante el siglo XX, esta técnica fue ampliamente utilizada en áreas como la ingeniería, medicina, electrónica, ciencias físicas, biológicas, etc. Sin embargo, con la llegada de las calculadoras y computadoras, la construcción de nuevos nomogramas y su enseñanza en la universidad disminuyeron. En los últimos años, la nomografía ha resurgido gracias a la ayuda de códigos de programación como PyNomo y Nomogen, basados en Python, que pueden generar un nomograma en cuestión de segundos, frente a las horas que antes requerían. En este trabajo se presentan estos códigos abiertos y algunos nomogramas generados con ellos, analizando su usabilidad, precisión y contribución a la relación entre las variables de las expresiones matemáticas. Finalmente, se destacan las posibilidades del uso de los nomogramas en la enseñanza e ingeniería de proyectos.

Parámetros de diseño y seguridad en las cimbras

Figura 1. Cimbra. https://www.incye.com/apeos-y-rehabilitacion/cimbras/

En artículos anteriores hemos hablado de las precauciones específicas en seguridad relativas al montaje y desmontaje de cimbras y encofrados. Sin embargo, en este nos centraremos en los parámetros de diseño y la seguridad en las cimbras, atendiendo a las medidas de protección individual y colectivas.

Para garantizar un montaje, uso y desmontaje adecuado de las cimbras, es fundamental cumplir con las instrucciones establecidas en el manual de instrucciones proporcionado por el fabricante o proveedor, al igual que con cualquier otro medio auxiliar. Además del manual de instrucciones, es importante tener en consideración otros documentos obligatorios y relevantes relacionados con la seguridad y la salud. Esto implica revisar el plan de seguridad y salud, el proyecto de la cimbra y contar con procedimientos por escrito que describan la secuencia correcta de montaje y desmontaje. En todo momento, es esencial verificar que la cimbra sea adecuada para el proyecto en ejecución, que las alturas sean correctas y que las condiciones del terreno sean apropiadas. Además, es fundamental asegurarse de contar con todos los equipos de seguridad necesarios.

En el montaje y desmontaje de sistemas de cimbra, así como en los sistemas de andamios, es crucial distinguir entre un sistema de cimbra con módulos de torres preconformados y otro sin torres modulares. En ambos casos, se debe planificar y llevar a cabo los procedimientos de montaje y desmontaje siguiendo la siguiente metodología: emplear plataformas horizontales de montaje y colocar los módulos de torres en posición horizontal a nivel del suelo, luego elevarlos y ubicarlos en su posición final, manteniendo la longitud completa (altura) del tramo correspondiente. Es esencial tener en cuenta que la implementación segura de estos procedimientos puede requerir el uso de sistemas anticaídas, en cuyo caso se proporcionarán instrucciones específicas en el manual del producto.

Durante la utilización, es importante seguir las siguientes medidas de seguridad: acceder a la zona de trabajo utilizando las áreas designadas específicamente para ese propósito, suspender las labores en caso de condiciones climáticas adversas como lluvia, nieve o vientos superiores a 65 km/h, evitar trabajar sobre plataformas sin protección o en niveles distintos, y no utilizar andamios de borriquetas u otros elementos auxiliares para alcanzar alturas en los niveles de trabajo.

Al proyectar las zonas de trabajo y circulación en una cimbra, es necesario considerar los siguientes parámetros de diseño:

  • En general, estas áreas deben tener un ancho mínimo de 60 cm en proyección horizontal, sin interrupciones a nivel del suelo. Además, deben presentar una resistencia y estabilidad suficientes para garantizar que el trabajo correspondiente se pueda realizar con la máxima seguridad.
  • Las zonas de trabajo deben construirse utilizando elementos metálicos u otros materiales resistentes. Asimismo, estas áreas deben incluir mecanismos de bloqueo para evitar movimientos involuntarios.
  • En el caso de que las zonas de trabajo estén compuestas por módulos estandarizados, es indispensable indicar de manera visible e indeleble la carga máxima permitida.
  • En los bordes, donde la caída sea mayor a 2 m, se debe instalar una barandilla metálica con una altura mínima de 90 cm, una barra intermedia y un rodapié de al menos 15 cm de altura, a menos que existan justificaciones razonables. La instalación de una barandilla puede no ser necesaria en bordes situados a menos de 20 cm de una pared o cualquier otro obstáculo que impida la caída. El diseño de la barandilla debe cumplir con las normas de seguridad vigentes.
  • Las superficies de trabajo deben ser principalmente horizontales. Solo se permite una inclinación de no más de 15º cuando sea necesario trabajar con cimbras inclinadas, siempre que la superficie sea lo suficientemente rugosa que impidan que tanto las personas como los materiales se deslicen.
  • Se debe procurar definir una zona de “gálibo” con una altura libre mínima de 190 cm y un ancho de 60 cm, sin obstrucciones, excepto en circunstancias específicas, que permita un paso sin problemas. Los elementos que se encuentren dentro de esta zona deben estar pintados con colores vivos y distintivos, y deben estar desprovistos de bordes cortantes, barras salientes y cualquier elemento que pueda representar un riesgo de lesiones al trabajar con cimbras.

Para garantizar la protección individual, es imperativo emplear los equipos de protección individual mencionados en el Plan de Seguridad y Salud de la obra. A modo orientativo, deben tenerse en cuenta las siguientes consideraciones:

  • Cada trabajador debe tomar medidas para salvaguardar su propia seguridad personal.
  • Es necesario usar ropa adecuada, como botas de seguridad con ataduras sin cordones sueltos y con protección para el tobillo. La ropa debe ser cómoda, ajustada, pero no holgada, resistente a rasgaduras y sin salientes o huecos que puedan representar un peligro de engancharse. Además, las mangas y las perneras deben tener bandas elásticas en los bordes para garantizar un ajuste adecuado. Se debe proporcionar ropa y calzado impermeables a cada trabajador según sea necesario.
  • El casco y los guantes son elementos obligatorios del equipo de seguridad. El casco adecuado es aquel que carece de visera y con barbuquejo, mientras que los guantes empleados deben adaptarse a la tarea específica en cuestión.
  • Cuando se trabaja más allá de la zona encofrada, plataformas de trabajo, pasillos u otras áreas protegidas, se debe utilizar un arnés de seguridad compuesto por un braguero con cabo de amarre y mosquetón. Preferiblemente, el arnés debe ser del tipo paracaidista y poseer un absorbedor de energía en el cordón de amarre.
  • Solo se deben llevar las herramientas esenciales necesarias para la tarea en cuestión, garantizando que las manos permanezcan libres. Es preferible llevar estas herramientas en un cinturón de herramientas o dispositivo similar, teniendo cuidado de proteger las manos contra posibles caídas o tropiezos.
  • En situaciones donde exista riesgo de proyección de partículas, polvo u otros materiales, se deben usar gafas de seguridad, pantallas de protección y mascarillas si es necesario.
  • Es fundamental poseer un conocimiento completo de las características específicas de la tarea y de cómo ejecutarla, tal como se describe en el Anejo de Operación.

Una vez suministrada la cimbra en la obra, se realizará un examen exhaustivo de los siguientes puntos y, según sea necesario, se tomarán las medidas correctivas apropiadas:

  • El personal con amplia experiencia o capacitación especializada se encargará del montaje de estas estructuras y poseerá un conocimiento completo de los peligros asociados con tales tareas.
  • Se implementarán medidas de protección durante las fases de montaje, uso y desmontaje para evitar la caída de personas u objetos, y el área se delimitará para prohibir la presencia o el paso de personas.
  • Todos los elementos de seguridad, como suelos y barandillas, deben fijarse de forma segura a la estructura de la cimbra, de tal manera que no puedan desprenderse, extraviarse, caerse o aflojarse inadvertidamente.
  • Todas las maniobras se ejecutarán de conformidad con las ubicaciones indicadas en el Anejo de Operación, empleando las herramientas necesarias y el personal designado, a menos que se determine una metodología alternativa en el sitio que no ponga en peligro la seguridad. Este enfoque alternativo debe recibir la aprobación del coordinador de seguridad y salud, así como de los proveedores de la cimbra, y se incorporará al anejo antes mencionado.
  • Las superficies de agarre, como los pasamanos, las asas, los cables, las cuerdas y las cadenas, deben estar desprovistas de astillas, bordes afilados o soldaduras que puedan provocar cortes.
  • En la cimbra se dispondrá de un botiquín para proporcionar primeros auxilios en caso de heridas cortantes, traumatismos, torceduras o fracturas, y se establecerá una comunicación por radio o teléfono con la enfermería u oficinas para solicitar asistencia médica.
  • Antes de comenzar el trabajo, los proveedores proporcionarán la información del Anejo de Operación, que incluirá la documentación del personal y las instrucciones del equipo. Además, se diseñará un plan de acción en caso de emergencia.

Referencias:

Fundación Agustín de Betancourt (2011). Sistemas de encofrado: análisis de soluciones técnicas y recomendaciones de buenas prácticas preventivas. Comunidad de Madrid, 130 pp. Enlace

Fernández, R.; Honrado, C. (2010). Estudio de las condiciones de trabajo en encofrado, hormigonado y desencofrado. Junta de Castilla y León, 68 pp. Enlace

OSALAN (2007). Guía práctica de encofrados. Instituto Vasco de Seguridad y Salud Laborales, 200 pp. Enlace

INSHT. Instituto Nacional de Seguridad e Higiene en el Trabajo. Colección de Legislación en materia de Prevención de Riesgos Laborales. Enlace

REAL DECRETO 2177/2004, de 12 de noviembre, por el que se modifica el Real Decreto 1215/1997, de 18 de julio, por el que se establecen las disposiciones mínimas de seguridad y salud para la utilización por los trabajadores de los equipos de trabajo, en materia de trabajos temporales en altura. BOE nº 274 13-11-2004. Enlace

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Recomendaciones para la construcción con un encofrado deslizante

Figura 1. Encofrado deslizante. https://es.wikipedia.org/wiki/Encofrado_deslizante

Los encofrados deslizantes son una técnica de construcción de gran interés, especialmente cuando nos encontramos ante el desafío de estructuras altamente esbeltas, como pilares de puentes, chimeneas industriales, silos o torres solares. Este procedimiento se basa en el uso de un encofrado rígido que se desplaza verticalmente a un ritmo controlado de 5 a 20 cm/h. El proceso comienza con la colocación del hormigón en el encofrado en capas sucesivas. A medida que el hormigón se endurece, el encofrado se eleva gradualmente mediante dispositivos de elevación, como gatos hidráulicos, impulsado por un sistema hidráulico. Sobre esta técnica ya escribimos un artículo anterior. Ahora vamos a dar unas recomendaciones relacionadas con los aspectos constructivos de la técnica.

Se lleva a cabo un deslizamiento continuo durante las 24 horas del día para evitar la formación de juntas frías. Por tanto, es crucial garantizar un suministro constante de materiales como hormigón y acero, así como electricidad y acceso a la obra. Es de vital importancia garantizar que el hormigón presente características uniformes, pues cualquier variación en su dosificación puede ocasionar arrastres en la superficie y defectos que requerirán reparación. Además, los cambios en las condiciones climáticas pueden afectar al tiempo de fraguado, por lo que es necesario controlar la consistencia y dosificación del hormigón, junto con el control de la resistencia. Otro factor relevante es asegurar un suministro continuo de hormigón, ajustado a la frecuencia y cantidad necesarias de acuerdo con el ritmo de elevación del encofrado.

En cuanto al proceso constructivo, se recomienda llevar a cabo el hormigonado, la colocación de armaduras y el montaje de puertas, ventanas y placas de manera progresiva a medida que el encofrado se eleva desde una plataforma de trabajo ubicada al nivel del borde superior en ambas caras. Se emplean plataformas adicionales para el control y revisión de la superficie. El peso de estas plataformas y del encofrado deslizante se carga mediante los gatos en los tubos de trepa, los cuales permanecen en el hormigón hasta que se complete el deslizamiento. Luego, se retiran junto con la camisa exterior elevada con el encofrado, creando un espacio fraguado debajo donde se alojan los tubos a lo largo de toda la altura.

Con el fin de prevenir posibles accidentes por caídas de objetos, es necesario delimitar una zona alrededor del área de construcción, a una distancia equivalente a la cuarta parte de la altura de los trabajos, medida desde el borde exterior de la obra. Se recomienda contar con un especialista en encofrado deslizante en la obra para garantizar un manejo adecuado y una respuesta eficiente ante situaciones complejas.

Dadas las condiciones particulares de cada obra y la necesidad de trabajar de forma continua durante 24 horas, se deben implementar medidas adicionales de seguridad, como señalización de advertencia, iluminación nocturna y redes de protección. Asimismo, resulta fundamental prestar especial atención a la nivelación de la superficie de apoyo del encofrado durante el montaje y llevar a cabo un replanteo inicial preciso. Para lograr un rendimiento óptimo, se requiere un equipo con experiencia en el sistema para minimizar los tiempos de inactividad entre las distintas actividades.

En cuanto al control de la verticalidad, es importante realizar un seguimiento periódico de la nivelación de los gatos y realizar los ajustes necesarios de forma manual. Esto contribuirá significativamente a prevenir desplomes. Además, se debe verificar la verticalidad de la obra una vez finalizada, utilizando plomadas de gravedad, plomadas ópticas o plomadas láser. Asimismo, se debe evitar la rotación en planta de la sección transversal mediante la disposición de perfiles longitudinales lo suficientemente rígidos.

Un documental extenso sobre este sistema de encofrados deslizantes lo podéis ver aquí.

Referencias:

DINESCU, T.; SANDUR, A.; RADULESCU, C. (1973). Los encofrados deslizantes. 1ª edición. Espasa-Calpe, S.A. Pozuelo de Alarcón, 496 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2004). Temas de procedimientos de construcción. Cimbras, andamios y encofrados. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.441.

RICOUARD, M.J. (1980). Encofrados. Cálculo y aplicaciones en edificación y obras civiles. Editores Técnicos Asociados, S.A. Barcelona, 312 pp.

Cursos:

Curso de estructuras auxiliares en la construcción: andamios, apeos, entibaciones, encofrados y cimbras.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Premio para Mehrdad Hadizadeh-Bazaz en el VIII Encuentro de Estudiantes de Doctorado

Mehrdad Hadizadeb-Bazaz, junto al trabajo galardonado.

Quisiera felicitar públicamente a nuestro estudiante de doctorado Mehrdad Hadizadeb-Bazaz por su Premio al mejor trabajo en la modalidad de póster otorgado por la Escuela de Doctorado de la Universitat Politècnica de València, dentro del VIII Encuentro de Estudiantes de Doctorado. Tengo el honor y el placer de dirigir su tesis doctoral junto con el profesor Ignacio J. Navarro. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal.

En la actualidad, debido a los altos costos de construir grandes estructuras como puentes, resulta sumamente importante prestar atención a la reparación y mantenimiento de dichas estructuras, con el fin de aumentar su vida útil y utilizar los métodos adecuados para reducir los costos asociados a su mantenimiento y reparación. En este sentido, resulta crucial emplear métodos apropiados y no destructivos para diagnosticar y predecir los daños en estas estructuras. Además, es importante considerar la evaluación del ciclo de vida y la sostenibilidad de los diferentes métodos de detección de daños.

En este estudio, se examina la precisión de diversos métodos de detección de daños, tanto dinámicos como no destructivos, para identificar la magnitud, ubicación y momento en que se produce el daño en la estructura a lo largo de su vida útil. Se evalúa la precisión y posibles variaciones de cada uno de los métodos de detección de daños en distintos entornos, especialmente en ambientes costeros y ambientes agresivos. Además, se realiza una evaluación del desempeño y comparación de diferentes métodos de detección de daños no destructivos, teniendo en cuenta casos de sostenibilidad de diseño y evaluación del ciclo de vida, incluyendo aspectos económicos, ambientales e impactos sociales.

Os dejo el póster completo, para que lo podáis leer.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Seguridad estructural, los estados límites y los métodos semiprobabilísticos

El concepto de seguridad de una estructura en cumplir un conjunto de funciones para las que ha sido proyectada es un término relacionado con el grado de certeza o fiabilidad de que no alcance un conjunto de estados no deseables que todavía no han acontecido.

La seguridad se representa por consiguiente como un aspecto antagónico al aspecto económico del dimensionamiento: una estructura proyectada para un coste pequeño puede resultar poco segura y, por el contrario, una estructura proyectada para ser muy segura puede resultar antieconómica. La solución debe quedar en un término adecuado.

El concepto de seguridad en una estructura se refiere a su capacidad para cumplir con las funciones previstas, garantizando un nivel de fiabilidad que evite la ocurrencia de estados no deseados. La seguridad se contrapone al aspecto económico del diseño: una estructura económica puede ser menos segura, mientras que una estructura altamente segura puede resultar costosa. Por lo tanto, es necesario encontrar un equilibrio adecuado entre ambos aspectos.

El objetivo principal del Proyecto de Ingeniería Estructural consiste en garantizar que la estructura cumpla satisfactoriamente con su función original. El mantenimiento de esta funcionalidad a lo largo de su vida útil depende de diversos factores o parámetros que tradicionalmente se han considerado como cantidades deterministas.

Sin embargo, evaluar la seguridad en ingeniería es complicado debido a varios factores. En primer lugar, los accidentes pueden ocurrir por causas no relacionadas con los cálculos realizados, como erosiones o modelos inadecuados. Además, tratar el problema de forma aleatoria puede llevar a considerar la probabilidad como medida universal e invariable de seguridad. Sin embargo, la probabilidad solo es significativa en relación con un conjunto coherente de conocimientos, como los estados de falla no ocurridos, difíciles de definir. Además, existen incertidumbres que no pueden ser objetivamente cuantificadas mediante probabilidades. Por lo tanto, las probabilidades solo pueden ser definidas dentro de un contexto específico y los cálculos de probabilidad son meramente convencionales. Además, si bien medir el margen de seguridad a través de una magnitud física puede ser útil en un problema particular, no todas las magnitudes son adecuadas en todos los casos generales. Por ejemplo, las tensiones no son una magnitud adecuada para el estudio del equilibrio estático, y evaluar el margen de seguridad basándose en las tensiones puede ser incorrecto en problemas no lineales.

En el contexto de la Teoría de la Fiabilidad Estructural, Armen Der Kiureghian presenta los siguientes tipos de incertidumbres. En primer lugar, están las incertidumbres físicas, que surgen debido a la inherente variabilidad de las magnitudes físicas involucradas en el problema, como dimensiones, propiedades del material, cargas y resistencia. En segundo lugar, encontramos las incertidumbres estadísticas, que se originan a partir de los modelos probabilísticos utilizados para caracterizar las Variables Básicas del problema. Estas incertidumbres se deben a las aproximaciones necesarias para seleccionar las Funciones de Distribución y estimar sus parámetros, debido a la falta de información disponible. En tercer lugar, se presentan las incertidumbres del modelo, que son generadas por las hipótesis simplificativas realizadas en los modelos matemáticos empleados para describir la respuesta de un sistema estructural. Estas simplificaciones incluyen aspectos como la homogeneidad, el comportamiento elástico o elastoplástico, las pequeñas deformaciones y las condiciones de contorno. Aunque la variabilidad de los dos últimos tipos de incertidumbres puede reducirse a través del estudio e investigación, las incertidumbres físicas del primer tipo son inevitables.

En el pasado, las construcciones se basaban en métodos empíricos, confiando en la experiencia y la intuición del constructor para garantizar la seguridad. Sin embargo, en la actualidad, la experiencia debe complementarse con los resultados obtenidos, ya que la rápida evolución técnica puede presentar situaciones no experimentadas previamente. Con el surgimiento de la construcción metálica en el siglo XIX y el enfoque en la Resistencia de Materiales, se introdujo el método de tensiones admisibles. Este método implica un enfoque determinista en las variables utilizadas, donde la seguridad se basa en el margen establecido por las tensiones admisibles. Estas tensiones se obtienen mediante el cociente entre la resistencia del material y un coeficiente de seguridad, mientras que las cargas variables se establecen de manera empírica y arbitraria.

El desarrollo de la Teoría de la Elasticidad permitió aplicar este método en la construcción de hormigón armado, pero presenta desafíos. Cuando el comportamiento no es lineal debido a los materiales o la geometría de la estructura, las tensiones admisibles no reflejan el margen real de seguridad. Además, el comportamiento del hormigón y el acero dificulta definir el fallo en términos de tensiones. No se consideran los efectos de la adaptación plástica del hormigón, donde la tensión en un punto no determina la confiabilidad estructural si hay una fase de adaptación plástica que redistribuye los esfuerzos. Además, no se distinguen los diferentes tipos de acciones cuya influencia en la seguridad es distinta. No obstante, este método ha sido utilizado con profusión durante la primera mitad del siglo XX.

La Teoría de la Fiabilidad, que inicialmente se aplicaba a procesos industriales de producción en serie, se adaptó en 1960 al campo de la Ingeniería Estructural. El objetivo era desarrollar métodos que permitieran determinar los niveles de seguridad de los Sistemas Estructurales, mediante un enfoque racional de las incertidumbres presentes en ellos. Desde entonces, esta área de investigación ha experimentado un notable impulso, y los fundamentos teóricos desarrollados han dejado de ser exclusivamente un tema de investigación académica para convertirse en un conjunto de metodologías con una amplia gama de aplicaciones prácticas.

No obstante, los avances tecnológicos y los métodos de análisis han permitido realizar estudios de seguridad más precisos en las estructuras mediante la incorporación de modelos estadísticos y de probabilidad en los cálculos. Desde los primeros intentos, como el de Max Mayer en 1926, numerosos autores han contribuido al desarrollo del enfoque probabilístico y a su aplicación práctica. Para emplear la probabilidad en los cálculos, es necesario definir un conjunto coherente de eventos no deseados, denominados “estados límite”. Estos estados límite representan condiciones en las que una estructura o uno de sus elementos deja de cumplir su función de manera inmediata o progresiva. La seguridad se caracteriza por la probabilidad o conjunto de probabilidades de que los estados límite no sean superados. Al elegir la probabilidad de ocurrencia de un estado límite como medida convencional de la seguridad, es necesario establecer los valores aplicables en la práctica.

A primera vista, podría parecer que el uso de probabilidades resuelve por completo el problema de medir la seguridad. Sin embargo, su implementación enfrenta dos dificultades. Por un lado, están los datos que no se pueden cuantificar de manera probabilística debido a su naturaleza. Por otro lado, resulta prácticamente imposible conocer con precisión la probabilidad real de alcanzar un estado límite. Estas limitaciones dificultan la aplicación práctica de las probabilidades en la evaluación de la seguridad.

La seguridad puede tratarse en tres niveles, según el grado de simplificación en el abordaje del problema:

  • Nivel 3: Utiliza el cálculo de probabilidades sin restricciones en la representación de las incertidumbres.
  • Nivel 2: Representa las acciones, resistencias de materiales y secciones mediante distribuciones conocidas o asumidas, definidas por su tipo, media y desviación típica. La fiabilidad se expresa con el “índice de seguridad” (β).
  • Nivel 1: Establece niveles de fiabilidad estructural aplicando factores parciales de seguridad a valores nominales preestablecidos de las variables fundamentales.

Los métodos de nivel 2 y 3 emplean probabilidades que están vinculadas a hipótesis apriorísticas sobre las distribuciones de los datos.

En cambio, el método de nivel 1, conocido como método semiprobabilístico, considera solo ciertos elementos que se pueden cuantificar de manera probabilística, mientras que las demás incertidumbres se abordan mediante factores empíricos que poseen un significado físico específico. Este método es el más simple y ampliamente reconocido en la actualidad.

Os paso un vídeo explicativo sobre conceptos de fiabilidad estructural de Juan Carlos López Agüí, que espero os sea de interés.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.