Programación lineal con Matlab

Los problemas de programación lineal consisten en optimizar una ecuación lineal que está sujeta a una serie de restricciones conformadas por desigualdades lineales. Para resolverlos el toolbox de Matlab posee la función linprog, la cual posee tres algoritmos para su solución, el método de larga escala, el método simplex y el de Active Set.

La sintaxis para llamar esta función es la siguiente:

x = linprog (f ,A, b, Aeq, beq, lb, ub, x0, options)

Donde:

f: es el vector de coeficientes de la función objetivo, organizado según las variables (Matlab intentará minimizar siempre, por tanto multiplicaremos por -1 si queremos maximizar)

A, b: corresponden a las restricciones de desigualdad, siendo el primero la matriz y el segundo el vector del lado derecho del sistema de inecuaciones Ax<=b.

Aeq, beq: tienen el mismo tratamiento que A y b, respectivamente, teniendo en cuenta que los nuevos corresponden a un sistema de ecuaciones, en tanto que los antiguos constituían uno de inecuaciones.

lb, ub: son, respectivamente, los límites inferior y superior de la región donde se espera que se encuentre el punto óptimo.

x0: es el punto inicial para la iteración. Según el algoritmo usado, es posible, o no, omitir este último.

Ejercicio 1:

Un taller confecciona cuatro productos: F, B, V y A para los que utiliza 2 horas, 3 horas y media, 4 horas y media y 5 horas de máquina y 1, 2, 1 y 10 horas de mano de operario para cada producto, respectivamente. Si se dispone de 3000 horas de máquina y 2000 horas de operario, y sabiendo que los beneficios obtenidos por unidad son de 6, 10, 13 y 30 u.m,  respectivamente, calcular el número de productos de cada tipo que deben producirse para obtener el máximo beneficio.

El planteamiento para el primer problema es:

Maximizar: 6×1 + 10×2 + 13×3 + 30×4
Sujeto a: 2×1 + 3,5×2 + 4,5×3 + 5×4 = 3000
x1 + 2×2 + x3 + 10×4 = 2000
x1, x2, x3, x4 ≥ 0

Para definir todas las variables del primer problema, en Matlab, se debe escribir:
>> f = [-6 -10 -13 -30];
>> A = -eye(4); % matriz identidad de tamaño 4×4
>> b = [0 0 0 0];
>> Aeq = [2 3.5 4.5 5 ; 1 2 1 10];
>> beq = [3000 2000];

Finalmente, se usa la sintaxis respectiva con las variables del primer problema, cargadas previamente, para obtener lo siguiente:

>> [x,fval] = linprog(f,A,b,Aeq,beq,lb,ub,x0)
Optimization Terminated.

x =
0.0000
0.0000
500.0000
150.0000
fval =
-1.1000e+004

Ejercicio 2:

Una empresa que se dedica a la producción de frascos de perfume, de agua de colonia y de champú utiliza tres factores productivos F1, F2 y F3 disponiendo de 240, 460 y 430 unidades, respectivamente. Las cantidades de dichos factores utilizados en la producción de un frasco por cada producto se detallan en la siguiente tabla:

Cuadro
La formulación el segundo problema es:Sabiendo que el precio unitario de venta del perfume es de 5 unidades monetarias, el del agua de colonia de 2 y el del champú de 3, y que se vende todo lo que se produce, calcular el beneficio máximo y el número de frascos de cada tipo que debe producir la empresa para obtenerlo.

Maximizar: 5×1 + 2×2 + 3×3
Sujeto a: F1 ≤ 240
F2 ≤ 460
F3 ≤ 430

La asignación de los valores de las variables, correspondientes al segundo problema, se realiza de la siguiente manera:

>> f = [-5 -2 -3];
>> A = [1 2 1 ; 2 0 3 ; 0 4 1];
>> b = [240 460 430];
>> x0 = [0 0 0];

>> [x,fval] = linprog(f,A,b,[],[],[0 0 0])
Optimization Terminated.
x =
230.0000
5.0000
0.0000
fval =
-1.1600e+003

Os dejo a continuación algunos problemas que, seguro, podréis abordar con Matlab:

Descargar (PDF, 164KB)

Referencia:

Cabezas, I.; Páez, J.D. (2010). Matlab. Toolbox de optimización. Aplicaciones en ciencias económicas. Unidad de Informática y Comunicaciones. Facultad de Ciencias Económicas. Universidad Nacional de Colombia, Bogotá D.C. (enlace).

La inteligencia artificial en la ingeniería civil

https://www.chilecubica.com/revistas-de-construcci%C3%B3n/inteligencia-artificial/

La inteligencia artificial (IA)  – tecnologías capaces de realizar tareas que normalmente requieren inteligencia humana – constituye un enfoque alternativo a las técnicas de modelización clásicas. La IA es la rama de la ciencia de la computación que desarrolla máquinas y software con una inteligencia que trata de imitar las funciones cognitivas humanas. En comparación con los métodos tradicionales, la IA ofrece ventajas para abordar los problemas asociados con las incertidumbres y es una ayuda efectiva para resolver problemas de elevada complejidad, como son la mayoría de problemas reales en ingeniería. Además, las soluciones aportadas por la IA constituyen buenas alternativas para determinar los parámetros de diseño cuando no es posible realizar ensayos, lo que supone un ahorro importante en tiempo y esfuerzo dedicado a los experimentos. La IA también es capaz de acelerar el proceso de toma de decisiones, disminuye las tasas de error y aumenta la eficiencia de los cálculos. Entre las diferentes técnicas de IA destacan el aprendizaje automático (machine learning), el reconocimiento de patrones (pattern recognition) y el aprendizaje profundo (deep learning), técnicas que han adquirido recientemente una atención considerable y que se están estableciendo como una nueva clase de métodos inteligentes para su uso en la ingeniería civil.

Todos conocemos problemas de ingeniería civil cuya solución pone al límite las técnicas computacionales tradicionales. Muchas veces se solucionan porque existen expertos con la formación adecuada capaces de intuir la solución más adecuada, para luego comprobarla con los métodos convencionales de cálculo. En este contexto, la inteligencia artificial está tratando de capturar la esencia de la cognición humana para acelerar la resolución de estos problemas complejos. La IA se ha desarrollado en base a la interacción de varias disciplinas, como son la informática, la teoría de la información, la cibernética, la lingüística y la neurofisiología.

Figura 1. Interrelación entre diferentes técnicas computacionales inteligentes. Elaboración propia basada en Salehi y Burgueño (2018)

A veces el concepto de “inteligencia artificial (IA)” se confunde con el de “inteligencia de máquina (IM)” (machine intelligence). En general, la IM se refiere a máquinas con un comportamiento y un razonamiento inteligente similar al de los humanos, mientras que la IA se refiere a la capacidad de una máquina de imitar las funciones cognitivas de los humanos para realizar tareas de forma inteligente. Otro término importante es la “computación cognitiva (CC)” (cognitive computing), que se inspira en las capacidades de la mente humana. Los sistemas cognitivos son capaces de resolver problemas imitando el pensamiento y el razonamiento humano. Tales sistemas se basan en la capacidad de las máquinas para medir, razonar y adaptarse utilizando la experiencia adquirida.

Las principales características de los sistemas de CC son su capacidad para interpretar grandes datos, el entrenamiento dinámico y el aprendizaje adaptativo, el descubrimiento probabilístico de patrones relevantes. Técnicamente, la IA se refiere a ordenadores y máquinas que pueden comportarse de forma inteligente, mientras que el CC se concentra en la resolución de los problemas utilizando el pensamiento humano. La diferencia más significativa entre la IA y la CC puede definirse en función de su interactuación con los humanos. Para cualquier sistema de IA, hay un agente que decide qué acciones deben tomarse. Sin embargo, los sistemas de CC aprenden, razonan e interactúan como los humanos.

Por otra parte, los “sistemas expertos” son una rama de la IA. Un sistema experto se definiría como un programa de ordenador que intenta imitar a los expertos humanos para resolver problemas que exigen conocimientos humanos y experiencia. Por tanto, la IA incluye diferentes ramas como los sistemas expertos, el aprendizaje automático, el reconocimiento de patrones y la lógica difusa.

La IA se ha usado en estas últimas décadas de forma intensiva en las investigaciones relacionadas con la ingeniería civil. Son notables las aplicaciones de las redes neuronales, los algoritmos genéticos, la lógica difusa y la programación paralela. Además, la optimización heurística ha tenido una especial relevancia en muchos campos de la ingeniería civil, especialmente en el ámbito de las estructuras y las infraestructuras. Sin embargo, los métodos más recientes como el reconocimiento de patrones, el aprendizaje automático y el aprendizaje profundo son método totalmente emergentes en este ámbito de la ingeniería. Éstas técnicas emergentes tienen la capacidad de aprender complicadas interrelaciones entre los parámetros y las variables, y así permiten resolver una diversidad de problemas que son difíciles, o no son posibles, de resolver con los métodos tradicionales.

El aprendizaje automático es capaz de descubrir información oculta sobre el rendimiento de una estructura al aprender la influencia de diversos mecanismos de daño o degradación y los datos recogidos de los sensores. Además, el aprendizaje automático y el aprendizaje profundo tienen una elevada potencialidad en el dominio de la mecánica computacional, como por ejemplo, para optimizar los procesos en el método de elementos finitos para mejorar la eficiencia de los cálculos. Estos métodos también se pueden utilizar para resolver problemas complejos a través del novedoso concepto de la Internet de las Cosas. En este contexto del Internet de las Cosas, se pueden utilizar estas técnicas emergentes para analizar e interpretar grandes bases de datos. Esto abre las puertas al desarrollo de infraestructuras, ciudades o estructuras inteligentes.

Sin embargo, aún nos encontramos con limitaciones en el uso de estos métodos emergentes. Entre esas limitaciones figura la falta de selección racional del método de IA, que no se tenga en cuenta el efecto de los datos incompletos o con ruido, que no se considere la eficiencia de la computación, el hecho de que se informe sobre la exactitud de la clasificación sin explorar soluciones alternativas para aumentar el rendimiento, y la insuficiencia de la presentación del proceso para seleccionar los parámetros óptimos para la técnica de IA. Con todo, a pesar de estas limitaciones, el aprendizaje automático, el reconocimiento de patrones y el aprendizaje profundo se postulan como método pioneros para aumentar la eficiencia de muchas aplicaciones actuales de la ingeniería civil, así como para la creación de usos innovadores.

Referencias:

GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150.

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2019). A review of multi-criteria assessment techniques applied to sustainable infrastructures design. Advances in Civil Engineering, 2019: 6134803.

SALEHI, H.; BURGUEÑO, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171:170-189.

SIERRA, L.A.; YEPES, V.; PELLICER, E. (2018). A review of multi-criteria assessment of the social sustainability of infrastructures. Journal of Cleaner Production, 187:496-513.

YEPES, V. (2013). Métodos no convencionales de investigación basados en la inteligencia artificial. https://victoryepes.blogs.upv.es/2013/11/12/metodos-no-convencionales-de-investigacion-basado-en-la-inteligencia-artificial/

YEPES, V. (2020). Computación cuántica y gemelos híbridos digitales en ingeniería civil y edificación. https://victoryepes.blogs.upv.es/2019/10/30/computacion-cuantica-gemelos-digitales/

YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036

Os dejo a continuación un informe sobre cómo la inteligencia de máquina permite crear valor y se postula como una herramienta de primer nivel en todos los ámbitos.

Descargar (PDF, 1.05MB)

18 años de la lectura de mi tesis doctoral: Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW

Hoy 4 de septiembre, pero del año 2002, tuve la ocasión de defender mi tesis doctoral titulada “Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW“. La tesis la dirigió el profesor Josep Ramon Medina Folgado, el tribunal lo presidió José Aguilar, acompañado por José Vicente Colomer, Francesc Robusté, Francisco García Benítez y Jesús Cuartero. La calificación fue de sobresaliente “cum laude” por unanimidad.

Por tanto, mi tesis ya ha cumplido la mayoría de edad. Es un buen momento de reflexionar sobre lo que este trabajo supuso para mí. Fue una tesis tardía, pues la leí con 38 años, teniendo ya una buena trayectoria profesional en la empresa privada (Dragados y Construcciones) y en la administración pública (Generalitat Valenciana). De alguna forma, ya tenía la vida más o menos solucionada, con experiencia acumulada, pero con muchas inquietudes. En aquel momento era profesor asociado a tiempo parcial y, en mis ratos libres, me dediqué a hacer la tesis doctoral. Ni decir tiene las dificultades que supone para cualquiera el sacar tiempo de donde no lo hay para hacer algo que, en aquel momento, era simplemente vocacional. No hubo financiación de ningún tipo, ni reducción de jornada laboral, ni nada por el estilo. En aquel momento ni se me ocurrió que acabaría, años después, como catedrático de universidad. Del 2002 al 2008 seguí como profesor asociado trabajando en la administración pública. Por último, por el sistema de habilitación nacional, accedí a la universidad directamente de profesor asociado a profesor titular, cosa bastante rara en aquel momento. Gracias a que era una verdadera oposición con el resto de candidatos, tuve la oportunidad de mostrar mis méritos ante un tribunal. Luego la cátedra vino por el sistema de acreditación, y la plaza, tras una penosa espera a causa de la crisis y por las cuotas de reposición. Pasé en 6 años de ser profesor asociado a tiempo parcial a estar habilitado como catedrático de universidad (12 de mayo del 2014). Todo eso se lo debo, entre otras cosas, a la gran producción científica que pude llevar a cabo y que tuvo su origen en esta tesis doctoral.

Por cierto, en aquella época la tesis doctoral tenía que ser inédita, es decir, no tenía que haberse publicado ningún artículo de la tesis. Hoy día es todo lo contrario, conviene tener 3-4 artículos buenos antes de pasar por la defensa. Luego publiqué al respecto algunos artículos en revistas nacionales e internacionales, pero sobre todo, comunicaciones a congresos.

La tesis supuso, en su momento, aprender en profundidad lo que era la algoritmia, el cálculo computacional y, sobre todo, la optimización heurística. En aquel momento, al menos en el ámbito de la ingeniería civil, nada o muy poco se sabía al respecto, aunque era un campo abonado a nivel internacional. Luego comprobé que todo lo aprendido se pudo aplicar al ámbito de las estructuras, especialmente a los puentes, pero eso es otra historia.

Os dejo las primeras páginas de la tesis y la presentación que utilicé en Powerpoint. Para que os hagáis una idea del momento, la presentación también la imprimí en acetato, pues aún se utilizada en ese momento en las clases la proyección de transparencias.

Referencia:

YEPES, V. (2002). Optimización heurística económica aplicada a las redes de transporte del tipo VRPTW. Tesis Doctoral. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universitat Politècnica de València. 352 pp. ISBN: 0-493-91360-2.

Descargar (PDF, 340KB)

Descargar (PDF, 5.92MB)

Sesión temática en CMN2021: Optimization, metaheuristics and evolutionary algorithms in civil engineering

En el marco del próximo congreso CMN2021 (Congress on Numerical Methods in Engineering) que se celebrará en Las Palmas de Gran Canaria del 28 al 30 de junio de 2021, hemos organizado una sesión temática coordinada por David Greiner, Diogo Ribeiro y Víctor Yepes que versa sobre optimización, metaheurísticas y algoritmos evolutivos en ingeniería civil. Os dejo a continuación una breve descripción del congreso y un resumen de la sesión temática propuesta.

El objetivo del Congreso de Métodos Numéricos en Ingeniería (CMN) es actuar como un foro en que se recopilen los trabajos científicos y técnicos más relevantes en el área de los métodos numéricos y la mecánica computacional, así como sus aplicaciones prácticas. CMN 2021, organizado conjuntamente por las sociedades de métodos numéricos española (SEMNI), portuguesa (APMTAC) y por el Instituto Universitario de Sistemas Inteligentes y Aplicaciones Numéricas en Ingeniería (SIANI) de la Universidad de Las Palmas de Gran Canaria (ULPGC). Los anteriores congresos conjuntos de ambas sociedades fueron celebrados en Madrid (2002), en Lisboa (2004), en Granada (2005), Porto (2007), Barcelona (2009), Coimbra (2011), Bilbao (2013), Lisboa (2015), Valencia (2017) y Minho (2019). Habiendo sido Las Palmas de Gran Canaria la sede del Primer Congreso CMN organizado por SEMNI en 1990, (General Chairs: Gabriel Winter y Miguel Galante), retorna 31 años después a su primera sede. El programa científico del CMN 2021 estará estructurado en sesiones temáticas según las distintas especialidades de los métodos numéricos. Las comunicaciones presentadas en el congreso constituirán una referencia de los avances recientes y de las líneas de trabajo futuras. Asimismo, investigadores internacionales de reconocido prestigio impartirán una serie de conferencias plenarias. El enlace a la web del congreso es la siguiente: https://congress.cimne.com/cmn2021

Descargar (PDF, 129KB)

La dimensión social en la optimización sostenible del mantenimiento de puentes

Acabamos de presentar una comunicación en el 10th International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2020, que se tuvo que desarrollar en Praga (República Checa) del 3 al 5 de junio, pero que por motivos del coronavirus, se ha desarrollado virtualmente del 2 al 4 de septiembre. A continuación os paso un resumen de la misma, así como la presentación que hemos realizado.

En los objetivos de desarrollo sostenible recientemente establecidos se reconoce la importancia de las infraestructuras para lograr un futuro sostenible. A lo largo de su largo ciclo de vida, las infraestructuras generan una serie de impactos cuya reducción ha sido uno de los principales focos de atención de los investigadores en los últimos años. La optimización de los intervalos de mantenimiento de las estructuras, como los puentes, ha despertado la atención del sector de la ingeniería civil, pues la mayoría de los impactos de las infraestructuras se producen durante su fase operativa. Así pues, actualmente los puentes se diseñan para atender a los efectos económicos y ambientales derivados de las actividades de mantenimiento. Sin embargo, en esos análisis se suele descuidar el pilar social de la sostenibilidad. Dado que todavía no existe una metodología universalmente aceptada para su evaluación coherente, la dimensión social no se incluye efectivamente en las evaluaciones del ciclo de vida de las infraestructuras. En la presente comunicación se evalúan los efectos del ciclo vital de diseños alternativos de los tableros de hormigón de los puentes en un entorno cercano a la costa que requiere mantenimiento. Los intervalos de mantenimiento derivados de la fiabilidad se optimizan primero minimizando los impactos económicos y ambientales. En una segunda etapa del análisis, se incluye la dimensión social en el proceso de optimización y se comparan los resultados. Los resultados de optimización de estas evaluaciones combinadas se obtienen aplicando la técnica de toma de decisiones multicriterio AHP-TOPSIS. En el presente documento se demuestra cómo la inclusión de la dimensión social puede conducir a estrategias de mantenimiento óptimo diferentes y más orientadas a la sostenibilidad. El enfoque tridimensional que se aplica aquí ha dado lugar a que se prefieran otras alternativas a las derivadas de la evaluación convencional que considera las perspectivas económica y ambiental. Esa conclusión apoya la idea de que se requieren evaluaciones holísticas del ciclo vital para el diseño sostenible de las infraestructuras y que es necesario hacer más esfuerzos urgentes para integrar la dimensión social en las evaluaciones de la sostenibilidad de las estructuras.

Figure 1: Product system boundaries (Navarro et al., 2020)

ABSTRACT

The recently established Sustainable Development Goals recognize the importance of infrastructures for achieving a sustainable future. Along their long-lasting life cycle, infrastructures generate a series of impacts, the reduction of which has been one of the main focus of researchers’ attention in the past years. The optimization of maintenance intervals of structures, such as bridges, has aroused the attention of the civil engineering sector, since most of the impacts of infrastructures occur during the operational phase. Thus, bridges are currently designed to attend the economic and environmental impacts derived from maintenance activities. However, the social pillar of sustainability is usually neglected in those analyses. Since no universally accepted methodology does yet exist for its consistent evaluation, the social dimension is not effectively included in the life cycle assessments of infrastructures. This communication evaluates the life cycle impacts of alternative concrete bridge deck designs in a maintenance-demanding environment near shore. Reliability-derived maintenance intervals are first optimized by minimizing the economic and environmental impacts. In a second stage of the analysis, the social dimension is included in the optimization process and results are compared. Optimization results from these combined assessments are obtained applying the Multi-Criteria Decision-Making technique AHP-TOPSIS. The present paper demonstrates how the inclusion of the social dimension may lead to different, more sustainability-oriented optimal maintenance strategies. The three-dimensional approach applied here has resulted in other alternatives to be preferred against those derived from the conventional assessment that considers the economic and environmental perspectives. Such finding supports the idea that holistic life cycle assessments are required for sustainable designs of infrastructures and that more efforts are urgently needed to integrate the social dimension in sustainability assessments of structures.

KEYWORDS

Life cycle assessment, bridges, maintenance, reliability, social impacts, sustainable design, sustainability, corrosion, Multi-Criteria Decision Making, AHP.

REFERENCE

NAVARRO, I.J.; YEPES, V.; MARTÍ, J.V. (2020). Social dimension on the sustainability-oriented maintenance optimization of bridges in coastal environments. 10th International Conference on High Performance and Optimum Design of Structures and Materials HPSM/OPTI 2020, 3-5 June 2020, Prague, Czech Republic, 11 pp.

 

Special Issue “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications”

 

 

 

 

 

Mathematics (ISSN 2227-7390) is a peer-reviewed open access journal which provides an advanced forum for studies related to mathematics, and is published monthly online by MDPI. The European Society for Fuzzy Logic and Technology (EUSFLAT) and International Society for the Study of Information (IS4SI) are affiliated with Mathematics and their members receive a discount on article processing charges.

  • Open Access—free for readers, with article processing charges (APC) paid by authors or their institutions.
  • High Visibility: Indexed in the Science Citation Indexed Expanded – SCIE (Web of Science) from Vol. 4 (2016) and Scopus.
  • Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 16.4 days after submission; acceptance to publication is undertaken in 4.6 days (median values for papers published in this journal in the first half of 2020).
  • Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.

 

Impact Factor: 1.747 (2019) (First decile JCR)

Special Issue “Deep Learning and Hybrid-Metaheuristics: Novel Engineering Applications”

Deadline for manuscript submissions: 30 April 2021.

Special Issue Editors

Prof. Dr. Víctor Yepes Website SciProfiles
Guest Editor
ICITECH, Universitat Politècnica de València, Valencia, Spain
Interests: multiobjective optimization; structure optimization; lifecycle assessment; social sustainability of infrastructures; reliability-based maintenance optimization; optimization and decision-making under uncertainty
Special Issues and Collections in MDPI journals
Dr. José Antonio García Website
Guest Editor
Pontificia Universidad Católica de Valparaíso, Chile
Interests: optimization; deep learning; operations research; artificial intelligence applications to industrial problems

Special Issue Information

Dear Colleagues,

Hybrid metaheuristic methods have shown very good performances in different combinatorial problems. Additionally, the rise of machine learning techniques has created a space to develop metaheuristic algorithms that use these techniques in order to tackle NP-hard problems and improve the convergence of algorithms. In this Special Issue, we invite researchers to submit papers in this optimization line, applying hybrid algorithms to industrial problems, including but not limited to industrial applications, and challenging problems arising in the fields of big data, construction, sustainability, transportation, and logistics, among others.

Deep learning techniques have also been important tools in extracting features, classifying situations, predicting events, and assisting in decision making. Some of these tools have been applied, for example, to Industry 4.0. Among the main techniques used are feedforward networks (FNN), convolutional networks (CNN), long-term short memory (LSTM), autoencoders (AE), enerative adversarial networks, and deep Q-networks (DQNs). Contributions on practical deep learning applications and cases are invited to this Special Issue, including but not limited to applications to the industry of computational vision, natural language processing, supervised learning applied to industry, unsupervised learning applied to industry, and reinforcement learning, among others.

Prof. Dr. Víctor Yepes
Dr. José Antonio García
Guest Editors

 

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI’s English editing service prior to publication or during author revisions.

Keywords

  • Construction
  • Smart cities
  • Optimization
  • Deep learning

Optimización de muros de contrafuertes mediante algoritmo híbrido de enjambre de partículas y clustering

Acaban de publicarnos un artículo en la revista Mathematics,  revista indexada en el primer cuartil del JCR. En este artículo se presenta un algoritmo híbrido de enjambre de partículas y clustering para optimizar el coste y las emisiones de CO2 de un muro de contrafuertes. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El diseño de los muros de contrafuertes es un problema de optimización combinatoria de interés debido a las aplicaciones prácticas relativas al ahorro de costos que implica el diseño y la optimización en la cantidad de emisiones de CO2 generadas en su construcción. Por otro lado, este problema presenta importantes retos en cuanto a complejidad computacional, pues involucra 32 variables de diseño, por lo que tenemos en el orden de 10^20 combinaciones posibles. En este artículo proponemos un algoritmo híbrido en el que se integra el método de optimización del enjambre de partículas que resuelve los problemas de optimización en espacios continuos con la técnica de clustering db-scan. Este algoritmo optimiza dos funciones objetivo: las emisiones de carbono y el costo económico de los muros de hormigón armado. Para evaluar la contribución del operador del db-scan en el proceso de optimización, se diseñó un operador aleatorio. Se comparan las mejores soluciones, los promedios y los rangos intercuartílicos de las distribuciones obtenidas. A continuación se comparó el algoritmo db-scan con una versión híbrida que utiliza k-means como método de discretización y con una implementación discreta del algoritmo de búsqueda de armonía. Los resultados indican que el operador db-scan mejora significativamente la calidad de las soluciones y que la metaheurística propuesta muestra resultados competitivos con respecto al algoritmo de búsqueda de armonía.

Abstract:

The design of reinforced earth retaining walls is a combinatorial optimization problem of interest due to practical applications regarding the cost savings involved in the design and the optimization in the amount of CO2 emissions generated in its construction. On the other hand, this problem presents important challenges in computational complexity since it involves 32 design variables; therefore we have in the order of 10^20 possible combinations. In this article, we propose a hybrid algorithm in which the particle swarm optimization method is integrated that solves optimization problems in continuous spaces with the db-scan clustering technique, with the aim of addressing the combinatorial problem of the design of reinforced earth retaining walls. This algorithm optimizes two objective functions: the carbon emissions embedded and the economic cost of reinforced concrete walls. To assess the contribution of the db-scan operator in the optimization process, a random operator was designed. The best solutions, the averages, and the interquartile ranges of the obtained distributions are compared. The db-scan algorithm was then compared with a hybrid version that uses k-means as the discretization method and with a discrete implementation of the harmony search algorithm. The results indicate that the db-scan operator significantly improves the quality of the solutions and that the proposed metaheuristic shows competitive results with respect to the harmony search algorithm.

Keywords:

CO2 emission; earth-retaining walls; optimization; db-scan; particle swarm optimization

Reference:

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020). The buttressed  walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics, 8(6):862. https://doi.org/10.3390/math8060862

Descargar (PDF, 847KB)

Evaluación del impacto ambiental y social de puentes de carretera óptimos de hormigón postesado

Acaban de publicarnos un artículo en la revista Sustainability,  revista indexada en JCR. En este artículo se evalúa el impacto social y ambiental de puentes de carretera óptimos de hormigón postesado. El trabajo se enmarca dentro del proyecto de investigación DIMALIFE que dirijo como investigador principal en la Universitat Politècnica de València.

La mayoría de las definiciones de sostenibilidad incluyen tres pilares básicos: económico, ambiental y social. El aspecto económico siempre se evalúa, pero no necesariamente en el sentido de la sostenibilidad económica. Por otra parte, el aspecto ambiental se está considerando cada vez más, mientras que el pilar social apenas se ha trabajado en él. Centrándose en los pilares ambiental y social, resulta crucial el uso de metodologías que permitan una evaluación amplia de todos los aspectos y la integración de la evaluación en unos pocos indicadores que sean comprensibles. Este artículo se estructura en dos partes. En la primera parte se hace un examen de los métodos de evaluación del impacto del ciclo de vida, que permiten una evaluación amplia de los aspectos ambiental y social. En la segunda parte, se realiza una evaluación completa de la sostenibilidad ambiental y social utilizando la base de datos de ecoinvent y el método ReCiPe, para el pilar ambiental, y la base de datos SOCA y el método simple de ponderación del impacto social, para el pilar social. Esta metodología se utilizó para comparar tres puentes optimizados: dos puentes de carretera de hormigón postensado de sección en cajón con diversas características iniciales y de mantenimiento, y un puente prefabricado de hormigón pretensado. Los resultados muestran que existe una alta interrelación entre el impacto ambiental y social para cada etapa del ciclo de vida.

Abstract

Most of the definitions of sustainability include three basic pillars: economic, environmental, and social. The economic pillar has always been evaluated but not necessarily in the sense of economic sustainability. On the other hand, the environmental pillar is increasingly being considered, while the social pillar is weakly developed. Focusing on the environmental and social pillars, the use of methodologies to allow a wide assessment of these pillars and the integration of the assessment in a few understandable indicators is crucial. This article is structured into two parts. In the first part, a review of life cycle impact assessment methods, which allow a comprehensive assessment of the environmental and social pillars, is carried out. In the second part, a complete environmental and social sustainability assessment is made using the ecoinvent database and ReCiPe method, for the environmental pillar, and SOCA database and simple Social Impact Weighting method, for the social pillar. This methodology was used to compare three optimized bridges: two box-section post-tensioned concrete road bridges with a variety of initial and maintenance characteristics, and a pre-stressed concrete precast bridge. The results show that there is a high interrelation between the environmental and social impact for each life cycle stage.

Keywords

 SustainabilityLCAS-LCAsocial assessmentecoinventSOCA

Reference:

PENADÉS-PLÀ, V.; MARTÍNEZ-MUÑOZ, D.; GARCÍA-SEGURA, T.; NAVARRO, I.J.; YEPES, V. (2020). Environmental and social impact assessment of optimized post-tensioned concrete road bridges. Sustainability, 12(10), 4265. DOI:10.3390/su12104265

Descargar (PDF, 1.52MB)

El profesor José Antonio García Conejeros de estancia con nosotros en la Universitat Politècnica de València

Dr. José Antonio García Conejeros

Nuestro grupo de investigación está muy orgulloso y es muy afortunado de contar con visitas y estancias de otros profesores, de gran prestigio internacional, que vienen a trabajar y compartir experiencias en la Universitat Politècnica de València. Si en entradas anteriores hablé de la estancia del profesor Dan M. Frangopol, de la visita del profesor Gizo Parskhaladze, y de la estancia de investigación del profesor Moacir Kripka , ahora me toca hablar de la estancia que ha tenido con nosotros el profesor José Antonio García Conejeros en el ICITECH. Estuvo con nosotros durante su “verano” austral, y se fue justo antes de que se declarara el estado de alarma en España por el coronavirus.

Tuve la ocasión de conocer a José Antonio con motivo de mi visita a la Pontificia Universidad Católica de Valparaíso (Chile), en mayor de 2019. Allí tuve la ocasión de impartir varias conferencias sobre optimización y toma de decisiones en puentes e infraestructuras viarias.  Fruto de esta colaboración, a parte de los relacionados con la investigación, se extienden al futuro intercambio de estudiantes y profesorado entre nuestras respectivas universidades y en la participación conjunta en proyectos de investigación y de transferencia tecnológica. En las referencias os dejo tres artículos que hemos publicado como consecuencia de su estancia. Seguro que vendrán muchos más. Todo un verdadero placer.

También os dejo parte de la entrevista que le hicieron en su universidad con motivo de la estancia. La entrevista completa la tenéis aquí: http://icc.pucv.cl/noticias/profesor-jose-antonio-garcia-realiza-estadia-de-investigacion-en-espana

¿Cuáles fueron los motivos de su estadía académica en la ciudad de Valencia?

El principal motivo fue realizar una colaboración con el equipo de investigación de Ingeniero de Caminos, Canales y Puertos, de la Universidad Politécnica de Valencia. Este equipo encabezado por el Dr. Víctor Yepes, tiene una gran experiencia en todo lo que es estructuras de caminos, canales y puentes. Y por mi lado yo tengo una experiencia académica e industrial en el área de inteligencia artificial. Entonces el objetivo es integrar ambos mundos, para resolver un problema complejo.

¿Podría detallarnos las actividades académicas o de investigación realizadas allá?

Las actividades académicas en la primera semana fueron de reuniones donde definimos un problema a trabajar. Posteriormente yo realicé una propuesta de cómo utilizar métodos de optimización para abordar un problema de sustentabilidad. Las semanas siguientes fueron de trabajo técnico donde se resolvió el problema obtuve los resultados y los discutimos par ver la calidad y la pertinencia de publicarlos.

¿De qué manera continuará el trabajo realizado allá?

El trabajo continúa en dos líneas. La primera es generar publicaciones en conjunto, la escuela de ingeniería en construcción PUCV y el grupo de Víctor. La segunda es potenciar el capital Humano avanzado, tanto con académicos o alumnos de allá que vengan a realizar estadías acá, y alumnos de la PUCV que vayan a potencias sus capacidades al grupo de Víctor.

¿Algo más que desee agregar?

La estadía fue bastante constructiva ya que me permitió entrar en una nueva línea de investigación en sustentabilidad y también decir que nos aprobaron el articulo de investigación “Black hole algorithm for sustainable design of counterfort retaining walls.” en Sustainability, que es una revista ISI-SCIE.

Referencias:

GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2020). The buttressed walls problem: An application of a hybrid clustering particle swarm optimization algorithm. Mathematics,  8(6):862. https://doi.org/10.3390/math8060862

GARCÍA, J.; YEPES, V.; MARTÍ, J.V. (2020). A hybrid k-means cuckoo search algorithm applied to the counterfort retaining walls problem. Mathematics,  8(4), 555. DOI:10.3390/math8040555

YEPES, V.; MARTÍ, J.V.; GARCÍA, J. (2020). Black hole algorithm for sustainable design of counterfort retaining walls. Sustainability, 12(7), 2767. DOI:10.3390/su12072767

Optimización del mantenimiento del pavimento en carreteras mediante GRASP

La insuficiente inversión en el sector público junto con programas ineficaces de infraestructura de mantenimiento conducen a altos costos económicos a largo plazo. Por lo tanto, los responsables de la infraestructura necesitan herramientas prácticas para maximizar la eficacia a largo plazo de los programas de mantenimiento. En el artículo que os presento se describe una herramienta de optimización basada en un procedimiento híbrido de búsqueda aleatoria y adaptativa (GRASP) considerando la aceptación del umbral (TA) con restricciones relajadas. Esta herramienta facilita el diseño de programas de mantenimiento óptimos sujetos a restricciones presupuestarias y técnicas, explorando el efecto de diferentes escenarios presupuestarios en el estado general de la red. La herramienta de optimización se aplica a un estudio de caso, demostrando su eficiencia para analizar datos reales. Se demuestra que los programas de mantenimiento optimizado rinden un 40% más a largo plazo que los programas tradicionales basados en una estrategia reactiva. Para ampliar los resultados obtenidos en este estudio de caso, también se optimizaron un conjunto de escenarios simulados, basados en el rango de valores encontrados en el ejemplo real. El trabajo concluye que este algoritmo de optimización mejora la asignación de los fondos de mantenimiento con respecto a la obtenida con una estrategia reactiva tradicional. El análisis de sensibilidad de una gama de escenarios presupuestarios indica que el nivel de financiación en los primeros años es un factor impulsor a largo plazo de los programas de mantenimiento óptimo.

Referencia:

YEPES, V.; TORRES-MACHÍ, C.; CHAMORRO, A.; PELLICER, E. (2016). Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm. Journal of Civil Engineering and Management, 22(4):540-550. DOI:10.3846/13923730.2015.1120770

Os dejo a continuación la versión autor del artículo.

Descargar (PDF, 568KB)