Aportaciones al Congreso sobre Optimización de Estructuras HPSM/OPTI 2025, Edimburgo (Reino Unido)

Los días 10 a 12 de junio de 2025 se celebró en Edimburgo (Reino Unido) uno de los congresos más importantes sobre optimización de estructuras: “12th International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025“. He participado en dicho congreso tanto en su Comité Científico como Invited Speaker.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València. Además, es uno de los resultados de la tesis doctoral de Lorena Yepes.

En cuanto la comunicación esté publicada en el libro de ponencias, os pasaré el enlace para su descarga gratuita. A continuación os paso el resumen de la comunicación presentada.

El artículo «Multi-Attribute Decision-Making in Prestressed Concrete Road Flyover Design», propone una innovadora metodología para optimizar el diseño de puentes de hormigón pretensado teniendo en cuenta simultáneamente tres criterios clave: el coste económico, las emisiones de CO₂ y la energía incorporada en los materiales. Su objetivo es encontrar soluciones de compromiso que equilibren sostenibilidad y eficiencia estructural.

Aportaciones principales del estudio

Este trabajo aporta un enfoque sistemático y práctico para integrar criterios medioambientales y económicos en el diseño de pasos elevados. Frente a las metodologías tradicionales que suelen priorizar únicamente el coste, los autores aplican técnicas de toma de decisiones multicriterio para considerar también el impacto ambiental desde el inicio del proceso proyectual. Además, ofrecen pautas concretas para diseños preliminares que buscan un equilibrio entre coste, emisiones y consumo energético.

Metodología empleada

La investigación se basa en técnicas avanzadas de optimización y modelado. En primer lugar, se utilizaron 50 soluciones iniciales de diseño generadas mediante un muestreo estadístico conocido como Latin Hypercube Sampling, que explora diferentes combinaciones de parámetros como la resistencia del hormigón, la anchura de la base y la profundidad del tablero.

A continuación, se aplicó un modelo de sustitución de tipo Kriging, capaz de estimar con gran precisión los resultados estructurales sin necesidad de cálculos exhaustivos para cada diseño. Esto permitió ampliar el análisis a 1.000 soluciones adicionales simuladas.

Con todas las alternativas sobre la mesa, se extrajo la “frontera de Pareto”, un conjunto de soluciones no dominadas que representan los mejores compromisos posibles entre los tres objetivos. Finalmente, se aplicaron distintos escenarios de toma de decisiones multiatributo, asignando diferentes pesos a cada criterio, para seleccionar los diseños más equilibrados.

Resultados más relevantes

El análisis reveló que los diseños más sostenibles tienen características comunes: una relación entre canto del tablero y luz principal cercana a 1/30 y una resistencia del hormigón de 40 MPa. Estas configuraciones permiten reducir tanto el consumo de materiales como las emisiones sin comprometer la viabilidad estructural.

Dependiendo del peso asignado a cada criterio (coste, emisiones, energía), se identificaron varias soluciones óptimas, destacando especialmente dos (denominadas #6 y #13) por su buen rendimiento integral. Curiosamente, priorizar solo el coste lleva a soluciones con mayor canto, mientras que priorizar el medio ambiente genera estructuras más esbeltas y materialmente eficientes.

Conclusiones y recomendaciones

El estudio concluye que aplicar técnicas de decisión multicriterio en la ingeniería civil permite diseñar infraestructuras más sostenibles y racionales, sin sacrificar funcionalidad ni economía. Se recomienda considerar desde fases tempranas del diseño variables ambientales clave como las emisiones o la energía embebida, además de los costes.

Asimismo, los autores sugieren incorporar la participación de los diferentes agentes implicados (ingenieros, administraciones, ciudadanía) para lograr soluciones más equilibradas y duraderas.

Este trabajo representa un avance hacia una práctica de la ingeniería más alineada con los Objetivos de Desarrollo Sostenible, y especialmente con el ODS 9, que promueve infraestructuras resilientes, sostenibles e innovadoras.

Referencia:

YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Multi-attribute decision-making in prestressed concrete road flyover design. International Conference on High Performance and Optimum Design of Structures and Materials, HPSM/OPTI 2025, 10-12 June 2025, Edinburgh, UK.

Tesis doctoral: Optimización multicriterio para el diseño sostenible de puentes postesados mediante metamodelos

De izquierda a derecha: Julián Alcalá, Salvador Ivorra, Lorena Yepes, Tatiana García y Antonio Tomás.

Hoy, 6 de junio de 2025, ha tenido lugar la defensa de la tesis doctoral de Dª. Lorena Yepes Bellver, titulada “Multi-criteria optimization for sustainable design of post-tensioned concrete slab bridges using metamodels”, dirigida por el profesor Julián Alcalá González. La tesis ha obtenido la máxima calificación de sobresaliente «cum laude». A continuación, presentamos un pequeño resumen de la misma.

Esta tesis utiliza técnicas de modelización sustitutiva para optimizar los costes económicos y medioambientales en puentes losa de hormigón postesado hormigonado in situ. El objetivo principal de esta investigación es desarrollar una metodología sistemática que permita optimizar el diseño de puentes, reduciendo los costes, las emisiones de CO₂ y la energía necesaria para construir este tipo de puentes sin comprometer la viabilidad estructural o económica. El marco de optimización propuesto consta de dos fases secuenciales: la primera se centra en ampliar el espacio de búsqueda y la segunda intensifica la búsqueda de soluciones óptimas. El metamodelo basado en Kriging realiza una optimización heurística que da como resultado un diseño con emisiones de CO₂ significativamente menores que los diseños convencionales. El estudio revela que una relación de esbeltez de aproximadamente 1/30 arroja resultados óptimos, ya que se reduce el consumo de material y se mantiene la integridad estructural. Además, el aumento de la armadura pasiva compensa la reducción de hormigón y armadura activa, lo que da como resultado un diseño más sostenible. Por otra parte, se identifica una compensación entre costes y emisiones que muestra que un modesto aumento de los costes de construcción (menos del 1 %) puede reducir sustancialmente las emisiones de CO₂ (más del 2 %), lo que demuestra que el diseño de puentes sostenibles puede ser económicamente viable.

La investigación explora más a fondo la optimización de la energía incorporada en la construcción de pasos elevados de carreteras anuladas mediante el uso de muestreo por hipercubo latino y optimización basada en Kriging. La metodología permite identificar los parámetros críticos de diseño, como los altos coeficientes de esbeltez (en torno a 1/28), el uso mínimo de hormigón y armadura activa, y el aumento de la armadura pasiva para mejorar la eficiencia energética. Aunque en el estudio se emplearon Kriging y redes neuronales artificiales (RNA), Kriging demostró ser más eficaz a la hora de identificar óptimos locales, a pesar de que las redes neuronales ofrecen predicciones absolutas más precisas. Esto pone de manifiesto la eficacia de los modelos sustitutos a la hora de orientar las decisiones de diseño sostenible, incluso cuando los modelos no ofrecen predicciones absolutas perfectamente exactas.

En el contexto de la optimización de costes para puentes de losa postesada, el estudio demuestra el potencial del modelado sustitutivo combinado con la simulación del recocido. Los resultados muestran que el método de optimización basado en Kriging conduce a una reducción de costes del 6,54 %, principalmente mediante la minimización del uso de materiales, concretamente de hormigón en un 14,8 % y de acero activo en un 11,25 %. Estas reducciones en el consumo de material se consiguen manteniendo la integridad estructural y la capacidad de servicio del puente, lo que convierte al modelado sustitutivo en una herramienta práctica y eficaz para la optimización económica en el diseño de puentes.

El estudio también evalúa la forma de optimizar las emisiones de CO₂ en pasos elevados de carreteras pretensadas. Se identifican los parámetros óptimos de diseño, como grados de hormigón entre C-35 y C-40 MPa, profundidades del tablero entre 1,10 y 1,30 m, y anchuras de base entre 3,20 y 3,80 m. La red neuronal mostró las predicciones más precisas entre los modelos predictivos analizados, con los errores medios absolutos (MAE) y cuadrados medios (RMSE) más bajos. Estos resultados subrayan la importancia de seleccionar el modelo predictivo adecuado para optimizar las emisiones de CO₂ en el diseño de puentes y destacan el valor de utilizar modelos sustitutivos para mejorar la sostenibilidad en los proyectos de ingeniería civil.

Por último, la investigación integra la toma de decisiones multicriterio (MCDM) con la optimización basada en Kriging para evaluar y optimizar los diseños de puentes en relación con objetivos económicos, medioambientales y estructurales. El enfoque MCDM permite evaluar de manera más exhaustiva las alternativas de diseño al tener en cuenta las compensaciones entre coste, impacto ambiental y rendimiento estructural. Esta integración contribuye al desarrollo sostenible de las infraestructuras, ya que facilita la selección de diseños óptimos que se ajusten a los objetivos de sostenibilidad.

En conclusión, esta tesis demuestra que el modelado sustitutivo, que utiliza explícitamente el Kriging y redes neuronales artificiales, es un enfoque práctico para optimizar las dimensiones medioambiental y económica del diseño de puentes. El marco de optimización en dos fases que aquí se presenta proporciona una metodología eficiente desde el punto de vista computacional que permite identificar soluciones de diseño óptimas y sostenibles que cumplen las restricciones estructurales y económicas. Los resultados sugieren que la metodología es aplicable a proyectos de infraestructuras a gran escala y sentarán las bases para futuras investigaciones. Futuros estudios podrían investigar el uso de algoritmos y modelos de optimización adicionales para perfeccionar aún más el proceso de optimización y mejorar la aplicabilidad de estas metodologías en proyectos reales.

Referencias:

ZHOU, Z.; WANG, Y.J.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Intelligent monitoring of loess landslides and research on multi-factor coupling damage. Geomechanics for Energy and the Environment, 42:100692. DOI:10.1016/j.gete.2025.100692

ZHOU, Z.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2025). Study on the failure mechanism of deep foundation pit of high-rise building: comprehensive test and microstructure coupling. Buildings, 15(8), 1270. DOI:10.3390/buildings15081270

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

NAVARRO, I.J.; VILLALBA, I.; YEPES-BELLVER, L.; ALCALÁ, J. Social Life Cycle Assessment of Railway Track Substructure Alternatives. J. Clean. Prod. 2024, 450, 142008.

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450. DOI:10.3390/su16198450

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2022). CO₂-optimization of post-tensioned concrete slab-bridge decks using surrogate modeling. Materials, 15(14):4776. DOI:10.3390/ma15144776

Tendencias futuras y retos de la inteligencia artificial en la ingeniería civil

La ingeniería civil se encuentra inmersa en un proceso de transformación profunda, impulsada por los avances en inteligencia artificial (IA) y tecnologías digitales emergentes. Estas innovaciones están redefiniendo los procesos de diseño y la gestión y operación de las infraestructuras, lo que permite la implementación de soluciones más eficientes, sostenibles y seguras. En este contexto, resulta imperativo explorar las principales tendencias que delinearán el futuro del sector en los próximos años, así como los desafíos que deberán superarse para lograr una adopción exitosa y generalizada.

Este artículo examina el impacto transformador de la IA y las tecnologías digitales en la ingeniería civil. Se destacan tendencias futuras clave como la creación de infraestructuras inteligentes con monitorización en tiempo real, el diseño generativo y la planificación asistida por inteligencia artificial. También se aborda el uso de la IA para la construcción sostenible, la proliferación de máquinas autónomas y robótica, y la mejora de la colaboración entre humanos y máquinas mediante la inteligencia aumentada. El documento también detalla los principales desafíos para la adopción exitosa de la IA, como la calidad de los datos, la integración con sistemas existentes, las consideraciones éticas y la escasez de talento. Por último, se destaca la importancia de abordar estos desafíos para lograr una transformación integral y sostenible del sector.

Tendencias futuras

La primera gran línea de evolución es la de las infraestructuras inteligentes, donde la IA combinada con el Internet de las Cosas (IoT) permitirá monitorizar en tiempo real el estado de puentes, túneles y redes de transporte, y adaptar automáticamente parámetros como la iluminación, el drenaje o la ventilación según la demanda.

El diseño generativo y la planificación asistida por IA tienen el potencial de transformar significativamente las etapas iniciales del proceso de diseño. Mediante algoritmos capaces de explorar un amplio espectro de alternativas, se optimizarán los criterios de costo, consumo de material y rendimiento estructural, reduciendo la subjetividad y acelerando la toma de decisiones.

En el ámbito de la construcción sostenible, la IA aportará análisis avanzados de consumo energético y huella de carbono, facilitando la selección de materiales y métodos constructivos de menor impacto ambiental, así como el dimensionado óptimo de sistemas de climatización y redes de servicios.

El despliegue de las máquinas autónomas y la robótica de obra continuará su curso: excavadoras, camiones y drones operarán con escasa supervisión humana, ejecutando movimientos precisos y recolectando datos topográficos que retroalimentan modelos predictivos de rendimiento y seguridad.

La colaboración entre humanos y máquinas se potenciará a través de la inteligencia aumentada, permitiendo a los profesionales liberarse de tareas repetitivas para enfocarse en la supervisión e interpretación de los resultados generados por sistemas de IA, combinando intuición y rigor analítico.

Las analíticas predictivas alcanzarán nuevas cotas de sofisticación, ofreciendo a los gestores de proyecto visibilidad temprana de desviaciones de costes, plazos y riesgos, y sugiriendo medidas preventivas basadas en patrones históricos.

La tecnología blockchain se explorará como garante de la trazabilidad, la transparencia y la inmutabilidad de los registros de obra, contratos y certificaciones, mitigando fraudes y disputas al proteger la integridad de los datos.

El edge computing permitirá procesar la información localmente en la obra —por ejemplo, en drones o en nodos IoT—, reduciendo la latencia y garantizando una respuesta inmediata en aplicaciones críticas, como la detección de fallos estructurales.

Los gemelos digitales, réplicas virtuales permanentemente actualizadas de activos reales, se consolidarán para simular escenarios de mantenimiento, rehabilitación y operación, optimizando ciclos de vida y costes asociados.

Por último, la personalización de soluciones IA permitirá adaptar herramientas y modelos a las necesidades específicas de cada proyecto, lo que facilitará una adopción más ágil y homogénea.

Retos asociados

No obstante, la plena materialización de estas tendencias se enfrenta a múltiples desafíos. En primer lugar, es preciso señalar que la calidad y la disponibilidad de los datos siguen siendo insuficientes. Los proyectos de gran envergadura generan información dispersa y heterogénea, lo que dificulta el entrenamiento fiable de modelos.

La integración con sistemas existentes, tales como software de gestión, bases de datos heredadas o flujos de trabajo manuales, puede ocasionar interrupciones en la operativa y en los cronogramas establecidos. Por lo tanto, se hace necesario implementar estrategias de migración y adaptación progresiva.

Las consideraciones éticas y el sesgo algorítmico obligan a implementar mecanismos de transparencia y gobernanza que garanticen la rendición de cuentas y la equidad en decisiones críticas.

La escasez de talento experto en IA y construcción limita la creación, el despliegue y el mantenimiento de estas soluciones, apuntando a la necesidad de planes de formación duales en ingeniería y ciencia de datos.

La ausencia de marcos regulatorios y legales claros genera incertidumbre en cuanto a las responsabilidades, licencias y cumplimiento normativo en caso de fallos o litigios.

El coste inicial de adquisición e implementación de tecnologías IA puede resultar prohibitivo para las pequeñas y medianas empresas (PYMES) y proyectos con márgenes ajustados. Por ello, es importante demostrar el retorno de la inversión a medio y largo plazo.

La privacidad y la seguridad de los datos, cada vez más extensos y sensibles, requieren arquitecturas robustas que eviten fugas y ciberataques, especialmente cuando se integran sensores IoT y servicios en la nube.

Los problemas de interoperabilidad entre plataformas, estándares y formatos de datos comprometen la colaboración multidisciplinar y el intercambio fluido de información.

La adaptación al ritmo vertiginoso de la evolución tecnológica exige un aprendizaje continuo y revisiones frecuentes de las infraestructuras de TI para no quedarse obsoletos.

Finalmente, la resistencia al cambio por parte de profesionales y directivos puede frenar la adopción, subrayando la importancia de campañas de sensibilización y casos de éxito tangibles.

Conclusión

El futuro de la IA en ingeniería civil se perfila como un escenario de grandes oportunidades para la creación de infraestructuras más inteligentes, eficientes y sostenibles. No obstante, es imperativo que se aborden con éxito los desafíos técnicos, éticos y organizativos para evitar que la implementación de estas tecnologías se limite a proyectos aislados y, en cambio, promueva una transformación integral y sostenible del sector.

Glosario de términos clave

  • Inteligencia artificial (IA): Sistemas o máquinas que imitan la inteligencia humana para realizar tareas, aprendiendo de la información que procesan.
  • Internet de las cosas (IoT): Red de objetos físicos (“cosas”) integrados con sensores, software y otras tecnologías que les permiten recopilar e intercambiar datos.
  • Infraestructuras inteligentes: Estructuras físicas (puentes, túneles, redes) equipadas con tecnología para monitorear y adaptar su funcionamiento en tiempo real.
  • Diseño generativo: Proceso de diseño que utiliza algoritmos para explorar múltiples soluciones basadas en un conjunto de parámetros y restricciones definidos.
  • Construcción sostenible: Prácticas de construcción que minimizan el impacto ambiental, optimizan el uso de recursos y consideran el ciclo de vida completo de las estructuras.
  • Máquinas autónomas: Equipos o vehículos capaces de operar sin supervisión humana directa, utilizando sensores y software para tomar decisiones.
  • Robótica de obra: Uso de robots para ejecutar tareas en el sitio de construcción, a menudo repetitivas o peligrosas para los humanos.
  • Inteligencia aumentada: Enfoque que combina las capacidades de la inteligencia artificial con la inteligencia humana para mejorar el rendimiento y la toma de decisiones.
  • Analíticas predictivas: Empleo de datos históricos, algoritmos y técnicas de aprendizaje automático para identificar la probabilidad de resultados futuros.
  • Blockchain: Tecnología de registro distribuido que permite transacciones transparentes, seguras e inmutables.
  • Edge Computing: Procesamiento de datos cerca de donde se generan (en el “borde” de la red) en lugar de enviarlos a un centro de datos central.
  • Gemelos digitales: Réplicas virtuales de activos físicos, procesos o sistemas que se actualizan en tiempo real y pueden usarse para simulación y análisis.
  • Sesgo algorítmico: Error sistemático en un algoritmo que produce resultados injustamente discriminatorios o sesgados.
  • Interoperabilidad: Capacidad de diferentes sistemas, plataformas o software para trabajar juntos e intercambiar datos sin problemas.
  • Resistencia al cambio: Falta de disposición de individuos u organizaciones para adoptar nuevas tecnologías, procesos o formas de trabajar.

Referencias:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. DOI: https://doi.org/10.4995/INRED2024.2024.18365

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

FERNÁNDEZ-MORA, V.; NAVARRO, I.J.; YEPES, V. (2022). Integration of the structural project into the BIM paradigm: a literature review. Journal of Building Engineering, 53:104318. DOI:10.1016/j.jobe.2022.104318.

YEPES, V.; KRIPKA, M.; YEPES-BELLVER, L.; GARCÍA, J. (2023). La inteligencia artificial en la ingeniería civil: oportunidades y desafíosIC Ingeniería Civil, 642:20-23.

Optimización estructural multiobjetivo en edificios: cómo reducir costos y emisiones con vigas de sección variable

Acaban de publicar nuestro artículo en la revista Energy and Buildings, de la editorial Elsevier, indexada en D1 del JCR. El estudio presenta una tipología estructural compuesta que combina columnas de hormigón armado con vigas de acero de sección variable híbrida transversal (THVS) para optimizar el coste económico, las emisiones de CO₂ y la energía incorporada en la construcción de edificios.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.

El estudio plantea la siguiente pregunta de investigación: ¿en qué medida la optimización del diseño estructural de edificios en marco mediante el uso de una tipología compuesta con columnas de hormigón armado y vigas de sección variable transversamente híbridas (THVS) contribuye a la reducción del coste económico, de las emisiones de CO₂ y de la energía incorporada en la construcción?

Esta formulación permite abordar de manera precisa la problemática del impacto ambiental y económico del sector de la construcción, orientando la investigación hacia la identificación de configuraciones estructurales que minimicen estos factores mediante metodologías de optimización. La pregunta define claramente el problema central: la búsqueda de una alternativa estructural más eficiente que las tipologías tradicionales de hormigón armado.

Metodología

El estudio adopta un enfoque de optimización estructural basado en la combinación de Biogeography-Based Optimization (BBO) y Constrained Deterministic Local Iterative Search (CDLIS). Este enfoque permite buscar de manera eficiente soluciones en un espacio de diseño altamente complejo. Se analizan tres tipologías estructurales:

  1. Estructura tradicional de hormigón armado: Se optimizan las dimensiones de vigas, columnas y cimentaciones, así como la calidad del hormigón utilizado.
  2. Estructura compuesta con vigas THVS y uniones rígidas: Se sustituyen las vigas de hormigón armado por vigas THVS con conexiones fijas a las columnas.
  3. Estructura compuesta con vigas THVS y uniones articuladas: Similar a la anterior, pero con conexiones articuladas.

Las funciones objetivo optimizadas incluyen:

  • Coste económico: Calculado con base en los precios unitarios de materiales y procesos constructivos.
  • Emisiones de CO₂(e): Evaluadas según un enfoque «cradle-to-site», considerando la extracción de materias primas, fabricación y construcción.
  • Energía incorporada: Calculada en términos de consumo energético total en las fases de producción y construcción.

Se tienen en cuenta restricciones estructurales y de servicio según las normativas de diseño. Además, se implementa la interacción suelo-estructura mediante un modelo de tipo Winkler para evaluar los asentamientos diferenciales y su efecto en el diseño estructural.

Aportaciones relevantes

  • La tipología compuesta con vigas THVS y conexiones rígidas logra una reducción del 6 % en costes económicos, del 16 % en emisiones de CO₂ y del 11 % en energía incorporada para edificios con luces de 4 m.
  • Para edificios con luces de 8 m, la configuración con uniones articuladas permite reducir los costos económicos y las emisiones en un 5 % y un 6 %, respectivamente, aunque con un mayor consumo de energía.
  • Se demuestra que la menor carga axial transmitida por las vigas THVS reduce las solicitaciones en columnas y cimentaciones, lo que optimiza su diseño y reduce su impacto ambiental.
  • Se comprueba que el uso de acero de mayor calidad en las alas de las vigas THVS en comparación con el alma mejora la eficiencia estructural, con razones de hibridación (Rh) entre 1,2 y 2,0.

Discusión de resultados

El análisis de los resultados revela diferencias significativas entre las configuraciones estructurales. En los edificios con luces reducidas (4 m), las vigas THVS con uniones rígidas ofrecen el mejor rendimiento en términos de coste y sostenibilidad. En cambio, en edificios con luces mayores (8 m), las conexiones articuladas permiten un mejor aprovechamiento del material, aunque con una menor rigidez global.

Cabe destacar que la consideración de elementos de rigidización adicionales, como muros y losas, mejora notablemente el comportamiento de la tipología articulada, reduciendo su impacto ambiental en un 45 % y disminuyendo en un 60 % la carga axial sobre las columnas.

Líneas futuras de investigación

  • Perfeccionamiento del proceso de fabricación de vigas THVS, abordando aspectos como soldadura, control de calidad y optimización de ensamblaje.
  • Desarrollo de conexiones híbridas entre vigas THVS y columnas de hormigón armado, mejorando la eficiencia de transferencia de cargas.
  • Exploración de configuraciones mixtas de soporte, optimizando la selección de conexiones fijas o articuladas según las características del edificio.
  • Evaluación del comportamiento ante cargas dinámicas y sísmicas, considerando efectos de fatiga y estabilidad estructural.
  • Implementación de metamodelos para optimización computacional, reduciendo el tiempo de cálculo en simulaciones de alta fidelidad.

Conclusión

La optimización del diseño estructural de edificios en marco mediante el uso de vigas THVS permite reducir costes y mejorar la sostenibilidad ambiental. Las configuraciones con conexiones rígidas son particularmente eficientes en luces cortas, mientras que las conexiones articuladas son una alternativa viable en luces mayores cuando se combinan con elementos de rigidización adicionales. Estos hallazgos abren nuevas líneas de investigación en la aplicación y mejora de sistemas estructurales compuestos en ingeniería civil.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2025). Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction. Energy and Buildings, 336:115607. DOI:10.1016/j.enbuild.2025.115607

 

Docencia e inteligencia artificial: nuevas estrategias para educadores

La educación está experimentando una transformación sin precedentes gracias a los avances en inteligencia artificial (IA). La integración de la IA en el ámbito educativo ha traído consigo oportunidades y desafíos que requieren una adaptación rápida por parte de los docentes y los sistemas de enseñanza.

Esta revolución tecnológica ha dado lugar a la automatización de tareas administrativas, la personalización del aprendizaje, la optimización de evaluaciones y el desarrollo de nuevas metodologías de enseñanza que mejoran la eficiencia del aula. Sin embargo, su implementación también genera preocupaciones relacionadas con la equidad, la privacidad de los datos y la ética en la educación.

Este informe explora en profundidad cómo los docentes pueden aprovechar la IA para mejorar sus prácticas pedagógicas y hacer frente a los desafíos emergentes. Se proporcionarán ejemplos detallados, herramientas específicas y estrategias que permitirán a los educadores integrar esta tecnología de manera efectiva y responsable en sus aulas.

1. Inteligencia artificial generativa y su aplicación en la docencia

1.1. Definición y características

La inteligencia artificial generativa es una rama avanzada de la IA que emplea redes neuronales profundas para crear contenido original en formato de texto, imágenes, audio y vídeo. Este tipo de IA puede proporcionar respuestas personalizadas y adaptadas a distintos contextos de aprendizaje, lo que la convierte en una herramienta muy útil en el ámbito educativo.

Algunos ejemplos notables de IA generativa son ChatGPT, que puede generar respuestas detalladas en múltiples idiomas; DALL-E, que crea imágenes a partir de descripciones textuales, y Bard AI, que ofrece información en tiempo real a partir de consultas específicas.

El uso de estas herramientas en la docencia permite mejorar la interacción con los estudiantes, proporcionar materiales personalizados y fomentar un aprendizaje más dinámico. Además, la IA generativa puede ayudar en la corrección de textos, la generación de pruebas automatizadas y la creación de contenidos visuales para reforzar los conceptos enseñados en el aula.

1.2. Aplicaciones en el aula

Las aplicaciones de la inteligencia artificial (IA) generativa en la enseñanza son diversas y pueden utilizarse en diferentes áreas del conocimiento. Entre las más destacadas se encuentran:

  • Creación de material didáctico: la IA permite generar rápidamente presentaciones, resúmenes y documentos de apoyo para los estudiantes. Herramientas como Canva AI o Tome AI facilitan la producción de diapositivas atractivas con contenido relevante.
  • Automatización de respuestas: los docentes pueden utilizar chatbots educativos como PersonalChat para responder de manera inmediata a las dudas recurrentes de los estudiantes.
  • Evaluaciones y retroalimentación: plataformas como Gradescope permiten corregir exámenes de manera automatizada, lo que reduce la carga de trabajo de los docentes y asegura una evaluación más objetiva.
  • Generación de contenido multimedia: con herramientas como Runway AI y Pictory, los docentes pueden crear vídeos educativos personalizados y mejorar la experiencia de aprendizaje.

Un ejemplo concreto de su aplicación es el uso de ChatGPT en universidades para ayudar a los estudiantes en la redacción de ensayos, proporcionando estructuras sugeridas y correcciones gramaticales detalladas. Esto no solo mejora la calidad de los trabajos académicos, sino que también fomenta la autonomía y la autoevaluación de los estudiantes.

2. Personalización del aprendizaje y evaluación con IA

2.1. Aprendizaje adaptativo

Uno de los mayores beneficios de la inteligencia artificial (IA) en la educación es su capacidad para personalizar el aprendizaje en función del nivel y el ritmo de cada estudiante. Gracias al análisis de datos, los algoritmos de IA pueden identificar fortalezas y debilidades de los alumnos y ajustar los contenidos educativos en tiempo real para optimizar su rendimiento académico.

Algunas plataformas que utilizan este enfoque son:

  • Khan Academy con IA ofrece ejercicios personalizados según el nivel de conocimiento del estudiante.
  • Duolingo AI: adapta la dificultad de los ejercicios de idiomas en función del progreso del usuario.
  • Carnegie Learning ofrece tutorías de matemáticas con IA, que adaptan las preguntas al rendimiento del estudiante.

Este enfoque permite que los estudiantes reciban una educación más centrada en sus necesidades individuales, lo que reduce las brechas de aprendizaje y mejora la retención del conocimiento.

2.2. Evaluación automatizada

Otro aspecto crucial de la IA en la educación es la optimización del proceso de evaluación. Tradicionalmente, corregir exámenes y tareas supone un gran esfuerzo para los docentes. Gracias a herramientas como Gradescope y ZipGrade, ahora es posible evaluar pruebas de manera instantánea, proporcionar retroalimentación detallada y reducir el margen de error.

Además de la corrección automatizada, la IA puede utilizarse para analizar el rendimiento de los estudiantes a lo largo del tiempo y predecir posibles dificultades académicas. Por ejemplo, la plataforma Edsight AI recopila datos sobre las respuestas de los alumnos y genera informes personalizados con recomendaciones para mejorar su rendimiento.

A pesar de sus ventajas, la evaluación automatizada debe complementarse con métodos tradicionales para garantizar una comprensión profunda de los conceptos por parte de los estudiantes y evitar depender exclusivamente de algoritmos para medir los conocimientos.

3. Desafíos y consideraciones éticas

3.1. Sesgo en los algoritmos

Uno de los principales desafíos de la IA en la educación es la presencia de sesgos en los modelos de aprendizaje. Dado que las IA se entrenan con grandes volúmenes de datos históricos, pueden reflejar prejuicios existentes en la sociedad, lo que podría afectar negativamente a la equidad de la enseñanza.

Para minimizar estos riesgos, es fundamental que los docentes supervisen el contenido generado por IA y utilicen diversas fuentes para contrastar la información. Además, se recomienda fomentar el pensamiento crítico entre los estudiantes para que evalúen la veracidad y la imparcialidad de los datos proporcionados por estos sistemas.

3.2. Privacidad y seguridad de datos

El uso de la IA en la educación implica la recopilación y el análisis de grandes volúmenes de datos sobre los estudiantes. Para proteger su privacidad, es crucial que las instituciones educativas implementen regulaciones estrictas sobre el almacenamiento y uso de la información personal.

Algunas estrategias recomendadas son:

  • Utilización de plataformas con altos estándares de seguridad, como Microsoft Copilot y Google AI Education.
  • Concienciar sobre la importancia de la privacidad y enseñar a los estudiantes a gestionar sus datos de forma segura en entornos digitales.
  • Cumplimiento de normativas de protección de datos, como el Reglamento General de Protección de Datos (RGPD) en Europa.

Conclusiones

La inteligencia artificial está revolucionando la educación, ya que ofrece nuevas posibilidades para mejorar la enseñanza y el aprendizaje. Sin embargo, su implementación debe realizarse de manera responsable, garantizando el papel central del docente y promoviendo el uso ético de la tecnología.

Para maximizar sus beneficios, es esencial que los educadores se mantengan actualizados sobre las últimas tendencias en IA y adopten herramientas que complementen sus metodologías de enseñanza. La combinación de innovación tecnológica con estrategias pedagógicas efectivas transformará la educación y preparará a los estudiantes para los desafíos del futuro.

Os dejo un documento de la Universidad de Burgos que profundiza en el tema. Espero que os resulte de interés.

Descargar (PDF, 10.69MB)

Modelos subrogados para optimizar el coste de pasos superiores pretensados

Acaban de publicar nuestro artículo en la revista Infrastructures, indexada en el JCR. El estudio presenta una metodología de optimización de costes para puentes losa aligerados postesados mediante metamodelos, en la que se destaca la aplicación del modelo Kriging en combinación con algoritmos heurísticos.

Este trabajo se enmarca dentro del proyecto de investigación RESILIFE, que dirijo como investigador principal, junto con el profesor Julián Alcalá, en la Universitat Politècnica de València.  A continuación, explicamos brevemente el contenido del artículo que podéis descargar gratuitamente.

La investigación se centra en un puente de tres vanos con luces de 24, 34 y 28 m, y optimiza el diseño estructural para reducir costes sin comprometer los criterios de servicio y seguridad. Se identifica una reducción del 6,54 % en los costes en comparación con enfoques tradicionales, lograda principalmente mediante la disminución del uso de hormigón en un 14,8 % y del pretensado en un 11,25 %.

El trabajo también evalúa distintas técnicas predictivas, como redes neuronales y funciones de base radial, y determina que las redes neuronales presentan el menor error de predicción, aunque requieren varias ejecuciones para garantizar estabilidad. En contraste, el modelo Kriging permite identificar óptimos locales con alta precisión. La metodología propuesta proporciona una estrategia eficiente para la toma de decisiones en ingeniería estructural, que promueve diseños de puentes más rentables sin comprometer el rendimiento estructural.

Figura. Paso superior en la autovía A-7, en Cocentaina (Alicante)

Los resultados indican que la optimización mediante modelos subrogados permite reducir significativamente los costes de diseño de pasos superiores pretensados. La estrategia adoptada optimiza variables como la profundidad de la losa, la geometría de la base y la resistencia del hormigón, y respeta las restricciones impuestas por los estados límite de servicio, que son los últimos según el Eurocódigo 2. Se observa que la metodología basada en kriging y la optimización heurística proporciona resultados prácticos con menor esfuerzo computacional en comparación con la optimización directa de todas las variables estructurales.

El modelo Kriging optimizado mediante Simulated Annealing identificó una configuración de losa con una profundidad de 1,30 m y una base de 3,15 m como la solución más rentable. Esta configuración se corrobora mediante la predicción de redes neuronales, lo que muestra coherencia en la localización del óptimo. En comparación con estudios previos, los resultados indican que la metodología utilizada en este trabajo permite obtener ahorros significativos sin necesidad de analizar exhaustivamente cada alternativa estructural.

A partir de los hallazgos obtenidos, se sugiere explorar la integración de métodos de optimización multiobjetivo que tengan en cuenta no solo el coste, sino también el impacto ambiental y los costes de mantenimiento a lo largo del ciclo de vida del puente. La inclusión de criterios de sostenibilidad podría mejorar la eficiencia global del diseño estructural y su capacidad de adaptación a normativas futuras.

Otra línea de investigación relevante consiste en aplicar modelos subrogados en el diseño de otros tipos de estructuras, como puentes de vigas o marcos de hormigón armado, para evaluar su viabilidad en distintas configuraciones estructurales. Además, el desarrollo de modelos predictivos más sofisticados, que integren aprendizaje automático y simulaciones de alta fidelidad, podría optimizar aún más los diseños propuestos.

Por último, se recomienda estudiar el impacto de la variabilidad de los materiales y las condiciones de carga en la optimización del diseño. La incorporación de análisis probabilísticos mejoraría la fiabilidad de las soluciones obtenidas, ya que se obtendrían diseños estructurales más robustos y seguros.

Referencia:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2025). Surrogate-assisted cost optimization for post-tensioned concrete slab bridgesInfrastructures, 10(2): 43. DOI:10.3390/infrastructures10020043.

Descargar (PDF, 1.95MB)

Introducción a los Modelos de Ecuaciones Estructurales (SEM)

Simbología y nomenclatura de los modelos PLS (Aldas, 2018)

Los modelos de ecuaciones estructurales (SEM, por sus siglas en inglés) son una técnica estadística multivariante utilizada para analizar y estimar relaciones causales, combinando datos estadísticos con suposiciones cualitativas sobre la causalidad. Esta metodología es especialmente valiosa en las ciencias sociales, la psicología, el marketing y otras disciplinas en las que las relaciones entre variables no son lineales y pueden involucrar tanto variables observables como latentes. Gracias a los SEM, los investigadores no solo pueden comprobar teorías existentes, sino también desarrollar nuevas hipótesis y modelos que reflejen la realidad de los fenómenos estudiados.

Los modelos de ecuaciones estructurales (MES) combinan el análisis factorial y la regresión lineal para evaluar la correspondencia entre los datos observados y el modelo hipotetizado, que se representa mediante un diagrama de senderos. Los MES proporcionan los valores asociados a cada relación del modelo y un estadístico que mide el ajuste de los datos y valida el modelo.

Una de sus principales fortalezas es la capacidad de construir variables latentes, es decir, variables no observables directamente, sino estimadas a partir de otras que covarían entre sí. Esto permite tener en cuenta explícitamente la fiabilidad del modelo. Además, el análisis factorial, el análisis de caminos y la regresión lineal son casos particulares dentro del enfoque de los MES.

Fundamentos teóricos

Variables latentes y observables:

  • Variables latentes: son constructos teóricos que no pueden medirse directamente. Por ejemplo, la «satisfacción del cliente» o «lealtad a la marca» son variables latentes que se infieren a partir de las respuestas a encuestas o del comportamiento observable.
  • Variables observables: son los indicadores que se utilizan para medir las variables latentes. Por ejemplo, en el caso de la satisfacción del cliente, las respuestas a preguntas específicas en una encuesta (como «¿Qué tan satisfecho está con nuestro servicio?»), son variables observables.

Modelo estructural vs. modelo de medida:

  • Modelo estructural: describe las relaciones causales entre las variables latentes. Este modelo permite a los investigadores establecer hipótesis sobre cómo una variable puede influir en otra.
  • Modelo de medida: establece cómo se relacionan las variables observables con las variables latentes. Es fundamental validar este modelo para garantizar que los indicadores reflejan realmente el constructo que se pretende medir.
Ejemplo de un modelo de medida y un modelo estructural

Tipos de modelos

Existen dos enfoques principales en SEM:

Análisis de estructuras de covarianza (CB-SEM):

  • Este enfoque se basa en la matriz de varianza-covarianza y es adecuado para contrastar teorías y probar hipótesis. CB-SEM es una técnica paramétrica que requiere que se cumplan ciertos supuestos estadísticos, como la normalidad multivariada y la independencia de las observaciones.
  • Aplicaciones: Ideal para estudios confirmatorios donde se busca validar teorías existentes. Se utiliza comúnmente en investigaciones que requieren un alto nivel de rigor estadístico.

Mínimos cuadrados parciales (PLS-SEM):

  • Este enfoque es más flexible y no requiere los mismos supuestos rigurosos que CB-SEM. PLS-SEM se centra en maximizar la varianza explicada de las variables latentes dependientes a partir de las variables latentes independientes.
  • Ventajas: Funciona bien con muestras pequeñas y permite la inclusión de constructos formativos, lo que amplía su aplicabilidad en contextos donde los constructos son complejos y multidimensionales.
  • Aplicaciones: Es especialmente útil en estudios exploratorios y en situaciones donde se busca hacer predicciones, como en el análisis de comportamiento del consumidor.

Metodología de PLS-SEM

La metodología de PLS-SEM se puede resumir en varias etapas clave:

  1. Inicialización: Se obtiene una primera aproximación a los valores de las variables latentes a partir de sus indicadores. Este paso es crucial para establecer un punto de partida en el proceso de estimación.
  2. Estimación de coeficientes de regresión: Se estiman los pesos o coeficientes de regresión de las variables latentes. Este proceso implica calcular las relaciones entre las variables latentes y sus indicadores, así como entre las variables latentes mismas.
  3. Optimización: Se busca maximizar el coeficiente de determinación (R²) de los factores latentes mediante un proceso iterativo. Este proceso de optimización es fundamental para mejorar la precisión de las estimaciones y asegurar que el modelo se ajuste adecuadamente a los datos.
  4. Evaluación de la validez y fiabilidad: Se analizan los constructos para asegurar que miden correctamente lo que se pretende medir. Esto incluye:
    —Fiabilidad individual: Evaluación de la consistencia interna de cada indicador utilizando el alfa de Cronbach.
    —Validez convergente: Medida a través de la varianza extraída (AVE), que debe ser superior a 0,5 para indicar que los indicadores reflejan el mismo constructo.
    —Validez discriminante: Comparación de las correlaciones entre constructos para asegurar que cada constructo es significativamente diferente de los demás. Esto se puede evaluar utilizando el criterio de Fornell-Larcker, que establece que la raíz cuadrada del AVE de cada constructo debe ser mayor que las correlaciones entre constructos.

Ventajas y desventajas de PLS-SEM

Ventajas:

  • Flexibilidad: PLS-SEM no requiere normalidad multivariada, lo que lo hace más accesible para investigadores en ciencias sociales que trabajan con datos no normales.
  • Muestras pequeñas: Funciona bien con muestras pequeñas, lo que es ventajoso en estudios exploratorios donde la recolección de datos puede ser limitada.
  • Constructos formativos: Permite la inclusión de constructos formativos, lo que amplía su aplicabilidad en contextos donde los constructos son complejos y multidimensionales.

Desventajas:

  • Falta de indicadores de ajuste global: PLS-SEM no proporciona indicadores de ajuste global del modelo, lo que puede limitar la comparación entre modelos y la evaluación de su calidad.
  • Restricciones en la estructura del modelo: Cada variable latente debe estar conectada a otra mediante una relación estructural, lo que puede ser restrictivo en algunos contextos.
  • Estimaciones no óptimas: La estimación de parámetros no es óptima en términos de sesgo y consistencia a menos que se utilice el algoritmo PLS consistente, lo que puede afectar la validez de los resultados.

Presentación de resultados

Al presentar los resultados de un análisis SEM, se recomienda estructurarlos en tablas que resuman la fiabilidad y validez del instrumento de medida, así como los análisis de validez discriminante y las hipótesis contrastadas. Así se facilita la comprensión y la interpretación de los resultados por parte de otros investigadores y lectores. La presentación clara y concisa de los resultados es esencial para garantizar la reproducibilidad y la transparencia de la investigación.

Tablas recomendadas:

  • Tabla de fiabilidad y validez: Resumen de los índices de fiabilidad (alfa de Cronbach, fiabilidad compuesta) y validez (AVE).
  • Tabla de validez discriminante: Comparación de las correlaciones entre constructos y sus AVE.
  • Tabla de resultados estructurales: Coeficientes de regresión, R² y significancia de las relaciones estructurales.

Conclusión

Los modelos de ecuaciones estructurales son una herramienta muy valiosa en la investigación social y del comportamiento, ya que permiten a los investigadores modelar y analizar relaciones complejas entre variables. La elección entre CB-SEM y PLS-SEM dependerá de los objetivos de la investigación, la naturaleza de los datos y las hipótesis planteadas. Con una correcta aplicación y validación, SEM puede proporcionar información significativa y fiable en diversas áreas de estudio, contribuyendo al avance del conocimiento en múltiples disciplinas. Para cualquier investigador que busque explorar las complejidades de las relaciones entre variables en su campo de estudio, es esencial comprender profundamente esta metodología y aplicarla correctamente.

Referencias:

Aldás, J. (2018). Modelización estructural mediante Partial Least Squares-PLSPM. Apuntes del seminario de modelización estructural.

Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.

Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research, 19(4), 440–452.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). A primer on partial least square structural equation modeling (PLS-SEM). California, United States: Sage.

López, S., & Yepes, V. (2024). Visualizing the future of knowledge sharing in SMEs in the construction industry: A VOS-viewer analysis of emerging trends and best practices. Advances in Civil Engineering, 2024, 6657677.

Yepes, V., & López, S. (2023). The knowledge sharing capability in innovative behavior: A SEM approach from graduate students’ insights. International Journal of Environmental Research and Public Health, 20(2), 1284.

Os dejo a continuación un artículo explicativo al respecto. Espero que os sea de interés.

Descargar (PDF, 273KB)

También os pueden ser útiles algunos vídeos al respecto.


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aprendizaje supervisado en ingeniería civil

En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.

El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.

Técnicas de aprendizaje supervisado

Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.

Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.

Selección del algoritmo adecuado.

La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.

El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.

Clasificación binaria y multicategoría

Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.

Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.

Algoritmos de clasificación comunes

Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.

  • La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
  • El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
  • El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
  • Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
  • El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
  • El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
  • Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.

Algoritmos de regresión comunes

Los algoritmos de regresión son esenciales para predecir valores continuos.

  • La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
  • La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
  • El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
  • La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
  • El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
  • Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.

Mejora de modelos

La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.

  • La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
  • La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
  • La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.

Aplicaciones del aprendizaje supervisado en ingeniería civil

  • Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
  • Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
  • Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
  • Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.

Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.

Os dejo un mapa mental acerca del aprendizaje supervisado.

También os dejo unos vídeos al respecto. Espero que os sean de interés.

Referencias

  1. Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.
  2. Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence1168, 472.
  3. Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction129, 103760.
  4. Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management149(12), 04023139.
  5. Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures248, 113263.
  6. Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering12(4), 295-310.
  7. Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.

Descargar (PDF, 1.52MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fases de un estudio de investigación operativa

La investigación operativa busca determinar la solución óptima para un problema de decisión con recursos limitados. Se trata de un procedimiento científico que analiza las actividades de un sistema de organización.

Las principales componentes de un modelo de investigación operativa son: alternativas, restricciones y un criterio objetivo para elegir la mejor opción. Las alternativas se representan como variables desconocidas que luego se utilizan para construir las restricciones y la función objetivo mediante métodos matemáticos. El modelo matemático establece la relación entre estas variables, restricciones y función objetivo. La solución consiste en asignar valores a las variables para optimizar (maximizar o minimizar) la función objetivo y cumplir con las restricciones. A esta solución se le denomina solución posible óptima.

El enfoque del estudio de la ingeniería de operaciones está relacionado con la toma de decisiones para aprovechar al máximo los recursos limitados. Para ello, utiliza herramientas y modelos adaptados a las necesidades para facilitar la toma de decisiones en la resolución de problemas. Implica un trabajo en equipo entre analistas y clientes, con una estrecha colaboración. Los analistas aportan conocimientos de modelado y el cliente, experiencia y cooperación.

Como herramienta para la toma de decisiones, la investigación de operaciones combina ciencia y arte. Es ciencia por sus técnicas matemáticas y arte, porque el éxito en todas las fases, antes y después de resolver el modelo matemático, depende de la creatividad y experiencia del equipo. La práctica efectiva de la investigación de operaciones requiere más que competencia analítica, e incluye la capacidad de juzgar cuándo y cómo utilizar una técnica, así como habilidades de comunicación y adaptación organizativa.

Es complicado recomendar acciones específicas, como las de la teoría precisa de los modelos matemáticos, para abordar factores intangibles. Solo pueden ofrecerse directrices generales para aplicar la investigación de operaciones en la práctica.

El estudio de investigación operativa consta de varias etapas principales, entre las que destacan las siguientes:

  1. Formulación y definición del problema.
  2. Construcción del modelo.
  3. Solución del modelo.
  4. Verificación del modelo y de la solución.
  5. Puesta en práctica y mantenimiento de la solución.

Aunque las fases del proyecto suelen iniciarse en el orden establecido, no suelen completarse en el mismo orden. La interacción entre las fases requiere revisarlas y actualizarlas continuamente hasta la finalización del proyecto. La tercera fase es la única de carácter puramente matemático, ya que en ella se aplican las técnicas y teorías matemáticas necesarias para resolver el problema. El éxito de las demás etapas depende más de la práctica que de la teoría, siendo la experiencia el factor clave para su correcta ejecución.

Definir el problema implica determinar su alcance, tarea que lleva a cabo todo el equipo de investigación de operaciones. El resultado final debe identificar tres elementos principales: 1) descripción de las alternativas de decisión, 2) determinación del objetivo del estudio y 3) especificación de las restricciones del sistema modelado. Además, se deben recolectar los datos necesarios.

La formulación del modelo es quizá la fase más delicada del proceso, ya que consiste en traducir el problema a relaciones matemáticas. Si el modelo se ajusta a un modelo matemático estándar, como la programación lineal, puede resolverse con los algoritmos correspondientes. Para ello, deben definirse las variables de decisión, la función objetivo y las restricciones. Si las relaciones son demasiado complejas para una solución analítica, se puede simplificar el modelo mediante un método heurístico o recurrir a una simulación aproximada. En algunos casos, puede ser necesaria una combinación de modelos matemáticos, simulaciones y heurísticas para resolver el problema de toma de decisiones.

La solución del modelo es la fase más sencilla de la investigación de operaciones, ya que utiliza algoritmos de optimización bien definidos para encontrar la solución óptima. Un aspecto clave es el análisis de sensibilidad, que proporciona información sobre la forma en que la solución óptima responde a cambios en los parámetros del modelo. Esto es crucial cuando los parámetros no se pueden estimar con precisión, puesto que permite estudiar cómo varía la solución cerca de los valores estimados.

La validación del modelo verifica si cumple su propósito, es decir, si predice adecuadamente el comportamiento del sistema estudiado. Para ello, se evalúa si la solución tiene sentido y si los resultados son aceptables, comparando la solución con datos históricos para verificar si habría sido la correcta. Sin embargo, esto no garantiza que el futuro imite al pasado. Si el modelo representa un sistema nuevo sin datos históricos, se puede usar una simulación como herramienta independiente para comprobar los resultados del modelo matemático.

La implantación de la solución de un modelo validado consiste en traducir los resultados en instrucciones claras para quienes gestionarán el sistema recomendado. Esta tarea recae principalmente en el equipo de investigación de operaciones. En esta fase, el equipo debe capacitar al personal encargado de aplicar el modelo, asegurándose de que puedan traducir sus resultados en instrucciones de operación y usarlo correctamente para tomar decisiones sobre los problemas que motivaron su creación.

Os dejo algún vídeo al respecto.

Referencias:

Altier, W. J. (1999). The thinking manager’s toolbox: Effective processes for problem solving and decision making. Oxford University Press.

Checkland, P. (1999). Systems thinking, system practice. Wiley.

Evans, J. (1991). Creative thinking in the decision and management sciences. South-Western Publishing.

Gass, S. (1990). Model world: Danger, beware the user as a modeler. Interfaces, 20(3), 60-64.

Morris, W. (1967). On the art of modeling. Management Science, 13, B707-B717.

Paulos, J. A. (1988). Innumeracy: Mathematical illiteracy and its consequences. Hill and Wang.

Taha, H. A., & Taha, H. A. (2003). Operations research: an introduction (Vol. 7). Upper Saddle River, NJ: Prentice hall.

Willemain, T. R. (1994). Insights on modeling from a dozen experts. Operations Research, 42(2), 213-222.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hardy Cross

Hardy Cross (1885-1959). https://distributedmuseum.illinois.edu/exhibit/hardy_cross/

Hardy Cross fue un ingeniero de estructuras estadounidense que nació el 10 de febrero de 1885 en la plantación familiar ubicada en el condado de Nansemond, cerca del Gran Pantano Dismal, en Virginia. Falleció el 11 de febrero de 1959, en Virginia Beach (Virginia, EE. UU.).

Tanto él como su hermano, Tom Peete, se educaron en la Norfolk Academy de Norfolk, Virginia. Posteriormente, ambos ingresaron en el Hampden-Sydney College, donde Cross obtuvo sus títulos de Bachelor of Arts (B.A.) en 1902 y Bachelor of Science (B.S.) en 1903, antes de cumplir los 18 años.

Durante los tres años siguientes, enseñó inglés y matemáticas en la Academia Norfolk. A la edad de tan solo 23 años, consiguió un Bachelor of Science en ingeniería civil en el Instituto Tecnológico de Massachusetts (M.I.T.), donde se graduó en Ingeniería Civil en tan solo dos años. En 1911, la Universidad de Harvard le otorgó el título de máster en ingeniería civil.

Entonces comenzó su carrera como docente. Su primer nombramiento fue en la Universidad de Brown, donde enseñó durante siete años, entre 1911 y 1918. Fuera del aula, trabajó como ingeniero de puentes para el Missouri Pacific Railroad, colaborando con destacados consultores en ingeniería civil especializados en estructuras e ingeniería hidráulica. Además, en 1920 trabajó como ingeniero asistente para Charles T. Main. Tras un breve regreso a la práctica de la ingeniería en general, en 1921 aceptó un puesto como profesor de ingeniería estructural en la Universidad de Illinois en Urbana-Champaign. Desde 1937 hasta obtener el estatus de profesor emérito en 1951, enseñó e investigó en la Universidad de Yale, donde también fue jefe del Departamento de Ingeniería Civil.

Como docente, Hardy Cross fue un firme defensor de los exámenes orales para los candidatos a grados avanzados y participaba frecuentemente en debates sobre esta cuestión. Insistió en la gran responsabilidad individual de los profesores y en su desprecio por lo superficial en la enseñanza. Escribió el libro “Ingenieros y torres de marfil”, donde aborda magistralmente temas relacionados con la enseñanza y el ejercicio de la ingeniería civil.

Recibió numerosos reconocimientos. Entre ellos, destacan el grado honorífico de Maestro de Artes de la Universidad de Yale, la medalla Lamme de la Sociedad Americana para la Educación en Ingeniería (1944), la medalla Wason del Instituto Americano del Hormigón (1935) y la medalla de oro del Instituto de Ingenieros Estructurales de Gran Bretaña (1959).

En la edición de mayo de 1930 de los Proceedings of the American Society of Civil Engineers (ASCE), Hardy Cross resolvió un problema aparentemente irresoluble de la teoría de estructuras. Su genialidad radicó en calcular sistemas estáticamente indeterminados mediante un método iterativo que utilizaba la forma más sencilla de aritmética (Cross, 1930).

El método de Cross era ideal para analizar sistemas con un alto grado de indeterminación estática, como suele ocurrir en el diseño de edificios de gran altura. Con este aporte, Cross puso fin a la búsqueda que había caracterizado la fase de aplicación de la teoría de estructuras: encontrar métodos de cálculo adecuados para resolver sistemas con elevada indeterminación estática de forma racional.

El método de Cross no solo marcó el inicio de una algoritmización sin precedentes del análisis estructural en el siglo XX, sino que también llevó la racionalización de los cálculos estructurales a un nuevo nivel. Por tanto, no es de extrañar que tras su trabajo apareciera una avalancha de extensos artículos de discusión en las Transactions de la ASCE (Cross, 1932). Su ingenioso método iterativo provocó que innumerables ingenieros, incluso durante la fase de innovación de la teoría de estructuras, describieran y desarrollaran aún más el método de Cross. Nunca antes un artículo en el campo de la teoría de estructuras había generado un debate tan amplio. En su trabajo, Cross proponía abandonar las soluciones exactas de la teoría de estructuras y sustituirlas por un enfoque más cercano a la realidad. Favorecía los métodos de análisis estructural que combinaran una precisión aceptable con cálculos rápidos.

El progreso infinito (en el sentido del valor límite) inherente a los símbolos de la teoría formalizada del cálculo diferencial e integral fue reemplazado por el progreso finito del trabajo del calculista. Solo era cuestión de tiempo antes de que este trabajo se mecanizara. Pocos años después, Konrad Zuse (1910-1995) utilizaría una máquina similar: la «máquina de cálculo del ingeniero» (Zuse, 1936).

El método de Cross, también conocido como método de distribución de momentos, se concibió para el cálculo de grandes estructuras de hormigón armado. Este método se utilizó con frecuencia entre 1935 y 1960, momento en que fue sustituido por otros métodos. Gracias a él, fue posible diseñar de manera eficiente y segura un gran número de construcciones de hormigón armado durante una generación entera.

Cross representa un enfoque tipo Henry Ford en la producción de cálculos estructurales durante la transición al periodo de integración de dicha teoría. No es de extrañar que se publicaran innumerables trabajos sobre su método hasta bien entrada la década de 1960.

De hecho, se ha escrito tanto sobre este tema que fácilmente llenaría la biblioteca privada de tamaño medio de cualquier académico. Además, el método de Cross no se limitó a la teoría de estructuras, sino que fue rápidamente adoptado en disciplinas como la construcción naval y el diseño de aeronaves.

El propio Cross trasladó la idea básica de su método iterativo al cálculo de flujos estacionarios en sistemas de tuberías, dando origen al «método Hardy-Cross», lo que supuso un avance fenomenal en este ámbito. Los reconocimientos que recibió a lo largo de su carrera son innumerables.

Principales contribuciones a la teoría de estructuras:

  • Analysis of continuous frames by distributing fixed-end moments [1930].
  • Analysis of continuous frames by distributing fixed-end moments [1932/1].
  • Continuous Frames of Reinforced Concrete [1932/2].
  • Analysis of continuous frames by distributing fixed-end moments [1949].
  • Engineers and Ivory Towers [1952].
  • Arches, Continuous Frames, Columns and Conduits: Selected Papers of Hardy Cross [1963].