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Abstract: This study aims to establish a methodology for optimizing embodied energy while con-
structing lightened road flyovers. A cross-sectional analysis is conducted to determine design
parameters through an exhaustive literature review. Based on this analysis, key design variables that
can enhance the energy efficiency of the slab are identified. The methodology is divided into two
phases: a statistical technique known as Latin Hypercube Sampling is initially employed to sample
deck variables and create a response surface; subsequently, the response surface is fine-tuned through
a Kriging-based optimization model. Consequently, a methodology has been developed that reduces
the energy cost of constructing lightened slab bridge decks. Recommendations to improve energy
efficiency include employing high slenderness ratios (approximately 1/28), minimizing concrete and
active reinforcement usage, and increasing the amount of passive reinforcement.

Keywords: optimization; embodied energy; bridges; surrogate model; Kriging; prestressed con-
crete; sustainability

1. Introduction

The construction industry is a pivotal driver of economic growth in numerous coun-
tries worldwide. Nevertheless, this substantial role in the global economy places the
construction sector at the forefront of concerning aspects, including non-renewable re-
source consumption, waste generation, and the production of greenhouse gas (GHG)
emissions. Construction constitutes a significant portion of global energy consumption,
ranging from 25% to 40% [1]. Assessing sustainability in construction is often based on the
energy expended during construction and the resulting CO2 emissions [2,3]. Consequently,
there has been a growing focus on improving environmental sustainability within the
construction sector in recent years [4].

Furthermore, studies showed that the cement production industry accounts for ap-
proximately 5% of all energy consumption within the industrial sector [5]. The challenge
is balancing descriptive regulations and performance-based approaches in cement and
concrete standardization. This combination would facilitate the adoption of new technical
solutions while guaranteeing both durability and sustainability [6]. A pivotal move toward
achieving environmental sustainability involves transitioning from cement-type CEM I to
CEM II (European classification) [7]. Cabeza et al. [8] provided an overview of embodied
carbon and energy values by conducting a keyword analysis and systematically reviewing
literature data. This analysis unveiled concrete as the most assessed material and the use of
the “cradle to gate” boundary system in Life Cycle Assessments (LCA). In the context of
LCAs, it is assumed that the structure has undergone wear and tear during its operation
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and will necessitate repair and maintenance, typically involving conventional materials
and methods [9,10]. It is crucial not only to conduct an analysis that solely focuses on eco-
nomic or environmental aspects throughout a life cycle but also, as emphasized by Navarro
et al. [11], to comprehensively assess social sustainability across an entire structure’s life
cycle. However, the literature indicates the significance of each impact also considerably
varies depending on the type of structure [12].

Proper material selection and optimization contribute to the sustainability of con-
crete structures [13]. Meng et al. [14] developed an optimization design for ultra-high-
performance concrete. Meanwhile, Kim et al. [15] assessed CO2 emissions throughout
the concrete’s life cycle and introduced an optimal design method based on an evolution-
ary algorithm. Structural engineering has traditionally focused on cost-effective safety
solutions that minimize investments. However, the current emphasis on sustainable de-
velopment demands a departure from this criterion as it proves inadequate in aligning
with broader sustainability objectives. In response, alternative criteria have emerged to
integrate sustainability principles into structural design [16]. Some authors have made
energy a central focus in their optimization endeavors [17,18]. Miller et al. [19] demon-
strated that in situ construction methods for various slab systems exhibit lower energy
consumption compared to reinforced concrete slabs. Energy reduction results in reduced
structural weight, but weight reduction does not necessarily lead to the lowest achievable
energy consumption [20]. However, research dedicated to embodied energy optimization in
bridges is scarce. Minunno et al. [21] provide a regression model and procedural guidelines
for practitioners seeking to reduce buildings’ environmental impact. This study suggests
adopting modularized and disassemblable building construction systems. Penadés-Plà
et al. [22] introduced an optimization algorithm for a three-span footbridge with lengths of
40-50-40 m.

Heuristic optimization has proven to be a valuable tool in mitigating the economic
and environmental costs associated with structural engineering [23–27]. Nevertheless,
these techniques can be computationally expensive, leading to the use of metamodels
to tackle this challenge. To avoid the limitations of previous studies based on heuristic
optimization, this paper employs a surrogate model instead of an intricate one for optimiza-
tion simulations. This approach can be employed to streamline the optimization process,
explore the design space, or conduct reliability analysis, among other applications. The
core methodology entails obtaining a sample set of design vectors within the design space,
followed by the execution of high-fidelity simulations, such as Finite Element Analysis
(FEA). Subsequently, regression or interpolation models are constructed based on the high-
fidelity values, and these models can be scrutinized using optimization algorithms [28].
Employing this approach with effective optimization techniques offers the advantage of
swiftly achieving optimal results. The metamodels most frequently employed comprise
polynomial regression, Radial Basis Functions (RBFs), Neural Networks (NN), and Kriging
models [29,30].

One of the most effective metamodels is Kriging, which replaces a simulation model
and provides optimal interpolation using observed values [31]. Kriging-based optimiza-
tion is presented as a distinct approach from heuristic optimization to accelerate complex
problems’ optimization [22]. The Kriging surrogate model is a nonparametric interpolation
model that posits the actual performance function as a manifestation of a Gaussian pro-
cess [32]. This model utilizes the training samples and their associated outputs to build the
surrogate model, enabling predictions for unobserved points. The Kriging methodologies
construct a metamodel by employing optimal interpolation techniques through regression
against observed values from adjacent data points, with weights determined by spatial
covariance values [22].

Nevertheless, only a few studies have applied Kriging to real structural design prob-
lems. Martínez-Frutos and Martí [33] propose an approach using Kriging surrogate models
to solve in a very efficient manner the uncertainty assessment problem in optimizing
the design of robust structures. Recently, it has been utilized in optimizing wind tur-
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bines [34], auxiliary structures for circular bridge piers [35], and reinforced concrete frame
structures [36,37].

Zhang and Wu [38] utilized Kriging in RC bridges for establishing the structural
vulnerability curves. A Kriging-based algorithm reduced computing time by 99.06% while
yielding results deviating only 2.54% from the approach using heuristic optimization with
simulated annealing [22]. Wu et al. [39] applied this model to optimize bridge structure
finite element models.

This article presents a general methodology for reducing energy consumption in con-
structing lightened prestressed concrete (PC) slab bridges, particularly in post-tensioned
road flyovers. This approach can be applied to other structures for optimizing various
objective functions. The benefit of adopting this approach lies in its capacity to address
intricate problems characterized by many variables, especially in cases where computa-
tional constraints lead to extended processing times. The proposed method is universally
applicable and can be used in several structural contexts to optimize objective functions.
Two novel contributions are highlighted: adopting a two-phase Kriging metamodel and
optimizing the embodied energy in multiple voided PC slab decks.

2. Problem Description

Employing a continuous hyperstatic PC slab in bridges between 10 and 45 m is com-
mon practice. Slab decks are no longer cost-effective beyond a main span of 50 m, resulting
in a transition to box girder cross-section decks in the design. In common practice, when
designing slab decks for roads with three or more span segments, the depth-to-span ratio is
typically maintained at approximately 1/25. This solution competes favorably with prefab-
ricated beams due to its structural advantages, including increased torsional and flexural
rigidity, enhanced durability, and safety attributed to hyperstatic behavior. Additionally, it
easily adapts to complex shapes from a construction perspective, simplifying the formwork
and concrete pouring processes. Furthermore, it eliminates joints and provides greater
flexibility in support placement, all while enhancing aesthetics.

The objective of this study is to optimize the embodied energy of prestressed concrete
road flyovers using a two-phase Kriging surrogate model. To achieve this, this new
metamodel has been applied to improve the prestressed lightweight slab bridge deck
design with spans measuring 24-34-28 m, a configuration commonly found in flyovers
spanning double-lane and double-track motorways. As depicted in Figure 1, the cast-in-
place slab maintains a uniform depth and follows a straight-line layout. The deck has a
width of 8.30 m, accommodating two 3.50 m lanes, a 0.65 m guard rail on each side, and a
concrete pedestal (see Figure 2).

The theory of limit states is employed to assess structural strength using partial safety
factors. Each design scenario ensures that no limit state, whether ultimate or related to
serviceability, is surpassed. In this instance, CSiBridge v.21.0.0 software was employed to
model, analyze, and size the bridge deck. Each alternative was analyzed to determine the
acting and resisting forces represented by sectional stresses. The structures are verified
according to the serviceability limit state (SLS) and the ultimate limit state (ULS) defined
in Eurocode 2, considering the actions specified in Eurocode 1, which include dead loads
of 44 kN/m and the environmental exposure class of concrete XC4. These demands are
derived for each structural element and are detailed in [40].
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Figure 2. Cross-sectional view of the lightweight PC slab bridge deck.

The variables under consideration included the concrete’s simple compressive strength
and depth and width dimensions on the various decks’ cross-sections (Figure 2). The
remaining dimensions and lightweight components are derived from the relationships
outlined in Table 1. Consequently, the concrete’s characteristic strength was modified,
ranging from 30 to 50 MPa. The depth ranges from 1.15 m to 1.70 m, with 0.05 m increments,
while the width of the section ranges from 3.00 m to 5.00 m, with 0.05 m increments. The
maximum span length of the cantilever (v) depends on the bottom base (b), creating an
interdependence between these variables. This interrelation can be problematic, as extended
cantilever lengths may not be compatible with specific bottom width values, where the
combined summation of the bottom width and the lengths of the cantilever should be, at
most, the total width of the deck. The voids under consideration are consistently circular,
and the external cross-section solely determines their placement within the cross-section.
The shear reinforcement and the prestressing tendons need to be positioned within the void
cross-section webs. Achieving the required prestressing level may necessitate employing
more than one cable per web. It is necessary to integrate the shear reinforcement with the
prestressing layout.

Table 1. Dimensional ranges and their regulatory constraints [40].

Design Variables Range Limitation

Base width (b) 3.00–5.00 m -
Depth of the deck (c) 1.15–1.70 m >0.90 m

Length of the cantilever (v) Variable <3.50 m
Initial cantilever thickness e1 (a + b) 0.35 m -

Thickness of the cantilever edge e2 (a) 0.25 m >0.20 m
Distance between cantilever and core (d) 0.40 m -

Minimum void coating 0.225 m >0.15 m
Characteristic strength of concrete (fck) 30–50 MPa -

3. Methodology

The proposed methodology comprised two phases: diversification and intensification.
Latin Hypercube Sampling (LHS) was employed to select uniformly distributed random
numbers. This method was introduced by McKay et al. [41], demonstrating that Latin
Hypercube Sampling (LHS) yields a lower variance of the sample mean compared to
a simple random sample. The embodied energy for each alternative is evaluated and
then optimized using a response surface created by a Kriging metamodel. LHS randomly
selected a sample within each interval for every variable, and the numerical model is
executed as often as there are intervals in the probability distribution division. This ensured
the selection of initial values within each data range.
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LHS stands out for several key advantages. It offers a more comprehensive under-
standing of the design space than simple random sampling. It is especially advantageous
for computational experiments focusing on systematic rather than random errors and
ensures a uniformly random sample. In addition, LHS provides the flexibility to adjust the
sample size to suit specific experimental needs. Furthermore, it excels in ease of generation
and delivers efficient results in a reasonable time frame, making it a practical choice for
various applications.

The sampling process depends on the size and placement of selected points. The
sample size proportionally increases with the number of variables to maintain the same
metamodel precision. For concrete structures, favorable results have been obtained with a
sample size of 30 individuals. Subsequently, the values were fitted within the ranges of
each variable through this sampling process, generating designs that serve as inputs in the
optimization model.

Each bridge deck consumes energy, and to compare different designs, various elements
were analyzed, including concrete type, formwork area, steel quantity, and lightweight
volume (Table 2).

Table 2. Energy cost of the deck [22].

Material kWh/kg kWh/m3 kWh/m2

Y-1860-S7 steel 5.64
B-500-St steel 3.03
C-30 concrete 227.01
C-35 concrete 263.96
C-40 concrete 298.57
C-45 concrete 330.25
C-50 concrete 358.97

Lightening 604.42
Slab formwork 2.24

While a typical study would generally choose the deck with the lowest energy require-
ment, a predictive Kriging-type model was proposed to optimize the alternatives resulting
from sampling using a heuristic algorithm. Kriging operates by interpolating data through
regression analysis using observed values from nearby points, with weights determined by
spatial covariance. The model simultaneously considers global and local approximations,
allowing for a consideration of local variations in the response.

Kriging is based on predicting the attribute value, represented as z, at a point u,
using n values of z. In this case, the attribute represents the energy required for deck
construction, while the points correspond to the points obtained through LHS sampling.
This process predicts the response without the need for a complete structural analysis.
The MATLAB Kriging Toolbox (DACE), which constructs a Kriging model from data
generated in a computer experiment, was employed, consisting of pairs of inputs and
model responses [42].

To achieve higher accuracy in the response, the slowest part of conventional opti-
mization, namely structural analysis and objective function evaluation, is substituted with
metamodel predictions. As a result, the computational cost for metamodel-based optimiza-
tion is significantly reduced compared to conventional methods. For example, Penadés-Plà
et al. [22] found that Kriging can reduce computational cost by 99.06%. This model’s use al-
lows for the resolution of computationally intensive structural problems while simplifying
the complexity of other issues. Figure 3 illustrates the process flow diagram.
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Threshold Accepting with Mutation Operator (TAMO) [43] was employed in this study.
This method is a simulated annealing (SA) derivative and can be classified as a local search
technique for tackling non-deterministic polynomial-time hard (NP-hard) optimization
problems spanning various domains. Much like SA, which employs a probabilistic criterion
to escape local optima, TAMO is a search method that involves making slight random
modifications to the current solution and systematically navigating the search space. This
metaheuristic permits deteriorating moves to break free from local optima. This is achieved
by accepting solutions that degrade the current solution by a specified threshold, progres-
sively reducing this threshold to zero. This allows for accepting modifications that may lead
to worse outcomes to avoid local minima. This algorithm is guided by four key rules: the
initial solution must be generated at the beginning, a set of neighbors should be defined to
generate neighboring solutions, criteria for stopping the search must be chosen, and tuning
the threshold value is a crucial aspect of the process. This algorithm begins with an initial
random solution and a starting threshold. Following Medina’s criterion [44], the initial
threshold (U0) is adjusted until it falls within the 20% to 40% acceptability range. The new
solution can be altered in each iteration, simulating the mutation process seen in genetic
algorithms. This modification introduces an exploratory element into the optimization
process. The initial threshold is geometrically reduced after every 1000 iterations, with an
80% cooling coefficient. This algorithm is used for optimizing structures due to its strong
convergence towards the global optimum [45].

4. Results
4.1. Search Diversification Phase

Latin Hypercube Sampling (LHS) is employed to explore local optima in a diversified
way in the initial phase. After determining the design variables, an LHS sample is extracted
to obtain various permutations of these variables, contributing to the surrogate model. The
values obtained are between 0 and 1. Nonetheless, it is assumed that the depth and width
of the bottom are multiples of 0.05 m. In addition, concrete grade values are restricted to
integer multiples of 5. As a result, the ultimate dimensions for the different bridge design
solutions under consideration are outlined in Table 3.
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Table 3. Values of design variables obtained within the specified ranges.

Deck Depth of the
Deck (m)

Base Width
(m)

Concrete
Grade (MPa) Deck Depth of the

Deck (m)
Base Width

(m)
Concrete

Grade (MPa)

1 1.65 3.65 35 16 1.55 4.10 35
2 1.70 3.80 45 17 1.25 3.50 45
3 1.20 3.85 40 18 1.40 3.30 40
4 1.55 3.60 45 19 1.45 3.90 45
5 1.20 4.85 50 20 1.35 3.60 35
6 1.15 4.50 50 21 1.50 3.35 45
7 1.35 3.95 30 22 1.50 4.50 45
8 1.30 4.45 30 23 1.55 3.20 30
9 1.35 4.25 45 24 1.25 3.00 50
10 1.50 4.55 30 25 1.40 3.45 45
11 1.60 4.20 40 26 1.50 3.55 35
12 1.25 4.70 40 27 1.70 3.85 45
13 1.50 4.05 45 28 1.20 3.60 40
14 1.45 4.35 35 29 1.30 4.90 40
15 1.65 3.45 45 30 1.45 4.75 35

The data selected in this sampling process served as input for the Kriging model. The
analysis and verification of the bridge decks were examined and verified, considering both
ultimate limits and serviceability states while calculating energy consumption.

Relevant elements contributing to energy consumption were evaluated to facilitate a
comparison among the various bridge decks. These elements included the concrete grade
employed, the required formwork surface area, the volume of lightweight materials, and
the quantity of active and passive steel used. The energy consumption was correlated with
the measurements of each material, as illustrated in Table 4.

Table 4. Energy cost of each of the analyzed decks.

Deck Energy Cost
(MW·h) Deck Energy Cost

(MW·h) Deck Energy Cost
(MW·h)

1 1149.88 11 1267.85 21 1134.93
2 1182.89 12 1191.65 22 1189.53
3 1065.87 13 1183.17 23 1103.41
4 1140.79 14 1119.17 24 1101.04
5 1170.72 15 1145.07 25 1201.73
6 1199.59 16 1162.92 26 1105.44
7 1103.18 17 1073.75 27 1165.47
8 1180.31 18 1152.33 28 1083.41
9 1132.71 19 1145.21 29 1215.82
10 1138.00 20 1094.86 30 1163.59

A conventional analysis of solutions would lead to the selection of Deck #3, as it results
in the lowest energy cost. However, in pursuit of an even more efficient solution, a Kriging
model for optimization was employed. With the assistance of simulated annealing, an
optimal response surface has been achieved, and the outcomes are summarized in Table 5.

Table 5. Result after optimizing the search diversification phase.

Depth of the Deck
(m) Base Width (m) Concrete Grade

(MPa) Energy Cost (MW·h)

1.15 3.35 40 1051.00
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4.2. Search Intensification Phase

This phase aimed to intensify the search process for optimal results based on the
better solution achieved in the diversification phase. In this stage, the variables have been
narrowed down close to the best solution from the preceding phase, and an additional
ten individuals have been added to assess if further improvements can be achieved. After
analyzing the new bridge decks, the constraints mandated by regulations were verified,
and the energy assessment was conducted as outlined in Table 6.

Table 6. Solutions and energy costs for each bridge deck in the intensification phase.

Deck Depth of the
Deck (m) Base Width (m) Concrete Grade

(MPa)
Energy Cost

(MW·h)

31 1.20 3.40 40 1059.87
32 1.15 3.90 35 1129.22
33 1.05 3.50 35 1237.89
34 1.10 3.80 45 1178.72
35 1.15 3.35 45 1074.77
36 1.25 3.60 45 1078.71
37 1.10 3.45 40 1124.21
38 1.20 3.35 45 1065.44
39 1.25 3.40 45 1084.92
40 1.15 3.60 45 1104.77

As is evident, the best bridge deck from the diversification phase showcased a per-
centage reduction in the values of all sampled decks, ranging from 1.5% in the best case to
as much as 17.1% in the worst case.

Introducing new individuals was optional to outperform the best result identified
during the diversification phase. Nevertheless, after optimizing the modified response
surface, a new optimum surpassed the former (as shown in Table 7). When comparing the
energy result obtained after the optimization of this second phase, a reduction of up to
1.21% is achieved.

Table 7. Result post-optimization in the search intensification phase.

Depth of the Deck (m) Base Width (m) Concrete Grade (MPa) Energy Cost (MW·h)

1.15 3.70 40 1038.28

5. Discussion

For prestressed slab bridges with cantilevers, the recommendations from the Direccón
General de Carreteras (DGC) [46] suggest a slenderness ratio between 1/22 and 1/30, while
SETRA [47] recommends a slenderness ratio of 1/28 for three-span slab decks with wide
cantilevers. In our case, the slenderness ratio of the bridge optimized for energy efficiency
is 1/29.57, which falls within the limits recommended by DGC [46] and is very close to the
limit set by [47].

The deck optimization reduces the depth, resulting in these bridges’ very high slen-
derness ratio. When comparing the slenderness ratio of the bridge optimized for energy
with the data from the study by Yepes et al. [48], which statistically analyzed 61 lightweight
slabs, it can be observed that the slenderness ratio exceeds the 75th percentile (1/26.39).
Only one deck in that study had a slenderness ratio greater than 1/30, suggesting that the
design of such slender decks is uncommon.

Regarding the amount of concrete, DGC [46] suggests a range of 0.55 to 0.70 m3/m2

for the deck. The energy-optimized deck has a quantity of 0.60 m3/m2, falling within this
recommendation. When comparing this concrete quantity with the data provided by [48],
it is slightly below the sample’s median.

Another relevant consideration involves examining the relationship of depth/main-
span ratio to the concrete quantity for all the bridges analyzed. As depicted in Figure 4,



Materials 2023, 16, 6767 9 of 13

it becomes evident that higher slenderness ratios, between 1/26 and 1/30, along with
minimal concrete volumes, less than 0.60 m3/m2, hold significance.
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The quantity of passive steel employed in the energy-optimized deck surpasses
the DGC [46] recommendations by 12%, establishing a range of values between 70 and
100 kg/m3 of passive steel to the volume of concrete. The optimized bridge requires
112.32 kg/m3 of passive steel, representing a substantial deviation from the recommended
values.

However, the median value from [48] is 100.87 kg/m3, close to the typical amount of
passive steel used in bridges previously constructed in Spain. It can also be noted that the
values provided by the DGC [46] fall below what has been executed.

The quantity of passive steel in the bridge optimized for energy consumption is lower
than the maximum value found in [48], which was 187.08 kg/m3. Furthermore, the amount
of passive reinforcement per unit of bridge area is close to the median in the same study.
The energy-optimized bridge uses an amount of 67.32 kg/m2 of the deck, while the median
is 65.27 kg/m2 of the deck.

Figure 5 presents the variation in embodied energy concerning the concrete quantity
and the passive reinforcement for all the bridges analyzed. Energy consumption decreases
with concrete quantities below 0.60 m3/m2 and passive reinforcement quantities ranging
from 100 to 130 kg/m3.

As for the quantity of active reinforcement, the optimized bridge consumes 16.48 kg/m2

of deck, which falls within the limits established by the DGC [46] of 10 to 25 kg/m2. How-
ever, this value is below the 25th percentile of the work by [48], suggesting that energy-
optimized slab bridges tend to reduce the amount of prestressing and concrete in exchange
for increasing the amount of passive reinforcement.

Another aspect worth exploring is the relationship between the characteristic strength
of concrete and its quantity. Figure 6 shows lower energy consumption occurs with concrete
quantities ranging from 0.55 to 0.60 m3/m2, and the concrete strength is approximately
40–45 MPa.
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6. Conclusions

The conclusions drawn from the conducted study are presented below. It is essential to
highlight that in this work, a methodology for optimizing structures using metamodels has
been developed, allowing for the systematic and efficient resolution of an existing problem.
The proposed methodology has been applied to a 24-34-28 m three-span lightweight slab
PC bridge deck.

First and foremost, the research question has been addressed by providing a two-
phase methodology founded on a Kriging surrogate model, which improves the energy
cost associated with constructing a lightweight prestressed slab deck. This methodological
proposal allows for its use in optimization problems that involve high computational costs
when using heuristic algorithms. This approach is particularly relevant due to the many
variables and constraints in real structural problems. On the other hand, optimizing the
embedded energy required to construct a structure, such as the studied overpass, highlights
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the potential for designing more sustainable structures. This approach, therefore, allows
us to discern the design differences between solutions that require less embedded energy
compared to the typical pre-dimensioning rules used in conventional practice.

From the analysis of the results, the conclusions drawn are as follows:

• Designing slab decks to reduce energy consumption involves a slight increase in the
typical slenderness ratios of these elements. This action reduces the volume of concrete
used and the amount of prestressing required while increasing the consumption of
passive reinforcement. Furthermore, energy consumption can be reduced by decreas-
ing the volume of materials such as steel for active reinforcement and concrete. It
is recommended to use wide cantilevers and lightweight interior materials with the
maximum height possible within the design to achieve this, allowing for a reduction
in the volume of concrete used.

• The following recommendations are made to reduce emissions in a three-span pre-
stressed slab bridge with a main span of 34 m: maintaining a slenderness ratio of
approximately 1/28, employing a concrete volume ranging from 0.55 to 0.60 m3/m2

for the deck, using passive steel in quantities between 100 and 130 kg/m3, incorpo-
rating active reinforcement at around 17 kg/m2 of deck, specifying a characteristic
concrete strength of 40 MPa, keeping interior lightweight material quantities below
0.18 m3/m2 of deck, and using exterior lightweight material quantities ranging from
0.45 and 0.55 m3/m2 of deck.

The work is constrained by its focus on optimizing a single objective function, specifi-
cally embedded energy. Therefore, it would be advantageous to investigate the concurrent
integration of additional objective functions, such as cost, CO2 emissions, and safety, along-
side embedded energy for future research directions. Furthermore, this methodology could
be extended to various structural configurations. Another promising avenue for research
entails analyzing these objective functions throughout the entire life cycle of the structure,
encompassing maintenance and eventual dismantling. Future research holds the potential
to enhance this subject by advancing the modeling of in-service longevity. It can achieve
this by employing various repair technologies to ascertain which strategy yields the most
significant extension in the lifespan of bridges.
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