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Abstract: Water infrastructure integrity, quality, and distribution are fundamental for public health,
environmental sustainability, economic development, and climate change resilience. Ensuring the
robustness and quality of water infrastructure is pivotal for sectors like agriculture, industry, and
energy production. Machine learning (ML) offers potential for bolstering water infrastructure in-
tegrity and quality by analyzing extensive data from sensors and other sources, optimizing treatment
protocols, minimizing water losses, and improving distribution methods. This study delves into ML
applications in water infrastructure integrity and quality by analyzing English-language articles from
2015 onward, compiling a total of 1087 articles. Initially, a natural language processing approach
centered on topic modeling was adopted to classify salient topics. From each identified topic, key
terms were extracted and utilized in a semi-automatic selection process, pinpointing the most relevant
articles for further scrutiny, while unsupervised ML algorithms can assist in extracting themes from
the documents, generating meaningful topics often requires intricate hyperparameter adjustments.
Leveraging the Bidirectional Encoder Representations from Transformers (BERTopic) enhanced the
study’s contextual comprehension in topic modeling. This semi-automatic methodology for biblio-
graphic exploration begins with a broad topic categorization, advancing to an exhaustive analysis of
each topic. The insights drawn underscore ML’s instrumental role in enhancing water infrastructure’s
integrity and quality, suggesting promising future research directions. Specifically, the study has
identified four key areas where ML has been applied to water management: (1) advancements in
the detection of water contaminants and soil erosion; (2) forecasting of water levels; (3) advanced
techniques for leak detection in water networks; and (4) evaluation of water quality and potability.
These findings underscore the transformative impact of ML on water infrastructure and suggest
promising paths for continued investigation.

Keywords: water infrastructure integrity; machine learning; environmental sustainability; natural
language processing; BERTopic

1. Introduction

Water infrastructure integrity, quality, and distribution are pivotal for public health,
environmental sustainability, economic development, climate change resilience, and social
equity [1–4]. Deterioration in water quality can propagate waterborne diseases, and ensur-
ing access to uncontaminated and safe drinking water is imperative [5]. Safeguarding water
infrastructure integrity and maintaining quality are vital for the efficient and responsible
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use of water resources for future generations [6]. Water plays a crucial role in agriculture [7],
industry, and energy production [8], and meticulous oversight of water infrastructure can
guarantee that these sectors receive the resources they need. The onset of climate change
introduces alterations in both water availability and its quality [9], and steadfast prac-
tices in water infrastructure maintenance and quality assurance can assist communities
in navigating these challenges [10]. Furthermore, water scarcities and degraded quality
often bear a skewed impact on marginalized communities and economically challenged
households [11]. Vigilant attention to water infrastructure integrity and quality ensures
equitable access to pristine and consistent water resources for all.

Machine learning (ML) can be used to improve water distribution and water quality
by analyzing large amounts of data from sensors and other sources [12]. These algorithms
can detect patterns and anomalies in water quality and distribution [13], allowing for the
optimization of water treatment processes, reduction in water losses, and more efficient
and effective water distribution. For example, machine learning can predict water demand
based on weather patterns and other factors [14], helping utilities to adjust distribution
accordingly. These algorithms can also detect leaks and other issues in the water distribution
network [15], enabling utilities to identify and address problems before they become
significant issues.

In this study, an overview of ML applications in the realm of water infrastructure
integrity and quality was conducted. Scopus was chosen as the primary database, and a
search was initiated using the terms “water management” and “machine learning”. The
focus was placed on English-language articles published from 2015 onward, resulting in a
total of 1087 articles. Following the initial phase, a decision was made to employ a natural
language processing technique centered on topic modeling, as detailed in Section 2. By
using this approach, the primary identification of the most pertinent topics was facilitated.
It is crucial to highlight that in the second iteration of topic identification, the article
selection was meticulously guided by the keywords that were extracted, the topic that
was identified, and a review that was conducted by experts. Through this methodology, a
detailed analysis of each topic was enabled.

The goal of topic modeling is to cluster documents and words with similar meanings.
This technique is commonly employed across various domains, such as natural language
processing (NLP) and information retrieval (IR). Unsupervised ML algorithms are used
to extract topics from collections of documents. Several topic modeling methods exist,
including Probabilistic Latent Semantic Analysis (PLSA) [16], Latent Dirichlet Allocation
(LDA) [17], and non-negative matrix factorization (NMF)—an unsupervised technique for
dimensionality reduction in non-negative matrices [18]. NMF has been widely applied to
discern underlying connections between texts and to discover latent themes [19], while
these approaches do not necessitate labels for operation, they do require specifying the
number of categories for clustering. Although numerous topic modeling systems are
based on LDA and NMF, generating meaningful topics often entails significant effort in
hyperparameter tuning.

Generally, traditional methods exhibit certain drawbacks, such as their inability to
capture semantic relationships between words when using bag-of-words representations.
These representations neglect the context of words within a sentence, potentially hindering
the accurate representation of documents. To address these limitations, this article employs
a semi-automatic approach for conducting bibliographic analysis, leveraging BERTopic [20].
This method offers a better contextual understanding compared to its predecessors, making
it well-suited for modeling topics.

In this semi-automatic approach, an initial search is performed using the Scopus
database, yielding a collection of abstracts relevant to the inquiry. These abstracts un-
dergo topic modeling utilizing Bidirectional Encoder Representations from Transformers
(BERTopic) [21]. Subsequently, an expert validates the primary topics for consistency and
selects those deemed pertinent. With the relevant terms from each topic, new Scopus
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queries are generated, leading to a traditional bibliographic analysis based on the query
results, complemented by a clustering analysis grounded in bigrams.

Four primary topics within the sphere of water infrastructure integrity and quality are
illuminated by the findings: Advancements in Machine Learning for Water Contaminants
and Soil Erosion, Forecasting Water Levels, Advanced Leak Detection in Water Infrastruc-
ture, and Assessing Infrastructure Integrity alongside Water Quality and Potability. A
diverse array of challenges and research opportunities become apparent upon a meticu-
lous exploration of each topic. The outcomes of this review advocate for the potential of
machine learning techniques combined with cutting-edge monitoring systems in multiple
aspects of water infrastructure and quality. Noteworthy enhancements are emphasized in
predicting groundwater contamination, forecasting water levels, detecting and pinpoint-
ing infrastructure vulnerabilities and leaks, and gauging and forecasting water quality.
These progressions, resulting from the melding of technology and research, facilitate the
preservation and sustainable utilization of this paramount resource. Building on these
critical developments, we delineate the primary contributions of this article, which not only
underscore the significant strides made but also chart a course for future explorations in
this domain.

The main contributions of the article are:

• The article conducts a bibliographic analysis of English-language articles from 2015
onward, resulting in a total of 1087 articles, to explore the applications of machine
learning (ML) techniques in water infrastructure integrity and quality.

• The study utilizes a semi-automatic approach, leveraging BERTopic, for conducting
the bibliographic analysis, which enhances the contextual comprehension in topic
modeling.

• The article also emphasizes the potential of combining ML techniques with cutting-
edge monitoring systems in multiple aspects of water infrastructure and quality.

• The insights drawn from the analysis highlight the instrumental role of ML in en-
hancing water infrastructure’s integrity and quality, suggesting promising future
research directions.

The following sections are structured as follows: In Section 2, the process for conduct-
ing the bibliographic analysis is described. Sections 3 and 4 provide a detailed bibliographic
analysis of the chosen articles. Initially, BERT topics are selected and a general scientomet-
ric analysis is conducted in Section 3. Subsequently, Section 4 presents a bigram analysis
for each selected topic, along with the traditional bibliographic analysis. Future research
directions are discussed in Section 5, and finally, Section 6 outlines the conclusions and
next steps.

2. Methodology

This section introduces the proposed methodology, first providing an overview and
then delving into the details of each stage. The process begins with a Scopus search using
the terms “Machine Learning” and “Water Management”, targeting English-language
articles published from 2015 onward. The results are analyzed using the methodology
outlined in Section 2.1. Figure 1 visually depicts the methodology employed in this review.
For each topic obtained, experts in the field validate the results, assessing the coherence
between the main terms. Upon meeting expert criteria, a new search is conducted based
on the attributes found within the topic. Article selection is then once again carried out
according to expert criteria. A bigram analysis is performed for this selected subset, as
described in Section 2.2, in conjunction with a traditional review. This traditional in-depth
review entails reading the articles and extracting their key features.
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Figure 1. Illustration of the semi-automated literature review methodology, demonstrating the
process and key steps involved.

2.1. Topic Analysis

The topic selection is carried out by analyzing the abstracts of all retrieved documents,
involving a three-stage process. In the first stage, a numerical and contextual representation
is generated for each term. This representation is achieved using a pre-trained neural
network model called Bidirectional Encoder Representations from Transformers (BERT) [22].
BERT is designed to improve the understanding of context and semantics in language,
enabling more accurate performance across a wide range of NLP tasks such as sentiment
analysis, named entity recognition, question-answering, and machine translation. The key
innovation in BERT is its bidirectional training approach, which allows the model to process
text simultaneously from both the left and the right context. This is in contrast to traditional
NLP models that typically process text in a unidirectional manner, either left-to-right or
right-to-left. By considering the context from both directions, BERT can capture a more
accurate understanding of the relationships between words and their meanings within a
sentence or text. BERT embeddings are highly effective in language comprehension, as
they capture the semantic relationships between words.

After embedding the words as vectors, a dimensionality reduction process is nec-
essary to analyze and group the concepts meaningfully, while various techniques can
be employed for this purpose, the Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) technique [23] is used in this case, as it effectively preserves
both global and local components of the data space. The UMAP algorithm leverages the
concepts of simplices from algebraic topology and manifold theory to perform dimension-
ality reduction. It functions by approximating the high-dimensional data manifold in a
lower-dimensional space while preserving the relationships between data points. After
completing the dimensionality reduction, the next step is to perform clustering to identify
similarities that enable topic extraction. Building upon the work presented in [20], the
Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN)
algorithm [24] is employed at this stage to generate the topics. HDBSCAN works by first
constructing a density-based minimum spanning tree for the dataset. It then uses a hierar-
chical clustering approach to identify clusters, allowing for the extraction of clusters with
varying densities. This method also allows for noise points to be identified, which are not
assigned to any specific cluster.
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2.2. Bigram Analysis

A bigram is a sequence of two adjacent elements in a chain of tokens, which, in our
case, refers to words. The goal of the bigram analysis is to conduct a statistical analysis of the
frequency distribution of these bigrams across the various analyzed abstracts. To examine
the documents considered in each topic identified by BERT obtained in the analysis, the
R-bibliometrix package [25] is employed. Four specific visualizations are employed in the
analysis. The first one is a Treemap, which is designed to identify the frequency of the main
bigrams within each topic.

Following this, a thematic map is used. This visualization integrates the concept
of density (internal associations) and centrality (external associations) to examine the
connections between bigrams [26,27]. Density is a measure that indicates how connected
a graph is concerning the maximum possible number of connections between its nodes.
Density is calculated by dividing the number of existing edges in the graph by the maximum
possible number of edges. Density ranges from 0 to 1, where a value close to 0 indicates
that the graph is sparsely connected and a value close to 1 indicates that the graph is
highly connected. Centrality is a measure that allows evaluating the importance of a
node within a graph. This visualization is divided into four quadrants, each representing
a distinct combination of density and centrality. Quadrant 1 features high density and
high centrality, signifying the main topics covered in the articles. Quadrant 2 contains
high centrality but low density, representing basic and cross-cutting topics. Quadrant 3,
characterized by high density and low centrality, relates to niche or specialized topics.
Lastly, Quadrant 4 encompasses emerging or underdeveloped topics with both low density
and low centrality.

Lastly, the final two visualizations consist of conceptual maps and dendrograms.
The conceptual structure visualization generates a map for each topic identified by BERT,
showcasing the underlying structure. Specifically, multidimensional scaling (MDS) is
applied to terms extracted from the document abstracts. In addition to examining the
relationships between terms hierarchically, the conceptual structure is also displayed using
a dendrogram. MDS is a statistical technique used to visualize the similarity or dissimilarity
between objects or data points in a multi-dimensional space. The primary goal of MDS
is to represent high-dimensional data in a lower-dimensional space while preserving the
distances between data points as accurately as possible. On the other hand, a dendrogram
is a tree-like diagram that visually represents the hierarchical clustering of objects or data
points based on their similarities or dissimilarities. In a dendrogram, each leaf node
represents an individual data point, while the branches represent the relationships between
these data points. The branches’ height indicates the similarity level between the connected
data points or clusters.

3. BERT Topics and General Bibliometrics

In this section, a general bibliometric analysis of scientific production will be carried
out using all the articles obtained in the Scopus query. In the following sections, article
selection will be performed using topic analysis and expert selection.

The bibliometric analysis commences with the identification of the most significant
sources based on the number of articles published in various scientific journals during
a specific time period. Figure 2a presents the results of this analysis. Upon analyzing a
total of 1087 documents, it was discovered that there are 362 publication sources, which
consist of journals or conference proceedings. The top 10 sources were found to account for
272 documents, equivalent to 25% of the total production. The top three sources identified
were Science of the Total Environment (4.7%), Journal of Hydrology (4.5%), and Water Research
(3.3%). On the other hand, when we analyze the h-index in Figure 2b, we observe that the
three journals remain the most cited. However, there is a change in the ranking order, with
Journal of Hydrology obtaining an h-index of 19, Science of the Total Environment of 17, and
Water Research of 12.
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Figure 2. Key journals highlighting the intersection of water management and machine learning,
showcasing the most relevant studies in the field. (a) Impact measured through the number of
documents. (b) Impact measured through the H-index.

In Figure 3, Bradford’s Law is illustrated [28], depicting the publication dynamics
for different years. The law segments the distribution of research field literature into
three zones: the core zone contains the most important journals, the second zone consists
of less cited journals, and the third includes many infrequently cited journals. Bradford’s
Law aims to identify the ‘core’ sources by conducting a citation analysis. Journals are
sorted by the number of articles contributed, and a ‘core’ is established at the point where
the contribution frequency significantly decreases. This point marks the transition from
the core to the next zone and is determined by identifying where the number of articles
starts to decline sharply, thereby setting the core’s limits. From the graph, we observe
that the main sources analyzed in Figure 2 remain consistent. Another important aspect
is understanding the evolution of scientific production over time, which is shown in the
lower graph of Figure 3. Upon analyzing the graph, we observe that the slope changes
significantly, increasing from the year 2019 onward. This change is consistent across the
top six journals analyzed.
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Figure 3. Prominent Journals at the Intersection of Water Management and Machine Learning:
(a) Showcasing the Application of Bradford’s Law, and (b) Highlighting Trends in Source Growth
and Development within the Field.

In Figure 4, statistics for prominent authors contributing to the field of water manage-
ment are showcased. A threshold of at least 8 articles published between 2015 and 2023
was established. In Figure 4a, the 20 authors who fulfilled this criterion are highlighted,
with a total of 18 articles published by Yicheng Wang [29] who leads the pack. Liangpei
Zhang [30] follows closely with 15 articles, and 13 articles by Li Xue [31] ranks third. In
Figure 4b, the authors are visually represented based on the number of articles (indicated
by the size of the circles) and the number of citations received (denoted by the color of the
circles), plotted over time. From 2019 onward, articles began to be published by eleven
authors, while three started from 2018, three from 2017, four from 2016, and two from 2015.
Additionally, it is worth noting that an active publication record throughout the years is
consistently maintained by almost all authors.
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Figure 4. Key statistics highlighting the prolific authors in the field of water management research.

In Figure 5a, a collaboration network graph has been generated, showing the relation-
ships between the top authors in the dataset based on their co-authorship of publications.
In the graph, there are four main groups. The green group is led by Wang, and the red
group is led by Li. Interestingly, there is also interaction and collaboration between the
different groups identified. On the other hand, Figure 5b displays the countries that stand
out in the field. To construct the graph, all authors of each article are considered, and their
country of origin is associated. In this regard, the most prominent country is China, with
1131 affiliated authors, followed by the USA with 749, India with 594, Iran with 230, and
South Korea with 185.

In Figure 6, the results obtained from the BERT analysis and expert selection are
presented. In topic 1, when the related concepts are examined, it is reasonable to associate
the concepts of water contaminants, soil erosion, and how these have been addressed by
advances in machine learning. Researchers carry out the assessment and prediction of
water quality and soil conditions using machine learning models. Real-time monitoring and
spatial analysis of groundwater contamination and erosion susceptibility are made possible
through geographic information systems (GIS) and remote sensing techniques, including
satellite imagery and airborne hyperspectral remote sensing. Nitrate and heavy metal
pollution in groundwater and soil are combated through environmental protection efforts,
such as soil and water conservation, sustainable development, and land-use management.
Therefore, the topic is related to advances in machine learning for the detection and
management of water contaminants and soil erosion.



Appl. Sci. 2023, 13, 12497 9 of 40

Figure 5. Overview of main authors and their contributions to the field of water management
research: (a) The Network of Authors, (b) Scientific Output by Country.

In the case of topic 2, the main concepts observed are related to water potability and
quality. Analysis of these concepts reveals the central importance of water quality and
potability. Assessment and prediction of water quality can be effectively conducted using
machine learning and deep learning techniques. IoT sensors and remote sensing provide
real-time monitoring of water quality in various environments. Factors such as urban
development, pollution, and marine litter influence water quality, while rural areas face
unique access and monitoring challenges. Ensuring potability and protecting public health
requires groundwater quality and water treatment.

Regarding topic 3, leak detection is crucial for water distribution systems, pipelines,
and water loss management. Machine learning techniques, including artificial neural
networks, are vital for detecting and locating leaks. Data-driven approaches, convolutional
neural networks (CNNs), and ensemble learning are used to improve performance. Acous-
tic features, flow, and pressure measurements are essential parameters for leak detection.
IoT and wireless sensor networks enable real-time monitoring and increased efficiency in
water management, while remote sensing, accelerometers, and feature selection techniques
are critical components.

Finally, topic 4 is related to predicting or detecting water levels. Forecasting water
levels is essential for effective water management, flood control, and drought management.
Machine learning and remote sensing techniques enable accurate water level monitoring
in rivers, lakes, reservoirs, and groundwater sources. Time series forecasting and hydro-
logical modeling facilitate predictions and analysis, supporting water conservation and
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distribution efforts. These advancements contribute to the optimization of water supply
systems and irrigation systems that rely on precise water level monitoring and control.

Figure 6. Results of topic analysis using BERT and expert criteria selection: Four Topics Selected and
Numbered from 1 to 4.

In the following sections, an in-depth analysis of bigrams and a traditional review will
be carried out for each of the identified topics. The primary aim of this comprehensive
examination is to gain a deeper understanding of the main research directions and potential
future avenues of investigation. This holistic approach will provide valuable insights into
the evolution of each topic, allowing for a more informed perspective on the most pressing
issues and developments.

4. Bigram and Traditional Results

This section aims to address the study of each identified topic through a two-stage
approach. Initially, a bigram analysis will be conducted for each topic, followed by a
traditional analysis of some relevant articles.

Bigram analysis is a natural language processing (NLP) technique that allows exam-
ining the structure and relationships within a text by studying pairs of adjacent words in
a text string [32,33]. This approach involves identifying and counting the frequency of
such word pairs in a text data set, which can reveal patterns, themes, and trends in the
analyzed content.

The use of bigram analysis is common in tasks such as text classification, summary
generation, topic modeling, and text mining. This technique allows for identifying semantic
relationships between words, which is especially useful for recognizing common phrases
and expressions, as well as detecting potential areas of interest or research in a text data
set. Subsequently, a traditional analysis of some selected articles will be carried out to
complement the understanding of the topics and explore the main research lines and future
directions in each area.

4.1. Advancements in Machine Learning for Water Contaminants and Soil Erosion

To predict concentrations of substances in water, follow these steps: identify sub-
stances of interest, collect and analyze water samples, develop mathematical models
(regression, transport, or machine learning) to predict concentrations, validate and refine
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the model, and apply the model to inform water management decisions, guide monitoring,
and evaluate pollution control measures. This process involves various analytical and
modeling techniques and is essential for understanding water quality, contamination, and
treatment effectiveness.

4.1.1. Bigram Document Analysis

In Figure 7, a thematic map displays the main concepts alongside a tree map, which
illustrates the hierarchical visualization of the most frequent bigrams found in the article
abstracts. Upon examining the tree map, we observe that arsenic, nitrates, iron, and
manganese emerge as the primary components to be monitored. Moreover, the analysis
context emphasizes groundwater, water quality, and water supply. Decision Tree and
Random Forest algorithms stand out in this regard.

Additionally, the thematic analysis reveals six groups. In the top-right quadrant, there
is a group related to groundwater and nitrate contamination. In the bottom-right quadrant,
two groups are present: the first one, colored in red, is associated with water supply, arsenic
contamination, and ML techniques for predicting concentrations; the second one, in yellow,
is connected to spatial analysis methods for monitoring water pollutants. Of the remaining
three groups, two are in the top-left quadrant. The first group focuses on risk assessment in
aquifers, considering geomorphological conditions and ML algorithms, while the second
group in the same quadrant addresses soil erosion and spatio-temporal analysis techniques.
Lastly, the final group in the bottom-left quadrant primarily concerns techniques used for
monitoring or measuring pollutant concentrations, with remote sensing, hyperspectral
imaging, and spectroscopy being the most prominent methods.

In Figure 8, a conceptual map and a related dendrogram are presented, focusing on the
topic of contaminants and soil erosion. In the conceptual map, two groups are identified.
The first group, in light blue, is related to groundwater and nitrate contamination, which
also has a strong connection to agricultural issues. The second group, in red, mainly
concentrates on water quality and supply. In this context, Decision Trees and Random
Forests reappear as the primary techniques used, and arsenic, nitrates, iron, and manganese
are the minerals whose concentrations are sought to be measured. Upon examining the
proximity of concepts in the dendrogram, it is evident that measuring contamination in
groundwater is strongly related to agriculture, and nitrates are closely associated with the
concept of prediction. On the other hand, soil and its erosion are connected to water supply
and potable water topics. Arsenic is primarily linked to drinking water concerns.

Figure 7. Tree and thematic map for a water contaminants and soil erosion topic.
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Figure 8. Conceptual structure and dendrogram for a water contaminants and soil erosion topic.

4.1.2. Traditional Analysis

As shown in Table 1, several machine learning models—including Random Forest,
XGBoost, and customized CNN—have been employed across a range of environmental
applications, such as groundwater quality, gully erosion susceptibility, heavy metal pre-
diction, soil erosion, and water pollution. Utilizing metrics like MAE, RMSE, R2, AUC,
and Accuracy, these models were assessed on their ability to predict nitrate and arsenic
concentrations in groundwater, identify factors contributing to soil erosion, and estimate
pollution loads in rivers, among other objectives. The strong performance of these machine
learning models demonstrates their potential in addressing environmental concerns and
highlights the value of using advanced data-driven techniques for environmental monitor-
ing, assessment, and decision-making. In the following, a brief summary of some of the
studies included in the table is provided.
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Table 1. Summary of applications and techniques in Water Contaminants and Soil Erosion. Random Forest (RF), multi-layer perception (MLP), Classification and
Regression tree (CART), multi-layer perceptron (MLP), convolutional neural network (CNN), and MLR (multiple linear regression).

Techniques Metrics Data Application

MLR, CART, RF MAE, RMSE, R2. RF was the best
with R2 = 0.54, MAE = 5.9, RMSE = 9.19

Groundwater database˙GruWaH˙to record groundwater
quality throughout the state of Hesse

The spatial distribution of nitrate concentration
in groundwater [34].

SVM, RF, GAM, NB
MAE, RMSE, AUC. The best performance
was RF with AUC = 92.4, RMSE = 0.2874,
MAE = 0.082

Digital map of the spatial distribution of gullies.
130 locations of Ekbatan Dam Basin,
Hamedan, western Iran

Create gully erosion susceptibility map (GESM)
in a part of Ekbatan Dam Basin, Hamedan,
western Iran [35].

SVM, RF, XGBoost,
ExtraTrees, Adaboost,
ELM, MLP

R2, RMSE, MAE. Of the tested models,
XGBoost achieved the best results
for all the analyzed metals.

The collection of surface soil samples was essentially
synchronized with the acquisition of airborne
hyperspectral data from late April and early May of 2017.

The prediction of four heavy metals is studied.
Arsenic (As), chromium (Cr), lead (Pb),
and zinc (Zn) [36].

RF, NB,
Gaussian process

Accuracy, Kappa, POD. The best model
was RF with Accuracy = 91%,
Kappa = 82%, POD = 94%

Data included 227 samples of erosion and non-erosion
locations through field surveys

Machine learning models for mapping
susceptibility to soil erosion by water [37].

RF Accuracy, 82–84%, AUC, 88–89%.

The data was acquired from the National Rural Drinking
Water Programme (NRDWP) and the Central Ground
Water Board (CGWB), both under the Ministry of Jal
Shakti of the Government of India. It includes
2,611,365 drinking water wells (NRDWP, 2018) and
649 monitoring wells (CGWB, 2018).

Use field observations of arsenic (As) in groundwater
with high spatial resolution, with the aim of delineating
the regional-scale occurrence of elevated arsenic
concentrations in groundwater [38].

RF, Boosted Regression
Trees (BRT) and
Logistic Regression (LR)

Accuracy, Sensitivity, Specificity.The best
model was Random Forest with 82%
in all indicators.

A total of 100,358 arsenic data in groundwater were
compiled from various databases or published reports
from India and Bangladesh, BGS/DPHE (2001),
PHED (2006), and BWDB (2013).

Transboundary regional scale models are used to
calculate the probability of arsenic concentrations
in groundwater [39].

RF, QRF R2 0.53 (RFO2), 0.24 (RFFe), 0.51 (RFNO3)

The study uses data from the WFD groundwater
monitoring network in Germany and selects
monitoring sites based on criteria like metadata,
sampling depth, observation period, and
excluding concentration outliers.

Applies machine learning techniques to estimate
groundwater redox conditions and nitrate
concentrations across Germany [40].

RF MAE, RMSE. For NO3, MAE = 0.075,
RMSE = 0.12

The dataset features nutrient parameters, method
detection limits, sensor calibration, and collection
intervals ranging from 1 to 15 min, with
monthly quality checks for water quality monitoring.

To estimate stream nitrogen (N) and phosphorus (P)
concentrations from sensor data in a forested,
mountainous drainage area in upstate New York [41].

Kriging, SVM, GBM,
Balancing class
techniques.

Accuracy, Kappa. The best result with
Up-Sampling. Accuracy = 0.725,
Kappa = 0.369

Consists of 22,059 groundwater nitrate measurements
from private wells in North Carolina, collected and
maintained by the NC-DHHS between 1990 and 2011.
The data were obtained by Messier et al. (2014) [42]
and used for modeling.

Estimate groundwater nitrate concentrations in
private wells, aiming to improve exposure
estimates for the AHS cohort [43].
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Table 1. Cont.

Techniques Metrics Data Application

XGB

76 variables were retained in the final
model, with an R2 of 0.83 for the
training data and 0.49 for the hold-out
data. The RMSE values were 1.15 and
2.01 for the training and hold-out data,
respectively.

The model uses data from 12,082 wells and
various predictor variables, providing accurate
estimates at both national and regional scales.

The objective of this study is to develop an extreme
gradient boosting (XGB) machine learning model
to predict the distribution of nitrate in groundwater
across the conterminous United States (CONUS) [44].

RF, Boosted models
The best-performing model was the Random
Forest (RF) model, which achieved an AUC
of 0.80 and a Cohen’s Kappa score of 0.43.

The data used in the study consist of over 6000 groundwater
measurements of manganese (Mn)
and iron (Fe) from Southeast Asia and Bangladesh.
These measurements were statistically examined along
with other physicochemical parameters.

To use machine learning methods, specifically random
forest and generalized boosted regression modeling,
to analyze over 6000 groundwater measurements of
naturally occurring manganese (Mn) and iron (Fe)
in Southeast Asia and Bangladesh [45].

Gaussian mixture model
clustering technique, random
forest regressor (RFR)

The clustered RFR model yielded
improvements of 10.82% in R2, 18.57%
in RMSEP, 3.03% in MAPE, and 10.81
in TSE compared to the nonclustering case.

The study involves preprocessing hyperspectral images,
converting digital numbers to normalized reflectance
values, and matching the processed images with the
Suspended Sediment Concentration (SSC) dataset.

To present a framework called cluster-based machine
learning regression for optical variability (CMR-OV)
that aims to overcome the challenges of remote
sensing of suspended sediment in shallow waters [46].

Random Forest Classification
and Regression

The results show that Random Forest
Classification achieves a 66% testing accuracy
while Random Forest Regression yields an R2
of 0.11 and a 55% accuracy when applying
a 0.005 mg/L threshold.

The study employs four NJDEP datasets to analyze
factors impacting arsenic concentrations in private wells
within a 152.4-m buffer zone, examining LULC types,
orchards, contaminated sites, and abandoned mines in
west-central New Jersey.

To develop Random Forest Classification and
Regression, to identify factors contributing to
higher arsenic concentration in private
drinking water wells in west-central
New Jersey [47].

MLP, a customized CNN,
the VGG Net and ResNet
architectures

Customized CNN model achieved an F1
score of 0.993 and identified the
majority of chemical compounds from
the Danube River.

The study used JBSS dataset from EU/UNDP EMBLAS II
project (2016–2017). Seawater samples analyzed via
LC-HRMS, resulting in 30,489 signals. 35 compounds
tentatively identified using non-target screening workflow.

The study aims to develop an open-source end-to-end
workflow to estimate pollution load from major
inflowing rivers and other unidentified sources using
a deep learning convolutional neural network
classification model [48].
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A GIS-based statistical approach to estimate groundwater nitrate concentration was
developed in [34], addressing the limitations of complex hydro-biogeochemical models.
Multiple linear regression, Classification and Regression Trees, Random Forest, and Boosted
Regression Trees are compared for predictive performance. The Random Forest model per-
forms best, identifying hydrogeological units, arable land percentage, and nitrogen balance
as key predictors. This method advances regional-scale groundwater nitrate prediction
using only spatially available data. In [35], the authors compare four machine learning
models for creating gully erosion susceptibility maps in western Iran, taking into account
variables like distance from rivers, calcium carbonate equivalent, and topographic position
index. Random Forest outperforms other models with the highest predictive performance
(92.4% mean AUC). All models show stable performance through 10-fold cross-validation.
The generated maps can help identify erosion risk areas, informing soil conservation and
sustainable management plans by considering crucial contributing factors.

In [36], the researchers employ HyMap-C airborne hyperspectral imagery and a ma-
chine learning ensemble technique based on a stacking strategy to estimate soil heavy
metal concentrations in Yitong County, China. Using competitive adaptive reweighted
sampling (CARS) to select spectral features, the CARS-Stacking method outperforms other
methods in predicting arsenic, chromium, lead, and zinc concentrations, with determina-
tion coefficients ranging from 0.60 to 0.73. The estimated results closely align with the
distribution trends of actual ground measurements. Machine learning models for soil
erosion susceptibility mapping were proposed in [37]. The techniques employed include
weighted subspace Random Forest, Gaussian process with radial basis function kernel, and
naive Bayes. Critical factors were identified using simulated annealing feature selection,
and the models’ performances were evaluated based on accuracy, kappa coefficient, and
probability of detection. The weighted subspace Random Forest method demonstrated
superior performance, providing valuable tools for sustainable management, watershed
conservation, and reduction in soil and water loss.

In [38], uses high-spatial resolution arsenic (As) field observations from 3 million
groundwater sources across India to identify regions with elevated groundwater As levels
and their influencing factors. Statistical and machine learning methods model As concen-
trations and predict high As-hazard zones. Factors like geology-tectonics, groundwater-fed
irrigated areas, and elevation influence As occurrence. The model’s accuracy is 82–84%
and AUC is 0.89–0.88. Around 90 million people are exposed to high groundwater As, but
considering the modeled hazard, it could be over 250 million. In the Ganges River delta,
the study [39] utilizes statistical methods and AI techniques, including Random Forest,
Boosted Regression Trees, and Logistic Regression, to model the probability of ground-
water arsenic concentrations surpassing WHO guidelines. A “hybrid multi-modeling
approach” is employed, incorporating hydrostratigraphic parameters. The Random Forest
model demonstrates superior performance, with 30.3 million people at risk from elevated
groundwater As levels. These models offer valuable insights for identifying regional
As-hazard zones and potential exogenous factors contributing to this significant natural
pollution problem.

Machine learning techniques like Random Forest and quantile Random Forest (QRF)
are used to estimate redox conditions and nitrate concentrations in groundwater across
Germany at a 1 km × 1 km resolution [40]. Using the European Water Framework Di-
rective monitoring network and spatial environmental information, the Random Forest
model achieves a strong predictive performance with an R2 of 0.52. Dominant predictors
include redox conditions, hydrogeological units, and arable land percentage. Uncertainty
assessment with QRF reveals considerable uncertainties, but the study represents the first
nationwide data-driven assessment of groundwater nitrate concentrations in Germany.
The authors employ Random Forests Regression (RFR) to estimate stream nitrogen and
phosphorus concentrations from sensor data in [41], addressing the limitations of linear
regression models. RFR shows promise for most nutrient variations, with soil moisture
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and fluorescent dissolved organic matter as important predictors. This approach offers the
potential to supplement traditional nutrient datasets.

In [43], the researchers utilized 22,000 private well nitrate measurements from North
Carolina to generate exposure estimates for unmonitored areas. They assessed multi-
ple machine learning models and found that the final Random Forest model achieved a
0.75 accuracy. This model’s predictions will be incorporated into the Agricultural Health
Study cohort to estimate nitrate levels in private wells throughout unmonitored regions of
North Carolina. Researchers developed an extreme gradient boosting (XGB) machine learn-
ing model to predict nitrate distribution in groundwater across the conterminous United
States (CONUS) in [44]. The model used 12,082 well measurements and various predictor
variables. With accurate national and regional estimates (R2 of 0.83 for training and 0.49 for
hold-out data), the model showed that only 1% of the area had nitrate concentrations
above 10 mg/L, affecting around 1.4 million people. High nitrate concentrations were most
prevalent in central CONUS, with manure, farm fertilizer, and agricultural land use as
influential factors. This study marks the first application of XGB to a three-dimensional
national-scale groundwater quality model.

4.2. Assessing Water Quality and Potability

Evaluating water quality and potability is crucial for providing safe drinking water
to the public. A comprehensive approach, encompassing the identification of potential
contaminants, setting guidelines, gathering and analyzing samples, interpreting findings,
implementing treatment measures, and continuously monitoring water quality, can effec-
tively safeguard public health and preserve a dependable source of potable water.

4.2.1. Bigram Document Analysis

The main concepts have been examined in the bigram analysis as displayed in Figure 9.
It reveals that water quality is predominantly applied to water pollution, groundwater,
and water supply. Among the highlighted algorithms, Decision Trees and artificial neural
networks have been identified. Additionally, the sensorization aspect is a crucial point
under development.

Four main groups have been observed in the thematic map analysis. The first group, in
light blue, is related to machine learning methods employed for water pollution detection.
In close proximity to this group, another group focuses on research related to artificial
neural networks applied to water quality monitoring. In the emerging themes quadrant,
two groups are observed. The first group is associated with predicting components like
sulfides and others related to potability, while the final group is associated with water
quality control.

Lastly, when analyzing the conceptual structure map and the dendrogram in Figure 10,
two major groups are observed. The blue group is related to water quality monitoring,
linking parameters such as turbidity and consumption times. In contrast, the larger group
corresponds to machine learning techniques used to predict or classify water quality or
related parameters. Neural networks, support vector machines, and Random Forests are
among the highlighted techniques.

4.2.2. Traditional Analysis

Table 2 presents a summary of various machine learning techniques and their metrics,
data sources, and applications in water quality studies. Techniques include GBM, ANN,
XGBoost, Naive Bayes, KNN, CART, and others. Metrics range from accuracy to RMSE, R2,
and F1-score. Data sources vary, with some coming from Kaggle or collected from sensors,
while applications include water quality modeling, potability classification, and monitoring
of key parameters such as total nitrogen, total phosphorus, and chemical oxygen demand.
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Figure 9. Tree and thematic map for a water quality and potability topic.

Figure 10. Conceptual structure and dendrogram for a water quality and potability topic.
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Table 2. Summary of applications and techniques in water quality. Random Forest (RF), artificial neural network (ANN), Decision Tree (DT), multi-layer perceptron
(MLP), Long Short-Term Memory (LSTM).

Techniques Metrics Data Application

GBM, ANN, XGBoost

The artificial neural network (ANN)
model demonstrated the best performance,
R2 = 0.989, RMSE = 0.037, and
NSE = 0.995.

The study aims to analyze 392 datasets
containing 12 hydrochemical parameters
and identify the most significant
parameters affecting groundwater quality.

The objective of this text is to compare the performance of three machine
learning models, DNN, XGBoost, and GBM, in predicting water quality
for drinking purposes using two indices, EWQI and WQI, in Haryana
state, India [49].

Naive Bayes, KNN,
CART

The approach utilizes a model voting
system to achieve a 97% accuracy rate

Collected from sensor nodes that
are portable and able to gather
physicochemical properties of water.

The application is to present a water quality monitoring and potability
classification system that utilizes an Internet of Things (IoT) framework
for rural areas in developing countries [50].

FEYN and Q-lattice Accuracy. The best was Q-lattice
obtaining a 68%.

Data primarily focusing on minerals
and pH levels.

The objective is to explore the use FEYN and Q-Lattice, for classifying
water potability based on the presence of key minerals such as pH value,
sulfate, and chloramines [51].

Naive Bayes, Decision
Tree (DT), KNN,
LR, ANN, SVM

RF achieving the highest accuracy rate
of 83.78% and DT achieving 74.98%,
while LR had the lowest accuracy rate
of 48.74%.

Data primarily focusing on minerals
and pH levels.

To classify the potability of drinking water, various classification
algorithms were used [52].

RF, DT, SVM, ANN,
XGB, LR, GB,
LightGB, HistGB

The performance metrics used were
Precision, Recall, accuracy, and F1-score.
The RF model achieved the best results
with values of 0.81, 0.8, 0.91, and 0.85, respectively.

The study examined data from
269 cities in China.

Determine the extent to which industrial water usage exacerbates
the country’s pollution problem [53].

CNN, Gabor Filter,
RF, SVM

The classification accuracy for target species
was 87.5%. Recall levels for different species,
including relevant toxic species, were 81.82%,
57.15%, 85.71%, and 95%.

Input images consisting of single-specimen
marine phytoplankton images, which can be
found in various public datasets

The authors propose a novel fully automatic methodology that
uses digital microscopy images of water samples to perform
phytoplankton analyses [54].

KNN, Naive Bayes,
DT, Regression Tree Accuracy 97%

Collected from sensor nodes that are portable
and able to gather physicochemical properties
of water

A data-driven water classification model that utilizes sensor nodes
and machine learning algorithms to monitor water parameters such
as pH, turbidity, total dissolved solids, and temperature wirelessly [55].

XGBoost tree, ANN,
Ensemble Model

The study improved the forecast accuracy of
various machine learning techniques for water
quality classification with an ensemble model
achieving 96.4%.

The dataset for the study was adopted
from Kaggle.

The study presents a machine learning-based model using adaptive
boosting technique to categorize and evaluate the quality rate of
drinking water [56].

RF with PySpark
The model demonstrated exceptional
performance, achieving a perfect 1.0 score
for accuracy, precision, recall, and F1-score.

The dataset for the study was adopted
from Kaggle.

Developed a Random Forest model using PySpark classification to
predict the potability of river water based on ten different features [57].
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Table 2. Cont.

Techniques Metrics Data Application

DT, Naive Bayes Accuracy, 97.23% The dataset for the study was adopted
from Kaggle.

To compare the performance of two machine learning
algorithms—the Decision Tree Algorithm and the Naive Bayes
algorithm—in predicting drinking water quality [58].

RF

MAE, RMSE, R2. The best R2 was achieved
in 2010, with a value of 0.993, an MAE of 0.132,
and an RMSE of 0.260. The worst performance
occurred in 2005, with an R2 of 0.932, an MAE
of 0.64, and an RMSE of 1.511.

Remote sensing and GIS methods were
employed to create training and test sets

To introduce a study that uses a Random Forest model to predict shallow
groundwater nitrate concentrations in the Yinchuan Region of central
Yinchuan Plain during four different years [59].

ANN(MLP, LSTM)
and MLR

the ANN model demonstrated the best performance
for scenario 1, with R2 values above 0.99 for all
variables (RSC, MH, SAR, PI, SSP, and KI) in both
training and testing. The MLR models showed better
results in scenario 2 compared to the ANN and
LSTM models.

Observations were collected from wells
within the basin area, utilizing 140 water
samples for this model.

To develop accurate and reliable machine learning models for predicting
irrigation water quality parameters, which can help plan irrigation water
and crop management more effectively [60].

ANN

MAE, RMSE, R2. On average, across the various
experiments, R2 achieved a value of 0.83, MAE
obtained a value of 0.22, and RMSE recorded a
value of 0.39.

Data collected from A high-resolution
sensor with spatial, temporal, and spectral
(1 nm) capabilities enables continuous
observation and effective long-term
monitoring of inland water quality,

Introduces proximal remote sensing for inland water quality monitoring,
presents a high-resolution hyperspectral imager, and demonstrates the
effectiveness of machine learning algorithms in accurately estimating key
water quality parameters such as nitrogen, phosphorus, and
chemical oxygen using this new technology [61].

Pearson CC-SVM The AUC of the PCC-SVM-based method
was approximately 1.

Taking the dataset into consideration,
the parameters included residual chlorine,
pH, turbidity, temperature, conductivity,
oxidation-reduction potential, and
chemical oxygen demand.

To emphasize the increasing risk of cross-connections in potable-reclaimed
water dual distribution systems, and to highlight the need for reliable,
cost-effective, and real-time online detection methods [62].

Remote sensing p
latforms

The article compares the advantages of various
remote sensing platforms and inversion models
while discussing hyperspectral monitoring
applications for multiple water quality parameters.

comparing various remote sensing
platforms, inversion models, and
water quality parameters

To provide an overview of the development and current applications of
hyperspectral remote sensing in inland water quality detection.
It compares the merits of various remote sensing platforms, inversion
models, and the monitoring of specific water quality parameters [63].
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A data-driven water classification model for rural household areas using sensor nodes
and a machine learning algorithm was developed in [55] to classify water potability using a
hard-voting method in ensemble learning. The results show that the voting classifier model
achieves an accuracy of 97% compared with other stand-alone classification algorithms.
In [64], another interesting approach used an edge-cloud ubiquitous sensor network for
low-cost water quality measurement to supplement existing IoT-based infrastructure. Ma-
chine learning algorithms are applied to a dataset containing eight fields related to water
potability. Then, 16 machine learning algorithms for potability prediction were compiled,
including 11 shallow learning algorithms and 5 deep learning algorithms. CNN-Batch Nor-
malization, the most accurate of these algorithms, achieved a maximum testing accuracy
of 85.03%. In [51], the authors investigate the application of FEYN and Q-Lattice machine
learning methods for data classification in water potability. By integrating these techniques
with various datasets, the researchers attained a 68% accuracy level in classifying water
potability, showcasing the efficacy of this approach.

Neural networks with memory, Long Short-Term Memory (LSTM), were used in [65]
to create a deep learning water potability classification model for rural water sources in
the Philippines. The model achieved a high accuracy of 99.80% using MLP, while LSTM
performed better in accuracy and recall compared to GRU, GRU had better precision than
LSTM. The quality of the river Ganges was determined in the study referenced in [66].
Several parameters were used to classify the water using various classification algorithms,
including Random Forest, a supervised machine learning algorithm. This model achieved an
accuracy of around 99 %, significantly higher than other methods for predicting water quality.
In [50], an Internet of Things framework was developed for water quality monitoring and
potability classification using portable sensor nodes. The system achieved an accuracy of 93.33%
compared to conventional industrial water laboratory tests, and it is capable of communicating
the water potability status to households with minimal delay.

A consumption model was developed in [67]. The model, developed in Python,
utilizes a dataset from Kaggle and the MinMax scaling method from the Sklearn library.
The Keras library aids in implementing the seven dense layers in the neural network.
The resulting model achieves around 70% accuracy. In [68], the authors employ Artificial
Intelligence, specifically a convolutional neural network (CNN), to predict water quality
more efficiently than traditional methods. The CNN outperforms five other machine
learning algorithms, achieving 97% accuracy in predicting water potability based on eight
water property parameters. Additionally, the CNN reduces classification processing time,
demonstrating its effectiveness in maintaining water quality balance and protecting human
health and the ecosystem.

A machine learning method to detect potable-reclaimed water pipe cross-connection
events using multiple water quality parameters is explored in [62]. A Pearson correlation
coefficient (PCC)-SVM-based method was developed, providing high detection perfor-
mance and reliability, even during abnormal readings. Detection accuracy exceeded 88%,
with a false positive rate below 12%, demonstrating the method’s practical applicability
for early warning systems. In [54], a CNN along with a processing pipeline is utilized
to tackle the challenge of detecting toxin-producing phytoplankton in water, surpassing
the constraints of conventional techniques. The authors put forward a cutting-edge, fully
automated approach that employs digital microscopy and machine learning for the analysis
of multi-specimen images. This system adeptly detects, segments, and classifies phyto-
plankton, providing a reliable and consistent instrument for specialists to assess water
quality and potability.

In [59], the authors use Random Forest and multiple spatial environment factors
to model groundwater nitrate pollution in Yinchuan Region. Remote sensing and GIS
methods were employed to create training and test sets. Model performance was assessed
using MAE, RMSE, and R2, with positive results. Key factors influencing nitrate levels
included proximity to the Yellow River, meteorological elements, water level elevation,
urban land, and arable land. The study offers an integrated approach to groundwater



Appl. Sci. 2023, 13, 12497 21 of 40

quality analysis and sustainable management in the Yinchuan Region. The development
of more accurate machine learning models for predicting irrigation parameters and water
quality is studied in [60]. LSTM, MLR, and ANN models are used. These models predict six
irrigation water quality parameters and are validated using MSE, correlation coefficients,
RMSE, and MAE. The results can improve irrigation water quality and assist farmers in
crop planning and irrigation management.

Finally, in [61], a method for accurate water quality monitoring in inland waters
was proposed. This study introduces proximal remote sensing using a high-resolution
hyperspectral imager for long-term monitoring. Machine learning algorithms were devel-
oped and validated with in situ data from three sites featuring varying water quality. The
back-propagation neural network model achieved over 80% accuracy for TN and over 90%
for TP and COD, demonstrating the potential of combining proximal remote sensing and
machine learning for inland water quality monitoring.

4.3. Forecasting Water Levels

Forecasting water levels is crucial for efficient water resource management. Various
methods, including hydrological models, hydraulic models, remote sensing, statistical mod-
els, machine learning, and ensemble forecasting, can be used to predict water levels. These
forecasts have numerous applications, such as flood risk management, drought management,
irrigation planning, hydropower generation, navigation, and ecosystem management.

4.3.1. Bigram Document Analysis

The main concepts have been examined in the bigram analysis, as shown in Figure 11.
For the topic of forecasting water levels, it is evident that the primary applications are
related to water management, water supply, water levels, groundwater, and irrigation.
Regarding techniques, regressions and artificial neural networks appear among the first.
Moreover, the development of remote sensing is a critical point.

In the thematic map analysis, four main groups have been observed. The first group,
in light green, is related to water management, lakes, water quality, and machine learning
applied to these types of issues. A cluster in the lower right quadrant concerns ground
water level, irrigation, and prediction models using regression techniques. The light
blue cluster associates water level with water supply, performing forecasting through
artificial neural networks. Finally, the last cluster in the lower left quadrant is related to
groundwater resources.

Upon analyzing the conceptual structure map and the dendrogram in Figure 12, two
large groups are observed. The blue group is related to water conservation, environmental
issues, water quality, and lakes. In red, a cluster involves water reservoirs, groundwater,
and predicting levels through various techniques, with SVM, ANN, Cluster analysis, and
Gaussian process regression standing out.

Figure 11. Tree and thematic map for a forecasting water levels topic.
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Figure 12. Conceptual structure and dendrogram for a a forecasting water levels topic.

4.3.2. Traditional Analysis

In Table 3, a summary of the main articles found is presented. The studies include
the use of CNN and SVR models for groundwater potential mapping, MPMR, RVM, GPR,
and ELM for forecasting lake level fluctuations, ANN and ANFIS for reservoir water level
prediction, and GTB for estimating water levels in irrigation systems. Additionally, extreme
gradient boosting, XGB, and Gaussian process regression models have been employed for
groundwater depth estimation and irrigation water demand prediction, while HCA and
ANN have been used for annual groundwater level forecasting in the Ogallala Aquifer.
Lastly, Landsat 8 OLI-based models were developed for deriving humification indexes
in Chinese lakes. The following is a brief summary of some of the articles considered in
the table.
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Table 3. Summary of applications and techniques in Forecasting Water Levels. Random Forest (RF), Xtreme gradient boosting (XGB), Multilinear Regression (MLR),
Decision Tree (DT), support vector machine (SVM), Ordinary Krigging (OK), and Coordinative ordinary Kriging (COK).

Techniques Metrics Data Application

Convolutional neural
network (CNN),
Support vector regression (SVR)

The results show that the CNN model outperforms
the SVR model. This is demonstrated by the higher
AUC values for both the training (0.844) and testing
(0.843) datasets for CNN, compared to the AUC
values of 0.75 for both training and testing datasets
for the SVR model

The study involves creating 140 groundwater
datasets in South Korea, dividing them into
calibration and testing groups, and using
15 groundwater conditioning factors
for model training.

To develop groundwater potential maps using
machine learning algorithms (specifically
SVR and CNN) to aid in the conservation
and management of groundwater resources [69].

Minimax Probability
Machine Regression (MPMR),
Relevance Vector Machine (RVM),
Gaussian Process Regression (GPR),
Extreme Learning Machine (ELM)

The results showed that the MPMR model performed
the best among the four models, with the following
metrics: R2 = 0.984, MAE = 0.035, RMSE = 0.044,
Nash–Sutcliffe Efficiency (ENS) = 0.984,
DRefined = 0.995, and Extreme Learning Machine
(ELM) = 0.874.

Datasets of Lake Huron’s water levels.
The data spans from 1918 to 2013,
with the period from 1918 to 1993 used
for the training phase, and the remaining
data (from 1994 to 2013) used for testing.

To evaluate the performance of four advanced
artificial intelligence models, MPMR, RVM,
GPR, ELM, for forecasting lake level
fluctuations in Lake Huron using
historical datasets [70].

Artificial neural network (ANN)
and adaptive neuro-fuzzy
inference system (ANFIS)

The best ANN and ANFIS models showed high
performance with r > 0.95, Nash index > 0.95,
and RMSE < 0.1. The optimal NN
model was t + 4, while ANFIS’s best was t + 6.

daily rainfall and water level data from 1 January
2012 to 31 December 2019. These data were
collected from stations P68 and C13, and
provided Empresa PŁblica Metropolitana de
Agua Potable y Saneamiento de Quito.

To develop and compare machine learning models,
ANN and ANFIS models, to forecast the water
level of the Salve Faccha reservoir, which
supplies water to Quito, the capital of Ecuador [71].

GBT, XGBoost, SVM, DT, RF,
AdaBoost, LightGBM, ANN

The GTB model had the lowest mean-squares-error
and the highest R-squared and adjusted R-squared
values in all case studies. Additionally, over 91%
of the total samples had an error rate below
10% between the predicted and observed values.

The dataset used in this study consists of
3348 samples collected over a 21-year monitoring
period from the Bac-Hung-Hai catchment,
which is the largest irrigation and drainage
area in Vietnam.

To explore the application of machine learning
methods, specifically GTB model, for
estimating water levels without comprehensive
knowledge of hydrological processes or
complex irrigation system databases [72].

Extreme gradient boosting,
Random Forest,
Multilinear regression

The results of this study showed that the extreme
gradient boosting model performed the best,
with R2 = 0.998 and RMSE = 0.048 m, followed
by Random Forest (R2 = 0.997,
RMSE = 0.054 m) and multilinear regression
(R2 = 0.970, RMSE = 0.221 m).

The dataset, from a Central Kalimantan peat dome,
contains 2010–2012 groundwater level
measurements, elevation, and precipitation data,
as these factors significantly impact groundwater
levels spatiotemporally.

To convey the importance of understanding
groundwater levels in peatlands, particularly
in Indonesia, which possesses the largest
share of tropical peat carbon [73].
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Table 3. Cont.

Techniques Metrics Data Application

XGB, MLR, GWR, SVR,
RF, IDW, OK, COK.

The results show that the XGB algorithm
with the Tweedie loss function achieved
the best performance with an R2 value
of 1.00, and the lowest errors when
compared to other machine learning and
interpolation methods like MLR, GWR,
SVR, RF, IDW, OK, and COK.

The study used datasets from various sources,
including precipitation from China
Meteorological Data Service Centre,
topographical factors from SRTM, soil factors
from CSCD, vegetation index from NASA
earth data, auxiliary factors from the National
basic geographic database, land cover data
from ESA, lithology data from the Spatial
Database of Digital Geologic Map
of China, and coordinates from the projection
coordinate system.

To present a framework using the XGB machine
learning method for learning groundwater
depth in unconfined aquifers in hilly terrain,
where spatial interpolation methods often
face errors [29].

Gaussian process regression˙

The most significant variables in predicting
irrigation water demand were found to be
irrigated cropped area, air temperature, and
vapor pressure deficit. The Gaussian
process regression model showed high
accuracy, with an R2 higher than 0.97 and
RMSE as low as 0.06 km3, even with
different input variable combinations.

The study used datasets from California Natural
Resources Agency and gridMET to predict
annual irrigation water demand. They simplified
400+ commodities into 20 crop categories and
multi-crop areas for modeling.

To develop machine learning models to predict
California’s annual, county-level irrigation
water demand using various input variables
over an 18-year time span [74].

hierarchical cluster analysis (HCA)
artificial neural networks (ANNs)

The study discovered 30 clusters through
HCA, with higher groundwater levels in
the western part of the Ogallala Aquifer
that decreased towards the east. The ANN
models accurately predicted even for
non-calibrated wells, and integrating HCA
and ANN allowed for effective annual
groundwater level forecasting for well
sets.

The study is based on the time series of
groundwater levels in
403 wells of the Ogallala Aquifer,

To present a study that employs HCA and ANNs
to predict annual groundwater levels in
403 wells of the Ogallala Aquifer, which is critical
for agricultural irrigation and public water
supply [75].

LR, RF, SVM, XGBoost

The XGBoost model, with R2 = 0.86 and
RMSE = 0.29, outperformed other models.
The entire dataset of HIX had a strong
association with Landsat reflectance.
The HIX decreased from 2015 to 2020.

Two datasets were used in this research:
Landsat 8 OLI product, which collected
multispectral imagery of the Earth’s
surface to derive HIX in lakes across
China, and 1150 pairs of field samples
to match Landsat surface reflectance
data and select sensitive spectral
variables for machine learning methods.

To develop a general model based on Landsat 8
OLI product embedded in Google Earth Engine
(GEE) to derive the humification index (HIX)
based on Excitation-Emission
Matrices (EEMs) in lakes across China [76].
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The study comparing the performance of support vector regression (SVR) and convo-
lutional neural networks (CNN) in groundwater potential mapping in Damyang, South
Korea, showed that both models effectively predicted groundwater potential, with CNN
exhibiting slightly higher accuracy [69]. This suggests that deep learning algorithms, such
as CNN, can enhance spatial predictions for sustainable groundwater management and aid
in developing effective groundwater exploitation strategies. In a separate study, a Gradient
Tree Boosting (GTB)-based method for predicting water levels in irrigation and drainage
systems was developed, addressing the limitations of traditional hydrological models that
demand extensive data and computing time [72]. The GTB model, developed using data
from Vietnam’s Bac-Hung-Hai system with 3348 samples collected between 2000 and 2020,
was compared to eight common machine learning algorithms for performance evaluation.
The GTB-based method provides an efficient solution for sustainable water management
and regulation in the face of accelerated urbanization and climate change.

In [73], the authors aim to evaluate and contrast the efficacy of three statistical algo-
rithms (Random Forest, XGBoost, and Multilinear Regression) for spatiotemporal modeling
of groundwater level dynamics in a vast tropical peatland located in Central Kalimantan,
Indonesia. The employed dataset consists of comprehensive field data collected between
2010 and 2012, incorporating variables such as distance from canal, elevation, precipi-
tation, and evapotranspiration. The study’s goal is to shed light on the importance of
crucial physical system parameters and climatic influences in predicting GWL. The results
offer the potential to improve understanding and address peatland vulnerability to fire
and associated carbon losses, benefiting the scientific community and informing peatland
restoration strategies. A study on the development of neurocomputing intelligence models
to forecast lake water level (LWL) fluctuations in five large lakes located in the northern US
was conducted in [77]. The study uses three machine learning models, including LSSVR,
MARS, and M5-Tree, and various input combinations based on correlated lags and time
series periodicity. The performance of the models is evaluated using statistical metrics and
graphical visualization, and the results indicate that the P-LSSVR model is the most power-
ful for modeling all lake levels and a better alternative to the other three neurocomputing
intelligence models.

Groundwater level mapping is crucial for resource management in arid regions with
intricate terrain. In [29], researchers constructed a geospatial database and applied various
machine learning techniques to learn groundwater depth using well data from the Mu
Us Sandy Land, China. The Bayesian optimization algorithm was employed to fine-tune
hyper-parameters, and GL maps were generated based on the predicted groundwater depth
and elevation data. Machine learning approaches, such as Random Forest and extreme
gradient boosting algorithms, demonstrated effectiveness in tackling regression problems
related to groundwater research.

Dissolved organic matter (DOM) is a crucial component in inland waters, impacting
ecosystems, food webs, and the global carbon cycle. Although lake ecosystems make up
a small portion of the Earth’s water resources, they are especially susceptible to environ-
mental and climate changes. Dissolved chromophoric organic matter plays a pivotal role in
aquatic light regimes, trophic status, and drinking water safety. Urbanization and economic
growth influence the composition of terrestrial organic matter and microbial degradation
processes, leading to uncertainties in regional aquatic ecosystems. Fluorescence emission–
excitation matrix spectroscopy is a sensitive technique for evaluating DOM sources and
compositions. Remote sensing techniques are indispensable for monitoring water quality
and DOM fluctuations, with machine learning methods offering the potential to character-
ize DOM components and sources. In [76], the authors aim to develop an algorithm for
DOM fluorescence parameters in Chinese lakes and showcase its environmental connection
with human activities and water quality management.
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4.4. Advanced Leak Detection in Water Networks

Water leak detection is crucial for effective water management, waste reduction, and
preventing damage to infrastructure and property. Various methods are used to detect
leaks, such as acoustic leak detection, visual inspection, tracer gas leak detection, pressure
testing, data loggers and flow meters, smart water networks, and pipe inspection robots
and cameras. Each method has its benefits and limitations, and choosing the most suitable
method depends on factors like pipe material, leak size, and pipeline location. Often, a
combination of methods is used to ensure accurate and efficient leak detection.

4.4.1. Bigram Document Analysis

The treemap with the main concepts has been examined in the bigram analysis as
shown in Figure 13, revealing that leak detection is mainly applied to water distribution
networks and leak detection. Among the highlighted algorithms, support vector machine,
artificial neural networks, and Decision Trees have been identified. Furthermore, four main
groups have been observed in the thematic map analysis. The first group, in light blue,
is related to machine learning methods that have been used for leak detection. However,
close to this group, another group has been identified, which considers research related
to sensors associated with leak detection. In the emerging themes quadrant, two groups
are also observed. The first group is associated with Bayesian techniques used for tackling
leak identification and localization, while the second group connects leaks with operational
matters. The latter point is considered crucial, given that such models should ultimately
be employed for decision-making. The operational aspect is deemed the most suitable
area for conducting these tasks. Lastly, when analyzing the conceptual structure map
and the dendrogram, as shown in Figure 14, two major groups are observed. The blue
group encompasses everything related to operational conditions, leak detection, and risk
assessment, all of which are linked to decision-making support. However, the primary
focus of the main group is the utilization of machine learning techniques for constructing
leak detection models.

Figure 13. Tree and thematic map for a leak detection topic.
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Figure 14. Conceptual structure and dendrogram for a leak detection topic.

4.4.2. Traditional Analysis

In Table 4, a summary of the articles mainly identified with the topic of leak detection is
displayed. It is observed that classification models are primarily constructed, with accuracy
being the main metric used for evaluating the models. Among the principal techniques
found are RF, ANN, SVM, and KNN. Additionally, convolutional networks were used for
constructing the models in the studies that utilized images or multivariate time signals.
The primary issue to address was leak detection; however, some works also considered
leak localization. A brief summary of some of the referenced works in the table follows.
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Table 4. Summary of applications and techniques in water leak detection. Random Forest (RF), artificial neural network (ANN), convolutional neural network
(CNN), Decision Tree (DT), and support vector machine (SVM).

Techniques Metrics Data Application

DBSCAN, CNN Mean Per-Class Error = 0 The data source for leakage detection in this
paper is derived from hydraulic simulations.

To tackle the issue of water leakage in urban water supply networks, which
affects water quality, hydraulics, and public health [78].

ANN
Distance leak error < 2.32 m
for 95% of points.

Transient head traces at the valve
after its closure

To introduce a novel methodology for identifying features in water pipelines,
which, by accurately predicting the presence of junctions and leaks, aims to
enhance the assessment and maintenance of water distribution systems [79].

SVM
Accuracy between 80 and
83% for the testing dataset.

Wireless sensors networks was
presented + 4G for transmission

To develop an efficient water pipeline monitoring system using wireless
sensor networks and SVM-based leakage identification to conserve
resources and minimize economic losses [80].

LDA, ANN
Accuracy 80%, for the
testing dataset. Pressure data

Introduce a data-driven approach using limited pressure measurements and
machine learning classifiers to accurately localize leaks in water distribution
networks, ultimately conserving water resources and reducing costs [81].

Time-frequency CNN Accuracy 99%, for
the testing dataset.

Real datasets from Chengdu
city and synthesized datasets
containing Gaussian white noise

To propose a leakage spectrogram and time-frequency convolutional
neural network model for improved accuracy and stability in leak
detection, and to compare its performance with other classification
models under various signal-to-noise ratio conditions [82].

GBT
Accuracy, 99.8%,
for the testing dataset.

Several months from multiple
cities across North America.

To provide an overview of the challenges faced by water utilities in
detecting and managing leaks in aging water infrastructure and to
present various technologies and methods that have been developed
to address this issue [83].

RF

Accuracy in different
context. The mean of
accuracy 33.5 %

The dataset includes 24 features as
inputs to each mode. The leak shapes
were divided into five separate datasets
based on their leak area.

To present a methodology for predicting leak shapes using vibration
signals and introduce an innovative signal processing technique that
combines machine learning methods, specifically Random Forest
classifiers, with various signal features [84].

RF, Dtree,
KNN, Naive Bayes

Accuracy, Precision, Recall,
F1-score. 10 scenarios were
simulated, where the best
algorithm was Bayes,
obtaining an average of
96.27, 95.94, 95.78, 93.80.

Vitens company dataset that describes
the water distribution networks of
Leeuwarden. The dataset includes data
on flow, pressure, temperature,
turbidity, conductivity, and acidity.

A real-time hybrid method that uses AI algorithms and hydraulic
relations for detecting and locating leaks, as well as identifying the
volume of losses material in Water Distribution Networks [85].
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Table 4. Cont.

Techniques Metrics Data Application

RF Accuracy 95%
The data was collected using 18 pressure
sensors and 3 flow sensors, with a noise
level of 1.5% MPI

To propose a method for improving the accuracy of a classifier
model for leak location in water distribution networks [86].

KNN Accuracy 52%

The dataset is created through a two-step
process involving hydraulic transient
simulations of a water network. The dataset
consists of pressure head data from all nodes
in the network.

A novel method for identifying and locating leaking pipes in
pressurized water distribution systems using transient modeling
and the K-nearest neighbors (K-NN) algorithm [87].

RF, ANN ,
SVM

Accuracy 75%
Data from smart meters located alongside
water distribution pipelines +
Narrow-Band IoT

To introduce the concept of the Internet of Things in water management. It discusses
the challenges and limitations of traditional methods of leak detection in pipes and
highlights the potential of using a low-cost sensor network and machine learning
algorithms to monitor and control water leaks more efficiently [88].

DT, KNN,
RF, Adaboost

Accuracy: The most
outstanding result was
achieved by the Random
Forest (RF) model, which
demonstrated a 100%
accuracy rate.

Used the radial sensing direction for signal
collection with a sampling rate of
3000 samples/s in streaming mode.

To introduce the use of cost-effective MEMS-based accelerometers for
leak detection and explain the methodology used, including experiments
on real networks, data analysis, and the development of machine learning
models [89].

SVM
Accuracy between 88 and
93%

Vibrations measurements using
low-power accelerometers

To develop, test, validate, and demonstrate a machine-learning-based risk
assessment method for early detection of leaks with high likelihood, their
geolocation, and accuracy assessment in the water distribution system at
the University of Lille’s SUNRISE demonstration site in France [90].

ANN Accuracy 97% Flow data set for pipe
Implementing a machine learning-based risk assessment method enables
quick detection of highly probable leaks, precise geolocation, and
accurate evaluation within the water distribution system [91].

ANN, RF,
DT,
Logistic Regression

Accuracy , Precision,
Recall, F1-score.
Close to 100%.

Flow and pressure data were
determined using EPANET software

To present a study examining the capability of machine learning methods to localize
leaks in water distribution systems, which is crucial due to the economic losses,
infrastructure damage, and soil contamination caused by water leakage [92].

ANN, DT,
SVM, KNN

Accuracy 100% in the
best cases for both metal
and non-metal pipes.

Features extracted from de-noised
signals of sound

Leaks in water distribution networks [93].
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Table 4. Cont.

Techniques Metrics Data Application

Physics-Guided
Neural Networks
(PGNN), CNN.

Accuracy, Recall. Precision.
On average, 0.64, 0.65, 0.62.

8 satellite images and their derived
parameter for water leak detection
in canal systems.

The application of this approach lies in the domain of remote sensing and
infrastructure maintenance, with a particular emphasis on automating the
detection and evaluation of water leaks within extensive canal systems [94].

SVM, DT, KNN,
CNN(SqueezeNet)

Accuracy. The best was
SquueezeNet with a 95.15%.

Utilizing piezoelectric accelerometers
to gather real network data across
multiple cities in China.

Enhance leak detection efficiency, minimize water losses, mitigate
structural damage, and bolster public safety by automating the leak
detection process in water distribution systems [95].

MLP, CNN, SVM
Accuracy. MLP was the
best with a 94.89%

Comprises both leakage and non-leakage
sounds, systematically gathered via a
cloud information management system
from confirmed underground leakages in
urban areas.

Developing an AI-based system to address the challenges of
Non-Revenue Water in densely populated cities [96].

Time-Frequency CNN
(TFCNN), Frequency
CNN (FCNN)

Accuracy, Precision, AUC.
The TFCNN achieved the
highest performance in
terms of accuracy (97.99%),
precision (95.51%), and
area under the curve
(AUC) (0.98).

Various methods, including ground penetrating
radar, gas injection, hydrophones,
vibro-acoustic noise loggers and correlators,
infrared thermography, and in-line devices,
are explored.

To effectively monitor and maintain potable Water Distribution
Networks in order to ensure a continuous and uninterrupted
water supply for customers [97].
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In [98], a state-of-the-art review is conducted, focusing on the escalating demand
for water due to socio-economic changes and the notable losses from leakages in water
distribution systems. Current leak detection methods, which are labor-intensive and
time-consuming, are scrutinized along with the historical evolution of leak management
technologies. The burgeoning role of sensor-based smart water technology is underscored.
This study’s objective is to impart insights and guide future research toward effective
strategies for leak monitoring, detection, and assessment.

A methodology that employs artificial neural networks (ANN) and fluid transient
waves for the non-invasive assessment of water pipe condition is introduced in [79]. The
technique allows for predicting elements in a pipeline, such as the location and properties
of a junction and the identification of leaks. The results reveal that the developed ANN
can predict a junction with an error of 2.32 m or less in 95% of the cases. In [78], a leakage
detection model for water supply networks called DBSCAN-MFCN is presented, which
combines DBSCAN and multiscale fully convolutional networks (MFCN). By dividing the
network into zones and using them as learning labels, the model improves efficiency and
accuracy in leak detection, reducing water loss compared to other methods. The model
detects leakage areas and is more accurate than support vector machine (SVM), Naive
Bayes Classifier (NBC), and k-Nearest Neighbor (KNN), with improvements of 78%, 72%,
and 28%, respectively.

Another relevant point, besides the use of ML, is the system’s sensorization. In [80],
a water pipeline leakage detection method is proposed based on machine learning and
wireless sensor networks. The system reduces energy consumption and improves leak
detection accuracy using signal analysis and a support vector machine. The results show
that the method effectively identifies leaks and consumes less energy than conventional
methods. Another methodology used in these problems corresponds to the Bayesian
temporal reasoning approach, which has been effective in enhancing leak localization
accuracy within water networks. In [81], this approach is combined with linear discriminant
analysis and neural network techniques. Preliminary results from a case study demonstrate
an accuracy rate of over 80%. In [82], a time-frequency convolutional neural network
(TFCNN) model is also used to identify leakage signals in water networks, outperforming
other classification models and showing an average accuracy of 98% under various noise
conditions. The detection accuracy reaches 99% in practice, making the transfer learning-
based TFCNN a promising approach, especially when dealing with limited data sets.

In [83], the authors use machine learning to present an acoustic leak detection system
for water pipes. The proposed solution employs a joint learning approach called multi-
strategy ensemble learning (MEL) with a gradient boosting tree (GBT) classification model,
improving performance and significantly reducing false positives compared to other mod-
els. A unique methodology for predicting leak shapes in water pipes is presented in [84].
This methodology uses the vibration signal generated by the leak noise. The research
employs an innovative signal processing technique that combines machine learning with
Random Forest classifiers and various signal features to develop a leak shape prediction
algorithm. The results demonstrate a robust method for predicting leak shapes at different
flow rates and backfill types, providing a valuable tool for water companies to assess leak
repairs based on the leak shape. In [85], a fast hybrid method is proposed, using Random
Forest, KNN, Bayesian network algorithms, and hydraulic relations to detect and locate
leaks in water distribution networks. The approach relies on cost-effective flow sensors and
hydraulic equations for leak detection. The results show that the method outperforms other
existing methods. A novel unsupervised RNN model for leakage detection and location
was introduced in [99], achieving a detection sensitivity of 97% using pressure data and
100% using flow data, with true leak zone identification for 95% of scenarios.

5. Discussion and Future Research Directions

The mind map in Figure 15 provides an overview of various research lines for ad-
dressing the challenges related to water management. Specifically, the map outlines topics:



Appl. Sci. 2023, 13, 12497 32 of 40

advanced leak detection in water networks, water quality and potability, forecasting water
levels, and advancements in machine learning for water contaminants and soil erosion.
Each of these topics is further divided into subtopics, such as machine learning algo-
rithms, advanced monitoring systems, and innovative sensors. By exploring these areas,
researchers can discover new approaches and techniques to enhance water management
strategies and safeguard this crucial resource.

Figure 15. Mind map grouping the main challenges to address in the different identified topics.

5.1. Advancements in Machine Learning for Water Contaminants and Soil Erosion

The topic of water contaminants and soil erosion presents promising avenues for
future research, with machine learning acting as a catalyst for advancements in this field.
A focal point of such research endeavors is predicting groundwater contamination using
machine learning, calling for the development of a unified framework. This framework
should merge multiple models for improved accuracy, leverage cutting-edge feature selec-
tion techniques to identify pivotal factors and evaluate the impact of climate change on
contamination distribution.

Moreover, another integral aspect is the integration of remote sensing, and hyper-
spectral imagery data, aimed at enhancing monitoring capabilities. Developing robust
uncertainty assessment methods is equally vital, as well as examining the applicability and
transferability of models across diverse regions and contaminant types. An area of critical
importance is assessing how effectively these predictive models inform policy-making,
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conservation efforts, and sustainable management plans. An additional line of exploration
lies in harnessing sensor data and IoT technologies to enable real-time monitoring and
prediction, thus fostering proactive water management.

One innovative approach lies in employing reinforcement learning—a type of machine
learning where an agent learns to make decisions by interacting with its environment,
earning rewards or penalties. This technique could lead to optimal policies for managing
water resources and minimizing soil erosion under a wide array of conditions. The resultant
policies could then guide decisions about water use, irrigation practices, land use planning,
among other factors influencing soil erosion and water contamination.

Further, understanding and predicting the socio-economic impacts of water contami-
nation and soil erosion using machine learning should also be considered. These impacts
inform policy decisions and help prioritize mitigation efforts, which could involve creating
models that predict the impact of different contamination and erosion levels on agricultural
productivity, public health, and economic activity.

Lastly, the potential of using machine learning algorithms to automate real-time
detection of water contaminants, directly from sensor data, is another promising research
direction. This entails using machine learning techniques to process and interpret data from
sensors that detect contaminants in water, ultimately enabling faster and more accurate
responses to contamination events.

5.2. Forecasting Water Levels

The water level forecasting topic presents research opportunities in developing and
comparing machine learning algorithms for predicting groundwater levels, water distri-
bution, and potential maps. Studies demonstrate the use of support vector regression,
convolution neural networks, extreme gradient boosting, and other machine learning
techniques to analyze potential groundwater maps, groundwater depths, and lake levels.

The second intriguing research line relates to utilizing machine learning algorithms
to improve water resource management, such as forecasting lake water levels, predicting
irrigation water demand, and estimating groundwater levels in aquifers. Various machine
learning models, like Minimax Probability Machine Regression, Gaussian Process Regres-
sion, Extreme Learning Machine, and artificial neural networks, are applied to forecast lake
levels, estimate irrigation water demand, and predict groundwater levels for better water
management strategies.

A third line of research is concerned with the noteworthy observation of the exis-
tence of numerous data sources which are often not integrated. For the enhancement of
forecasting accuracy, it is proposed that these diverse data sources be amalgamated. This
would enable the subsequent progression of machine learning models to predict floods
and evaluate their severity. This unification would ease the analysis of various factors,
encompassing weather patterns, soil moisture levels, river flow rates, and historical flood
data, utilizing machine learning algorithms like Decision Trees, Random Forests, or deep
learning networks. The paramount objective continues to be the improvement of the preci-
sion of flood forecasts, thereby providing communities with the tools necessary to better
prepare for, and potentially alleviate, the impacts of such occurrences.

Finally, a four research line involves applying machine learning and remote sensing
techniques to monitor and assess water quality, pollution, and eutrophication. This research
aims to provide better insights into the sources and composition of dissolved organic matter
in water bodies and evaluate the effectiveness of water protection measures or human
disturbance effects on water quality and lake ecosystems. Studies develop models to derive
parameters, such as the humification index, using machine learning methods like XGBoost,
in combination with other remote sensing data.

5.3. Advanced Leak Detection in Water Networks

The leak detection topic presented encompasses various approaches and techniques
for detecting and locating leaks in water distribution networks. These methods involve
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machine learning algorithms, wireless sensor networks, and transient modeling. Machine
learning techniques include classifiers such as KNN, Decision Trees, neural networks, sup-
port vector machines, and Random Forests. Generally, these methods have demonstrated
effectiveness in identifying and locating leaks across diverse scenarios, with varying levels
of accuracy depending on the technique and the water distribution network’s characteris-
tics. Employing these approaches can help tackle the issue of leaks in water distribution
networks, consequently reducing economic losses and environmental impact.

Future research endeavors should prioritize the development of efficient machine
learning methods for accurate and effective leak detection and localization in water net-
works. This task involves network zoning and the utilization of hybrid approaches, blend-
ing various techniques for optimal outcomes. A key part of this process is the innovation
of sensor technology and data acquisition methods, leading to enhanced datasets and, con-
sequently, more robust models. Considerations such as the materials used in pipes and the
overall design of the network significantly influence these developments. Moreover, trans-
lating current research to real-world networks, integrating analytics with intelligent water
management systems, and quantifying the socio-economic and environmental impacts of
improved leak detection are vital steps forward.

Simultaneously, there is a notable gap in the integration of smart water technologies
in leakage management, referring to the limited use of advanced technologies, such as
sensors, data analytics, and machine learning for detecting and controlling leakages in
water distribution systems. Despite their potential to enhance the efficiency and accuracy
of leakage management, the adoption of these technologies is still in its nascent stages.
Thus, further research is required to explore these smart water technologies’ potential in
leakage management and develop effective strategies for their integration.

In addition, current leakage detection methods exhibit inadequate accuracy and relia-
bility, suggesting limitations in the techniques employed in identifying leakages in water
distribution systems. Current methods, such as acoustic, flow, and pressure sensors, suffer
from constraints related to accuracy, sensitivity, and reliability. For example, acoustic
sensors are susceptible to background noise, and flow sensors may fail to detect minor
leaks. Such limitations can trigger false positives or negatives, leading to inefficient leakage
management. Therefore, future research must focus on devising more accurate and reliable
leakage detection methods, potentially involving the use of machine learning algorithms
and data fusion techniques.

5.4. Assessing Water Quality and Potability

The field of water quality assessment and prediction stands to gain substantially
from future research, particularly those focusing on leveraging the power of machine
learning. As we consider the variety of algorithms and deep learning models, such as deep
neural networks, gradient boosting machines, and XGBoost, we are able to significantly
enhance our water quality monitoring systems. By integrating sensors, IoT technologies,
5G communication networks, and low-power sensors, we can augment real-time efficiency
and accuracy.

Furthermore, a comprehensive assessment of water quality necessitates consideration
of multiple factors, such as urbanization, climate change, and industrial activities. By
combining machine learning algorithms and data analysis techniques, we can devise more
effective strategies for water conservation and treatment.

Machine learning plays a crucial role in identifying and classifying various types
of pollutants and waste in aquatic environments. This assessment, combined with an
understanding of the impact on water quality and aquatic life, is key to preserving our
ecosystems. In addition, the intersection of water quality and human health is an area of
importance, where machine learning and data analysis can unveil patterns and trends in
water-related diseases across different regions and communities.

Beyond these, the scope for research extends to the utilization of unsupervised machine
learning techniques to uncover unknown contaminants or detect new patterns in water
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quality data. This could potentially expose unforeseen contamination sources or novel
correlations between variables.

There is also scope for employing machine learning to enhance water treatment
processes. This could encompass using machine learning to model the efficiency of different
treatment methods under various conditions, or optimizing resource allocation in water
treatment plants.

In addition, the exploration of integrating machine learning with cutting-edge tech-
nologies, such as nanotechnology and biotechnology, in the realm of water treatment and
quality assessment, could be fruitful. These collaborations could facilitate innovative and
more efficient methods of water decontamination.

In conclusion, the development of early warning systems employing machine learning
algorithms and real-time sensor data holds promise in predicting and preventing water
pollution events. This approach is essential in securing access to safe and sustainable
drinking water for all, irrespective of their location in rural or urban areas.

6. Conclusions

In this study, a hybrid methodology has been employed. Firstly, the bidirectional
encoder representation from transformers was used to identify topics in article abstracts
obtained from Scopus. Subsequently, expert knowledge was relied upon to select relevant
topics. This methodology successfully identified four areas of machine learning application
in water management: Advancements in Machine Learning for Water Contaminants and
Soil Erosion, Forecasting Water Levels, Advanced Leak Detection in Water Networks, and
Assessing Water Quality and Potability. Leading journals in this research area have been
identified as Science of the Total Environment, Journal of Hydrology, and Water Research.

Through the analysis of bigrams and traditional methods, classification models using
key techniques such as RF, ANN, SVM, KNN, and convolutional networks have been
found crucial for leak detection in water networks. These models focus on various method-
ologies, yielding promising results with up to 98–99% accuracy, significantly improving
leak detection and management. In the topic of water level forecasting, machine learning
techniques like SVR, CNN, GTB, and Random Forest have demonstrated their effectiveness
in groundwater potential mapping, level prediction, and water quality management. These
approaches enhance spatial predictions, address complex terrains, and monitor dissolved
organic matter, contributing to sustainable groundwater management, peatland restoration
strategies, and water safety amid urbanization and climate change.

Machine learning techniques such as CNN, LSTM, and Random Forest have proven
successful in the topic of water quality and potability. These methods offer high precision
and reduced processing time, enabling better water management, early warning systems,
and support for decision-making in sustainable resource management. Machine learn-
ing techniques, like Random Forest and XGB, have demonstrated success in predicting
groundwater nitrate concentrations and soil erosion susceptibility, as well as estimating
heavy metal and nutrient levels in various regions. These models help identify at-risk areas
and crucial contributing factors, informing sustainable management plans, soil conserva-
tion, and watershed protection. Such data-driven approaches offer valuable insights for
addressing natural pollution problems and ensuring water quality.

To advance research in Water Infrastructure Integrity and Quality, it is essential to
foster interdisciplinary collaboration among experts from various fields, create integrated
frameworks that combine diverse machine learning models and techniques, and enhance
data sources using remote sensing, hyperspectral imagery, and IoT technologies. Driv-
ing innovation through the development of advanced sensors, monitoring systems, and
communication technologies will improve strategies for maintaining water infrastructure
integrity and quality. Assessing and optimizing model transferability, measuring the im-
pact of predictive models on policy-making and conservation efforts, and raising public
awareness and education about challenges related to water infrastructure are crucial. Im-
plementing pilot projects to test and validate new technologies in real-world scenarios and
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evaluating the socioeconomic and environmental effects of improved strategies will further
support research and development. This pursuit of technological advancement in Water
Infrastructure Integrity and Quality must also address the challenges and potentials within
the field of machine learning itself.

While BERTopic enhances contextual understanding in topic modeling, it is not with-
out limitations, such as potential biases in pre-trained models. Future research could
delve into identifying these biases and developing strategies to mitigate them, perhaps
through the inclusion of Large Language Models (LLMs) which offer diverse data training
and nuanced language understanding. Additionally, conducting a comparative analysis
with ML applications in other environmental domains could unveil unique insights and
challenges specific to Water Infrastructure Integrity and Quality, enriching the context of
our study. Moreover, it’s crucial to consider the broader technological, ethical, and social
implications of employing ML in water infrastructure integrity and quality management.
This encompasses not just the technological advancements but also their impact on policy,
societal norms, and ethical considerations, especially in the face of global challenges like
climate change and social equity. Such an exploration would provide a holistic view of the
role of ML in this critical field and its potential to drive sustainable and equitable solutions
for water infrastructure integrity and quality.

Finally, in our current study, we have exclusively worked with data from the Scopus
database, but in future analyses, we are considering an integration with the Web of Science
(WoS). This forward step presents notable challenges, particularly in terms of compatibility
of the data attributes that can be exported from each database. A significant consideration
in our work is that, in the specific area addressed in this article, there is a substantial
intersection in journal coverage between Scopus and WoS. However, this level of overlap
does not necessarily hold in other areas of study, posing an intriguing challenge in terms
of how to effectively integrate these different sources without significantly compromising
the bibliographic analyses. Our aim will be to develop methodologies that allow for this
integration, maintaining the quality and depth of our analyses, while simultaneously
enriching our results with broader and varied perspectives from multiple prestigious
academic databases.
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