Entornos de aprendizaje emergentes en la educación en ingeniería

La formación en ingeniería está experimentando una transformación profunda, impulsada por desafíos globales como el cambio climático, la revolución digital y la creciente brecha entre la enseñanza académica y las exigencias del mercado laboral. A continuación, analizamos el trabajo de Hadgraft y Kolmos (2020), donde se explora cómo la educación en ingeniería está evolucionando para hacer frente a estos retos mediante cuatro tendencias clave: el aprendizaje centrado en el estudiante, el aprendizaje contextual, la digitalización de la enseñanza y el desarrollo de competencias profesionales. A partir de estas líneas de cambio, se propone que la educación futura debe pasar de un enfoque en disciplinas individuales a currículos integrados que aborden problemas complejos y promuevan trayectorias de aprendizaje personalizadas. En última instancia, se hace hincapié en la necesidad de un cambio sistémico en el diseño curricular para preparar a los ingenieros para un futuro laboral en constante cambio.

La educación en ingeniería se enfrenta a tres desafíos fundamentales: la sostenibilidad y el cambio climático, la Cuarta Revolución Industrial (Industria 4.0) y la empleabilidad de los graduados. Estos desafíos exigen que los ingenieros del futuro posean habilidades transdisciplinares, pensamiento sistémico y contextual, y la capacidad de actuar en situaciones complejas y caóticas. Para responder a estas necesidades, la educación en ingeniería ha evolucionado hacia un enfoque centrado en el estudiante, la integración de la teoría y la práctica, el aprendizaje digital y en línea, y el desarrollo de competencias profesionales. A largo plazo, se tenderá a modelos curriculares más personalizados y centrados en proyectos que permitan a los estudiantes construir sus propias trayectorias de aprendizaje y documentar sus competencias para el aprendizaje a lo largo de la vida.

1. Desafíos clave para la educación en ingeniería

Se identifican tres desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería:

  • Sostenibilidad y cambio climático: la ingeniería es fundamental para abordar los 17 Objetivos de Desarrollo Sostenible (ODS) de la ONU, especialmente en lo que respecta a la pobreza, el hambre, la salud, el agua, la energía, el crecimiento económico y la acción climática. La educación en ingeniería debe preparar a los graduados para responder a estos desafíos humanitarios, sociales y económicos.
  • Cuarta Revolución Industrial (Industria 4.0): Esta revolución implica la integración generalizada de tecnologías como la automatización, el internet de las cosas (IoT), la inteligencia artificial (IA), la robótica y la fabricación aditiva. Tradicionalmente, la ingeniería no se ha enseñado de manera integradora, pero el éxito de la Industria 4.0 depende de la interacción y la integración de estas tecnologías. Esto requiere una mayor colaboración interdisciplinaria entre diferentes programas y disciplinas universitarias, como informática, análisis de datos, robótica, automatización, producción, gestión, electrónica y materiales. La segunda revolución industrial, que está en la agenda política e industrial, implica la integración generalizada de tecnologías como la automatización, el IoT, la IA, la robótica, los materiales avanzados, la fabricación aditiva, la impresión multidimensional, las bio-, nano- y neurotecnologías, y las realidades virtuales y aumentadas.
  • Empleabilidad y competencias de innovación: a pesar de la creciente importancia de habilidades como el emprendimiento y el pensamiento de diseño, aún existe una brecha entre la formación en ingeniería y la preparación para el mundo laboral. La integración de la teoría y la práctica mediante pasantías, proyectos en colaboración con el sector y laboratorios de aprendizaje son soluciones parciales. El aprendizaje basado en problemas o proyectos (PBL) se presenta como un mecanismo para abordar este desafío. La brecha entre la educación en ingeniería y la preparación para el trabajo sigue existiendo, por lo que se deben integrar la teoría y la práctica mediante un enfoque centrado en la empleabilidad y la colaboración con la industria mediante pasantías, proyectos de asociación y laboratorios de aprendizaje.
Desafíos principales que están impulsando la necesidad de transformar la educación en ingeniería

Estos tres desafíos exigen, en conjunto, un mayor énfasis en la responsabilidad social, la integración del contexto social y la interdisciplinariedad, combinados con habilidades digitales y genéricas.

2. Respuestas actuales y tendencias emergentes

La educación en ingeniería ha respondido a estos desafíos con cuatro tendencias principales que se materializarán a corto plazo:

  1. Aprendizaje centrado en el estudiante: Un cambio significativo de la enseñanza tradicional (el profesor da la clase, los estudiantes escuchan) a un currículo más interactivo donde los estudiantes influyen en la dirección de su propio aprendizaje. Esto incluye metodologías como el aprendizaje activo, el aprendizaje colaborativo, el aprendizaje basado en equipos, el aprendizaje basado en el diseño, el aprendizaje basado en la investigación y, en particular, el aprendizaje basado en problemas y proyectos (PBL). El PBL ha demostrado su eficacia para aumentar la motivación, reducir las tasas de abandono y desarrollar competencias, y constituye una respuesta clave a la necesidad de un aprendizaje más complejo. El aprendizaje centrado en el estudiante es un área bien investigada. Los estudios sobre aprendizaje activo, aprendizaje basado en la investigación, aprendizaje basado en el diseño y aprendizaje basado en desafíos muestran efectos positivos en los resultados del aprendizaje. La motivación aumenta cuando los estudiantes inician proyectos, en los que identifican problemas y tienen un alto grado de influencia en la dirección del proyecto.
  2. Aprendizaje contextual y basado en la práctica: Incorporación de elementos curriculares relacionados con situaciones laborales futuras, como pasantías, proyectos de la industria, emprendimiento y centros de innovación. Los proyectos iniciados externamente (por empresas o la comunidad) son particularmente valiosos porque son auténticos y exponen a los estudiantes a la complejidad del mundo real. Junto con la tendencia del aprendizaje centrado en el estudiante, existe una tendencia de aprendizaje contextual y relacionado con la práctica, en la que los estudiantes cuentan con elementos del currículo relacionados con situaciones laborales posteriores, como pasantías, proyectos de la industria, emprendimiento y centros de innovación.
  3. Aprendizaje digital y en línea: Evolución del aprendizaje a distancia a estrategias de aprendizaje combinado (blended learning) que utilizan nuevas tecnologías como la realidad aumentada y la visualización 3D. El modelo del «aula invertida» (flipped classroom) es un ejemplo destacado, en el que los estudiantes se preparan con contenido en línea antes de clase y utilizan el tiempo en el aula para actividades interactivas y resolución de problemas. Este enfoque es una respuesta a la ineficacia de las clases magistrales tradicionales para los niveles superiores de la taxonomía de Bloom y los aspectos complejos del marco Cynefin. En la actualidad, el aprendizaje digital se centra en las estrategias de aprendizaje combinado. La digitalización es más que ofrecer plataformas y entornos de aprendizaje en línea como Blackboard o Moodle; consiste en usar nuevas tecnologías para el aprendizaje, como la realidad aumentada, la visualización 3D, etc. El modelo de «aula invertida», como enfoque centrado en el estudiante, es una respuesta a la metodología de enseñanza y aprendizaje más extendida en la educación en ingeniería, que consiste en un aprendizaje instructivo basado en libros de texto organizado como conferencias, tutoriales y laboratorios, combinado con la resolución de pequeños ejercicios.
  4. Competencias profesionales: Reconocimiento de la creciente importancia de desarrollar competencias profesionales integradas para la empleabilidad en el siglo XXI. Esto incluye el «aprendizaje meta» para que los estudiantes identifiquen y desarrollen sus propias competencias de manera personalizada, a menudo a través de portafolios que les permitan articular su aprendizaje y trayectoria profesional. Se enfatiza la responsabilidad individual en la construcción de la trayectoria de aprendizaje, combinada con la participación en actividades colaborativas. Otro aspecto emergente en la educación en ingeniería es la creciente importancia del aprendizaje integrado de competencias profesionales. Los portafolios desempeñarán un papel fundamental en este proceso, ya que ayudarán a los estudiantes a presentar su aprendizaje a sí mismos, a sus mentores académicos y a futuros empleadores en una entrevista de trabajo.
Respuestas actuales y tendencias en la educación en ingeniería

3. La complejidad y los sistemas en la educación en ingeniería

Los desafíos del futuro requieren que los ingenieros operen en situaciones de complejidad creciente. El marco Cynefin se utiliza para clasificar las situaciones en simples, complicadas, complejas y caóticas, y prescribe diferentes enfoques para cada una:

  • Simple: Comportamiento bien entendido, “mejores prácticas” definidas. Se aplica el método “sentir, categorizar y responder” (ej. fundamentos de ingeniería, problemas de examen tipo fórmula).
  • Complicado: Requiere comportamiento experto, múltiples respuestas correctas. Se aplica “sentir, analizar y responder” (ej. diseño de puentes o teléfonos móviles; proyectos de diseño de estudiantes). La ingeniería de sistemas proporciona un marco estructurado.
  • Complejo: No hay una solución clara o única; surgen soluciones. Se aplica “probar, sentir y responder”. Estos son los “problemas complejos” (wicked problems), caracterizados por no tener una formulación definitiva, no tener una mejor solución única, no tener un punto final claro, y donde cada intento de solución impacta el sistema. El diseño de sistemas de transporte para grandes ciudades es un ejemplo.
  • Caótico: Resultado de desastres, requiere acción inmediata para estabilizar antes de aplicar otros enfoques. No suelen ser el foco directo de un grado de ingeniería, excepto en la ética de la ingeniería, aprendiendo de desastres pasados.

Los currículos de ingeniería deben incluir formación para afrontar situaciones simples, complicadas y, crucialmente, complejas. Se necesitan currículos de ingeniería que incluyan la complejidad y lo complicado. Además, para educar a los estudiantes del futuro, deben tener la posibilidad de aprender tanto disciplinas específicas como la transdisciplinariedad, así como conocimientos y habilidades técnicos simples y complicados, y la complejidad que implica la comprensión del contexto, los sistemas, la sostenibilidad y los valores.

4. Modelos curriculares futuros e integrados

La evolución de las respuestas educativas muestra una transición de lo «dirigido por el profesor» a lo «dirigido por el estudiante» y de «módulos únicos» a «modelos de currículo completo».

  • Cambio a nivel de sistema: Existe una tendencia emergente a diseñar currículos a nivel de sistema, coordinando todos los elementos curriculares en lugar de simplemente agregar o modificar cursos individuales. Este enfoque sistémico es crucial para el aprendizaje de la complejidad. Pero, en términos generales, definitivamente ha habido un cambio de un entorno de aprendizaje dirigido por el profesor a otro mucho más dirigido por el estudiante. Además, está surgiendo la tendencia a desarrollar currículos a nivel de sistema, lo que implica coordinar todos los elementos del currículo.
  • Proyectos como núcleo: Los proyectos constituyen un elemento central en los modelos curriculares emergentes, especialmente aquellos iniciados por entidades externas (industria, comunidad). Estos proyectos permiten el desarrollo de habilidades técnicas, sociales y ambientales (comunicación, trabajo en equipo, ética, sostenibilidad) y de diseño y resolución de problemas (pensamiento de diseño, ingeniería de sistemas). También facilitan la consideración de perspectivas multidisciplinares y la comprensión de problemas en contexto, con múltiples puntos de vista y sistemas de valores.
  • Ejemplos de modelos emergentes:
    • University College London (UCL) – Integrated Engineering Program (IEP): Dedica una semana de cada cinco a un proyecto integrado. Esto permite a los estudiantes ver las conexiones entre diferentes módulos y disciplinas.
    • Charles Sturt University (CSU): Programa radicalmente diferente con tres semestres orientados a proyectos, donde los estudiantes aprenden “justo a tiempo” a través de módulos en línea y pasan la mitad de su tiempo en proyectos. Luego realizan cuatro pasantías de un año.
    • Swinburne University: Enfoque similar al de CSU, con proyectos de seis semanas patrocinados por la industria realizados en la universidad, operando como una empresa de ingeniería.
    • Iron Range Engineering: Los estudiantes trabajan en proyectos de empresa y reflexionan continuamente sobre su aprendizaje.

Estos ejemplos muestran cómo las instituciones combinan el aprendizaje basado en proyectos, el aprendizaje digital/en línea y el uso de portafolios para apoyar las trayectorias de aprendizaje personalizadas.

5. Perspectivas y conclusiones

La educación en ingeniería se dirige hacia un futuro en el que la combinación de trayectorias de aprendizaje personales, competencias profesionales y capacidad de abordar la complejidad será la tendencia dominante. Esto implica lo siguiente:

  • Currículos sistémicos: Es necesario un enfoque más sistémico y holístico en el diseño curricular, en lugar de modificaciones aisladas a nivel de curso. Los modelos tradicionales centrados en cursos individuales a menudo dejan la tarea de integrar el conocimiento al estudiante.
  • Aprendizaje para la complejidad: La educación debe preparar a los estudiantes para manejar problemas complejos, que requieren integrar conocimientos disciplinarios e interdisciplinarios, teoría y práctica, comprensión contextual y abstracta, y construcción de conocimiento individual y colaborativa.
  • Habilidades del Siglo XXI: La automatización de cálculos técnicos significa que los ingenieros futuros necesitarán comprender los requisitos sociales, ambientales y económicos de la tecnología y su aplicación.
  • Aprendizaje a lo largo de la vida: Los ingenieros serán cada vez más responsables de sus propias rutas de aprendizaje personales y necesitarán saber cómo construir su crecimiento individual dentro de comunidades de aprendizaje colaborativas. El acceso al conocimiento en línea (MOOCs) aumentará, pero la clave será cómo los estudiantes desarrollan competencias para el aprendizaje a lo largo de la vida, incluida la reflexión crítica y el pensamiento sistémico, normativo y anticipatorio.

En resumen, la educación en ingeniería debe evolucionar de un enfoque basado en la transmisión de conocimientos técnicos simples a otro que fomente la capacidad de los estudiantes para navegar y resolver problemas complejos, multidisciplinares y contextualizados, preparándolos para ser aprendices activos de por vida en un mundo en constante cambio.

Referencia:

Hadgraft, R.G.; Kolmos, A. (2020). “Emerging learning environments in engineering education“, Australasian Journal of Engineering Education, 25:1, 3-16, DOI: 10.1080/22054952.2020.1713522

Glosario de términos clave

  • Aprendizaje centrado en el estudiante: Un enfoque pedagógico en el que el estudiante se convierte en el centro del proceso de aprendizaje, con métodos como el aprendizaje activo, colaborativo, basado en problemas y proyectos, donde los estudiantes tienen una influencia significativa en la dirección de su aprendizaje.
  • Aprendizaje contextual y basado en la práctica: Un enfoque de aprendizaje que integra situaciones del mundo real y experiencias prácticas en el currículo, incluyendo pasantías, proyectos industriales y hubs de innovación, para conectar la teoría con la futura situación laboral.
  • Aula invertida (Flipped Classroom): Una metodología de aprendizaje semipresencial donde la instrucción directa se mueve de la clase a un espacio individual (generalmente en línea), y el tiempo en clase se transforma en un entorno de aprendizaje dinámico e interactivo donde el educador guía a los estudiantes a aplicar conceptos.
  • CDIO (Concebir, Diseñar, Implementar, Operar): Un marco curricular para la educación en ingeniería que enfatiza el desarrollo de habilidades profesionales y un enfoque holístico e integrado del currículo, desde la concepción de una idea hasta su operación.
  • Competencias profesionales: Conjunto de conocimientos, habilidades y aptitudes (tanto técnicas como genéricas, como la comunicación, el trabajo en equipo y la ética) que se espera que los ingenieros adquieran para desempeñarse eficazmente en el lugar de trabajo.
  • Complejidad (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto solo puede discernirse en retrospectiva, y las soluciones emergen del sondeo y la experimentación. Se caracteriza por problemas “perversos” sin soluciones únicas o definitivas.
  • Complicado (en el marco Cynefin): Un dominio de situaciones que requieren experiencia y análisis para encontrar múltiples respuestas correctas, pero donde la relación causa-efecto es clara, aunque puede no ser obvia para todos. La resolución de problemas implica “sentir, analizar y responder”.
  • Cuarta Revolución Industrial (Industria 4.0): Un término que describe la tendencia actual de automatización e intercambio de datos en las tecnologías de fabricación, incluyendo sistemas ciberfísicos, el Internet de las Cosas (IoT), la computación en la nube y la inteligencia artificial (IA).
  • Currículo sistémico/integral: Un enfoque de diseño curricular que coordina todos los elementos de un programa educativo a nivel de sistema, en lugar de centrarse solo en módulos o asignaturas individuales, buscando una progresión y coherencia holísticas en los resultados del aprendizaje.
  • Cynefin Framework: Un modelo conceptual creado por Dave Snowden que ayuda a la toma de decisiones al categorizar los problemas en diferentes dominios (simple, complicado, complejo, caótico y desorden) basados en la naturaleza de su relación causa-efecto.
  • Diseño centrado en el usuario (User Experience – UX): Se refiere a la experiencia general que tiene un usuario al interactuar con un producto o sistema. En ingeniería, implica diseñar soluciones que realmente satisfagan los requisitos del cliente, el usuario y la comunidad.
  • Diseño de sistemas (Systems Design): Un enfoque estructurado para el diseño de sistemas complejos que considera las interacciones entre los componentes y el entorno, y busca satisfacer un conjunto de requisitos funcionales y no funcionales.
  • Pensamiento de diseño (Design Thinking): Una metodología de resolución de problemas centrada en el ser humano que implica fases como empatizar, definir, idear, prototipar y probar, común en muchas disciplinas de diseño, incluida la ingeniería.
  • Emergencia: En el contexto de los entornos de aprendizaje, se refiere a cómo las estructuras, patrones y comportamientos de aprendizaje se vuelven visibles a través de las interacciones entre elementos más pequeños, como estudiantes y recursos, indicando posibles direcciones futuras en la educación.
  • Habilidades blandas/genéricas: Habilidades no técnicas pero igualmente importantes, como la comunicación, el trabajo en equipo, la ética, el pensamiento crítico y la resolución de problemas, que son aplicables en una amplia gama de contextos profesionales.
  • Internet de las Cosas (IoT): Una red de objetos físicos equipados con sensores, software y otras tecnologías que les permiten conectarse e intercambiar datos con otros dispositivos y sistemas a través de Internet.
  • PBL (Aprendizaje Basado en Problemas y Proyectos): Un enfoque pedagógico centrado en el estudiante donde los alumnos aprenden sobre un tema trabajando en un problema abierto o un proyecto complejo, desarrollando habilidades de resolución de problemas, trabajo en equipo e investigación.
  • Portafolio: Una colección de trabajos de los estudiantes que demuestra su aprendizaje, habilidades y crecimiento a lo largo del tiempo. En ingeniería, se utiliza para articular las trayectorias de aprendizaje individuales y las competencias profesionales a mentores y futuros empleadores.
  • Simple (en el marco Cynefin): Un dominio de situaciones donde la relación causa-efecto es obvia para todos, y las “mejores prácticas” pueden aplicarse. La resolución de problemas implica “sentir, categorizar y responder”, como la aplicación de fórmulas fundamentales de ingeniería.
  • Sostenibilidad (ODS): La capacidad de satisfacer las necesidades del presente sin comprometer la capacidad de las futuras generaciones para satisfacer sus propias necesidades. Los ODS (Objetivos de Desarrollo Sostenible) son una colección de 17 objetivos globales interconectados establecidos por las Naciones Unidas.
  • Sistemas (Pensamiento sistémico): La capacidad de comprender cómo los componentes de un sistema interactúan entre sí y con el entorno para producir un comportamiento determinado, en lugar de analizar los componentes de forma aislada.
  • Trayectorias de aprendizaje personalizadas: Rutas de aprendizaje adaptadas a las necesidades, intereses y aspiraciones profesionales individuales de los estudiantes, permitiéndoles configurar y documentar su propio desarrollo de competencias como parte de una estrategia de aprendizaje a lo largo de toda la vida.

Comunicaciones presentadas al XI Congreso de Innovación Educativa y Docencia en Red INRED 2025

Me complace informar a mis lectores que el XI Congreso de Innovación Educativa y Docencia en Red (INRED) 2025 se celebrará los días 17 y 18 de julio en Valencia. En un contexto en el que las instituciones educativas están experimentando una transformación vertiginosa, la innovación educativa se presenta como una herramienta esencial para renovar los procesos de enseñanza y aprendizaje y adaptarse a los nuevos retos. La Ley Orgánica de Sistema Universitario (LOSU) plantea que la innovación docente es un medio para mejorar la calidad de la educación superior y para fortalecer la capacidad de adaptación a nuevos escenarios formativos. Además, la considera una estrategia esencial para el desarrollo profesional del profesorado.

Desde hace tiempo, las universidades fomentan la participación del profesorado en proyectos de innovación y se ha avanzado notablemente en la forma de diseñar y desarrollar estos proyectos. No obstante, hoy más que nunca es crucial impulsar propuestas de innovación más rigurosas y orientadas a dar respuesta a los grandes retos educativos a los que nos enfrentamos.

Este enfoque nos remite al concepto de scholarship o enfoque académico de la docencia, una perspectiva que se ha consolidado en la educación superior y que propone valorar la enseñanza al mismo nivel que la investigación disciplinar.

Detrás de esta idea se encuentra una forma de innovar basada en tres pilares fundamentales:

  • El análisis sistemático de la enseñanza y sus efectos en el aprendizaje del estudiantado.
  • La comunicación de los conocimientos sobre enseñanza y aprendizaje generados en entornos académicos, como congresos y revistas científicas.
  • La revisión crítica por parte de iguales en comunidades académicas, con el fin de validar o refutar el conocimiento producido.

En esta nueva edición del Congreso INRED 2025, reflexionaremos sobre cómo avanzar desde una innovación basada en la experiencia y con un nivel incipiente de fundamentación empírica hacia una innovación con un enfoque académico. Un enfoque que no solo se apoye en la experimentación y el análisis sistemático de la docencia, sino que también genere evidencia comunicable y susceptible de ser sometida a revisión crítica por parte de la comunidad académica. Además, exploraremos los nuevos desafíos que plantea este modelo desde las perspectivas técnica y ética.

En este congreso, tengo el placer de anunciar que tenemos aceptadas dos comunicaciones:

YEPES, V. (2025). Pensamiento lateral para mejorar la resolución de problemas complejos en estudios de máster. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.

Esta comunicación presenta una metodología innovadora que integra el pensamiento lateral mediante la técnica de los «Seis sombreros para pensar» de Edward de Bono en la enseñanza de la resolución de problemas complejos en ingeniería. El objetivo principal es evaluar la efectividad de esta técnica para desarrollar habilidades críticas y creativas en los estudiantes. La metodología se implementó en un curso de ingeniería, donde los estudiantes trabajaron en grupos para abordar un problema específico utilizando los enfoques que cada sombrero representa. Se realizaron encuestas antes y después de la actividad para medir la mejora en la capacidad de resolución de problemas y colaboración entre los estudiantes. Los resultados indican que la aplicación del pensamiento lateral mejora significativamente la capacidad de los estudiantes para resolver problemas complejos y fomenta un ambiente de aprendizaje colaborativo. Los estudiantes afirmaron haber aumentado su creatividad y disposición para compartir ideas. Esta metodología es exportable a otras titulaciones y niveles educativos, convirtiéndose en una herramienta valiosa para la innovación docente en diversas disciplinas.

YEPES, V.; YEPES-BELLVER, L.; MARTÍNEZ-PAGÁN, P. (2025). Impacto de la diversidad cultural en la resolución colaborativa de problemas en la docencia universitaria de ingeniería. En libro de actas: XI Congreso de Innovación Educativa y Docencia en Red. Valencia, 17 – 18 de julio de 2025.

La globalización y la movilidad académica han transformado las aulas universitarias en entornos multiculturales, donde la diversidad cultural es fundamental para el desarrollo de competencias profesionales. Este trabajo investiga la influencia de la diversidad cultural en la resolución colaborativa de problemas (RCP) en programas en ingeniería. Para ello, se desarrollaron actividades en grupos heterogéneos que promovieron la participación y el desarrollo de habilidades interpersonales mediante una metodología activa y colaborativa. Se aplicó una encuesta a 79 estudiantes para evaluar su percepción sobre la influencia de la diversidad cultural en su aprendizaje y en la dinámica de trabajo en equipo. Los resultados indican que la diversidad cultural no solo enriquece las interacciones y fomenta la creatividad, sino que también mejora la toma de decisiones y la resolución de problemas. Este estudio aporta pruebas empíricas que respaldan la necesidad de gestionar pedagógicamente la diversidad como un recurso estratégico en la educación. Se concluye que una enseñanza inclusiva y consciente de la diversidad potencia la sinergia entre conocimientos técnicos y competencias interculturales, mejorando la calidad educativa en ingeniería.

 

 

 

Implicaciones éticas de chatbots generativos en la educación superior

En la actualidad, la inteligencia artificial (IA) está cada vez más presente en nuestra vida diaria, transformando industrias y planteando nuevas preguntas sobre la sociedad, la economía y, por supuesto, la educación. Entre las herramientas de IA emergentes, los «chatbots» generativos como ChatGPT han llamado especialmente la atención, ya que prometen revolucionar la enseñanza y el aprendizaje. Estas potentes plataformas pueden simular conversaciones humanas, ofrecer explicaciones e incluso generar textos complejos como poemas o ensayos. Sin embargo, a medida que educadores y legisladores consideran la implementación de estas tecnologías innovadoras en el ámbito educativo, es crucial reflexionar sobre las implicaciones éticas que conllevan. Aunque los beneficios potenciales son innegables, desde una mayor accesibilidad hasta experiencias de aprendizaje personalizadas, también existen desafíos significativos.

En este artículo, exploramos las consideraciones éticas clave relacionadas con el uso de chatbots generativos en la educación superior. La información que se presenta a continuación se basa en el artículo «The ethical implications of using generative chatbots in higher education» de Ryan Thomas Williams, publicado en Frontiers in Education.

A continuación, se examinan las implicaciones éticas de integrar chatbots generativos, como ChatGPT, en la educación superior. Se abordan preocupaciones clave como la privacidad de los datos de los estudiantes y los desafíos para cumplir con las regulaciones de protección de datos cuando la información es procesada y almacenada por la IA. El artículo también explora el sesgo algorítmico y señala cómo los prejuicios inherentes a los datos de entrenamiento pueden perpetuar estereotipos, además de abordar el impacto en la autoeficacia de los estudiantes al depender excesivamente de la IA, lo que podría disminuir el pensamiento crítico. Por último, se aborda el creciente problema del plagio y las «alucinaciones» de la IA, donde los chatbots generan información incorrecta, y se sugiere la necesidad de políticas claras, detección avanzada y métodos de evaluación innovadores.

1. ¿Cuáles son las principales implicaciones éticas de integrar los chatbots generativos en la educación superior?

La integración de chatbots generativos en la educación superior, como ChatGPT, aborda varias cuestiones éticas fundamentales. En primer lugar, la gestión de los datos sensibles de los estudiantes plantea importantes desafíos de privacidad, por lo que es necesario cumplir estrictamente con las normativas de protección de datos, como el RGPD, lo cual puede ser complejo debido a la naturaleza de los algoritmos de aprendizaje automático que aprenden de los datos y complican su «verdadera» eliminación. En segundo lugar, existe un riesgo significativo de sesgo algorítmico, ya que los chatbots aprenden de vastas fuentes de datos de internet que pueden perpetuar sesgos sociales (por ejemplo, de género o raciales), lo que podría afectar negativamente a la experiencia de aprendizaje del estudiante y a su visión del mundo. En tercer lugar, si bien los chatbots pueden fomentar la autonomía en el aprendizaje al ofrecer acceso bajo demanda a recursos y explicaciones personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes, desincentivando el pensamiento crítico y la participación en actividades de aprendizaje más profundas. Finalmente, el plagio emerge como una preocupación primordial, ya que la capacidad de los chatbots para generar contenido sofisticado podría alentar a los estudiantes a presentar el trabajo generado por la IA como propio, lo que comprometería la integridad académica.

2. ¿Cómo afectan los chatbots generativos a la privacidad de los datos de los estudiantes en entornos educativos?

La implementación de chatbots en entornos educativos implica la recopilación, el análisis y el almacenamiento de grandes volúmenes de datos de los estudiantes, que pueden incluir desde su rendimiento académico hasta información personal sensible. Esta «gran cantidad de datos» permite experiencias de aprendizaje personalizadas y la identificación temprana de estudiantes en situación de riesgo. Sin embargo, esto genera importantes preocupaciones relacionadas con la privacidad. Existe el riesgo de uso indebido o acceso no autorizado a estos datos. Además, las regulaciones actuales de privacidad de datos, como el RGPD, permiten a los individuos solicitar la eliminación de sus datos, pero la naturaleza del aprendizaje automático significa que los algoritmos subyacentes ya han aprendido de los datos de entrada, por lo que es difícil aplicar un verdadero «derecho al olvido» o «eliminación». También hay una falta de transparencia algorítmica por parte de las empresas sobre la implementación de los algoritmos de los chatbots y sus bases de conocimiento, lo que dificulta el cumplimiento total de la ley de protección de datos, que exige que las personas estén informadas sobre el procesamiento de sus datos. Para mitigar estas preocupaciones, las instituciones educativas deben establecer directrices claras para la recopilación, almacenamiento y uso de datos, alineándose estrictamente con la normativa de protección de datos y garantizando la transparencia con todas las partes interesadas.

3. ¿Qué es el sesgo algorítmico en los chatbots educativos y cómo se puede abordar?

El sesgo algorítmico ocurre cuando los sistemas de IA, incluidos los chatbots, asimilan y reproducen los sesgos sociales presentes en los grandes conjuntos de datos con los que son entrenados. Esto puede manifestarse en forma de sesgos de género, raciales o de otro tipo que, si se reflejan en el contenido generado por la IA (como casos de estudio o escenarios), pueden perpetuar estereotipos y afectar a la experiencia de aprendizaje de los estudiantes. Para abordar esta situación, es fundamental que los conjuntos de datos utilizados para entrenar los sistemas de IA sean diversos y representativos, evitando fuentes de datos únicas o limitadas que no representen adecuadamente a grupos minoritarios. Se proponen asociaciones entre institutos educativos para compartir datos y garantizar su representatividad. Además, se deben realizar auditorías regulares de las respuestas del sistema de IA para identificar y corregir los sesgos. Es fundamental que se sea transparente sobre la existencia de estos sesgos y que se eduque a los estudiantes para que evalúen críticamente el contenido generado por la IA en lugar de aceptarlo como una verdad objetiva. El objetivo no es que la IA sea inherentemente sesgada, sino que los datos generados por humanos que la entrenan pueden contener sesgos, por lo que se requiere un enfoque deliberado y crítico para el desarrollo e implementación de la IA en la educación.

4. ¿Cómo impacta la dependencia de los estudiantes de los chatbots en su autoeficacia académica y su pensamiento crítico?

Si bien los chatbots pueden ofrecer una autonomía significativa en el aprendizaje al proporcionar acceso inmediato a recursos y respuestas personalizadas, existe la preocupación de que una dependencia excesiva pueda reducir la autoeficacia académica de los estudiantes. Esta dependencia puede llevar a los estudiantes a no comprometerse con el aprendizaje auténtico, lo que les disuade de participar en seminarios, lecturas recomendadas o discusiones colaborativas. A diferencia de las tecnologías informáticas tradicionales, la IA intenta reproducir habilidades cognitivas, lo que plantea nuevas implicaciones para la autoeficacia de los estudiantes con la IA. Además, la naturaleza en tiempo real de las interacciones con el chatbot puede fomentar respuestas rápidas y reactivas en lugar de una consideración reflexiva y profunda, lo que limita el desarrollo del pensamiento crítico. Las tecnologías de chatbot suelen promover formas de comunicación breves y condensadas, lo que puede restringir la profundidad de la discusión y las habilidades de pensamiento crítico que se cultivan mejor a través de una instrucción más guiada e interactiva, como las discusiones entre compañeros y los proyectos colaborativos. Por lo tanto, es crucial equilibrar la autonomía que ofrecen los chatbots con la orientación y supervisión de educadores humanos para fomentar un aprendizaje holístico.

5. ¿Cuál es la preocupación principal con respecto al plagio en la era de los chatbots generativos y qué soluciones se proponen?

El plagio se ha convertido en una preocupación ética crítica debido a la integración de herramientas de IA como ChatGPT en la educación. La capacidad de los chatbots para generar respuestas textuales sofisticadas, resolver problemas complejos y redactar ensayos completos crea un entorno propicio para la deshonestidad académica, ya que los estudiantes pueden presentar la producción de la IA como propia. Esto es especialmente problemático en sistemas educativos que priorizan los resultados (calificaciones, cualificaciones) sobre el proceso de aprendizaje. Los estudiantes pueden incurrir incluso en plagio no intencional si utilizan chatbots para tareas administrativas o para mejorar su escritura en inglés sin comprender completamente las implicaciones. Para abordar esta situación, es necesario un enfoque integral que incluya educar a los estudiantes sobre la importancia de la honestidad académica y las consecuencias del plagio. También se propone desplegar software avanzado de detección de plagio capaz de identificar texto generado por IA, aunque se reconoce que estas metodologías deben evolucionar continuamente para mantenerse al día con los avances de la IA. Más allá de la detección, es esencial reevaluar las estrategias de evaluación y diseñar tareas que evalúen la comprensión de los estudiantes y fomenten el pensamiento original, la creatividad y las habilidades que actualmente están más allá del alcance de la IA, como las presentaciones orales y los proyectos en grupo. También es crucial fomentar la transparencia sobre el uso de la IA en el aprendizaje, algo similar a lo que se hace con los correctores ortográficos.

6. ¿Qué se entiende por «alucinaciones» de la IA en los chatbots educativos y por qué son problemáticas?

Las «alucinaciones» de la IA se refieren a las respuestas generadas por modelos de lenguaje de IA que contienen información falsa o engañosa presentada como si fuera real. Este fenómeno ganó atención generalizada con la llegada de los grandes modelos de lenguaje (LLM), como ChatGPT, donde los usuarios notaron que los chatbots insertaban frecuentemente falsedades aleatorias en sus respuestas. Si bien el término «alucinación» ha sido criticado por su naturaleza antropomórfica, el problema subyacente es la falta de precisión y fidelidad a fuentes de conocimiento externas. Las alucinaciones pueden surgir de discrepancias en grandes conjuntos de datos, errores de entrenamiento o secuencias sesgadas. Para los estudiantes, esto puede llevar al desarrollo de conceptos erróneos, lo que afecta a su comprensión de conceptos clave y a su confianza en la IA como herramienta educativa fiable. Para los educadores, el uso de contenido generado por IA como recurso en el aula plantea un desafío ético significativo, ya que son los responsables de garantizar la precisión de la información presentada. Los estudios han descubierto que un porcentaje considerable de referencias generadas por chatbots son falsas o inexactas. Si bien la IA puede reducir la carga de trabajo de los docentes, la supervisión humana sigue siendo esencial para evitar imprecisiones, lo que puede crear una carga administrativa adicional.

7. ¿Cómo pueden las instituciones educativas equilibrar los beneficios de los chatbots con sus riesgos éticos?

Para conseguirlo, las instituciones educativas deben adoptar un enfoque reflexivo y multifacético. Esto implica establecer límites éticos firmes para proteger los intereses de los estudiantes, los educadores y la comunidad educativa en general. Se recomienda implementar políticas claras y sólidas de recopilación, almacenamiento y uso de datos, alineándose estrictamente con regulaciones de protección de datos como el RGPD, a pesar de los desafíos relacionados con la eliminación de datos y la transparencia algorítmica. Para mitigar el sesgo algorítmico, las instituciones deben garantizar que los conjuntos de datos de entrenamiento sean diversos y representativos, y realizar auditorías regulares. Para evitar una dependencia excesiva y mantener la autoeficacia académica de los estudiantes, los educadores deben fomentar la autonomía en el aprendizaje sin comprometer el pensamiento crítico ni el compromiso auténtico. Con respecto al plagio, es fundamental educar a los estudiantes sobre la integridad académica, utilizar software avanzado de detección de plagio y reevaluar los métodos de evaluación para fomentar el pensamiento original y las habilidades que la IA no puede replicar. Por último, es crucial que se conciencie a la sociedad sobre las «alucinaciones» de la IA, para lo cual los educadores deben verificar la exactitud de la información generada por la IA y reconocer su naturaleza evolutiva, comparándola con los primeros días de Wikipedia. Es una responsabilidad colectiva de todas las partes interesadas garantizar que la IA se utilice de una manera que respete la privacidad, minimice el sesgo, apoye la autonomía equilibrada del aprendizaje y mantenga el papel vital de los maestros humanos.

8. ¿Qué papel juega la transparencia en el uso ético de los chatbots de IA en la educación?

La transparencia es un pilar fundamental para el uso ético de los chatbots de IA en la educación, ya que aborda varias de las preocupaciones éticas clave. En el ámbito de la privacidad de los datos, es esencial que los usuarios estén informados sobre las prácticas de gestión de datos para aliviar sus preocupaciones y generar confianza en los chatbots adoptados. Esto incluye informar a los usuarios sobre cómo se recopilan, almacenan y utilizan sus datos. Con respecto al sesgo algorítmico, la transparencia significa reconocer que los chatbots pueden mostrar sesgos ocasionalmente debido a los datos de entrenamiento subyacentes. Se debe alentar a los estudiantes a evaluar críticamente la producción de los chatbots, en lugar de aceptarla como una verdad objetiva, teniendo en cuenta que el sesgo no es inherente a la IA, sino a los datos generados por humanos con los que se entrena. En la prevención del plagio, la transparencia en la educación es vital para el uso responsable de las herramientas de IA; los estudiantes deben ser conscientes de que deben reconocer la ayuda recibida de la IA, de la misma manera en que se acepta la ayuda de herramientas como los correctores ortográficos. Además, para las «alucinaciones» de la IA, es importante que los educadores y los estudiantes sean conscientes de la posibilidad de que los chatbots generen información falsa o engañosa, lo que requiere un escrutinio humano continuo para su verificación. En general, la transparencia fomenta la alfabetización digital y la conciencia crítica, y empodera a los usuarios para navegar por el panorama de la IA de manera más efectiva.

Referencia:

WILLIAMS, R. T. (2024). The ethical implications of using generative chatbots in higher education. In Frontiers in Education (Vol. 8, p. 1331607). Frontiers Media SA.

Glosario de términos clave

  • Inteligencia artificial (IA): La capacidad de un sistema informático para imitar funciones cognitivas humanas como el aprendizaje y la resolución de problemas (Microsoft, 2023). En el contexto del estudio, se refiere a sistemas que pueden realizar tareas que normalmente requieren inteligencia humana.
  • Chatbots generativos: Programas de IA capaces de simular conversaciones humanas y generar respuestas creativas y nuevas, como poemas, historias o ensayos, utilizando Procesamiento del Lenguaje Natural (PLN) y vastos conjuntos de datos.
  • Procesamiento del lenguaje natural (PLN): Un subcampo de la IA que permite a las máquinas entender, responder y generar lenguaje humano. Es fundamental para la funcionalidad de los chatbots avanzados.
  • Aprendizaje automático (ML): Un subconjunto de la IA que permite a los sistemas aprender de los datos sin ser programados explícitamente. Los chatbots modernos utilizan ML para mejorar sus respuestas a lo largo del tiempo.
  • Privacidad de datos: La protección de la información personal de los individuos, asegurando que se recopile, almacene y utilice de forma ética y legal. En el contexto educativo, se refiere a la información sensible de los estudiantes.
  • Reglamento general de protección de datos (GDPR): Una ley de la Unión Europea sobre protección de datos y privacidad en el Área Económica Europea y el Reino Unido. Es relevante para la gestión de datos sensibles de estudiantes.
  • Ley de protección de la privacidad en línea de los niños (COPPA): Una ley de Estados Unidos que impone ciertos requisitos a los operadores de sitios web o servicios en línea dirigidos a niños menores de 13 años.
  • Derecho al olvido: El derecho de un individuo a que su información personal sea eliminada de los registros de una organización, un concepto que se complica con la naturaleza del aprendizaje de los algoritmos de IA.
  • Transparencia algorítmica: La capacidad de entender cómo funcionan los algoritmos de IA y cómo toman decisiones, incluyendo el acceso a los detalles de su implementación y bases de conocimiento.
  • Big Data: Conjuntos de datos tan grandes y complejos que los métodos tradicionales de procesamiento de datos no son adecuados. En los chatbots, se utilizan para personalizar experiencias.
  • Sesgo algorítmico: Ocurre cuando los sistemas de IA asimilan y reproducen sesgos sociales presentes en los datos con los que fueron entrenados, lo que puede llevar a resultados injustos o estereotipados.
  • Autoeficacia académica: La creencia de un estudiante en su capacidad para tener éxito en sus tareas académicas. El estudio explora cómo una dependencia excesiva de la IA podría impactarla negativamente.
  • Autoeficacia en IA: La confianza de un individuo en su capacidad para usar y adaptarse a las tecnologías de inteligencia artificial. Distinto de la autoeficacia informática tradicional debido a las capacidades cognitivas de la IA.
  • Plagio: La práctica de tomar el trabajo o las ideas de otra persona y presentarlas como propias, sin la debida atribución. Se convierte en una preocupación crítica con la capacidad de los chatbots para generar texto.
  • Software de detección de plagio: Herramientas diseñadas para identificar instancias de plagio comparando un texto con una base de datos de otros textos. La evolución de la IA plantea desafíos para su eficacia.
  • Alucinación de IA: Una respuesta generada por un modelo de lenguaje de IA que contiene información falsa, inexacta o engañosa, presentada como si fuera un hecho.
  • Modelos de lenguaje grandes (LLMs): Modelos de IA muy grandes que han sido entrenados con inmensas cantidades de texto para comprender, generar y responder al lenguaje humano de manera sofisticada. ChatGPT es un ejemplo de LLM.
  • Integridad académica: El compromiso con la honestidad, la confianza, la justicia, el respeto y la responsabilidad en el aprendizaje, la enseñanza y la investigación. Es fundamental para el entorno educativo y está amenazada por el plagio asistido por IA.

Os dejo este artículo, pues está en acceso abierto:

Descargar (PDF, 358KB)

¿Cómo formar a los arquitectos del futuro? Un modelo innovador desde la educación técnica

La transformación digital y la industrialización de la construcción están generando una demanda creciente de profesionales altamente cualificados. Tanto la arquitectura, como la ingeniería civil, requieren un cambio profundo en la forma de formar a los futuros profesionales.

En este contexto, un grupo de investigadores de la Hunan University of Science and Engineering (China) y de la Universitat Politècnica de València (España) propone un nuevo modelo formativo que conecta mejor la educación superior con las necesidades reales del sector.

El artículo examina la necesidad de modernizar la educación en arquitectura y sugiere un modelo innovador para formar a los profesionales del futuro. Este modelo busca conectar la educación superior con las demandas reales de la industria de la construcción, caracterizada por la digitalización y la industrialización. La metodología empleada incluye análisis de datos, modelos matemáticos y la integración de la teoría con la práctica profesional. El objetivo principal es preparar arquitectos con competencias sólidas en construcción industrializada y tecnología digital, adaptados a las exigencias del mercado laboral contemporáneo.

Introducción: el desafío de modernizar la educación en arquitectura

El sector de la construcción está experimentando una transformación profunda impulsada por la digitalización, la automatización y la necesidad de soluciones sostenibles. Sin embargo, los sistemas educativos técnicos no siempre han sabido adaptarse a estas exigencias. En todo el mundo, los modelos educativos tradicionales en arquitectura muestran una desconexión creciente con la realidad del mercado laboral, especialmente en áreas como la prefabricación, el diseño colaborativo con BIM o el uso de tecnologías inteligentes.

El artículo revisado se enmarca en este contexto, tomando como referencia el caso chino, pero con ideas extrapolables a otras regiones. El objetivo principal es diseñar un sistema de formación profesional que responda de forma más efectiva a los retos de la construcción industrializada, incorporando criterios técnicos, sociales y pedagógicos.

Metodología: combinar datos, teoría y práctica

El estudio emplea una metodología cuantitativa que incluye:

  • Análisis de datos nacionales e internacionales sobre educación y empleo en el sector de la construcción.
  • Modelos matemáticos de predicción, como regresiones polinómicas y simulaciones con MATLAB.
  • Aplicación del modelo de evaluación educativa de Levin, ajustado mediante métodos de entropía para ponderar factores como calidad docente, entorno familiar, habilidades cognitivas y recursos institucionales.

A partir de estos datos, se diseñó un modelo de formación por etapas —llamado «optimización innovadora de múltiples módulos»— que articula mejor el aprendizaje teórico con la práctica profesional en empresas.

Aportaciones relevantes: una formación más adaptada al mercado

El artículo presenta un nuevo marco para la formación de profesionales de la arquitectura más alineado con las necesidades del sector. Sus aportaciones clave son las siguientes:

  • Propuesta de un modelo formativo escalonado, adaptable al ritmo del alumnado y al contexto institucional.
  • Inclusión de criterios de evaluación integral: desde la calidad académica hasta factores personales y sociales.
  • Análisis detallado de las políticas públicas chinas como base para la propuesta, con énfasis en la colaboración universidad-empresa.
  • Validación de la propuesta mediante simulaciones y estudios de casos reales.

Este enfoque integrador permite preparar a profesionales técnicos con competencias sólidas en construcción industrializada, tecnología digital y gestión de obra.

Discusión de resultados: mejoras observables y retos pendientes

Los resultados del estudio muestran mejoras concretas en la motivación del alumnado, su adecuación a los puestos de trabajo y su capacidad de adaptación a entornos reales. Se observa un aumento del interés por la profesión y una mejora de la empleabilidad, especialmente en sectores vinculados con tecnologías emergentes.

No obstante, el artículo reconoce desafíos importantes, como la falta de infraestructura adecuada para la formación práctica, la escasez de docentes con experiencia en obra y las dificultades para establecer colaboraciones estables con empresas.

Futuras líneas de investigación: ampliar, adaptar, evaluar

A partir del modelo propuesto, el artículo sugiere explorar:

  • Aplicación del sistema en otros países con necesidades similares de actualización en formación técnica.
  • Seguimiento longitudinal de las trayectorias laborales del alumnado.
  • Incorporación de inteligencia artificial y plataformas digitales para personalizar la enseñanza.
  • Extensión del modelo a otras ramas de la ingeniería civil, como estructuras o transporte.

Conclusión

El artículo revisado propone una reforma de la educación técnica en arquitectura con una propuesta estructurada, ambiciosa y bien fundamentada. Su valor radica en integrar múltiples factores en un solo modelo formativo con una base matemática sólida y una clara vocación práctica. En un momento en que el sector de la construcción necesita perfiles técnicos con nuevas competencias, investigaciones como esta ofrecen herramientas útiles para transformar la manera en que formamos a los futuros talentos.

Referencia:

ZHOU, Z.; TIAN, Q.; ALCALÁ, J.; YEPES, V. (2025). Research on the coupling of talent cultivation and reform practice of higher education in architecture. Computers and Education Open, 9:100268. DOI:10.1016/j.caeo.2025.100268.

Este artículo está publicado en abierto, por lo que os lo dejo para su descarga.

Descargar (PDF, 9.19MB)

Glosario de términos clave

  • BIM (Building Information Modeling): Metodología de trabajo colaborativa para la creación y gestión de un proyecto de construcción. Su objetivo es centralizar toda la información del proyecto en un modelo digital.
  • Construcción industrializada: Proceso constructivo que implica la fabricación de componentes o módulos en un entorno de fábrica, bajo condiciones controladas, para luego ser ensamblados en el lugar de la obra.
  • Digitalización: Proceso de convertir información y procesos de formatos analógicos a digitales, aplicando tecnologías que permiten la automatización y mejora de la eficiencia.
  • Entropía (en evaluación educativa): Concepto utilizado en el estudio para ponderar y ajustar la importancia de diferentes factores de evaluación (calidad docente, entorno familiar, habilidades cognitivas, recursos institucionales) dentro del modelo de Levin.
  • Gestión de obra: Disciplina que abarca la planificación, organización, dirección y control de los recursos para llevar a cabo un proyecto de construcción de manera eficiente y dentro de los plazos y presupuestos establecidos.
  • MATLAB: Entorno de programación y plataforma numérica utilizada para realizar cálculos matemáticos, análisis de datos, desarrollo de algoritmos y modelado de sistemas, empleada en el estudio para simulaciones.
  • Modelo de evaluación educativa de Levin: Un marco teórico o práctico para valorar la calidad y eficacia de un sistema educativo, que en el estudio es ajustado con métodos de entropía para una ponderación más precisa de sus factores.
  • Modelos matemáticos de predicción: Herramientas que utilizan ecuaciones y algoritmos para prever comportamientos futuros o resultados basándose en datos históricos o actuales, como las regresiones polinómicas.
  • Optimización innovadora de múltiples módulos: Nombre del modelo formativo propuesto en el artículo, diseñado por etapas para integrar el aprendizaje teórico con la práctica profesional y adaptarse a diferentes contextos.
  • Prefabricación: Técnica constructiva que consiste en producir elementos o componentes de un edificio en un lugar distinto al de la obra, generalmente en una fábrica, para luego transportarlos e instalarlos en el sitio.
  • Regresiones polinómicas: Un tipo de análisis de regresión en el que la relación entre la variable independiente y la variable dependiente se modela como un polinomio de n-ésimo grado, utilizado para predicción en el estudio.
  • Sostenibilidad (en construcción): Enfoque que busca minimizar el impacto ambiental de las edificaciones a lo largo de su ciclo de vida, optimizando el uso de recursos, reduciendo residuos y promoviendo la eficiencia energética y el bienestar humano.
  • Transformación digital: El cambio integral que experimenta una organización o sector al integrar tecnologías digitales en todos los aspectos de sus operaciones, cultura y estrategias, lo que lleva a la creación de nuevos modelos de negocio y servicios.

 

La experiencia profesional en la ingeniería y la arquitectura. La necesidad de un cambio en la valoración del profesorado universitario

En España, las Escuelas de Ingeniería Superior y Arquitectura ofrecen títulos universitarios habilitantes para ejercer profesiones reguladas en sectores fundamentales como la arquitectura, la medicina y la ingeniería. Este modelo formativo no solo tiene como objetivo proporcionar una sólida base teórica, sino también formar profesionales competentes para afrontar los retos del mundo laboral. Las Escuelas de Ingenieros de Caminos, Canales y Puertos ejemplifican la estrecha vinculación entre la docencia y la práctica profesional, siendo históricamente referentes gracias a sus catedráticos, quienes han combinado la labor académica con la ejecución de importantes proyectos de infraestructura.

Historia y vínculo con la práctica profesional

Desde sus inicios —como la Escuela de Ingenieros de Caminos de Madrid, fundada en 1802— estas instituciones han contado con profesores de reconocido prestigio internacional que han liderado y gestionado obras de gran envergadura (puentes, presas y puertos, entre otras). La experiencia directa acumulada en el campo aporta un valor añadido incalculable, ya que permite a los egresados no solo dominar la teoría, sino también comprender y aplicar soluciones reales a los desafíos técnicos y constructivos. La integración de la práctica profesional en la enseñanza resalta la inseparabilidad entre ciencia y técnica, base imprescindible para la formación completa del ingeniero.

Limitaciones del modelo universitario actual

El sistema universitario vigente ha privilegiado el desarrollo de la carrera investigadora y académica, orientando a estudiantes brillantes hacia el doctorado, contratos predoctorales, estancias de investigación y la promoción en el escalafón universitario. Si bien este enfoque es fundamental para el avance científico, en el ámbito de la ingeniería ha llevado a descuidar la incorporación de conocimientos derivados de la experiencia práctica de alto nivel. En las últimas décadas, se ha reducido drásticamente la presencia de profesores con una sólida trayectoria profesional en la dirección de grandes obras, lo que genera una desconexión entre el conocimiento teórico y las habilidades prácticas necesarias en el ejercicio profesional.

La figura del profesor asociado

Se ha sugerido que la figura del profesor asociado podría compensar la carencia de profesionales con experiencia práctica en el claustro universitario. No obstante, este modelo presenta áreas de mejora, ya que dichos profesionales, aunque compaginan la actividad práctica con la docencia, tienen contratos que impiden desarrollar, a largo plazo, una carrera académica estable y sólida. Esta situación limita su participación en procesos de investigación y en la toma de decisiones estratégicas a largo plazo, mermando la transferencia directa de conocimientos prácticos a las nuevas generaciones.

La necesidad de integrar la experiencia profesional en la academia

La ausencia de expertos con amplia experiencia en grandes proyectos de ingeniería repercute directamente en la formación de los estudiantes, quienes terminan sus estudios con un conocimiento teórico destacado, pero con habilidades y experiencia práctica mejorables para su incorporación en el mercado laboral. Esta limitación dificulta la transición profesional, pues las empresas y organismos demandan ingenieros capaces de aplicar sus conocimientos en la ejecución y gestión de obras complejas. Ante esta situación, resulta imperativo revisar los criterios de evaluación del profesorado universitario, de manera que la Agencia Nacional de Evaluación de la Calidad y Acreditación (ANECA) reconozca y valore especialmente la experiencia profesional de calidad al evaluar a este tipo de docentes.

Propuesta para la integración de profesionales en el ámbito universitario

Para solventar la brecha entre la formación teórica y la práctica profesional, se plantea la necesidad de crear nuevas vías de incorporación de profesionales con amplia experiencia en el ejercicio de la ingeniería al ámbito académico. Estas nuevas estructuras permitirían a dichos profesionales desarrollar una carrera académica paralela, estable y digna, sin renunciar a su actividad práctica. Resulta fundamental que esta reforma venga acompañada de una modificación en los criterios de evaluación de las instituciones, integrando los méritos derivados de la experiencia profesional junto a la excelencia investigadora. Modelos internacionales —como los desarrollados en Alemania, Canadá y Suiza— demuestran que es factible conciliar la actividad profesional y académica de manera efectiva, facilitando una mayor transferencia de conocimientos prácticos a los estudiantes y mejorando la conexión entre la formación y las necesidades del mercado laboral.

Conclusión y propuesta de acción

España no puede seguir anclada en un modelo educativo que excluya a aquellos profesionales que cuentan con la experiencia práctica necesaria para enriquecer la formación de los ingenieros. Es urgente la realización de una reforma que integre la experiencia profesional en la valoración del profesorado universitario, garantizando así una educación completa que responda a las exigencias del siglo XXI. En este sentido, se debería revisar en profundidad los criterios de evaluación del profesorado en la docencia de las profesiones reguladas y alcanzar un acuerdo que permita la incorporación efectiva de profesionales con trayectoria en la docencia y la investigación.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Docencia e inteligencia artificial: nuevas estrategias para educadores

La educación está experimentando una transformación sin precedentes gracias a los avances en inteligencia artificial (IA). La integración de la IA en el ámbito educativo ha traído consigo oportunidades y desafíos que requieren una adaptación rápida por parte de los docentes y los sistemas de enseñanza.

Esta revolución tecnológica ha dado lugar a la automatización de tareas administrativas, la personalización del aprendizaje, la optimización de evaluaciones y el desarrollo de nuevas metodologías de enseñanza que mejoran la eficiencia del aula. Sin embargo, su implementación también genera preocupaciones relacionadas con la equidad, la privacidad de los datos y la ética en la educación.

Este informe explora en profundidad cómo los docentes pueden aprovechar la IA para mejorar sus prácticas pedagógicas y hacer frente a los desafíos emergentes. Se proporcionarán ejemplos detallados, herramientas específicas y estrategias que permitirán a los educadores integrar esta tecnología de manera efectiva y responsable en sus aulas.

1. Inteligencia artificial generativa y su aplicación en la docencia

1.1. Definición y características

La inteligencia artificial generativa es una rama avanzada de la IA que emplea redes neuronales profundas para crear contenido original en formato de texto, imágenes, audio y vídeo. Este tipo de IA puede proporcionar respuestas personalizadas y adaptadas a distintos contextos de aprendizaje, lo que la convierte en una herramienta muy útil en el ámbito educativo.

Algunos ejemplos notables de IA generativa son ChatGPT, que puede generar respuestas detalladas en múltiples idiomas; DALL-E, que crea imágenes a partir de descripciones textuales, y Bard AI, que ofrece información en tiempo real a partir de consultas específicas.

El uso de estas herramientas en la docencia permite mejorar la interacción con los estudiantes, proporcionar materiales personalizados y fomentar un aprendizaje más dinámico. Además, la IA generativa puede ayudar en la corrección de textos, la generación de pruebas automatizadas y la creación de contenidos visuales para reforzar los conceptos enseñados en el aula.

1.2. Aplicaciones en el aula

Las aplicaciones de la inteligencia artificial (IA) generativa en la enseñanza son diversas y pueden utilizarse en diferentes áreas del conocimiento. Entre las más destacadas se encuentran:

  • Creación de material didáctico: la IA permite generar rápidamente presentaciones, resúmenes y documentos de apoyo para los estudiantes. Herramientas como Canva AI o Tome AI facilitan la producción de diapositivas atractivas con contenido relevante.
  • Automatización de respuestas: los docentes pueden utilizar chatbots educativos como PersonalChat para responder de manera inmediata a las dudas recurrentes de los estudiantes.
  • Evaluaciones y retroalimentación: plataformas como Gradescope permiten corregir exámenes de manera automatizada, lo que reduce la carga de trabajo de los docentes y asegura una evaluación más objetiva.
  • Generación de contenido multimedia: con herramientas como Runway AI y Pictory, los docentes pueden crear vídeos educativos personalizados y mejorar la experiencia de aprendizaje.

Un ejemplo concreto de su aplicación es el uso de ChatGPT en universidades para ayudar a los estudiantes en la redacción de ensayos, proporcionando estructuras sugeridas y correcciones gramaticales detalladas. Esto no solo mejora la calidad de los trabajos académicos, sino que también fomenta la autonomía y la autoevaluación de los estudiantes.

2. Personalización del aprendizaje y evaluación con IA

2.1. Aprendizaje adaptativo

Uno de los mayores beneficios de la inteligencia artificial (IA) en la educación es su capacidad para personalizar el aprendizaje en función del nivel y el ritmo de cada estudiante. Gracias al análisis de datos, los algoritmos de IA pueden identificar fortalezas y debilidades de los alumnos y ajustar los contenidos educativos en tiempo real para optimizar su rendimiento académico.

Algunas plataformas que utilizan este enfoque son:

  • Khan Academy con IA ofrece ejercicios personalizados según el nivel de conocimiento del estudiante.
  • Duolingo AI: adapta la dificultad de los ejercicios de idiomas en función del progreso del usuario.
  • Carnegie Learning ofrece tutorías de matemáticas con IA, que adaptan las preguntas al rendimiento del estudiante.

Este enfoque permite que los estudiantes reciban una educación más centrada en sus necesidades individuales, lo que reduce las brechas de aprendizaje y mejora la retención del conocimiento.

2.2. Evaluación automatizada

Otro aspecto crucial de la IA en la educación es la optimización del proceso de evaluación. Tradicionalmente, corregir exámenes y tareas supone un gran esfuerzo para los docentes. Gracias a herramientas como Gradescope y ZipGrade, ahora es posible evaluar pruebas de manera instantánea, proporcionar retroalimentación detallada y reducir el margen de error.

Además de la corrección automatizada, la IA puede utilizarse para analizar el rendimiento de los estudiantes a lo largo del tiempo y predecir posibles dificultades académicas. Por ejemplo, la plataforma Edsight AI recopila datos sobre las respuestas de los alumnos y genera informes personalizados con recomendaciones para mejorar su rendimiento.

A pesar de sus ventajas, la evaluación automatizada debe complementarse con métodos tradicionales para garantizar una comprensión profunda de los conceptos por parte de los estudiantes y evitar depender exclusivamente de algoritmos para medir los conocimientos.

3. Desafíos y consideraciones éticas

3.1. Sesgo en los algoritmos

Uno de los principales desafíos de la IA en la educación es la presencia de sesgos en los modelos de aprendizaje. Dado que las IA se entrenan con grandes volúmenes de datos históricos, pueden reflejar prejuicios existentes en la sociedad, lo que podría afectar negativamente a la equidad de la enseñanza.

Para minimizar estos riesgos, es fundamental que los docentes supervisen el contenido generado por IA y utilicen diversas fuentes para contrastar la información. Además, se recomienda fomentar el pensamiento crítico entre los estudiantes para que evalúen la veracidad y la imparcialidad de los datos proporcionados por estos sistemas.

3.2. Privacidad y seguridad de datos

El uso de la IA en la educación implica la recopilación y el análisis de grandes volúmenes de datos sobre los estudiantes. Para proteger su privacidad, es crucial que las instituciones educativas implementen regulaciones estrictas sobre el almacenamiento y uso de la información personal.

Algunas estrategias recomendadas son:

  • Utilización de plataformas con altos estándares de seguridad, como Microsoft Copilot y Google AI Education.
  • Concienciar sobre la importancia de la privacidad y enseñar a los estudiantes a gestionar sus datos de forma segura en entornos digitales.
  • Cumplimiento de normativas de protección de datos, como el Reglamento General de Protección de Datos (RGPD) en Europa.

Conclusiones

La inteligencia artificial está revolucionando la educación, ya que ofrece nuevas posibilidades para mejorar la enseñanza y el aprendizaje. Sin embargo, su implementación debe realizarse de manera responsable, garantizando el papel central del docente y promoviendo el uso ético de la tecnología.

Para maximizar sus beneficios, es esencial que los educadores se mantengan actualizados sobre las últimas tendencias en IA y adopten herramientas que complementen sus metodologías de enseñanza. La combinación de innovación tecnológica con estrategias pedagógicas efectivas transformará la educación y preparará a los estudiantes para los desafíos del futuro.

Os dejo un documento de la Universidad de Burgos que profundiza en el tema. Espero que os resulte de interés.

Descargar (PDF, 10.69MB)

Innovación en la enseñanza de la ingeniería: uso de la nomografía y software abierto para la representación gráfica de ecuaciones

Acaban de publicar nuestro artículo en la revista Plos One, del primer cuartil del JCR. El artículo presenta una propuesta innovadora para la enseñanza de la ingeniería mediante la aplicación de la nomografía, una técnica matemática que se utiliza para representar gráficamente ecuaciones complejas. Su principal contribución es la introducción del software Nomogen, una herramienta basada en Python que permite generar nomogramas de tres variables de manera rápida y precisa, sin necesidad de manipular determinantes ni realizar dibujos manuales.

El estudio también demuestra la viabilidad de la nomografía como recurso didáctico en la enseñanza de la ingeniería, ya que facilita la interpretación de ecuaciones multivariables y reduce los errores en cálculos repetitivos. A través de una metodología experimental aplicada a estudiantes de ingeniería de diferentes niveles, los autores confirman que existe un renovado interés en el uso de nomogramas en entornos educativos, puesto que destacan su utilidad como complemento a los métodos digitales convencionales.

Los resultados del estudio revelan que, aunque el 78,4 % de los estudiantes encuestados nunca habían utilizado nomogramas, el 86,5 % reconoció su capacidad para interpretar fenómenos con múltiples variables de manera clara. Esta percepción constituye un argumento sólido a favor de la integración de la nomografía en los programas de ingeniería.

El uso del software Nomogen permitió superar las limitaciones tradicionales de la nomografía, ya que elimina la complejidad matemática inherente a su construcción manual. La posibilidad de generar gráficos precisos y adaptables a diferentes contextos hace que la herramienta sea accesible para estudiantes y docentes.

El análisis de las respuestas de la encuesta también reveló diferencias en la valoración de los nomogramas según el nivel formativo de los estudiantes. Los estudiantes en etapas avanzadas de sus estudios mostraron una mayor valoración de su utilidad en cuanto a la comprensión de fenómenos con múltiples variables.

El estudio abre diversas oportunidades de desarrollo futuro en los campos de la ingeniería y la educación. Algunas áreas que podrían explorarse son:

  1. Ampliación del uso de nomogramas en otras disciplinas: Evaluar su aplicabilidad en áreas como la mecánica de suelos, hidráulica y estructuras, donde la representación gráfica de ecuaciones puede simplificar análisis complejos.
  2. Integración de inteligencia artificial: Incorporar algoritmos de aprendizaje automático para optimizar la generación de nomogramas y mejorar su precisión en función de patrones detectados en bases de datos de ingeniería.
  3. Desarrollo de herramientas interactivas: Explorar la posibilidad de crear versiones digitales interactivas de los nomogramas, que permitan una manipulación dinámica de las variables en tiempo real.
  4. Evaluación longitudinal de su impacto educativo: Realizar estudios a largo plazo para analizar la retención del conocimiento y la eficacia del aprendizaje cuando se incorporan nomogramas en la enseñanza de la ingeniería.
  5. Comparación con otros métodos gráficos: Investigar la efectividad de la nomografía frente a otras técnicas de visualización de datos, como los diagramas de contorno o los gráficos tridimensionales en programas informáticos especializados.

Este artículo representa un avance significativo en la enseñanza de la ingeniería, rescatando una herramienta histórica y adaptándola a las nuevas tecnologías con el objetivo de mejorar la comprensión y aplicación de conceptos matemáticos complejos.

Referencia:

BLIGHT, T.; MARTÍNEZ-PAGÁN, P.; ROSCHIER, L.; BOULET, D.; YEPES-BELLVER, L.; YEPES, V. (2025). Innovative approach of nomography application into an engineering educational context. Plos One, 20(2): e0315426. DOI:10.1371/journal.pone.0315426

Como se ha publicado de forma abierta, os dejo el artículo completo a continuación. Espero que sea de interés para vosotros.

Descargar (PDF, 3.93MB)

Aprendizaje supervisado en ingeniería civil

En un artículo anterior hablamos del aprendizaje no supervisado aplicado a la ingeniería civil. La otra rama del aprendizaje automático (machine learning) es el aprendizaje supervisado. Se trata de un enfoque que utiliza conjuntos de datos de entrada y sus correspondientes respuestas para entrenar modelos capaces de realizar predicciones sobre datos nuevos. Este método es particularmente útil en contextos donde se dispone de información previa sobre la variable que se desea predecir, lo que permite establecer relaciones y patrones en los datos.

El aprendizaje supervisado emerge como una herramienta muy poderosa en el campo de la ingeniería civil, ya que facilita la toma de decisiones y la optimización de procesos mediante el análisis de datos. Este enfoque se basa en el uso de algoritmos que aprenden a partir de un conjunto de datos etiquetados, lo que les permite realizar predicciones sobre nuevos datos. A continuación, se presentan algunas aplicaciones y beneficios del aprendizaje supervisado en este campo.

Técnicas de aprendizaje supervisado

Las técnicas de aprendizaje supervisado se dividen en dos categorías principales: clasificación y regresión. La clasificación se centra en predecir respuestas discretas, es decir, en asignar una etiqueta a un conjunto de datos. Por ejemplo, en el ámbito del correo electrónico, se puede clasificar un mensaje como genuino o spam. Este tipo de modelos se aplica en diversas áreas, como la imagenología médica, donde se pueden clasificar tumores en diferentes categorías de tamaño, o en el reconocimiento de voz, donde se identifican comandos específicos. La clasificación se basa en la capacidad de los modelos para categorizar datos en grupos definidos, lo que resulta esencial en aplicaciones como la evaluación crediticia, donde se determina la solvencia de una persona.

Por el contrario, la regresión se ocupa de predecir respuestas continuas, lo que implica estimar valores en un rango numérico. Por ejemplo, se puede utilizar la regresión para prever cambios en la temperatura o fluctuaciones en la demanda eléctrica. Este enfoque es aplicable en contextos como la previsión de precios de acciones, donde se busca anticipar el comportamiento del mercado, o en el reconocimiento de escritura a mano, donde se traduce la entrada manual en texto digital. La elección entre clasificación y regresión depende de la naturaleza de los datos y de la pregunta específica que se desea responder.

Selección del algoritmo adecuado.

La selección de un algoritmo de aprendizaje automático es un proceso que requiere un enfoque metódico, ya que hay que encontrar el equilibrio entre diversas características de los algoritmos. Entre estas características se encuentran la velocidad de entrenamiento, el uso de memoria, la precisión predictiva en nuevos datos y la transparencia o interpretabilidad del modelo. La velocidad de entrenamiento se refiere al tiempo que un algoritmo necesita para aprender de los datos, mientras que el uso de memoria se relaciona con la cantidad de recursos computacionales que requiere. La precisión predictiva es crucial, ya que determina la capacidad del modelo para generalizar a datos no vistos. Por último, la interpretabilidad se refiere a la facilidad con la que se pueden entender las decisiones del modelo, lo que es especialmente relevante en aplicaciones donde la confianza en el modelo es esencial.

El uso de conjuntos de datos de entrenamiento más grandes generalmente permite que los modelos generalicen mejor en datos nuevos, lo que se traduce en una mayor precisión en las predicciones. Sin embargo, la selección del algoritmo también puede depender del contexto específico y de las características de los datos disponibles.

Clasificación binaria y multicategoría

Al abordar un problema de clasificación, es fundamental determinar si se trata de un problema binario o multicategórico. En un problema de clasificación binaria, cada instancia se clasifica en una de las dos clases, como ocurre cuando se identifica la autenticidad de los correos electrónicos o su clasificación como spam. Este tipo de clasificación es más sencillo y, por lo general, se puede resolver con algoritmos diseñados específicamente para este propósito. En contraste, un problema de clasificación multicategórica implica más de dos clases, como clasificar imágenes de animales en perros, gatos u otros. Los problemas multicategóricos suelen ser más complejos, ya que requieren modelos más sofisticados que puedan manejar la diversidad de clases y sus interacciones.

Es importante señalar que algunos algoritmos, como la regresión logística, están diseñados específicamente para problemas de clasificación binaria y tienden a ser más eficientes durante el entrenamiento. Sin embargo, existen técnicas que permiten adaptar algoritmos de clasificación binaria para abordar problemas multicategóricos, lo que amplía su aplicabilidad.

Algoritmos de clasificación comunes

Existen diversos varios algoritmos de clasificación ampliamente utilizados en el campo del aprendizaje supervisado.

  • La regresión logística es uno de los métodos más comunes, ya que permite predecir la probabilidad de que una respuesta binaria pertenezca a una de las dos clases. Este algoritmo es valorado por su simplicidad y se emplea frecuentemente como punto de partida en problemas de clasificación binaria. Su capacidad para ofrecer una interpretación clara de los resultados lo convierte en una herramienta muy valiosa en diversas aplicaciones.
  • El algoritmo k-vecinos más cercanos (kNN) clasifica objetos basándose en las clases de sus vecinos más cercanos, utilizando métricas de distancia como la euclidiana o la de Manhattan. Este enfoque es intuitivo y fácil de implementar, aunque puede resultar costoso en términos de cálculo en conjuntos de datos grandes.
  • El soporte vectorial (SVM) es otro algoritmo destacado que clasifica datos al encontrar un límite de decisión lineal que separe las clases. En situaciones en las que los datos no son linealmente separables, se puede aplicar una transformación de kernel para facilitar la clasificación. Este método es especialmente útil en contextos de alta dimensionalidad, donde la complejidad de los datos puede dificultar la clasificación.
  • Las redes neuronales, inspiradas en la estructura del cerebro humano, son útiles para modelar sistemas altamente no lineales. Estas redes se entrenan ajustando las conexiones entre neuronas, lo que permite que el modelo aprenda patrones complejos en los datos. Aunque su interpretación puede ser más complicada, su capacidad para capturar relaciones no lineales las hace valiosas en diversas aplicaciones.
  • El clasificador Naïve Bayes se basa en la suposición de que la presencia de una característica en una clase no depende de la presencia de otras características. Este enfoque permite clasificar nuevos datos en función de la probabilidad máxima de pertenencia a una clase, lo que resulta útil en contextos en los que se requiere una clasificación rápida y eficiente.
  • El análisis discriminante clasifica los datos mediante combinaciones lineales de características, asumiendo que los diferentes conjuntos de datos tienen distribuciones gaussianas. Este método es apreciado por su simplicidad y facilidad de interpretación.
  • Los árboles de decisión permiten predecir respuestas basándose en decisiones tomadas en un árbol estructurado, donde cada rama representa una condición de decisión. Este enfoque es intuitivo y fácil de interpretar, por lo que es una opción popular en diversas aplicaciones.

Algoritmos de regresión comunes

Los algoritmos de regresión son esenciales para predecir valores continuos.

  • La regresión lineal es una técnica que describe una variable de respuesta continua como una función lineal de una o más variables predictoras. Este modelo es fácil de interpretar y se utiliza frecuentemente como referencia para modelos más complejos. Su simplicidad y eficacia en contextos lineales lo convierten en una opción inicial para el análisis de datos.
  • La regresión no lineal se utiliza cuando los datos presentan tendencias no lineales significativas. Este enfoque permite modelar relaciones más complejas que no pueden ser capturadas por modelos lineales, lo que resulta útil en contextos donde las variables interactúan de manera no lineal.
  • El modelo de regresión de procesos gaussianos es un enfoque no paramétrico que se utiliza para predecir valores continuos y es común en el análisis espacial. Este método es especialmente valioso en contextos donde se requiere interpolación y se trabaja con datos que presentan incertidumbre.
  • La regresión SVM, similar a su contraparte de clasificación, busca un modelo que se desvíe de los datos medidos en la menor cantidad posible. Este enfoque es útil en contextos de alta dimensionalidad, donde se espera que haya un gran número de variables predictoras.
  • El modelo lineal generalizado se utiliza cuando las variables de respuesta tienen distribuciones no normales, lo que permite abordar una variedad de situaciones en las que no se cumplen los supuestos de la regresión lineal.
  • Los árboles de regresión son una adaptación de los árboles de decisión que permiten predecir respuestas continuas, por lo que son útiles en contextos donde se requiere una interpretación clara y rápida.

Mejora de modelos

La mejora de un modelo implica aumentar su precisión y capacidad predictiva, así como prevenir el sobreajuste, que ocurre cuando un modelo se ajusta demasiado a los datos de entrenamiento y pierde capacidad de generalización. Este proceso incluye la ingeniería de características, que abarca la selección y transformación de variables, y la optimización de hiperparámetros, que busca identificar el conjunto de parámetros que mejor se ajustan al modelo.

  • La selección de características es un aspecto crítico en el aprendizaje supervisado, especialmente en conjuntos de datos de alta dimensión. Este proceso permite identificar las variables más relevantes para la predicción, lo que no solo mejora la precisión del modelo, sino que también reduce el tiempo de entrenamiento y la complejidad del mismo. Entre las técnicas de selección de características se encuentran la regresión por pasos, que implica agregar o eliminar características de manera secuencial, y la regularización, que utiliza estimadores de reducción para eliminar características redundantes.
  • La transformación de características es otra estrategia importante que busca mejorar la representación de los datos. Técnicas como el análisis de componentes principales (PCA) permiten realizar transformaciones lineales en los datos, que capturan la mayor parte de la varianza en un número reducido de componentes. Esto resulta útil en contextos donde se trabaja con datos de alta dimensionalidad, ya que facilita la visualización y el análisis.
  • La optimización de hiperparámetros es un proceso iterativo que busca encontrar los valores óptimos para los parámetros del modelo. Este proceso puede llevarse a cabo mediante métodos como la optimización bayesiana, la búsqueda en cuadrícula y la optimización basada en gradientes. Un modelo bien ajustado puede superar a un modelo complejo que no ha sido optimizado adecuadamente, lo que subraya la importancia de este proceso en el desarrollo de modelos efectivos.

Aplicaciones del aprendizaje supervisado en ingeniería civil

  • Predicción de fallos estructurales: los modelos de aprendizaje supervisado se utilizan para predecir fallos en estructuras como puentes y edificios. Al analizar datos históricos de inspecciones y condiciones ambientales, es posible identificar patrones que indiquen un posible fallo estructural. Esto permite a los ingenieros realizar mantenimientos preventivos y mejorar la seguridad de las infraestructuras.
  • Optimización de recursos en construcción: en la planificación de proyectos, el aprendizaje supervisado optimiza el uso de recursos como, por ejemplo, materiales y mano de obra. Al predecir la demanda de recursos en función de variables como el clima y la evolución del proyecto, es posible reducir costes y mejorar la eficiencia.
  • Análisis de riesgos: los modelos de aprendizaje supervisado son útiles para evaluar riesgos en proyectos de ingeniería civil. Al analizar datos sobre desastres naturales, como inundaciones y terremotos, se pueden identificar zonas vulnerables y desarrollar estrategias de mitigación eficaces.
  • Control de infraestructuras: la incorporación de sensores en infraestructuras permite la recolección de datos en tiempo real. Los algoritmos de aprendizaje supervisado pueden analizar estos datos para detectar anomalías y prever el mantenimiento necesario, lo que contribuye a la sostenibilidad y durabilidad de las estructuras.

Por tanto, el aprendizaje supervisado se está consolidando como una herramienta esencial en ingeniería civil, ya que ofrece soluciones innovadoras para predecir, optimizar y controlar infraestructuras. Su capacidad para analizar grandes volúmenes de datos y ofrecer información valiosa está transformando la forma en que se gestionan los proyectos en este ámbito.

Os dejo un mapa mental acerca del aprendizaje supervisado.

También os dejo unos vídeos al respecto. Espero que os sean de interés.

Referencias

  1. Garcia, J., Villavicencio, G., Altimiras, F., Crawford, B., Soto, R., Minatogawa, V., Franco, M., Martínez-Muñoz, D., & Yepes, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction142, 104532.
  2. Kaveh, A. (2024). Applications of artificial neural networks and machine learning in civil engineering. Studies in computational intelligence1168, 472.
  3. Khallaf, R., & Khallaf, M. (2021). Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in construction129, 103760.
  4. Mostofi, F., & Toğan, V. (2023). A data-driven recommendation system for construction safety risk assessment. Journal of Construction Engineering and Management149(12), 04023139.
  5. Naderpour, H., Mirrashid, M., & Parsa, P. (2021). Failure mode prediction of reinforced concrete columns using machine learning methods. Engineering Structures248, 113263.
  6. Reich, Y. (1997). Machine learning techniques for civil engineering problems. Computer‐Aided Civil and Infrastructure Engineering12(4), 295-310.
  7. Thai, H. T. (2022). Machine learning for structural engineering: A state-of-the-art review. In Structures (Vol. 38, pp. 448-491). Elsevier.

Descargar (PDF, 1.52MB)

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería

El artículo presenta un análisis exhaustivo sobre la integración de la realidad aumentada en la enseñanza superior de las ingenierías y de las ciencias de la Tierra. Una de las contribuciones más significativas es la propuesta de una metodología estructurada, denominada SEBAS, que guía la incorporación de esta tecnología enriquecedora en el aula. Esta metodología no solo proporciona un marco claro para el desarrollo de actividades educativas, sino que también fomenta un enfoque activo y participativo en el aprendizaje. La investigación destaca cómo esta tecnología puede transformar la enseñanza tradicional, ya que facilita la visualización de conceptos complejos y abstractos, lo que resulta en una experiencia de aprendizaje más interactiva y efectiva.

Además, el estudio resalta la importancia de la formación docente en el uso de tecnologías emergentes, lo que puede mejorar la calidad de la enseñanza y la preparación del alumnado para afrontar los desafíos del mundo profesional. La inclusión de la realidad aumentada en el currículo de ingeniería civil no solo enriquece el proceso educativo, sino que también responde a las necesidades de una generación de nativos digitales que demanda métodos de enseñanza más dinámicos.

Los resultados de la investigación indican que los estudiantes recibieron positivamente la implantación de esta tecnología en su formación. Se observó un aumento en la comprensión de los contenidos teóricos y una mejora en la motivación y el compromiso con el aprendizaje. La encuesta realizada a los participantes mostró que la mayoría considera que la realidad aumentada es un complemento valioso para las actividades prácticas y teóricas, lo que sugiere que esta herramienta puede ser un recurso eficaz para abordar las limitaciones de la educación tradicional.

Estos hallazgos tienen implicaciones significativas para la práctica profesional en ingeniería civil. La capacidad de visualizar y manipular modelos tridimensionales permite a los futuros profesionales desarrollar habilidades críticas esenciales para su campo. Además, la investigación recomienda que esta tecnología puede utilizarse para simular situaciones reales en el entorno laboral, lo que prepara a los futuros ingenieros para enfrentar desafíos prácticos de manera más efectiva. Este enfoque no solo mejora la formación académica, sino que también aumenta la empleabilidad de los graduados.

A partir de los resultados del artículo, se pueden identificar varias áreas de estudio que merecen una exploración más a fondo. Una posible línea de investigación podría centrarse en evaluar a largo plazo el impacto de la realidad aumentada en el rendimiento y la retención del conocimiento del alumnado de ingeniería civil. Esto permitiría determinar la efectividad de esta tecnología en diferentes contextos educativos y su capacidad para adaptarse a diversas metodologías de enseñanza.

Otra área de interés podría ser el desarrollo de recursos digitales específicos que complementen la enseñanza de otras disciplinas dentro de la ingeniería, como la ingeniería estructural o la ingeniería ambiental. La creación de aplicaciones que aborden temas específicos podría enriquecer aún más el aprendizaje y proporcionar herramientas prácticas a los estudiantes.

Finalmente, se sugiere investigar la percepción y aceptación de la realidad aumentada entre el profesorado, así como su disposición para integrar estas tecnologías en su práctica docente. Comprender las barreras y facilitadores en la adopción de esta herramienta por parte de los docentes puede resultar clave para su implementación exitosa en el aula.

La investigación sobre la realidad aumentada en la enseñanza superior de ingeniería civil ofrece perspectivas valiosas para mejorar el proceso de enseñanza-aprendizaje. La metodología SEBAS y los resultados positivos en la percepción del alumnado ponen de manifiesto el potencial de esta tecnología como herramienta educativa. Las futuras investigaciones en este campo pueden contribuir significativamente al avance del conocimiento y la práctica en esta disciplina, promoviendo una educación más interactiva y adaptada a las necesidades del entorno profesional actual.

Referencia:

DONAIRE-MARDONES, S.; BARRAZA ALONSO, R.; MARTÍNEZ-PAGÁN, P.; YEPES-BELLVER, L.; YEPES, V.; MARTÍNEZ-SEGURA, M.A. (2024). Innovación educativa con realidad aumentada: perspectivas en la educación superior en ingeniería. En libro de actas: X Congreso de Innovación Educativa y Docencia en Red. Valencia, 11 – 12 de julio de 2024. Doi: https://doi.org/10.4995/INRED2024.2024.18365

A continuación, os dejo el artículo completo, pues se encuentra en acceso libre.

Descargar (PDF, 1.53MB)


Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Aprendizaje no supervisado en la ingeniería civil

El aprendizaje no supervisado es una rama del aprendizaje automático (Machine Learning) que se centra en analizar y estructurar datos sin etiquetas ni categorías predefinidas. A diferencia del aprendizaje supervisado, en el que los modelos se entrenan con datos etiquetados, en el aprendizaje no supervisado los algoritmos deben identificar de manera autónoma patrones, relaciones o estructuras ocultas dentro de los datos. Se trata de una herramienta poderosa para explorar y entender datos complejos sin la necesidad de etiquetas predefinidas, descubriendo patrones y estructuras ocultas que pueden ser de gran valor en diversas aplicaciones prácticas.

El aprendizaje no supervisado permite analizar datos sin un objetivo definido o sin conocimiento previo de su estructura. Este enfoque es ideal para explorar patrones latentes y reducir la dimensionalidad de grandes conjuntos de datos, lo que facilita una mejor comprensión de su estructura. Además, al no depender de etiquetas previamente asignadas, permite adaptarse de manera flexible a diversos tipos de datos, incluidos aquellos cuya estructura subyacente no es evidente. Esta característica lo hace especialmente valioso en ámbitos como la exploración científica y el análisis de datos de mercado, donde los datos pueden ser abundantes, pero carecer de categorías predefinidas.

A pesar de sus ventajas, el aprendizaje no supervisado plantea desafíos como la interpretación de los resultados, ya que sin etiquetas predefinidas puede ser difícil evaluar la precisión de los modelos. Además, la elección del número óptimo de grupos o la validación de las reglas de asociación descubiertas puede requerir la intervención de expertos y métodos adicionales de validación.

El aprendizaje no supervisado incluye diversas técnicas que permiten analizar y extraer patrones de grandes conjuntos de datos sin necesidad de etiquetas. Una de las principales técnicas es el agrupamiento (clustering), que busca dividir los datos en grupos basados en similitudes inherentes. Existen dos tipos de algoritmos de agrupamiento: el agrupamiento duro, que asigna un dato a un único grupo, y el agrupamiento suave, que permite que un dato pertenezca a varios grupos con diferentes grados de pertenencia. Técnicas como k-means y k-medoids se utilizan mucho en este contexto. Mientras que k-means busca minimizar la distancia entre los datos y los centros de los grupos, k-medoids es más robusto frente a valores atípicos y adecuado para datos categóricos. Por otro lado, el agrupamiento jerárquico genera un dendrograma que permite explorar relaciones jerárquicas en los datos. Los mapas autoorganizados, que emplean redes neuronales, se utilizan para reducir la dimensionalidad de los datos sin perder su estructura y facilitar su interpretación en campos como la bioinformática y la economía.

En situaciones donde los datos tienen relaciones difusas, el agrupamiento suave, como el fuzzy c-means, asigna grados de pertenencia a cada dato, lo que resulta útil en áreas como la biomedicina. Los modelos de mezcla gaussiana, que utilizan distribuciones normales multivariadas, también se aplican a problemas complejos como la segmentación de mercado o la detección de anomalías. Además, el aprendizaje no supervisado incluye técnicas de asociación que buscan descubrir relaciones entre variables en grandes bases de datos, como el análisis de la cesta de la compra, donde se identifican productos que suelen comprarse juntos. También se utilizan técnicas de reducción de la dimensionalidad, que simplifican los datos de alta dimensionalidad sin perder mucha variabilidad. El análisis de componentes principales (PCA) es una técnica común en este ámbito, ya que transforma los datos en combinaciones lineales que facilitan su visualización y análisis, especialmente en casos de datos ruidosos, como los procedentes de sensores industriales o dispositivos médicos. Otras técnicas, como el análisis factorial y la factorización matricial no negativa, también se utilizan para reducir la complejidad de los datos y hacerlos más manejables, y son útiles en áreas como la bioinformática, el procesamiento de imágenes y el análisis de textos.

El aprendizaje no supervisado tiene diversas aplicaciones, como el análisis de clientes, que permite identificar segmentos con características o comportamientos similares, lo que optimiza las estrategias de marketing y la personalización de los servicios. También se utiliza en la detección de anomalías, ya que ayuda a identificar datos atípicos que pueden indicar fraudes, fallos en los sistemas o comportamientos inusuales en áreas industriales y financieras; en este campo, el análisis factorial revela dinámicas compartidas entre sectores económicos, lo que mejora la predicción de tendencias de mercado. En el procesamiento de imágenes, facilita tareas como la segmentación, que consiste en agrupar píxeles con características similares para identificar objetos o regiones dentro de una imagen. Además, en el análisis de textos, técnicas como la factorización matricial no negativa permiten descubrir temas latentes en grandes colecciones de documentos, mejorando los sistemas de recomendación y el análisis de sentimientos. En la investigación genómica, el clustering suave ha permitido identificar genes implicados en el desarrollo de enfermedades, lo que ha contribuido a avanzar en la medicina personalizada. Esta capacidad para analizar patrones complejos en datos biológicos ha acelerado el descubrimiento de biomarcadores y posibles dianas terapéuticas. Este enfoque también permite identificar correlaciones entre variables macroeconómicas que de otra manera podrían pasar desapercibidas. Por otro lado, el PCA se ha aplicado con éxito en la monitorización de sistemas industriales, ya que permite predecir fallos y reducir costes operativos mediante el análisis de variaciones en múltiples sensores. En el ámbito de la minería de textos, la factorización no negativa permite descubrir temas latentes, lo que mejora los sistemas de recomendación y análisis de sentimiento. Esto resulta particularmente valioso en aplicaciones de marketing digital, donde la segmentación precisa del contenido puede aumentar la eficacia de las campañas.

El aprendizaje no supervisado ha encontrado diversas aplicaciones en el ámbito de la ingeniería civil, ya que permite optimizar procesos y mejorar la toma de decisiones. A continuación, se destacan algunas de ellas:

  • Clasificación de suelos y materiales de construcción: Mediante técnicas de agrupación (clustering), es posible agrupar muestras de suelo o materiales de construcción según sus propiedades físicas y mecánicas. Esto facilita la selección adecuada de materiales para proyectos específicos y optimiza el diseño de cimentaciones y estructuras.
  • Análisis de patrones de tráfico: El aprendizaje automático permite identificar patrones en los flujos de tráfico, detectando comportamientos anómalos o recurrentes. Esta información es esencial para diseñar infraestructuras viales más eficientes y aplicar medidas de control de tráfico.
  • Monitorización de estructuras: Mediante la reducción dimensional y el análisis de datos procedentes de sensores instalados en puentes, edificios y otras infraestructuras, se pueden detectar anomalías o cambios en el comportamiento estructural. Esto contribuye a la prevención de fallos y al mantenimiento predictivo.
  • Optimización de rutas para maquinaria pesada: En proyectos de construcción a gran escala, el aprendizaje no supervisado ayuda a determinar las rutas más eficientes para la maquinaria, considerando factores como el terreno, el consumo de combustible y la seguridad, lo que se traduce en una mayor productividad y reducción de costes.
  • Segmentación de imágenes por satélite y aéreas: Las técnicas de aprendizaje no supervisado permiten clasificar y segmentar imágenes obtenidas de satélites o drones, identificando áreas urbanas, vegetación, cuerpos de agua y otros elementos. Esto es útil para la planificación urbana y la gestión de recursos naturales.
  • Análisis de datos de sensores en tiempo real: En la construcción de túneles y excavaciones, el análisis en tiempo real de datos de sensores puede realizarse mediante algoritmos no supervisados para detectar condiciones peligrosas, como deslizamientos de tierra o acumulación de gases, lo que mejora la seguridad en las obras.

En conclusión, el aprendizaje no supervisado es una herramienta versátil y potente para abordar problemas complejos y descubrir patrones ocultos en datos sin etiquetar. Su aplicación trasciende sectores, ya que ofrece soluciones prácticas para la investigación, la industria y el análisis de datos. En un mundo impulsado por el crecimiento exponencial de la información, el dominio de estas técnicas se presenta como una ventaja competitiva fundamental. La capacidad para analizar grandes volúmenes de datos y extraer información útil sigue siendo un motor clave de innovación y progreso.

Os dejo un mapa mental acerca del aprendizaje no supervisado.

Para profundizar en este tema, puedes consultar la siguiente conferencia:

Descargar (PDF, 1.18MB)

Referencia:

GARCÍA, J.; VILLAVICENCIO, G.; ALTIMIRAS, F.; CRAWFORD, B.; SOTO, R.; MINTATOGAWA, V.; FRANCO, M.; MARTÍNEZ-MUÑOZ, D.; YEPES, V. (2022). Machine learning techniques applied to construction: A hybrid bibliometric analysis of advances and future directions. Automation in Construction, 142:104532. DOI:10.1016/j.autcon.2022.104532

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.