Sustitución del terreno como técnica de mejora

Figura 1. Mototraílla excavando y transportando material.

La forma más directa de mejorar un terreno de mala calidad es sustituirlo. Sería el caso de suelos blandos, con baja capacidad portante, que presentan deformaciones diferidas importantes o incluso que provoquen roturas parciales en terraplenes. Aparentemente se trata de una solución sencilla en terrenos blandos, pero puede ser problemática desde el punto de vista medioambiental debido a la cantidad de trabajos de excavación y movimiento de tierras necesarios.

El proceso pasa por excavar y retirar el terreno original que presenta una capacidad portante baja, tales como rellenos antrópicos, tierra vegetal, arcillas y limos blandos, arcillas expansivas, suelos colapsables, etc. El material retirado se sustituye por la aportación de otro de mayor calidad que deberá ser compactado. Sin embargo, también es posible aportar terreno sin necesidad de retirarlo previamente cuando se construyen terraplenes, salvo la posible retirada del material que formará el cimiento del terraplén, si éste es inadecuado.

En otras ocasiones, se elimina parte del material y se sustituye por otro de menor peso para reducir parte de la sobrecarga. Es el caso del uso de geoespumas de bloques de poliestireno expandido que se han utilizado en la rehabilitación de infraestructuras y en la construcción de carreteras y terraplenes.

Figura 2. Uso de geoespuma de poliestireno expandido. https://www.epsindustry.org/other-applications/geofoam

Se trata de un método relativamente sencillo cuando la profundidad de excavación no supera el entorno de los 3-4 m y se encuentra por encima del nivel freático. En caso contrario, se debe eliminar con maquinaria adecuada, como puede ser una dragalina; después se rellena con escollera para alcanzar cierto grado de compacidad. Otra complicación puede aparecer cuando los suelos son excesivamente blandos, como las turbas, donde a la maquinaria se le dificulta su trabajo.

Las ventajas de este procedimiento es que es aplicable a cualquier tipo de terreno que sea excavable. Además, la mejora se alcanza en un corto periodo de tiempo en comparación con otras técnicas que supongan la consolidación, por ejemplo. Asimismo, la capacidad de carga y los asientos del terreno se pueden controlar fácilmente.

Os dejo a continuación un vídeo de una dragalina extrayendo material.

En este otro vídeo podemos ver la colocación de bloques de poliestireno expandido.

References:

CHU, J.; VARAKSIN, S.; KLOTZ, U.; MENGÉ, P. (2009). Construction Processes. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 3006-3135. IOS Press, doi:10.3233/978-1-60750-031-5-3006

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Compactación por resonancia de suelos

La compactación por resonancia de Muller (Muller Resonant Compaction, MRC) constituye un sistema de vibración profunda que se basa en el efecto de resonancia en las capas de suelo para incrementar la eficacia de la densificación (Figura 1). La amplificación del efecto de la vibración ocurre cuando la sonda vibrante y el suelo se encuentran en resonancia. En ese momento, la fricción entre las partículas del suelo se reduce temporalmente, lo que facilita su reorganización y densificación. El método se utiliza preferentemente en suelos granulares no saturados con un diámetro efectivo de sus partículas D10 (el 10% de las partículas son más finas que ese D10) aproximadamente igual a 0,03 mm. MRC no requiere agua para la penetración.

Figura 1. Compactación por resonancia (Massarsch et al, 2019)

Se utiliza una sonda de acero a la que se adjunta en su extremo superior un vibrador hidráulico de frecuencias de funcionamiento variables. La sonda se introduce en el suelo, ayudado por una guía, a frecuencia alta para reducir la resistencia. Cuando se alcanza la profundidad prevista, la frecuencia se ajusta a la frecuencia de resonancia. La frecuencia de resonancia depende de la masa dinámica y estática del vibrador, de la masa y las propiedades dinámicas de la sonda de compactación y de las condiciones del suelo. En la resonancia, que se produce típicamente entre 10 y 20 Hz, la energía de compactación requerida decrece. En esta fase de la compactación del suelo, la presión de aceite del vibrador disminuye, lo que reduce el consumo de combustible y el desgaste en el equipo vibratorio.

La sonda oscila en dirección vertical y la energía de la vibración se transmite al suelo circundante a lo largo de toda la superficie de la sonda. En la resonancia, la capa de suelo vibra “en fase” con la sonda de compactación. En este estado, la energía de vibración se transfiere muy eficientemente desde el vibrador a la sonda y al suelo circundante, ya que el movimiento relativo entre la sonda de compactación y el suelo es muy pequeño. Este aspecto es una ventaja importante, en comparación con los métodos convencionales de compactación vibratoria.

La sonda de compactación tiene un diseño patentado en forma de perfil de placas flexibles en forma de Y con aperturas (FLEXI-probe) (Figura 2). La reducción de la rigidez de la sonda incrementa la transferencia de energía al suelo circundante, lo que se consigue con aperturas circulares en el perfil. Además, estas aperturas también presentan la ventaja de reducir el peso y aumentar la amplitud de la vibración, en comparación con otras sondas vibrantes del mismo peso. La longitud de la sonda así como el tamaño de la abertura puede variar dependiendo de las condiciones del suelo. La frecuencia de resonancia es bastante complicada de predecir desde un punto de vista teórico. Sin embargo, es fácil de medir directamente en el terreno a través de técnicas de medición sísmica.

Figura 2. Perfil longitudinal y sección de una sonda de compactación por resonancia (Massarsch y Fellenius, 2017)

La respuesta dinámica del suelo durante la compactación puede utilizarse para vigilar el efecto de la compactación. Con el aumento de la densificación de las capas del suelo, la frecuencia de compactación por resonancia aumenta. También se incrementa la velocidad de vibración del suelo y se reduce su amortiguación. Con la ayuda de unos sensores de vibración colocados en la superficie del terreno, se puede determinar el cambio en la velocidad de propagación de las ondas, lo que refleja el cambio de la rigidez y el estado tensional del suelo.

La duración de la compactación depende de las propiedades del suelo y del grado de densificación que se desee alcanzar. El tratamiento suele llevarse a cabo en un patrón de cuadrícula, en dos o más pasadas. El espaciado de la cuadrícula oscila típicamente entre 3,50 y 4,50 m. Sin embargo, el método MRC puede tener un rendimiento demasiado optimista en lo que respecta a la eficacia en función de los costos. Se requiere una maquinaria pesada capaz de manejar el peso de la sonda y del vibrador, siendo el consumo total de energía es excesivo en comparación con otros métodos. La profundidad de la vibrocompactación se limita en su mayor parte a 30 m.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

MASSARCH, K.R., FELLENIUS, B.H. (2019). Evaluation of resonance compaction of sand fills based on cone penetration test. Proceedings of the Institution of Civil Engineers – Ground Improvement, https://doi.org/10.1680/jgrim.17.00004

MASSARCH, K.R., WERSÄLL, C., FELLENIUS, B.H. (2019). Liquefaction induced by deep vibratory compaction. Ground Improvement. Proceedings of the Institution of Civil Engineers – Ground Improvement, https://doi.org/10.1680/jgrim.19.00018

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Consolidación atmosférica de suelos

La consolidación por vacío o atmosférica es un sistema patentado por Menard (“Menard Vacuum“) que permite la consolidación y precarga de suelos saturados impermeables blandos y muy blandos como arcillas, limos, turbas, etc. (Figura 1). Es un procedimiento que se utiliza desde finales de los 80 en depuradoras, terraplenes, aeropuertos, centrales eléctricas, etc.

Figura 1. Vista de la consolidación por vacío de suelos. http://menard.com.mx/menard-vacuum%E2%84%A2

El sistema consiste en la instalación de una red de drenes horizontales y verticales bajo una membrana impermeable que permite, mediante bombeo al vacío del agua intersticial y del aire del terreno, un vacío en el terreno que equivale a una carga de 60 a 80 kPa (unos 3-4 m de arena). El agua se evacua por medio de zanjas perimetrales de confinamiento a las que se ancla la membrana. La profundidad del tratamiento se limita al espesor del depósito blando y la capacidad de la maquinaria, aunque los rangos habituales suelen ser de 10 a 35 m de profundidad, llegándose incluso a los 45 m. Los asientos residuales son poco significativos tras el tratamiento.

El vacío crea una consolidación isotrópica en un periodo de tiempo relativamente corto, con la ventaja de eliminar la precarga sobre suelos potencialmente inestables (Figura 2). La consolidación se consigue al aumentar la presión efectiva sin modificar la presión total en el suelo. Además, no se rebaja el nivel freático, pues se mantiene la saturación del terreno por medio de las zanjas perimetrales. Frente a la precarga, es un procedimiento más rápido y relativamente económico.

Otra ventaja de la precarga con vacío es que la consolidación ocurre únicamente en la superficie donde se aplica y en algunos casos el suelo se retrae horizontalmente, pero no se produce un desplazamiento horizontal del manto cuando se carga, por ejemplo, en los casos de precarga y drenes verticales.

Figura 2. Esquema de instalación del sistema de vacío (cortesía de Menard).

No obstante, el procedimiento no es efectivo si existen capas de arena profundas en el depósito blando. Si estas capas son más superficiales, se pueden aislar mediante, por ejemplo, muros pantalla. Tampoco funciona bien el sistema en áreas extensas, por lo que normalmente se subdivide la extensión en zonas más pequeñas, pero que deben aislarse con pantallas impermeables. El procedimiento requiere, además, un control cuidadoso para detectar pérdidas de vacío por escapes.

El tratamiento por vacío suele aplicarse durante 4-6 meses (tiempo menor a la precarga). Durante este tiempo no se pueden realizar actividades sobre el terreno para evitar perforar la membrana impermeable. Sí que se puede autorizar el paso de la maquinaria y el almacenamiento de materiales, así como trabajar en las zonas adyacentes.

Figura 3. Consolidación por vacío. https://ceteau.com/es/products/consolidaci%C3%B3n-por-vac%C3%ADo/

Os paso un vídeo de Menard sobre este procedimiento de consolidación atmosférica.

Este es otro vídeo donde veréis una animación del sistema.

Aquí os dejo un folleto de Menard sobre la consolidación atmosférica.

Descargar (PDF, 2.61MB)

Referencias:

LÓPEZ, N.P.; MENDOZA, M.J.; ESPINOSA, A.; OSSA, A. (2016). Sistemas de precarga con vacío para consolidación acelerada de suelos: membrana hermética o dren a dren. Memorias de la XXVIII Reunión Nacional de Ingeniería Geotécnica, SMIG (23-26 Noviembre 2016), Mérida, Yucatán, México.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mejora de terreno mediante Terra-Probe

El método Terra-Probe consiste en hundir y extraer un tubo de acero de unos 80 cm de diámetro de extremo abierto con vibraciones verticales inducidas por un vibrohincador externo (Figura 1). Este tubo es de 10 mm de espesor de chapa y su longitud debe superar entre 3 y 5 m la profundidad requerida de tratamiento.

Figura 1. Esquema del acoplamiento del vibrohincador al tubo de acero.

Las vibraciones verticales (de unos 15 Hz) permiten la hinca del tubo que, al llegar a la profundidad prevista, se eleva gradualmente, continuando la vibración y compactando el suelo tanto en el interior como alrededor del tubo. Se mantiene de 30 a 60 segundos vibrando antes de elevar en cada escalón. El área de influencia de la compactación es de aproximadamente 1 m respecto al tubo.

Esta técnica permite compactar suelos arenosos secos o saturados, pudiéndose alcanzar profundidades de unos 15 a 20 m. Sin embargo, no es eficiente en los primeros 4 m desde la superficie. Los puntos de vibrado se separan habitualmente 1,50 m, en un patrón triangular o rectangular, en función del tipo de suelo y la densificación requerida.

Las condiciones del suelo saturado son ideales para el éxito del método. En los sitios donde el nivel freático es profundo, se instalan lanzas de agua en el tubo para ayudar a la penetración y densificación del suelo. Esta técnica, no obstante, no es útil cuando el contenido de finos supera el 15% o cuando hay materia orgánica en cantidades de más del 5% en peso. También hay que considerar que si existen capas inferiores más blandas, pueden asentar con la vibración. Además, Terra-Probe no es útil cuando se trata de atravesar capas rígidas. Sí que es una técnica muy útil en localizaciones off-shore.

Figura 2. Esquema del sistema Terra-Probe

Terra-Probe es una técnica similar a la vibroflotación, pero es considerablemente más rápida, unas 4 veces más rápida. No obstante, es menos eficaz, pues se necesitan de 4 a 5 veces más puntos de compactación. La zona de influencia de la compactación y la profundidad es menor, así como la densidad relativa alcanzada. Una de las ventajas de Terra-Probe es que se puede utilizar un equipo habitual de pilotaje para realizar el trabajo.

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Columnas de módulo controlado

Las columnas de módulo controlado, también llamadas columnas de mortero de desplazamiento, consisten en una técnica de mejora del terreno mediante una red de inclusiones verticales semi-rígidas que, a diferencia de los pilotes, solo pretenden reducir el asiento total y diferencial del terreno, liberando solo una parte de las cargas transmitidas. Es una técnica desarrollada por Menard en 1994, y está bajo patente. Se trata, en definitiva, de reforzar el suelo con inclusiones de mortero u hormigón bombeable, que se comporta como un material compuesto poco compresible. Ello permite el uso de cimentación superficial en zonas donde usualmente se utilizan cimentaciones profundas. Se pueden instalar en terrenos tanto granulares como cohesivos, incluso en suelos con algo contenido orgánico o turba, pero es especialmente adecuado con cargas fuertes y requisitos de asientos estrictos.

Figura 1. Cabeza de barrena de desplazamiento para la ejecución de una columna de módulo controlado. http://www.pilotesyobras.com/tratamientos-suelos-columnas-mortero-desplazamiento.asp

La técnica se ejecuta en diámetros entre 250 y 500 mm y profundidades de unos 25 a 30 m, con producciones diarias superiores a los 250 metros lineales, pudiendo alcanzar valores de 400 a 500 m de columna por jornada de trabajo. Su coste es relativamente bajo al realizarse en diámetros pequeños frente a otras técnicas que consumen cantidades elevadas de grava. Presentan un elevado rendimiento, reduce las cuantías de hormigón y acero de la cimentación, reparte bien las cargas y limita los asientos, además, es una técnica respetuosa con el medio ambiente, pues no hay extracción de material y tampoco vibraciones.

La perforación se realiza con una barrena hueca que desplaza el terreno horizontalmente, sin vibraciones ni producción de desechos. La inyección del mortero u hormigón se realiza por el interior de la barrena, de abajo a arriba, con presiones moderadas (normalmente inferior a 0,5 MPa) y garantizando la continuidad del hormigonado. La resistencia del hormigón o del mortero es de al menos 15 MPa. El módulo de deformación del mortero es de 5 a 30 veces menor que el del hormigón.

En la Figura 2 se observan las fases del procedimiento constructivo. La barrena se atornilla en el suelo hasta la profundidad especificada y luego se sube sin extraer el material. Posteriormente se incorpora la lechada o mortero a través del taladro hueco. Cuando estas columnas soportan estructuras flexibles, como por ejemplo una solera, se termina con una capa granular de un espesor entre 40 y 80 cm. La capa de reparto también se puede estabilizar con cemento y, en el caso de cargas elevadas, pueden ser necesario espesores de hasta 3,00 m combinados con geomallas de refuerzo.

Figura 2. Fases del procedimiento constructivo de las columnas de módulo controlado (cortesía de Menard)

Os dejo varios vídeos de la técnica de columnas de módulo controlado de la empresa Menard.

A continuación os dejo un folleto explicativo de Menard sobre este sistema de mejora de terrenos.

Descargar (PDF, 6.43MB)

Referencias:

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistema de almacenamiento y calentamiento del ligante

Figura 1. Transporte calefactado del betún. Imagen: V. Yepes

El ligante se almacena en tanques provistos de serpentines de aceite para su calefacción. Suelen ser depósitos cilíndricos metálicos con aislante térmico de fibra de vidrio, con una capacidad que depende de la producción de la planta. Es habitual el uso de dos calderas para mantener en ellas el ligante a la temperatura requerida, o bien utilizar una para la recepción del ligante y otra para su calefacción. En ausencia de tanques, se pueden construir fosas de hormigón impermeabilizadas para evitar fugas; equipadas con serpentines para mantener a la temperatura. Además, la planta debería prever el uso de betún envasado en bidones como reserva para evitar el desabastecimiento.

 

Figura 2.- Tanque portátil

El sistema de calentamiento está compuesto por una caldera, una bomba centrífuga que hace recircular el aceite caliente, tuberías encamisadas, serpentines sumergidos en los depósitos del ligante, así como termómetros para el control. Todos los elementos disponen de aislamientos que evitan pérdidas de calor y ahorran energía. En algunos sistemas también se utilizan los gases de combustión como fluido caliente. En caso de usar los sistemas de calefacción por gases calientes de quemadores de combustible líquidos, la cámara de combustión, debe estar fuera del tanque o protegida con material refractario; siendo necesario un mejor control de la temperatura.

Figura 3.- Almacenamiento en silos del betún. Imagen: V. Yepes

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Secador de áridos en una planta asfáltica en caliente

Figura 1. Tambor secador. Imagen: V. Yepes

Las plantas asfálticas en caliente disponen de un tambor secador que seca los áridos y eleva su temperatura, hasta los 150 a 200ºC, para que en el mezclador queden perfectamente envueltos en el ligante. La elevación de la temperatura permite el secado (humedad < 1% en peso) y la eliminación del polvo de los áridos. El secador debe regularse para que la combustión sea completa y garantice la ausencia de humo negro en la chimenea. La eficacia de un secador depende del tipo de quemador, del sistema de alimentación, de la circulación y evacuación de áridos, del grado de humedad de los áridos, del diámetro y longitud del tambor, entre otros factores. Los rendimientos dependen en gran medida de la humedad de los áridos, donde el árido fino es el que más humedad retiene.

 

Figura 2. Secador y ciclón extractor de una instalación de fabricación de mezclas bituminosas

En las plantas discontinuas y en las continuas convencionales, el tambor secador consiste habitualmente en un cilindro metálico de gran diámetro y una longitud de 3 o 4 diámetros (hasta 2 m de diámetro y 15 m de longitud). Este tubo gira sobre su eje a una velocidad de 5 a 15 revoluciones por minuto. Los áridos entran a contracorriente: unas paletas arrastran los áridos hacia la llama y los gases calientes del quemador de fuel, que se encuentra en el extremo opuesto del cilindro (Figura 2). Un sistema de ciclones fuerza el aire para permitir la salida de vapor de agua. En las plantas de tambor secador-mezclador, el secado de los áridos se realiza junto con la mezcla. El diseño de tambores secadores mezcladores largos, con longitudes mayores a 5 diámetros, permite la extracción del calor de los gases de combustión hasta temperaturas de 12ºC por encima de la temperatura de la mezcla, evitando el deterioro del ligante.

Se aconseja que la temperatura de los áridos a la llegada del quemador no supere en más de 10ºC a la del ligante, y que el conjunto no sobrepase 15ºC de la máxima de envuelta del ligante, calculada de la viscosidad óptima de fabricación de la mezcla. Si no fuera así, existirá un deterioro en las características del betún debido a una brusca oxidación por choque térmico y una merma de las prestaciones de la mezcla.

Figura 3. Secador de áridos

Os dejo a continuación algún vídeo al respecto de este elemento.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

Especialista en tecnologías sin zanja

Os anuncio a continuación la VI edición anual del Curso de Postgrado: ESPECIALISTA EN TECNOLOGÍAS SIN ZANJA, que se desarrolla del 26 de octubre al 11 de noviembre de 2020 en la modalidad online, a través de la plataforma Microsoft Teams. Se trata un curso de 46 horas organizado por la Asociación Ibérica de Tecnología SIN Zanja (IbSTT).

Os adjunto el programa actualizado y el enlace para que puedan cumplimentar el boletín de inscripción, y la reserva de plaza: https://forms.gle/FyYRn9D8XmuENyj4A. Por cierto, podéis solicitar un “código de descuento de empresa asociada” del 10% si sois alumno mío o bien contacto, por ser miembro colaborador (dáis mi nombre al inscribiros y os harán el descuento).

También os paso, gratuitamente, la ponencia que imparto dentro del curso, que he colgado en Youtube, por si os resulta de interés. Se trata del Módulo 7-1: Aspectos generales: Peforación Horizontal Dirigida PHD.

Descargar (PDF, 399KB)

La limpieza mecánica de las playas

Figura 1. Ejemplo de máquina de limpieza de playas remolcada mediante tractor. Imagen: V. Yepes

Resulta difícil poner en tela de juicio la gran trascendencia social y económica que tiene el turismo para España, especialmente en situaciones de coyuntura económica y sanitaria tan complicadas como las actuales. Esta actividad se ha basado, fundamentalmente, en la explotación de su zona costera. La sociedad del ocio actual genera una presión de usos que, concentrada en los periodos estivales, genera impactos ambientales significativos. En particular, la arena de las playas y el espacio litoral son dos recursos naturales críticos para la pervivencia económica y medioambiental de las regiones costeras (Yepes y Medina, 2005). Ello justifica la necesidad de conciliar la funcionalidad de estos espacios, frecuentados de forma masiva en algunos lugares, con los problemas de conservación y estabilidad de la ribera del mar a corto y largo plazo.

El reconocimiento de la importancia de las playas se ha traducido en estrategias, tanto europeas como nacionales, dirigidas a aumentar la excelencia de estas áreas naturales mediante directivas que atienden a la calidad higiénica de la arena y del agua de baño, así como en la adopción de diferentes distintivos de calidad y normas internacionales con una clara orientación hacia el usuario (Yepes, 2005, 2007; Ariza et al., 2008a). Una derivación de todo lo anterior es que muchos procesos formales de gestión de playas se están poniendo en marcha todos los días (James, 2000).

Así, la limpieza de los arenales constituye una pieza fundamental para ofrecer unos espacios singulares en buenas condiciones higiénico-sanitarias para los usuarios, especialmente en aquellos municipios donde su uso es intensivo. De hecho, los estándares exigidos a las playas por el distintivo Bandera Azul y otras normativas (ISO, ICTE) suponen una garantía de calidad en este sector. Sin embargo, el uso masivo de medios mecanizados para la limpieza exhaustiva de las playas puede provocar impactos que implican tanto una reducción de los sedimentos como una alteración del equilibrio de la biodiversidad existente. Las playas urbanas encajadas de uso masivo (Yepes y Medina, 2007), o las playas semiurbanas con sistemas dunares (Roig, 2004) pueden ser ejemplos extremos donde las consecuencias de estos impactos pueden ser significativos, tal y como se verá a continuación.

El objeto del presente artículo, basado en Yepes y Cardona (2008, 2009) es establecer una serie de criterios o medidas correctoras que minimicen de algún modo los impactos producidos por la limpieza mecanizada de las playas, de forma que sean considerados en las distintas normas o manuales de calidad propios de los municipios costeros que gestionan sistemáticamente sus playas. Para ello, en primer lugar, se repasarán someramente los requisitos exigidos por algunos sistemas de gestión de playas; a continuación, se describirán brevemente las características principales de las máquinas de limpieza; posteriormente, se analizarán las consecuencias de una gestión inadecuada de este tipo de equipos y, por último, se establecerán ciertos criterios y recomendaciones que traten de minimizar dichos impactos.

Requisitos de limpieza de playas en los sistemas de gestión

Los instrumentos voluntarios de gestión de la calidad y del medio ambiente han contribuido a transformar positivamente la forma de entender las playas turísticas en muchas zonas de nuestro litoral (Yepes, 2007). En el ámbito del control y del aseguramiento de la calidad cobran especial importancia las normas que definen las características de un producto, un servicio o un proceso. Cuando el objeto de una norma es una playa, éstas se pueden clasificar en normas de producto o servicio, centradas en las características, especificaciones y atributos que debe cumplir una playa (Banderas Azules o del Sistema de Gestión del Uso Público de las Playas, desarrollado por el Instituto para la Calidad Turística Española –ICTE-), y en normas del sistema de gestión, que inciden en las especificaciones que deben cumplir las actividades que conforman los procesos (normas ISO 9000 en calidad e ISO 14000 en medio ambiente constituyen los referentes internacionales de gestión).

Tanto los requisitos de Banderas Azules como los del sistema del ICTE priman la satisfacción de los usuarios por encima de otro tipo de consideraciones. Es por ello que la limpieza de las playas, del agua del mar y de las instalaciones durante la temporada de baño constituye una condición de cumplimiento mínimo. Un municipio que pretenda ostentar alguno de estos distintivos en sus playas debe realizar labores de prevención con la dotación del número mínimo de papeleras que deberán ser vaciadas con la suficiente periodicidad, tareas regulares de limpieza de la arena y un control sistemático del agua de baño y de la arena que aseguren las buenas condiciones higiénico-sanitarias.

La norma del sistema del ICTE (ver Yepes, 2005), define las características de gestión y los requisitos internos aplicables a los procesos de limpieza de la superficie de la playa, de sus instalaciones y a la recogida selectiva de residuos. Se exige un equipo de trabajo, propio del Ayuntamiento o de un proveedor de servicios, que realice los servicios de limpieza, asegurándose que se respetan las instrucciones establecidas para alcanzar los niveles de calidad y servicio indicados en la norma. Uno de los aspectos novedosos de este documento consiste en la obligación de establecer un conjunto de indicadores, a partir de los cuales se hará un seguimiento del nivel de servicio ofrecido y del nivel de satisfacción percibido por el usuario.

La norma del ICTE obliga a establecer un Plan de Limpieza de la superficie seca y húmeda de la playa y del agua que incluya, al menos, los recursos humanos y materiales disponibles, la frecuencia del servicio, el horario de prestación, las rutinas de limpieza y de recogida de residuos naturales (si la legislación aplicable lo permite), las pautas de actuación frente a residuos peligrosos y la relación de gestores o vertederos autorizados. Durante la temporada de baño, la ejecución de este plan implicará la recogida de residuos de la superficie seca de la playa, la oxigenación de la arena y su reubicación en caso de necesidad y la retirada de residuos no naturales del agua. Fuera de la temporada de baño, al menos se deberá realizar la recogida de residuos de la superficie seca de la playa y la reubicación, cuando corresponda, de la arena. En la Tabla 1 se recoge un ejemplo típico de limpieza de una playa en función de la temporada de baño.

El Ente Gestor contemplará en el Plan de Limpieza las actividades que garanticen que se alcanzan los niveles de limpieza de la superficie seca requeridos tras la celebración de eventos especiales y otras situaciones no habituales. Durante la temporada de baño, la frecuencia mínima del servicio será diaria en la superficie seca, manteniéndose registros de las actividades de limpieza. Asimismo, el Ente Gestor supervisará el cumplimiento del plan de limpieza establecido, y en caso de producirse desviaciones tomará las acciones correctoras necesarias. Para garantizar este mecanismo de control, se elaborará y mantendrá un registro actualizado de las inspecciones realizadas, dedicando una especial atención al grado de cumplimiento de las rutinas de limpieza y a la comprobación de la eficacia del Plan de Limpieza.

La maquinaria empleada en la limpieza de las playas

El mercado ofrece equipos para la limpieza de playas que se basan en la succión y en el rastrillado o cribado. El primer método se emplea con playas de árido grueso, mientras que el segundo, más frecuente, se utiliza para las playas de arena fina. Existen equipos de distinta complejidad que penetran en la arena hasta profundidades típicas de 30 cm, realizando un intenso y continuo batido que permite el secado y la ventilación de la arena gracias a la acción del aire y los rayos ultravioletas. El material recogido atraviesa unas mallas cribadoras de diferentes calibres que separan los desperdicios para depositarlos en unas tolvas que se vacían hidráulicamente sobre un vehículo contenedor o en el lugar de vertido. Existen opciones que incorporan equipos de desinfección, para actuar contra hongos, bacterias y virus.

En el mercado se pueden encontrar distintos tamaños de máquinas que tratan de adaptarse a las dimensiones de cada playa. Existen modelos con anchos de trabajo típicos de 2,2 m y tolvas de hasta 2,5 m3, adecuados para playas largas y anchas. Estas dimensiones se reducen a valores de 1,2 m para el ancho de trabajo y 0,5 m3 cuando se trata de pequeñas calas y zonas de difícil acceso por presencia de toldos, sillas, etc. Para municipios pequeños, algunas firmas comerciales ofrecen equipos polivalentes capaces de operar como barredoras, mediante la sustitución del rulo de limpieza por cepillos, con el objetivo de aumentar la rentabilidad del equipo, en los meses de invierno. En la Figura 1 se recoge un ejemplo de máquina de limpieza remolcada mediante tractor.

Los requisitos funcionales deseables para la maquinaria de limpieza de playas podrían ser, entre otros, los siguientes (ver Yepes y Cardona, 2000):

  • Recoger residuos de cualquier tamaño y naturaleza.
  • Dejar la arena en el mismo lugar.
  • Capacidad para limpiar tanto la arena seca como húmeda.
  • Manejabilidad
  • Buen rendimiento con poco mantenimiento.

Es difícil encontrar una máquina lo suficientemente versátil para cumplir con todos los requisitos anteriores. Normalmente hay que alternar unidades de gran rendimiento –que suelen ser remolcadas por un tractor-, junto con pequeñas máquinas autopropulsadas capaces de realizar la limpieza en pequeños espacios, junto a las pasarelas, los bordes de los paseos marítimos, áreas de juego y otros. También resulta complicado compatibilizar su uso en la arena seca y húmeda. Los procedimientos de recogida de residuos incluyen desde cintas con resortes de aleación capaces de barrer superficialmente hasta técnicas de cribado por bandejas o mallas. Si bien con el primer método la recogida de arenas es mínima, la profundidad de limpieza está limitada. Utilizando el segundo, se recoge una gran cantidad de arenas y resulta inviable, en numerosas ocasiones, para la zona húmeda de la playa. En cualquier caso, se recomienda que la máquina tenga un recipiente de almacenamiento basculante, así como que el mantenimiento y las piezas de recambio sean accesibles.

En determinadas ocasiones resulta muy efectiva la remoción superficial de las arenas (unos 15 cm) a primera hora de la mañana con un rastrillo acoplado al tractor, pues la oxigenación, la desecación y la radiación solar de las arenas favorecen su desinfección, disminuye su compacidad y mejora el aspecto visual y la comodidad de la playa. Ahora bien, esta operación no puede sustituir, evidentemente, a la recogida de los residuos. Asimismo, es conveniente que cada playa disponga de maquinaria capaz de reubicar la arena que normalmente se almacena junto al pretil de los paseos marítimos. En la Tabla 2 se han recogido una serie de características básicas de la maquinaria de limpieza de las playas de arena, con algunas ventajas e inconvenientes.

Consecuencias de la limpieza mecánica de las playas

Roig (2004) argumenta que la limpieza mecanizada de las playas realizada de forma exhaustiva y sin aplicar criterios geomorfológicos y ambientales de gestión reduce la biodiversidad costera, altera los perfiles de playa y provoca una pérdida de sedimentos. En efecto (ver Figura 2), la reducción de la materia orgánica natural disminuye tanto el desarrollo de microorganismos y fauna intersticial como la cantidad de nutrientes necesarios para las comunidades vegetales (Llewellyn y Shackley, 1996; Gheskiere et al., 2006). Otros trabajos, como el de Malm et al. (2004) indican que si bien la limpieza mecánica reduce el contenido orgánico de la arena, mejorando la calidad del agua de baño y reduciendo la producción microbiana, no es significativo el efecto en la biodiversidad sobre la macrofauna. La retirada de plantones afecta negativamente a las dunas embrionarias, y por ende, a la estabilización natural del sedimento. La compactación de la arena cambia su rugosidad natural y elimina geomorfologías efímeras de playa (ripples y shadow tongues), acrecentando el ángulo de incidencia del viento y su erosión. En la zona húmeda de la playa (swash) aumenta la probabilidad de retirada de las arenas por su grado mayor de cohesión; al mismo tiempo, la compactación favorece la entrada del oleaje, incrementando los procesos erosivos. Asimismo, la limpieza mecanizada descalza el pie de talud de las dunas, con la consiguiente eliminación vegetal; ello facilita la acción directa de viento en su proceso erosivo.

Figura 2. Consecuencias de la limpieza mecánica de la playa sin criterios de gestión. Elaboración propia a partir de Roig (2004).

Sin embargo, a pesar de las evidencias aportadas por estos autores, las razones esgrimidas no suponen el grueso de las pérdidas de sedimentos originados por una mala gestión de la limpieza mecánica de las playas. En efecto, la limpieza diaria en zonas de uso intensivo y la eliminación periódica de residuos naturales acumulados (algas y restos de Posidonia oceanica) supone una retirada de arena involuntaria que se ha podido estimar (Yepes y Medina, 2007) en unos 500 m3 por kilómetro y año en playas no muy intensivas y con un sistema de gestión relativamente bien organizado; las pérdidas en playas sin un sistema de aseguramiento de la calidad de la limpieza pueden ser mucho mayores y derivar en extracciones encubiertas de arena para usos agrícolas y ganaderos, jardinería, etc. La Figura 3 muestra una acumulación en ecoparque de restos de Posidonia oceanica (obsérvese la gran cantidad de arena retirada involuntariamente). Una mala interpretación sobre las consecuencias de una mala gestión no puede derivar en la completa eliminación de la limpieza de las arenas por parte de los municipios. Este argumento se ha empleado demagógicamente por parte de algunos responsables municipales, los cuales, debido a la grave crisis económica actual, han decidido eliminar o reducir la limpieza de las playas por razones de índole medioambiental.

Ariza et al. (2008b) constatan deficiencias en la limpieza mecanizada de las playas catalanas, especialmente en la recogida de residuos de pequeño tamaño tales como colillas y en la excesiva retirada de arena. En su trabajo, estos autores recogen cifras proporcionadas por el Servei de Prevenció i Medi Ambient de una retirada de más de 163 toneladas de arena en la limpieza de las playas de Barcelona en la temporada de junio a septiembre de 2005. En algunos casos se retiraron, junto con los residuos, más de 50 kg de arena por hora de trabajo, suponiendo ésta un 80% en peso del total del material recogido. Por estas razones, se propone una revisión de las operaciones de la limpieza mecánica de las playas.

Figura 3. Posidonia acumulada durante los últimos 5 años en el ecoparque de Benissa. Se aprecia la gran cantidad de arena almacenada

Con el objeto de colaborar con los diversos municipios en la limpieza y mantenimiento de sus playas, desde el año 1996, la Generalitat Valenciana ha venido contemplando, dentro de su Plan de Turismo Litoral, la adquisición de máquinas de limpieza, las cuales son cedidas a las corporaciones locales e incluso a las diputaciones (ver Yepes y Cardona, 2000). La importancia que tiene la retirada de arena de la playa por parte de estos equipos aconsejó a la Conselleria de Turismo a establecer pruebas “in situ” que sirvieran en sus concursos de adquisición de estas máquinas para discriminar mediante criterios técnicos la idoneidad de cada una de ellas. En efecto, dicha Conselleria adquiere máquinas para luego cederlas a los ayuntamientos y así fomentar la limpieza y calidad de las playas de la Comunitat Valenciana. Los aspectos críticos a la hora de realizar dichas pruebas consisten en la determinación de los rendimientos en la limpieza, tanto en arena seca como húmeda, con obstáculos y sin ellos. A parte de evaluar la efectividad de la retirada de residuos con elementos normalizados (tacos de madera, canicas de vidrio, etc.), se mide la cantidad de arena retirada durante la limpieza (ver Figuras 4 y 5). Estas pruebas normalizadas se han realizado a través de la Universidad Politécnica de Valencia, asesorado por profesores de Procedimientos de Construcción y de Maquinaria y Medios Auxiliares del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil (ver Figuras 6 y 7). Conviene destacar que, en estas pruebas, la pericia del conductor de la máquina y su buen hacer influyen decisivamente en la calidad de la limpieza conseguida.

Figuras 4 y 5. Elementos normalizados y muestra de restos recogidos por una de las máquinas (arena incluida). Imágenes: V. Yepes
Figuras 6 y 7. Pruebas de rendimiento y limpieza realizada por la Conselleria de Turismo de la Generalitat Valenciana. Imágenes: V. Yepes

Los accesos de la maquinaria a la playa pueden empeorar la situación descrita. La conjunción del viento junto con un inadecuado diseño del paseo marítimo y de la trama urbana, pueden provocar la pérdida de sedimentos que, en algunos casos, puede ser tan importante como la limpieza directa de la playa. Finalmente, el volumen de arena que retira cada usuario de forma involuntaria (dependiendo de la granulometría, unos 20 gramos/bañista/salida) supone una pérdida del orden de 10 m3/km/año. En conjunto, las operaciones de limpieza pueden significar, en el caso de la inexistencia de aportes de sedimentos –playas encajadas, por ejemplo-, un retroceso medio sostenido a largo plazo de la línea de orilla del orden de 10 cm/año con un buen control de las operaciones de limpieza y mucho más sin control (ver Yepes y Medina, 2007). A corto plazo el efecto es imperceptible, pero a largo plazo las consecuencias son significativas.

Propuestas de mejora en la gestión de la limpieza mecánica

Todo lo anteriormente expuesto justifica el establecimiento de una serie de medidas correctoras en la gestión de la limpieza mecanizada que reduzca, en la medida de lo posible, los impactos realizados sobre los arenales. Estas propuestas deberían introducirse como requisitos en las normas de calidad y en los manuales de gestión de las playas turísticas:

  • La limpieza mecánica sólo se permitirá si la superficie se encuentra seca (7-10 cm). La limpieza en la zona húmeda se centrará en los residuos antrópicos.
  • Se evitará la limpieza mecánica cuando exista previsión de viento fuerte, con el fin de reducir el transporte eólico.
  • No se aceptarán prácticas de roturación y arado en profundidad de la playa.
  • En playas con sistemas dunares, se establecerán franjas de reserva (3-5 m) donde la limpieza será manual y selectiva.
  • Se asegurará un sistema de control de las operaciones de limpieza para evitar el fraude y las extracciones sistemáticas de arena para usos no autorizados.
  • Se realizarán periódicamente pruebas “in situ” con las máquinas de limpieza mecánica que midan el volumen de arena retirada, con la elaboración de indicadores de seguimiento. Este será un criterio que prime a la hora de adquirir nuevos equipos.
  • Los conductores de los equipos de limpieza realizarán cursos de adiestramiento, pues su pericia influye decisivamente en la reducción de la arena retirada.
  • Se limitará la frecuencia de retirada de restos naturales (Posidonia oceanica), depositando los restos dentro de la propia playa (zona dunar).
  • Se adecuará el diseño de paseos marítimos y rampas de acceso a playas para minimizar las pérdidas debidas al transporte eólico.
  • En playas de uso masivo, se colocarán duchas o lavapiés que eliminen los sedimentos adheridos a los bañistas.

Como recomendación final se debería incluir el incremento de las actividades de educación ambiental. En efecto, Rodríguez-Santos et al. (2005) comprobaron que el comportamiento del usuario afecta a la cantidad de basura generada en las playas. Se trata de una medida cualitativa con un gran efecto cuantitativo.

Conclusiones

El reconocimiento de la importancia de las playas se ha traducido en estrategias dirigidas a aumentar su excelencia mediante directivas que atienden a la calidad higiénica de la arena y del agua de baño, así como en la adopción de diferentes distintivos de calidad y normas internacionales con una clara orientación hacia el usuario. Esta situación ha provocado la limpieza sistemática con medios mecánicos de estos espacios naturales que, realizada de forma exhaustiva y sin aplicar criterios geomorfológicos y ambientales de gestión, reduce la biodiversidad costera, altera los perfiles de playa y provoca una pérdida de sedimentos. A ello hay que añadir la importante pérdida de arena provocada por la falta de efectividad de algunas máquinas en la limpieza diaria y la eliminación periódica de residuos naturales acumulados (algas y restos de Posidonia oceanica). Todo ello supone una retirada de arena involuntaria estimada en unos 500 m3 por kilómetro y año en playas no muy intensivas y con un sistema de gestión relativamente bien organizado. Estas pérdidas pueden ser mucho mayores y derivar en extracciones encubiertas de arena para usos agrícolas y ganaderos, jardinería, etc. Para minimizar los impactos producidos por una gestión ineficiente de la limpieza mecánica, se proponen una serie de medidas correctoras que deberían introducirse como requisitos en las normas de calidad y en los manuales de gestión de las playas turísticas. Entre ellas destacan la adopción de zonas de reserva en sistemas dunares y la adopción de indicadores que midan, de forma objetiva, la efectividad de la maquinaria para evitar la retirada excesiva de arena junto con los residuos. Todo ello se debería completar con un incremento de la educación ambiental de los usuarios que, sin duda, redundaría en una reducción importante de los residuos generados en estos espacios naturales.

Referencias

Ariza, E., Jiménez, J.A. y Sardá, R. 2008a. Beyond performance standards in the management of beaches. Coastal Management, 36: 47-66.

Ariza, E., Jiménez, J.A. y Sardá, R. 2008b. Seasonal evolution of beach waste and litter during the bathing season on the Catalan coast. Waste Management, 28(12): 2604-2613..

James, R.J. 2000. From beaches to beach environments: linking the ecology, human-use and management of beaches in Australia, Ocean & Coastal Management, 43: 495-514.

Llewellyn, P.J. y Shackley, S.E. 1996. The effect of mechanical beach-cleaning on invertebrate populations. British Wildlife, 7(3): 147-155.

Malm, T., Raberg, S., Fell, S. y Carlsson, P. 2004. Effects of beach cast cleaning on beach quality, microbial food web, and littoral macrofaunal biodiversity. Estuarine, Coastal and Shelf Science, 60: 339-347.

Medina, J.R. 2007. PLAYEN (Informe Nº 2): Estudio de la gestión de arenas dentro de playas urbanas encajadas. Informe para la Dirección General de Costas del Ministerio de Medio Ambiente. Abril de 2007.

Gheskiere, T., Magda, V., Greet, P. and Steven, D. 2006. Are strandline meiofaunal assemblages affected by a once-only mechanical beach cleaning? Experimental findings. Marine Environmental Research, 61: 245–264.

Rodríguez-Santos, I., Friedrich, A.C., Wallner-Kersanach, M. y Fillmann, G. 2005. Influence of socio-economic characteristics of beach users on litter generation. Ocean and Coastal Management, 48: 742-752.

Roig, F.X. 2004. Análisis y consecuencias de la modificación artificial de perfil playa-duna provocado por el efecto mecánico de su limpieza. Investigaciones Geográficas, 33: 87-103.

Yepes, V. 2002. Ordenación y gestión del territorio turístico. Las playas. En Blanquer, D. (ed.). Ordenación y gestión del territorio turístico: 549-579. Ed. Tirant lo Blanch. Valencia.

Yepes, V. 2005. Gestión del uso público de las playas según el sistema de calidad turístico español. Actas de las VIII Jornadas Españolas de Ingeniería de Costas y Puertos. CD-ROM, 10 pp.

Yepes, V. 2007. Gestión del uso y explotación de las playas. Cuadernos de Turismo, 19: 245-257.

Yepes, V. y Cardona, A. 2000. Mantenimiento y explotación de las playas como soporte de la actividad turística. El Plan de Turismo Litoral 1991-99 de la Comunidad Valenciana. Actas de las V Jornadas Españolas de Ingeniería de Costas y Puertos: 857-876. Ed. Universidad Politécnica de Valencia.

Yepes, V. y Medina, J.R. 2005. Land Use Tourism Models in Spanish Coastal Areas. A Case Study of the Valencia Region. Journal of Coastal Research, SI 49: 83-88.

Yepes, V. y Medina, J.R. 2007. Gestión de playas encajadas de uso intensivo. Actas de las IX Jornadas Españolas de Ingeniería de Costas y Puertos: 297-304. San Sebastián, 29-30 de mayo.

Yepes, V. y Cardona, A. (2008). Incidencia de la limpieza mecánica en la pérdida de arena en las playas. Actas del X Congreso y Exposición Internacional de Playas. 15-17 octubre, Vigo (España).

Yepes, V. y Cardona, A. (2009). La limpieza mecánica de las playas. Equipamientos y servicios municipales, 141: 20-30.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Breve semblanza de José Juan-Aracil Segura, ingeniero de caminos alcoyano

Proyecto de distribución de agua potable de Benidorm (Alicante). https://histobenidorm.blogspot.com/2013/11/

Salvando las diferencias generacionales y de contexto, siempre me ha sorprendido las coincidencias biográficas que he tenido con la figura de D. José Juan-Aracil Segura. Aunque no tuve la suerte de conocerlo personalmente (falleció en 1982, el año en que comenzaba yo la carrera), ambos somos ingenieros de caminos nacidos en Alcoy (Alicante), con el número 1 de promoción en ambos casos y curiosamente, con hijos que también son ingenieros de caminos. Además, hemos sido catedráticos de universidad de la misma asignatura. En efecto, Juan-Aracil fue el catedrático de esta asignatura que en los años cuarenta se denominaba “Maquinaria y Medios Auxiliares de Obra” en la Escuela de Ingenieros de Caminos de Madrid, asignatura que luego fue cambiando de nombre hasta llegar a la de “Procedimientos Generales de Construcción y Organización de Obras“. También en esta asignatura imparto docencia en la Escuela de Valencia. A diferencia de otro tipo de asignaturas (Hormigón, Geotecnia, Materiales de Construcción, etc.), las asignaturas de Maquinaria y Medios Auxiliares, o bien de Procedimientos de Construcción, han sido impartidas en las distintas escuelas, mayoritariamente, por profesores asociados, muy ligados a las empresas constructoras. Es por ello que son pocos los catedráticos en España de esta materia. De hecho, José Luis Juan-Aracil López, su hijo, pasó a ser catedrático de la asignatura en Madrid, que la ejerció hasta su paso a Profesor Emérito. Os remito al siguiente artículo donde expliqué en su día los antecedentes históricos de la asignatura.

De interés, hoy para los coleccionistas, es la colección de 8 tomos de apuntes de Maquinaria Auxiliar de Obras, con diabramas, dibujos, esquemas, talbas, etc. Una grandísima cantidad de información y que fueron un precedente de los textos españoles en la materia. Otros libros de interés han sido el de los “Saltos de agua y presas de embalse”, escrito junto con José Luis Gómez Navarro, del año 1953. O la “Conversión de unidades del sistema inglés o norteamericano al sistema métrico y viceversa”, del año 1958. Todos estos libros, descatalogados, son de coleccionista.

Apuntes de Maquinaria Auxiliar de Obras (8 tomos). Tapa dura – 1 de enero de 1959.

Fernando Sáenz Ridruego, escribió una muy breve biografía en las páginas de la Real Academia de la Historia. José Juan-Aracil Segura nació en Alcoy (Alicante) el 5 de noviembre de 1905, falleciendo en Madrid el 19 de enero de 1982. En 1905 nacieron Christian Dior, Henry Fonda o Miguel Mihura, por poner algunos ejemplo. También en dicho año fallecieron Julio Verne, José María Gabriel y Galán o Juan Valera. Pero lo más sorprendente fue el año milagroso del Albert Einstein, que publicó la Teoría de la relatividad especial, el efecto fotoeléctirco y el movimiento browniano.

Viaducto de Segovia, Madrid. https://es.wikipedia.org/

El joven José Juan-Aracil cursó la enseñanza media en Alcoy, su pueblo natal, en el colegio Luis Vives. Se trasladó a Madrid para estudiar en la Escuela de Ingenieros de Caminos, donde terminó la carrera en 1930, con el número 1 de su promoción. Apenas terminados sus estudios, ganó en 1932, junto con el arquitecto Francisco Javier Ferrero Llusiá, y el ingeniero de caminos Luis Aldaz Muguiro  el concurso para el proyecto del viaducto sobre la madrileña calle Segovia. Es de destacar que en este concurso se presentaron proyectos técnicos de la talla del ingeniero de caminos Eduardo Torroja, y del arquitecto Secundino Zuazo. El proyecto ganador se caracteriza por empleo de hormigón armado pulido, calado en unos machones de granito. Si bien la construcción se demoró hasta 1942, debido al deterioro que sufrió por los daños de la Guerra Civil.

Recién terminada su carrera, se atisba sus inquietudes técnicas publicando, en 1931 un artículo, “Esfuerzos secundarios” en la Revista de Obras Públicas, donde publicó a partir de entonces numerosos artículos. En este artículo llenó parte del vacío de los libros y revistas de entonces sobre este tema, siendo encargado de curso de la asignatura de Construcciones Metálicas. Va a ser habitual ver artículos en esta revista donde desarrolle temas concretos de los explicados en sus clases.

En 1935 realizó un viaje de estudios pensionado por la Escuela, llevando el tema “Presas de embalse”, visitando Francia, Suiza e Italia. A su vuelta redactó una memoria que se publicó en la Revista de Obras Públicas. Durante la Guerra Civil combatió en el bando nacional, en el que se le concedió la Medalla de la Campaña. En 1939 fue nombrado profesor de Maquinaria en la Escuela de Caminos, asignatura que explicó hasta su jubilación en 1975. Fue director técnico de Obras y Servicios Públicos, S.A. (OSEPSA), empresa con la que realizó numerosas obras, entre las que destacan la construcción del acueducto de Tardienta, la reconstrucción de los puentes de Bilbao, del puente de Vizcaya y de la presa de Ordunte, destruidos durante la contienda, y la construcción de los viaductos de San Jorge, Cabriel y Narboneta, en el ferrocarril Cuenca-Valencia, así como del pantano de Amadorio, en la provincia de Alicante.

Juan-Aracil reconstruyó, tras la Guerra Civil, el Puente transbordador Bizkaia/ Vizcaya, con un proyecto que introducía bastantes cambios sobre el proyecto original. El más importante fue la eliminación de los tirantes de los extremos de la luz en el vano principal, que el autor justificaba por la dificultad que suponía la indeterminación de la actuación conjunta de péndolas y tirantes, Sin embargo, y como el propio Juan-Aracil reconocía, eso le obligó a aumentar la inercia de la viga, pasando de dos a tres metros de canto.

Puente Vizcaya, Transbordador de Portugalete a Las Arenas. Al fondo se ve Sestao. El tramo horizontal superior es una pasarela para peatones, a la que se puede acceder mediante ascensores. https://es.wikipedia.org/wiki/Puente_de_Vizcaya#/media/Archivo:Zubia_jun.jpg
Vista del puente sobre el Turia (2018). https://www.wikiwand.com/es/Puente_de_Santa_Cruz_de_Moya

Obra obra de Juan-Aracil fue el puente de Santa Cruz de Moya (también, puente Nuevo) es un viaducto existente en el término municipal de Santa Cruz de Moya, provincia de Cuenca (Comunidad de Castilla-La Mancha). Construido en la C-234 de ValenciaAdemuz sobre el río Turia en la segunda mitad de los años cincuenta. Otro ejemplo más es la traída de agua a la Celupal, proyecto finalizado el 10 de octubre de 1947 fue redactado por Juan-Aracil, entre otros, aparte de los citados, como el acueducto de Tardienta, de la presa de Ordunte, o la distribución de agua potable de Benidorm, entre otros.

Como curiosidad del carácter alcoyano de D. José Juan-Aracil, baste recordar el homenaje que se le rindió el 27 de noviembre de 1980 en un céntrico restaurante madrileño por parte de la Asociación de San Jorge en la capital de España. Juan-Aracil fue el presidente (clavario) de esta Asociación alcoyana en Madrid. Os dejo a continuación un par de textos escritos en 1949 sobre la Asociación de San Jorge Mártir de Madrid y otro de 1951 sobre Alcoy y el Cuerpo de Ingenieros de Caminos, ambos de la Revista de la Asociación de San Jorge.