Normativas de seguridad y prevención de riesgos laborales en logística y transporte

Imagen generada por IA. Seguro que encontráis problemas de seguridad.

Las actividades de logística y transporte requieren el cumplimiento de normativas específicas para garantizar la seguridad de las personas involucradas en estos procesos. La legislación y los estándares internacionales establecen requisitos para minimizar riesgos y mejorar las condiciones laborales en este sector, lo que resulta esencial para garantizar la continuidad operativa y la protección del personal. En el contexto de las empresas de transporte y logística, estas normativas no solo buscan prevenir accidentes, sino también optimizar la eficiencia de los procesos mediante la implementación de medidas de seguridad adecuadas.

Legislación sobre prevención de riesgos laborales

La Ley 31/1995 de Prevención de Riesgos Laborales (LPRL) constituye el marco normativo español en materia de seguridad y salud en el trabajo. Su propósito es prevenir incidentes mediante la identificación y control de los peligros presentes en los entornos laborales. Esta legislación reconoce el derecho de las personas trabajadoras a desempeñar sus funciones en condiciones seguras y establece la obligación de las empresas de adoptar medidas preventivas. También regula la consulta y participación del personal en la adopción de decisiones relacionadas con la seguridad y la prevención de riesgos laborales.

Las empresas del sector logístico y del transporte deben integrar la prevención de riesgos laborales en su estructura organizativa. Esto implica evaluar riesgos específicos, como la manipulación de cargas pesadas, la exposición a productos peligrosos, el uso de maquinaria especializada y la conducción de vehículos de gran tonelaje. La LPRL exige que los planes de prevención se adapten a la naturaleza de las operaciones de cada empresa y garanticen que cada área de trabajo cuente con las medidas de seguridad apropiadas. Además, obliga a que el personal reciba formación periódica para que puedan identificar y evitar riesgos.

Normas internacionales de gestión de seguridad y salud laboral

La norma ISO 45001 ha reemplazado a la OHSAS 18001 como el estándar de referencia para la gestión de la seguridad y salud en el trabajo. Su aplicación permite a las organizaciones establecer un sistema que no solo cumpla con la legislación vigente, sino que también optimice la prevención de riesgos mediante un enfoque estructurado. La ISO 45001 fomenta la identificación y reducción de peligros, así como la participación activa del personal en la gestión de la seguridad.

En empresas logísticas, la aplicación de la ISO 45001 implica la implementación de medidas concretas como la evaluación de riesgos ergonómicos en almacenes, el establecimiento de protocolos de carga y descarga seguros y la gestión de emergencias ante posibles incendios o derrames de sustancias peligrosas. También exige la realización de inspecciones periódicas de vehículos y equipos de transporte para detectar fallos mecánicos que puedan comprometer la seguridad del personal.

A diferencia de su predecesora, esta norma adopta un enfoque proactivo, haciendo hincapié en la eliminación de peligros antes de que se generen incidentes. Además, su estructura facilita la integración con otros sistemas de gestión, como los de calidad y medio ambiente, y proporciona una visión global de la seguridad en la empresa.

Seguridad vial en el transporte

Para reducir los incidentes en carretera, la norma ISO 39001 establece criterios específicos para la gestión de la seguridad vial en las organizaciones. Su aplicación es especialmente relevante para empresas de transporte de mercancías y pasajeros, operadores logísticos y cualquier entidad cuya actividad dependa del desplazamiento de personas o bienes.

Las empresas de transporte que implementan la ISO 39001 pueden establecer controles sobre los tiempos de conducción y descanso, garantizando que el personal conductor no sobrepase las horas de trabajo recomendadas. Además, esta norma fomenta la formación en conducción segura y la adopción de tecnologías que ayuden a minimizar el riesgo de accidentes, como sistemas de supervisión en tiempo real, mantenimiento predictivo de vehículos y análisis de rutas seguras.

Los operadores logísticos también deben aplicar esta normativa en la gestión de flotas, estableciendo programas de mantenimiento preventivo y procedimientos de actuación en caso de incidentes viales. La combinación de estas medidas contribuye a reducir las tasas de siniestralidad y a mejorar la eficiencia operativa del sector.

Responsabilidades empresariales y derechos del personal

La legislación en materia de prevención de riesgos laborales impone a las empresas la responsabilidad de garantizar un entorno seguro. Esto implica proporcionar equipos de protección, señalizar adecuadamente los espacios de trabajo y supervisar el cumplimiento de las normativas. También se exige la realización de reconocimientos médicos periódicos, siempre con el consentimiento del personal, y la impartición de formación obligatoria en prevención de riesgos.

En el ámbito del transporte y la logística, las empresas deben proporcionar formación específica para cada puesto, de modo que el personal que opera maquinaria pesada, trabaja en muelles de carga o conduce vehículos de larga distancia conozca los riesgos asociados y las medidas de seguridad correspondientes.

Por su parte, las personas trabajadoras tienen la obligación de utilizar correctamente los medios de protección, informar sobre situaciones de riesgo y contribuir al cumplimiento de las medidas de seguridad. En el caso de los trabajadores del transporte de mercancías, es fundamental que sigan los protocolos establecidos para la correcta manipulación de cargas y la distribución equitativa del peso en los vehículos, con el fin de evitar accidentes causados por una carga mal asegurada.

La falta de aplicación de estos principios puede derivar en sanciones administrativas, responsabilidades civiles e incluso penales para la empresa en casos de incumplimiento grave. Las empresas que no garanticen la seguridad de su personal pueden enfrentarse a multas económicas, a la suspensión de sus operaciones o, en los casos más graves, penas de prisión para sus responsables.

Conclusión

El cumplimiento de las normativas de seguridad y prevención de riesgos en logística y transporte no solo protege a quienes trabajan en el sector, sino que también mejora la eficiencia operativa y reduce los costos derivados de incidentes laborales. La aplicación de la LPRL y de estándares internacionales como ISO 45001 e ISO 39001 permite a las empresas gestionar la seguridad de manera estructurada y efectiva. Una adecuada implementación de estas normativas es esencial para garantizar entornos laborales seguros y minimizar los riesgos asociados a las actividades logísticas y de transporte. Además, una gestión eficaz de la seguridad fortalece la imagen de la empresa y contribuye a la sostenibilidad de sus operaciones en el largo plazo.

Os dejo una presentación de clase sobre este tema. Forma parte de una asignatura denominada «Sostenibilidad, calidad y seguridad», del segundo curso del Grado en Gestión del Transporte y Logística de la Universitat Politècnica de València. También os dejo un mapa mental de dicha presentación.

Descargar (PDF, 1.23MB)

 

Estimación de la velocidad de barrido en la perforación rotativa con triconos

Tricono con insertos. https://www.talleresegovia.com

La perforación rotativa con triconos se ha tratado en artículos anteriores. Se trata de uno de los procedimientos más extendidos y consiste en equipos grandes capaces de ejercer empujes elevados sobre la boca. En este artículo se explicará un procedimiento para calcular la velocidad de barrido.

El aire comprimido enfría y lubrica los cojinetes del tricono, limpia el fondo del barreno y eleva el detrito a la velocidad adecuada para el ascenso.

El aire circula desde el compresor hasta el mástil mediante un tubo y una manguera flexible protegida, pasando por la cabeza de rotación. A continuación, entra en la barra de perforación y llega a la boca, donde sale entre los conos, arrastrando los detritos y llevándolos a la superficie.

Si los fragmentos son grandes y el caudal de aire es insuficiente, vuelven al fondo y se remueven hasta alcanzar el tamaño adecuado. Esto genera un consumo innecesario de energía, una menor velocidad de penetración y un mayor desgaste de la boca. Por otro lado, una velocidad ascensional excesiva incrementa el desgaste del centralizador y de las barras de perforación.

A continuación se ofrece un nomograma original elaborado por el profesor Pedro Martínez Pagán para estimar la velocidad de barrido de perforación de un equipo rotary (Instituto Tecnológico Geominero de España, 1994).

 

Esta expresión incorpora la corrección por altura geográfica que hay que hacerle al caudal que proporciona un compresor por la pérdida que sufre:

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estimación de la velocidad de penetración en la perforación rotativa con triconos

https://construproductos.com/producto/perforadora-rotativa-md6290-CDf5f

La perforación rotativa con triconos es uno de los procedimientos más extendidos, y está constituido por grandes equipos capaces de ejercer elevados empujes sobre la boca. Esto se debe a que las unidades que trabajan con trépanos son más sencillas de diseño y de menor envergadura. Las perforadoras rotativas están formadas esencialmente por una fuente de energía, como una batería de barras o tubos individuales o conectados en serie, que transmite el peso de la rotación y el aire de barrido a una boca con dientes de acero o insertos de carburo de tungsteno que actúan sobre la roca.

En este tipo de perforación, la velocidad de penetración depende de muchos factores externos, como las características geológicas, las propiedades físicas de las rocas, la distribución de tensiones y la estructura interna. Por este motivo, determinar la velocidad de penetración durante el desarrollo de un proyecto es una tarea difícil para el ingeniero proyectista, pero necesaria, ya que la decisión que se tome va a incidir decisivamente en el resto de las operaciones.

Las fórmulas empíricas para estimar la velocidad de penetración son muy sencillas y se basan en ensayos de campo. En general, tienen en cuenta las siguientes variables: diámetro de la perforación, empuje sobre el tricono, velocidad de rotación y resistencia a compresión simple. La resistencia a compresión es la variable desconocida, cuyo valor se puede estimar fácilmente mediante un ensayo de laboratorio o de campo.

A continuación se ofrece un nomograma original elaborado por los profesores Pedro Martínez Pagán, Daniel Boulet y Trevor Blight para estimar el coeficiente de perforación de un equipo rotary basándose en la formulación empírica que dedujo Praillet en 1978. Esta fórmula es más fiable en todos los rangos de resistencias de las rocas y permite calcular el valor de la resistencia a compresión de la roca durante una operación en marcha.

Referencias:

  • DIRECCIÓN GENERAL DE CARRETERAS (1998). Manual para el control y diseño de voladuras en obras de carreteras. Ministerio de Fomento, Madrid, 390 pp.
  • INSTITUTO TECNOLÓGICO GEOMINERO DE ESPAÑA (1994). Manual de perforación y voladura de rocas. Serie Tecnológica y Seguridad Minera, 2ª Edición, Madrid, 541 pp.
  • PRAILLET, R. (1984), Consideraciones de un fabricante de máquinas de perforación. Canteras y Explotaciones
  • UNIÓN ESPAÑOLA DE EXPLOSIVOS (1990). Manual de perforación. Rio Blast, S.A., Madrid, 206 pp.
  • YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.
  • YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

 

Cálculo de la carga circulante de un circuito cerrado de molienda

Figura 1. Circuito cerrado de molienda (Álvarez, 1996).

En la industria minera, se utilizan molinos de bolas en circuito cerrado cuando se busca liberar las especies minerales antes de concentrarlas. Este proceso tiene como objetivo minimizar la generación excesiva de partículas ultrafinas. Para ello, es fundamental contar con un instrumento de clasificación que se ajuste al tamaño de las partículas y a las condiciones específicas de la operación.

En los procesos en seco, se deben utilizar clasificadores neumáticos que permitan realizar cortes granulométricos adecuados al tamaño del producto final deseado. En contraste, en operaciones que manejan pulpa, el uso de hidrociclones es lo habitual, especialmente para cortes granulométricos inferiores a 75 micrómetros. Para partículas de mayor tamaño, se pueden emplear tanto hidrociclones como clasificadores mecánicos, dependiendo principalmente de la capacidad de molienda necesaria. Es importante señalar que los hidrociclones diseñados para cortes gruesos suelen tener una alta capacidad de tratamiento que puede exceder la capacidad de molienda disponible. Entre los clasificadores mecánicos más utilizados se encuentran el tipo Akins, que utiliza un tornillo sinfín, y el tipo Dorr, que emplea rastrillos.

La Figura 1 muestra un esquema de un circuito cerrado que incluye un molino de rebose y un clasificador en espiral o tornillo. Una forma de ajustar el tamaño de corte del clasificador es añadir agua. Este procedimiento modifica la viscosidad de la pulpa, lo que influye en la carga circulante y permite un control más preciso del proceso.

En este circuito cerrado, la nueva alimentación se introduce directamente en el molino. Sin embargo, existe una variante que se utiliza cuando la nueva alimentación ya contiene una gran cantidad de finos o cuando se desea minimizar completamente su producción. En este caso, la nueva alimentación se introduce directamente en el clasificador, como se ilustra en la Figura 2.

Figura 2. Circuito cerrado con alimentación al clasificador (Álvarez, 1996).

La Figura 3 muestra la variación típica de la capacidad de un molino a medida que aumenta la carga circulante en comparación con un circuito abierto. La carga circulante se expresa comúnmente como un porcentaje en peso del retorno del molino en relación con la nueva alimentación. Un valor del 250 % se considera normal en este contexto.

Figura 3. Variación de la capacidad con la carga circulante (Álvarez, 1996)

 

A continuación os dejo un nomograma elaborado por los profesores Pedro Martínez-Pagán, Jaime Sepúlveda y Daniel Boulet que permite el cálculo de la carga circulante. Espero que os sea de interés.

Referencias:

ÁLVAREZ, R. (1996). Trituración, molienda y clasificación. Ed. Fundación Gómez Pardo. Escuela Técnica Superior de Ingenieros de Minas, Universidad Politécnica de Madrid.

LÓPEZ JIMENO, C.; LUACES, C. (eds.) (2020). Manual de Áridos para el Siglo XXI. Asociación Nacional de Empresarios Fabricantes de Áridos— ANEFA, Madrid, 1328 pp.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2005). Temas de procedimientos de construcción. Extracción y tratamiento de áridos. Editorial de la Universidad Politécnica de Valencia. Ref. 2005.165. Valencia, 74 pp.

MARTÍNEZ PAGÁN, P. (2021). Ejercicios resueltos de plantas de tratamiento de recursos minerales. Universidad Politécnica de Cartagena, CRAI Biblioteca, Cartagena, 211 pp.

WILLS, B.A.; NAPIER-MUNN, T. (2006). Mineral Processing Technology. An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Elsevier Science & Technology Books, 7th edition.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Microtúneles: Tecnología sin zanja para la construcción subterránea

Figura 1. Microtúnel.https://purewater-int.com/services/microtunneling/

La ingeniería civil ha desarrollado tecnologías avanzadas que permiten la instalación y el mantenimiento de infraestructuras subterráneas sin afectar significativamente a la superficie. Una de estas tecnologías, particularmente útil en áreas urbanas y entornos sensibles, es la de los microtúneles.

En este artículo, exploraremos los aspectos principales de los microtúneles, sus ventajas y limitaciones, los distintos tipos de escudos y los métodos de revestimiento, como el uso de dovelas y la hinca de tubería, que aseguran la estabilidad de los túneles.

1. ¿Qué son los microtúneles?

Los microtúneles son un tipo específico de tecnología sin zanja diseñada para instalar tuberías y conductos subterráneos a través de un proceso de perforación y revestimiento controlado, sin requerir excavaciones abiertas en la superficie. Estos túneles de pequeño diámetro suelen utilizarse para instalar colectores, redes de agua y sistemas de alcantarillado. A diferencia de otras técnicas de perforación, los microtúneles ofrecen mayor precisión y estabilidad estructural, ya que se utilizan tuneladoras y sistemas de guiado avanzados.

Ventajas de los microtúneles

  • Impacto mínimo en la superficie: Como no es necesario abrir zanjas, los microtúneles reducen las interrupciones en el tráfico y minimizan los daños en la infraestructura existente.
  • Menor impacto ambiental: Este método evita la remoción de grandes cantidades de tierra y reduce los desechos de la construcción, por lo que es una opción más ecológica.
  • Ideal para áreas de difícil acceso: Al requerir solo pozos de entrada y salida, los microtúneles son ideales para trabajos en áreas urbanas densamente pobladas o bajo infraestructuras ya existentes.

Limitaciones de los microtúneles

  • Costos iniciales elevados: La maquinaria y planificación requerida pueden aumentar los costos, especialmente en terrenos sencillos donde una excavación tradicional sería suficiente.
  • Necesidad de estudios geotécnicos detallados: Para asegurar el éxito del proyecto, es necesario un análisis exhaustivo del tipo de suelo, así como un diseño específico para el trazado y la maquinaria a emplear.

2. Maquinaria y equipos utilizados en la perforación de microtúneles

La construcción de microtúneles requiere diferentes tipos de escudos, que son dispositivos que protegen el frente de excavación y facilitan la extracción de material. El tipo de escudo elegido depende de las características del terreno y de las especificaciones del proyecto.

Tuneladoras de escudo abierto

Los escudos abiertos son los más básicos y se utilizan en terrenos cohesivos y por encima del nivel freático. Su diseño permite que el personal trabaje dentro del escudo y retire el material excavado mediante cintas transportadoras o vagonetas. Sin embargo, su principal limitación es que no pueden prevenir derrumbes, lo que los hace adecuados solo para suelos estables. Existen versiones que utilizan aire presurizado para estabilizar el entorno en algunas condiciones.

Tuneladoras de escudo cerrado

Las tuneladoras de escudo cerrado son las máquinas principales utilizadas en los microtúneles. Estos equipos están diseñados para evitar derrumbes y permiten un control preciso sobre la extracción del material excavado. Existen dos tipos principales de tuneladoras de escudo cerrado:

  • Tuneladora EPB (Earth Pressure Balance): Equilibra la presión en el frente usando el propio material excavado, lo cual es especialmente útil en terrenos arcillosos. Además, utiliza espumas y polímeros para estabilizar el suelo.
  • Tuneladora hidroescudo: Este tipo de tuneladora utiliza lodos para estabilizar el frente de excavación, lo que resulta especialmente útil en suelos arenosos o bajo el nivel freático.

Ambos tipos de escudos permiten extraer el material en seco o húmedo, asegurando una operación segura y eficiente en diversas condiciones geológicas.

Figura 2. Tuneladora EPB. https://www.gypsum.in/microtunneling/

3. Métodos de revestimiento en microtúneles

Un aspecto importante en la construcción de microtúneles es el revestimiento, que garantiza la estabilidad y durabilidad del túnel, especialmente en terrenos inestables. Existen dos métodos principales de revestimiento: el método de dovelas y el método de hinca de tubería.

Revestimiento con dovelas

Este método consiste en el uso de dovelas, secciones de anillo prefabricadas, que se ensamblan en el interior del túnel a medida que avanza la tuneladora. El procedimiento implica montar las dovelas dentro de la máquina y posteriormente inyectar mortero en el trasdós para garantizar la estabilidad del revestimiento y evitar filtraciones. Este método permite construir túneles con radios de curvatura pequeños, adaptándose a trazados complejos y de gran diámetro.

Revestimiento con hinca de tubería

El revestimiento con hinca de tubería es ideal para túneles de menor diámetro y consiste en empujar tramos de tubería prefabricada desde el pozo de ataque hasta el pozo de salida. Este proceso puede incorporar estaciones intermedias para longitudes extensas, y utiliza bentonita como lubricante para reducir la fricción durante la hinca. La principal ventaja de este método es que no requiere que el personal opere dentro de la tuneladora y facilita la alineación precisa gracias al sistema de guiado continuo.

Ambos métodos de revestimiento cumplen la función de asegurar la estabilidad y el sellado del túnel, aunque su selección dependerá de las características específicas del proyecto.

4. Planificación y ejecución de un proyecto de microtúnel

Para llevar a cabo un proyecto de microtúnel, es fundamental una planificación detallada que incluya:

  • Estudios geotécnicos: Analizar el tipo de suelo es esencial para definir el equipo y las técnicas de excavación adecuadas, especialmente en terrenos variables o inestables.
  • Selección de tuneladora y herramientas de corte: La tuneladora debe ser seleccionada en función de las condiciones del suelo, y equipada con herramientas de corte específicas.
  • Diseño del pozo de ataque: Los pozos de entrada y salida deben ser diseñados para facilitar el montaje y operación de la tuneladora.
  • Sistema de guiado: Un sistema de guiado, como un teodolito láser motorizado, asegura que la perforación siga el trazado previsto, evitando desviaciones que podrían afectar la estructura del túnel.

5. Caso de estudio: El colector de Valdemarín

Un ejemplo destacado de aplicación de los microtúneles es el proyecto del colector de Valdemarín, en el que se utilizó una tuneladora EPB con dovelas para construir un colector de aguas en un terreno arenoso y de alta abrasividad. El colector, con un diámetro nominal de 2760 mm, fue diseñado para superar el reto de excavar bajo un nivel freático considerable y con una geometría compleja, incluyendo curvas de pequeño radio. Gracias a la tecnología de microtúnel, fue posible instalar el colector, minimizando el impacto en el entorno urbano y controlando el proceso de excavación en un suelo particularmente desafiante.

Conclusión

Los microtúneles son una solución avanzada para la construcción subterránea, especialmente útil en entornos urbanos densos y ambientalmente sensibles. Con diversas opciones de escudos (abiertos y cerrados) y métodos de revestimiento, como las dovelas y la hinca de tuberías, esta tecnología proporciona flexibilidad y precisión en una amplia gama de condiciones geológicas. La implementación de microtúneles sigue siendo una herramienta clave para el desarrollo de infraestructuras subterráneas sostenibles, ya que minimiza el impacto en la superficie y optimiza el proceso constructivo.

Os dejo algunos vídeos para ilustrar esta técnica constructiva.

Referencias:

FRENCH SOCIETY FOR TRENCHLESS TECHNOLOGY (FSTT). Microtunneling and Horizontal Drilling: Recommendations. John Wiley & Sons, 2010.

YEPES, V. (2014). Maquinaria para sondeos y perforaciones. Apuntes de la Universitat Politècnica de València, Ref. 209. Valencia, 89 pp.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Curso en línea de “Fabricación y puesta en obra del hormigón”

La Universitat Politècnica de València, en colaboración con la empresa Ingeoexpert, ha elaborado un Curso en línea sobre “Fabricación y puesta en obra del hormigón”.

El curso, totalmente en línea, se desarrollará en 6 semanas, con un contenido de 75 horas de dedicación del estudiante. Hay plazas limitadas.

Toda la información la puedes encontrar en esta página: https://ingeoexpert.com/cursos/curso-de-fabricacion-y-puesta-en-obra-del-hormigon/

 

 

Acerca de este curso

Este curso ofrece una visión completa sobre la fabricación y la puesta en obra del hormigón. No se requieren conocimientos previos específicos, ya que está diseñado para beneficiar a un amplio espectro de profesionales, tanto con experiencia como sin ella, así como a estudiantes de disciplinas relacionadas con la construcción, tanto en el ámbito universitario como en la formación profesional. El proceso de aprendizaje está estructurado de manera gradual, lo que permite a los participantes profundizar en los aspectos que más les interesen, apoyándose en material complementario y enlaces a recursos en línea, como vídeos y catálogos.

En este curso, adquirirás conocimientos fundamentales sobre la fabricación de hormigones y el uso de maquinaria relacionada, incluyendo centrales de hormigonado, transporte y bombeo de hormigón, cintas transportadoras, gunitado, colocación de hormigón bajo el agua y en condiciones de frío o calor, así como grandes vertidos, compactación por vibrado, hormigón al vacío, curado, juntas de construcción, hormigón precolocado y tipos de hormigón como el de fibra de vidrio, autocompactantes, compactados con rodillo y ligeros.

El enfoque principal del programa es comprender los principios que rigen la fabricación y la puesta en obra del hormigón, tanto prefabricado como ejecutado en obra, prestando atención a sus características más importantes y a los aspectos constructivos relevantes en ingeniería civil y edificación. El curso abarca un amplio espectro y profundiza en los fundamentos de la ingeniería de la construcción, además de destacar la importancia de fomentar el pensamiento crítico de los estudiantes, especialmente en relación con la selección de métodos, técnicas y maquinaria que se deben aplicar en situaciones concretas. Además, este curso trata de llenar el vacío que a menudo deja la bibliografía habitual y está diseñado para que los estudiantes puedan profundizar en los conocimientos adquiridos y adaptarlos a su experiencia previa o a sus objetivos personales y empresariales.

El contenido del curso se organiza en 50 lecciones, cada una de las cuales constituye una secuencia de aprendizaje completa. Además, se ofrece un amplio conjunto de problemas resueltos que complementan la teoría presentada en cada lección. Se estima que se necesitan entre dos y tres horas para completar cada lección, en función del interés del estudiante por profundizar en los temas mediante el material adicional proporcionado.

Al finalizar cada unidad didáctica, el estudiante se enfrenta a una serie de preguntas diseñadas para consolidar los conceptos fundamentales y fomentar la curiosidad sobre aspectos relacionados con el tema tratado. También se han diseñado tres unidades adicionales para reforzar los conocimientos adquiridos a través del desarrollo de casos prácticos, en los que se fomenta el pensamiento crítico y la capacidad para resolver problemas reales. Finalmente, al concluir el curso, se llevará a cabo un conjunto de preguntas tipo test con el objetivo de evaluar el aprovechamiento del estudiante, además de servir como herramienta de aprendizaje.

El curso está diseñado para una dedicación total de 75 horas por parte del estudiante. Se busca mantener un ritmo moderado, con una dedicación semanal de aproximadamente 10 a 15 horas, en función del nivel de profundidad que cada estudiante desee alcanzar. La duración total del curso es de seis semanas de aprendizaje.

Lo que aprenderás

Al finalizar el curso, los objetivos de aprendizaje básicos son los siguientes:

  1. Comprender la utilidad y las limitaciones de la maquinaria empleada en la fabricación del hormigón, tanto prefabricado como elaborado en obra
  2. Evaluar y seleccionar los procedimientos constructivos para la colocación del hormigón, atendiendo a criterios económicos y técnicos
  3. Conocer las buenas prácticas y los aspectos de seguridad implicados en el transporte, vertido, compactación y curado del hormigón
  4. Analizar las características específicas en la fabricación y colocación de hormigones especiales como los autocompactantes, ligeros, con fibras, precolocados, compactados con rodillo y otros.

Programa del curso

  • Lección 1. Fabricación de hormigones
  • Lección 2. Homogeneidad en la fabricación del hormigón
  • Lección 3. Amasado del hormigón
  • Lección 4. Amasadoras de hormigón
  • Lección 5. Centrales de fabricación de hormigón
  • Lección 6. Hormigoneras
  • Lección 7. Cálculo de la temperatura de fabricación del hormigón
  • Lección 8. Almacenamiento de áridos
  • Lección 9. Corrección de humedad de los áridos
  • Lección 10. Transporte del cemento
  • Lección 11. Silos fijos de cemento
  • Lección 12. Cemento para hormigones resistentes a sulfatos en cimentaciones
  • Lección 13. Carretillas manuales o a motor para el transporte del hormigón
  • Lección 14. Hormigonado con cubilote
  • Lección 15. Transporte del hormigón mediante cintas transportadoras
  • Lección 16. Colocación del hormigón mediante bombeo
  • Lección 17. Torres distribuidoras de hormigón
  • Lección 18. Problemas de bombeo de hormigón
  • Lección 19. Hormigón proyectado: gunitado
  • Lección 20. Recomendaciones para el vertido de hormigón
  • Lección 21. Trompas de elefante para la colocación del hormigón
  • Lección 22. Hormigonado con tubería Tremie
  • Lección 23. Técnicas de colocación del hormigón bajo el agua
  • Lección 24. Fabricación y colocación del hormigón en tiempo caluroso
  • Lección 25. Fabricación y colocación del hormigón en tiempo frío
  • Lección 26. Hormigonado en condiciones de viento
  • Lección 27. Vertido y compactación de hormigón en soportes de sección reducida
  • Lección 28. Grandes vertidos de hormigón
  • Lección 29. Razones para compactar el hormigón
  • Lección 30. Compactación manual del hormigón: picado y apisonado
  • Lección 31. Compactación del hormigón por vibrado
  • Lección 32. Vibradores de aguja para compactar el hormigón
  • Lección 33. Vibradores externos para encofrados de hormigón
  • Lección 34. Mesa vibrante de hormigón
  • Lección 35. Compactación del hormigón con regla vibrante
  • Lección 36. Compactación del hormigón por centrifugación
  • Lección 37. Hormigón al vacío
  • Lección 38. Alisadoras rotativas o fratasadoras
  • Lección 39. Revibrado del hormigón
  • Lección 40. Agrietamiento plástico durante el fraguado del hormigón: Nomograma de Menzel
  • Lección 41. Necesidad y fases del curado del hormigón
  • Lección 42. Curado de pavimentos y otras losas de hormigón sobre tierra
  • Lección 43. Curado al vapor del hormigón e índice de madurez
  • Lección 44. Hormigón de limpieza en fondos de excavación
  • Lección 45. Las juntas de construcción en el hormigón
  • Lección 46. Hormigón precolocado: Prepakt y Colcrete
  • Lección 47. Hormigón reforzado con fibra de vidrio
  • Lección 48. Hormigón autocompactante
  • Lección 49. Hormigones compactados con rodillo
  • Lección 50. Hormigones ligeros
  • Supuesto práctico 1.
  • Supuesto práctico 2.
  • Supuesto práctico 3.
  • Batería de preguntas final

Conozca a los profesores

Víctor Yepes Piqueras

Ingeniero de Caminos, Canales y Puertos (1982-1988). Número 1 de promoción (Sobresaliente Matrícula de Honor). Especialista Universitario en Gestión y Control de la Calidad (2000). Doctor Ingeniero de Caminos, Canales y Puertos, Sobresaliente “cum laude”. Catedrático de Universidad en el área de ingeniería de la construcción en la Universitat Politècnica de València y profesor, entre otras, de las asignaturas de Procedimientos de Construcción en los grados de ingeniería civil y de obras públicas. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social. Su experiencia profesional se ha desarrollado como jefe de obra en Dragados y Construcciones S.A. (1989-1992) y en la Generalitat Valenciana como Director de Área de Infraestructuras e I+D+i (1992-2008). Ha sido Director Académico del Máster Universitario en Ingeniería del Hormigón (2008-2017), obteniendo durante su dirección la acreditación EUR-ACE para el título. Profesor Visitante en la Pontificia Universidad Católica de Chile. Investigador Principal en 6 proyectos de investigación competitivos. Ha publicado más de 175  artículos en revistas indexadas en el JCR. Autor de 10 libros, 22 apuntes docentes y más de 350 comunicaciones a congresos. Ha dirigido 17 tesis doctorales, con 10 más en marcha. Sus líneas de investigación actuales son las siguientes: (1) optimización sostenible multiobjetivo y análisis del ciclo de vida de estructuras de hormigón, (2) toma de decisiones y evaluación multicriterio de la sostenibilidad social de las infraestructuras y (3) innovación y competitividad de empresas constructoras en sus procesos. Ha recibido el Premio a la Excelencia Docente por parte del Consejo Social, así como el Premio a la Trayectoria Excelente en Investigación y el Premio al Impacto Excelente en Investigación, ambos otorgados por la Universitat Politècnica de València.

Lorena Yepes Bellver

Lorena Yepes Bellver es Profesora Asociada en el Departamento de Mecánica de los Medios Continuos y Teoría de las Estructuras de la Universitat Politècnica de València. Es ingeniera civil, máster en ingeniería de caminos, canales y puertos y máster en ingeniería del hormigón. Ha trabajado en los últimos años en empresas constructoras y consultoras de ámbito internacional. Aparte de su dedicación docente e investigadora, actualmente se dedica a la consultoría en materia de ingeniería y formación.

Dosificación de los áridos en la fabricación del hormigón

La dosificación de los áridos es un proceso más complejo que la dosificación del cemento, pues se debe considerar el agua contenida en estos componentes. Esta agua puede estar presente en la superficie de los áridos, entre sus partículas e incluso en su interior, como ocurre con los áridos ligeros. Para lograr dosificaciones precisas, es fundamental tener un conocimiento constante de las cantidades variables de agua. La dosificación de áridos puede realizarse de manera ponderal o volumétrica.

Dosificación por volumen

Un dosificador de áridos por volumen consta de una cinta transportadora, ubicada debajo de la tolva de almacenamiento, que se mueve a velocidad constante, y de un registro vertical que regula la altura del material extraído sobre la banda (Figuras 1 y 2). El volumen distribuido es proporcional al tiempo de descarga, el cual se controla mediante temporizadores.

Figura 1. Dosificador volumétrico de áridos

Este procedimiento no se ve afectado por la humedad de los materiales, lo que lo hace especialmente adecuado para áridos ligeros, cuya densidad puede variar significativamente según su contenido de agua. Sin embargo, el peso del material extraído puede verse influenciado por el grado de compactación del material sobre el dosificador, es decir, por la altura de carga en las tolvas de almacenamiento.

Figura 2. Detalle del dosificador volumétrico de áridos

La dosificación en volumen es más complicada que la dosificación en peso. En las instalaciones muy pequeñas, donde se realiza la dosificación directamente en el skip o en un dispositivo similar, los áridos deben verterse hasta alcanzar niveles de referencia preestablecidos. Este procedimiento repetitivo no solo consume mucho tiempo, sino que también genera una mayor probabilidad de errores.

Cuando la alimentación se efectúa a través de una cinta transportadora, el control de los volúmenes transportados se vuelve más sencillo. Conociendo el ancho de la cinta, solo es necesario instalar un gálibo sobre la cinta, que debe operar a una velocidad constante. Conociendo esta velocidad, se puede determinar el tiempo de funcionamiento necesario para alimentar una amasada. Los dosificadores volumétricos se instalan generalmente justo debajo del silo o la tolva. El material a dosificar se carga directamente en una pequeña cinta llamada extractora.

Este procedimiento presenta varias ventajas, como un bajo coste, una gran simplicidad, poco mantenimiento y un reducido espacio de ocupación. Sin embargo, también presenta inconvenientes, como la imprecisión causada por los esponjamientos variables de las arenas, la irregularidad en los caudales sobre la cinta y las posibles inconsistencias en la caída del material a través de las trampillas. Según los fabricantes, los errores de medida entre las cantidades programadas y las obtenidas son inferiores al ±2 %.

Dosificación por peso

La dosificación ponderal se ha convertido en el método preferido tanto para cementos como para áridos, gracias a su mayor precisión y facilidad de implementación en comparación con la dosificación volumétrica. Existen varias opciones para realizar este proceso cuando las tolvas se encuentran en línea. Se pueden utilizar básculas individuales que alimentan el material mediante una cinta transportadora (Figura 3) o una báscula móvil que se traslada entre diferentes tolvas (Figura 4). Otra alternativa es una báscula con cinta extractora que utiliza una única tolva pesadora larga y estrecha que se vacía al activar una cinta transportadora ubicada en el fondo (Figura 5). Para los compartimentos correspondientes, las compuertas de sector son las más comúnmente utilizadas y pueden accionarse de forma manual, eléctrica, neumática o hidráulica. En algunos casos, las compuertas se reemplazan por alimentadores electromagnéticos o alimentadores de cinta transportadora.

Básculas independientes: Se trata de un pesaje simultáneo, en el que cada componente o árido dispone de su propia báscula y todas ellas descargan el material en una cinta transportadora que lo lleva al skip de la mezcladora. Este método proporciona una alta precisión y productividad.

Figura 3. Básculas independientes bajo tolvas en línea

Báscula móvil: Se trata de un procedimiento más lento que el de las básculas independientes. La báscula se desplaza de una tolva a la siguiente. Se realiza un pesaje acumulativo o por adición, en el que los componentes se pesan secuencialmente en la misma báscula. Cuando la aguja del dial alcanza la cantidad requerida para el primer árido, se cierra su compuerta y se abre la del siguiente, lo que permite ahorrar espacio y reducir los costes de instalación e inversión. Estos sistemas suelen ser menos precisos que las básculas independientes, especialmente cuando se pesa el cemento al final del proceso.

Figura 4. Báscula móvil bajo tolvas en línea

Báscula con cinta pesadora: También existen sistemas de pesaje continuo para áridos, como las cintas pesadoras, que actúan como medidores de caudal. Una cinta pesadora consta de una báscula que mide el peso de un elemento de la cinta (por ejemplo, la reacción de un rodillo), un indicador de esfera y un totalizador, generalmente digital. Este totalizador se acciona mediante un motor cuya tensión de alimentación depende de la velocidad de la cinta y de la carga indicada por el dispositivo de pesaje. Estos sistemas, conocidos también como básculas o rodillos integradores, permiten reducir la altura de las plantas de producción, aunque su precisión varía entre el 0,5 % y el 1 %. Este tipo de báscula permite una dosificación más rápida y es especialmente útil en instalaciones de prefabricados, donde se manejan muchos tipos de áridos, así como en centrales de dosificación para hormigoneras sobre camión.

Figura 5. Báscula con cinta pesadora

Cuando las tolvas verticales descargan sobre una misma báscula, puede haber un sistema de pesaje aditivo, tal y como se ha descrito con la báscula móvil y sistemas de pesaje sustractivo. En este último caso, se llena la báscula y se determina el peso total; luego, se abre y se cierra la compuerta hasta que la aguja marque la diferencia deseada. Este método simplifica la instalación, ya que no requiere una tolva superior ni dosificación por compuertas.

La báscula más aceptada es la de sistema de suspensión en cuatro puntos, que evita errores de peso causados por el descentrado de la carga en el recipiente. Aunque la báscula romana de cursor es económica y precisa, la balanza de resorte con índice se ha vuelto más común para áridos y cemento, ya que permite realizar múltiples pesadas aditivas y llevar a cabo un control adecuado en vacío, lo cual es especialmente importante en el caso del cemento. Además, algunos fabricantes utilizan básculas medidoras de presión, que determinan el peso de manera eléctrica en lugar de recurrir a básculas mecánicas.

En las instalaciones con skip pesador, los áridos no se descargan en una tolva pesadora fija, sino directamente en la cubeta del skip de la mezcladora. Este sistema se emplea principalmente para reducir la altura del equipo de pesaje y para eliminar o minimizar la necesidad de una fosa en el muro de almacenamiento. El principal inconveniente es que no se puede comenzar a dosificar los áridos hasta que el skip esté apoyado en la báscula, lo que generalmente afecta al ciclo de la hormigonera y reduce el número de amasadas por hora, disminuyendo así la producción.

Figura 6. Skip pesador de áridos

Os dejo un vídeo ilustrativo sobre este tema.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Curso:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Dosificación del agua en la fabricación del hormigón

Figura 1. Controlador de agua de turbina de velocidad
Mantener la uniformidad en la medición del agua para el mezclado total requiere, además de garantizar el peso exacto del agua añadida, controlar las fuentes adicionales de agua, como el agua utilizada para el lavado de la mezcladora, el hielo y el agua libre presente en los áridos. Una de las tolerancias especificadas para la precisión en la medición del agua de mezclado es de ±3 %.

El agua es el ingrediente más sencillo de dosificar, ya que su caudal es predecible y no presenta mayores dificultades en su manejo. La dosificación del agua necesaria para el amasado del hormigón puede llevarse a cabo por peso o por volumen. Ambos sistemas se pueden utilizar en las obras y en los talleres de fabricación; sin embargo, las técnicas ponderales son las que ofrecen mayor precisión. Por otro lado, la dosificación volumétrica puede presentar imprecisiones debido a las características inherentes de los dispositivos utilizados y a posibles desajustes en su calibración. Además, los caudales pueden verse afectados por el uso de aguas ricas en cal, que pueden provocar incrustaciones, o por la utilización de aguas muy calientes, que pueden generar vapor.

En la dosificación por peso, las básculas utilizadas para medir el agua consisten en un recipiente que se apoya sobre los brazos de una báscula similar a la empleada para el cemento. Estas básculas suelen estar equipadas con un cabezal de lectura y mecanismos de automatización que regulan tanto la alimentación, a través de una válvula, como la descarga, que se realiza mediante otra válvula o un grifo de esfera. Algunas básculas cuentan con cubas que incluyen un sistema de descarga por aire comprimido, lo que acelera la llegada del agua a la amasadora y reduce los ciclos de fabricación de hormigón. Otras, por su parte, integran dispositivos de llegada del agua con dos velocidades: una rápida, que permite obtener del 90 al 95 % de la cantidad deseada en el menor tiempo posible, y una lenta, que finaliza la dosificación con gran precisión. Cabe destacar que las básculas para agua se utilizan exclusivamente en centrales de hormigón que cuentan con sistemas de corrección de la humedad de la arena y automatismos que permiten gestionar diversas recetas.

Los contadores de agua, ya sean mecánicos o eléctricos, son los dispositivos de dosificación de agua más habituales en las obras, gracias a su bajo coste. Se usa una rejilla delante del medidor para evitar daños provocados por partículas sólidas. Algunos medidores se pueden instalar verticalmente; la instalación de la mayor parte debe ser horizontal. Los medidores deben estar protegidos contra las heladas y contra las ondas de presión (golpe de ariete) en las líneas de agua. Estos contadores deben ser capaces de funcionar con agua salada y permitir el uso de agua caliente. No obstante, los medidores de agua fría, por lo general, no se pueden usar con agua caliente, pero los de agua caliente se pueden usar con fría, a los caudales de esta última, con cierta pérdida de exactitud.

La técnica más sencilla consiste en instalar un contador de agua clásico junto con una válvula manual antes de la entrada del agua en la mezcladora. La lectura del contador debe realizarse desde el punto cero después de cada amasada. En el caso de utilizar contadores con preajuste, se puede suministrar automáticamente una cantidad de agua programada mediante una electroválvula, cuya apertura se activa mediante un botón pulsador o un impulso proveniente de un automatismo general. La lectura de los medidores es inferior a la real a flujos muy bajos, ligeramente mayor a flujos altos y un poco menor con caudales cercanos al máximo.

Los contadores de agua se clasifican en dos tipos:

  • Contadores de paletas: en este tipo, el chorro de agua hace girar una rueda de paletas (Figura 1), y el giro se transmite a través de engranajes desmultiplicadores a la aguja del contador.
  • Contadores de hélice: en este caso, el chorro de agua hace girar una hélice.

Estos contadores pueden operar con presiones que oscilan entre 20 y 60 kPa y la temperatura máxima a la que pueden funcionar alcanza los 85 °C. Además, presentan una precisión del 1 % respecto al peso requerido. Los contadores de agua se pueden clasificar en tres tipos:

  • Manuales: en estos contadores, al abrir una llave de 1/4 de vuelta, se permite el paso del agua hasta alcanzar la cantidad deseada, momento en el cual se cierra la llave. La aguja del contador regresa a cero mediante un botón o una pequeña palanca.
  • Semiautomáticos: en este tipo, se preselecciona la cantidad de agua a dosificar moviendo un botón moleteado. El agua fluye al abrir una electroválvula al presionar un botón o pulsador ubicado en el panel dentro de la cabina de amasado. La aguja móvil se desplaza hasta coincidir con el cero; en ese momento, se cierra un contacto y se desexcita la electroválvula, deteniendo el paso del agua. Para la siguiente dosificación, es necesario volver a seleccionar la cantidad de agua deseada.
  • Automáticos: este tipo de contador funciona de manera similar al semiautomático, con la diferencia de que la aguja parte de cero. Al alcanzar la cantidad previamente seleccionada mediante una aguja fija desplegable, se desexcita la electroválvula. La aguja móvil regresa automáticamente a cero, quedando preparada para un nuevo ciclo.

El mecanismo de funcionamiento de los dispositivos de medición de agua debe garantizar que no haya fugas, goteos ni rastros de agua cuando la válvula esté cerrada. Los tanques de agua de los camiones hormigonera u otras mezcladoras portátiles deben estar diseñados de manera que el dispositivo indicador registre con precisión la cantidad de agua descargada, independientemente de la inclinación de la mezcladora.

Os dejo un vídeo donde se explica la importancia de la dosificación del agua en la fabricación del hormigón.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Precauciones que deben tomarse en las centrales de hormigonado

Figura 1. Central de fabricación de hormigón. https://www.anefhop.com/las-centrales-de-fabricacion-de-hormigon-ya-disponen-de-una-primera-acreditacion-para-la-inspeccion-del-control-de-produccion/

Los acopios de materiales deben realizarse sobre superficies que eviten su contaminación con el suelo. Especialmente si este contiene tierra vegetal o arcillas, es fundamental acondicionar la superficie mediante una solera compactada, una solera de hormigón o un revestimiento de aglomerado asfáltico. Este tratamiento no solo preserva la calidad de los áridos, sino que también genera un ahorro económico significativo, lo que justifica el coste de acondicionamiento y permite una gestión más eficiente del manejo de los materiales.

Es esencial almacenar cada tamaño de árido por separado y cerca de los otros. Esta disposición asegura que no se produzcan mezclas entre ellos, lo que es crucial para evitar la contaminación cruzada que podría alterar la curva granulométrica de los materiales. Mantener la integridad de la curva granulométrica es relevante para garantizar la calidad de la mezcla final del hormigón. Para evitar la mezcla de apilamientos de distintas fracciones granulométricas, se deben emplear tabiques separadores o dejar amplios espacios entre ellos. Asimismo, es esencial establecer acopios separados e identificados para los áridos reciclados y los áridos naturales. Además, se deben tomar las precauciones necesarias para prevenir la segregación, tanto durante el almacenamiento como en el transporte, desde el lugar de acopio hasta las tolvas de dosificación.

Los acopios de materias primas, ya sean silos, tolvas, depósitos o áreas abiertas, deberán estar claramente señalizados con el tipo de material que contienen. Además, deberán cumplir con las condiciones necesarias para prevenir cualquier tipo de contaminación ambiental.

Durante las operaciones de descarga de los camiones y de carga con palas, es importante extremar las precauciones para preservar la integridad de los áridos. Esto permite mantener las características iniciales de los materiales en las condiciones en que fueron recibidos, asegurando así que se cumplan los estándares de calidad en la producción de hormigón.

La relación agua/cemento es un factor determinante para la resistencia del hormigón. Para garantizar que esta relación se mantenga constante, es necesario que los áridos conserven un nivel de humedad uniforme. Proteger los áridos, en especial los de tamaño fino, de los agentes atmosféricos es fundamental para evitar variaciones en la mezcla.

Figura 2. Planta de hormigón. https://aimixgrupo.com/planta-de-hormigon-en-venta/

Queda prohibido almacenar y mezclar cementos de diferentes tipos, clases de resistencia o fabricantes en un mismo silo durante la elaboración del hormigón, ya que ello afectaría negativamente a la trazabilidad y las garantías del producto. Si es necesario cambiar el tipo de cemento en alguno de los silos, se deberá proceder a su limpieza exhaustiva para evitar cualquier riesgo de mezcla.

Al recibir un contenedor de cemento a granel en la planta, es crucial asegurarse de que los terminales de conexión rápida a los silos estén libres de materiales extraños y de humedad. Esto previene la incorporación de contaminantes al cemento almacenado, lo que podría comprometer su calidad y afectar directamente a la resistencia final del hormigón.

El proceso de trasvase de cemento normalmente utiliza un sistema neumático que expulsa el aire al exterior una vez que el cemento ha llegado al silo. Si no se instala un filtro adecuado, el aire liberará partículas de cemento al ambiente, lo que generará contaminación y pérdidas de material en suspensión, lo que subraya la importancia de un mantenimiento regular del sistema de filtrado.

Es necesario realizar un mantenimiento del filtro para que funcione correctamente. Debe seguirse las instrucciones del fabricante, ya que, de lo contrario, el filtro puede volverse ineficaz e incluso perjudicial para el proceso. Este aspecto es fundamental para garantizar que el cemento llegue a los silos en condiciones óptimas.

Si no se puede garantizar que la temperatura del cemento recibido sea inferior a 35 °C, es necesario contar con dos silos de capacidad para la mitad del volumen requerido. De esta manera, se permite que el cemento se enfríe adecuadamente antes de su uso, lo que garantiza el cumplimiento de los requisitos de calidad para el hormigón.

Cuando los silos metálicos tienen una gran capacidad de almacenamiento y el cemento permanece en ellos durante varios días, es esencial instalar equipos de fluidificación. Estos equipos airean el material, lo que permite que el cemento fluya libremente y se comporte prácticamente como un líquido en los equipos de extracción, con lo que se facilita su manejo posterior.

A pesar de contar con sistemas de transporte de cemento bien dimensionados, es habitual no alcanzar los rendimientos programados si no se toman las precauciones adecuadas. Por lo tanto, es crucial implementar medidas preventivas que garanticen la eficacia del sistema en su totalidad.

Además, es fundamental instalar protecciones en las compuertas de guillotina ubicadas cerca de la descarga hacia los tornillos sinfín. Estas protecciones evitan la entrada de agua de lluvia, que puede causar fraguados parciales del cemento y obstrucciones en el paso hacia el sinfín, lo que a su vez puede afectar a la eficiencia del sistema de transporte.

El cemento suele recibirse a granel y ser bombeado directamente a los silos de la planta por parte de los equipos del proveedor. Sin embargo, en ocasiones, debido a dificultades o inseguridades en el suministro, es necesario contar con almacenamiento adicional, lo que conlleva la implementación de un sistema eficiente para gestionar estos volúmenes.

En situaciones que requieran un transporte intermedio, este debe realizarse mediante impulsión neumática. Las distancias y la disposición en planta pueden ser considerables y requerir cambios de alineación, por lo que un sistema eficiente es indispensable para evitar problemas operativos en el proceso de almacenamiento.

El uso de tornillos sinfín en este transporte podría complicar el sistema, ya que el fallo de un único elemento en la cadena podría dar lugar a la paralización total del equipo. Por ello, es fundamental diseñar un sistema que minimice el riesgo de fallos y asegure un flujo continuo del cemento a lo largo del proceso.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

YEPES, V. (2024). Estructuras auxiliares en la construcción: Andamios, apeos, entibaciones, encofrados y cimbras. Colección Manual de Referencia, serie Ingeniería Civil. Editorial Universitat Politècnica de València, 408 pp. Ref. 477. ISBN: 978-84-1396-238-2

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Bombas de hormigón

Figura 1. Bomba de hormigón de tubo oscilante. Putzmeister

Las primeras bombas de hormigón eran de accionamiento mecánico y consistían en un cilindro con un émbolo interno, una válvula de cierre y una tolva de descarga. El transporte del hormigón se realizaba mediante el movimiento alternativo del émbolo, sincronizado con la apertura y el cierre de la válvula. No obstante, presentaban dos problemas principales: funcionamiento discontinuo y baja potencia. También existen sistemas neumáticos con características específicas cuyo uso hoy en día se limita a situaciones muy particulares.

Actualmente, las bombas son de accionamiento hidráulico, lo que les proporciona mayor potencia y soluciona el problema del funcionamiento discontinuo. Estas bombas modernas se dividen en dos tipos: de pistón y de rotor.

Bombas hidráulicas de pistón

Las bombas hidráulicas de pistón funcionan como bombas alternativas con dos cilindros dispuestos en tándem, cada uno conectado de forma distinta a la tubería de impulsión según el tipo de bomba, lo que define su modo de operación. Al retroceder el pistón, el cilindro se llena con hormigón succionado. Al avanzar, el émbolo lo impulsa con una presión prácticamente constante en toda la cámara. Para evitar el funcionamiento discontinuo de un solo pistón, se utilizan dos pistones que se alternan en la impulsión, manteniendo un flujo continuo de hormigón. Los sistemas más avanzados son los siguientes:

  • De válvula corredera: en este sistema, los dos cilindros se conectan a la tubería de impulsión formando una estructura en «Y». El hormigón se impulsa alternativamente a través de cada cilindro, manteniendo un flujo continuo de alimentación. Esto se logra gracias a dos válvulas correderas ubicadas bajo la tolva y al inicio de la tubería de impulsión. Mientras un cilindro aspira el hormigón, el otro lo impulsa. El principal inconveniente de este sistema es el desgaste de las válvulas correderas. Estas bombas de pistones con sistema de correderas permiten desde presiones bajas a muy altas, dando muy buenos resultados en aplicaciones pesadas con alta o muy alta presión.
Figura 2. Válvula de corredera plana. https://www.fabricadoprojeto.com.br/es/tag/bomba-de-concreto/
  • De tubo o trompa oscilante (también conocida como trompa de elefante): En este sistema, ambos cilindros están sumergidos en el hormigón. La conexión entre los cilindros se realiza a través de un tubo o trompa que oscila alternativamente, conectándose sucesivamente a cada cilindro por un extremo, mientras que el otro extremo permanece acoplado a la conducción. Este diseño es más eficiente para bombear hormigones difíciles de manejar. Existen varios tipos de este sistema:
    • Trompa rápida (CS y C): comúnmente utilizada en autobombas. Altas presiones de hormigón (hasta 57 bar) y elevados caudales (hasta 56 m3/h). Permite utilizar sin problemas mangueras largas.
    • Tubo oscilante (S): más frecuente en equipos estacionarios y para bombas de hormigón sobre remolque. Este sistema incorpora cilindros unidos a cilindros hidráulicos que van girando alternadamente. Con hormigón en la tolva, y la bomba funcionando, el hormigón del cilindro se retrae, amoldándose dentro del cilindro. Altos caudales (67 – 80 m3/h) y elevadas presiones (75 – 50 bar). Presenta un rendimiento alto con pocas carreras.
Figura 3. Tubo de transferencia en S y en C. Putzmeister

El principal inconveniente de las bombas de pistón es el desgaste, especialmente debido a los grandes esfuerzos que se aplican sobre el hormigón. Este desgaste se puede reducir disminuyendo el número de emboladas por minuto, lo que no afecta a la producción si se aumenta el tamaño de los cilindros. Por esta razón, existe una tendencia a aumentar el diámetro y la carrera de los cilindros de impulsión.

Sin embargo, cuando el diámetro del cilindro supera el de la tubería, es necesario incorporar estrechamientos, lo que provoca pérdidas de carga y aumenta el riesgo de atascos en esos tramos. Para contrarrestar estos problemas, se busca facilitar el acceso para el mantenimiento.

Bomba peristáltica o de rotor para hormigón

Las bombas peristálticas o de rotor para hormigón están compuestas por dos rodillos de presión giratorios, instalados en una carcasa, cuyo interior se encuentra a una presión inferior a la del exterior. Al girar, los rodillos comprimen el vacío en una manguera flexible fabricada con malla de acero de larga duración, a través de la cual se impulsa el hormigón. La operación se realiza en un vacío de 0,8-0,9 bar y, de esta forma, el tubo recupera su forma produciendo el efecto de succión.

Figura 4. Bomba peristáltica. https://www.putzmeister.com/es/web/european-union/pumps-for-concrete

Así, debido a la diferencia de presiones entre la carcasa y el agitador, el hormigón sufre un efecto de succión que hace que fluya de forma constante hacia la manguera. El caudal depende del diámetro de la tubería y de la velocidad de rotación del rotor. A diferencia de las bombas de pistón, la unión entre la manguera y la conducción es directa, sin desvíos ni cambios de sección.

La presión de bombeo es media o baja, con una muy buena estanqueidad, un mantenimiento sencillo y donde la pieza que más se desgasta es el propio rotor y la manguera flexible. Sin embargo, solo se pueden bombear hormigones muy trabajables.

El equipo puede montarse en un camión y la bomba hidráulica que mueve el rotor puede estar acoplada al motor diésel del camión. En caso de ir la bomba remolcada, dispone de un motor propio de accionamiento.

Figura 5. Llenado del rotor de la bomba

Principales ventajas:

  • Economía
  • Simplicidad de funcionamiento.
  • Sencillez en el acoplamiento y la regulación.
  • Las piezas que más se desgastan son la válvula y, en menor medida, la manguera, que debe reemplazarse relativamente a menudo debido al desgaste que sufre, al cabo de unos 2000-2500 m3. Además, estos primeros fallos pueden apreciarse por las manchas que las salpicaduras de hormigón producen en las ventanas de la carcasa.

Aplicaciones:

  • Para obras pequeñas o medianas con alcances no excesivos (20-25 m).
  • Posibilidad de instalación en equipos móviles o estacionarios.
  • Posibilidad de uso para gunitado por vía húmeda.

A modo de resumen tenemos el siguiente cuadro comparativo entre los distintos sistemas de bombeo:

Tabla 1. Comparación entre las principales bombas de hormigón (Tiktin, 1998)

Características Sistema de bombeo
Pistón de válvula corredera Pistón de trompa/ oscilante Rotor
Presión bombeo Baja – Muy alta Baja – Alta Baja – Media
Estanqueidad Buena Buena Muy buena
Pérdidas salida En estrechamientos y tubo pantalón En estrechamientos Solo con manguera desgastada
Piezas de mayor desgaste Pistones

Válvulas

Pistones

Tubo oscilante

Manguera flexible

Rotor

Condiciones de mantenimiento Recambio dificultoso al ser piezas poco accesibles Recambio sencillo

Piezas pesadas

Mantenimiento sencillo

Vigilar la manguera

Aplicaciones Bombeos de alta y muy alta presión Bombeos de media presión

Hormigones difíciles

Bombeo medio-ligero

Gunitado

Bombeo de agua

Os dejo a continuación unos vídeos donde podemos ver el funcionamiento de este tipo de bombas. El primero de ellos muestra el funcionamiento de un modelo de tubo oscilante S.

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

BUSTILLO, M. (2008). Hormigones y morteros. Fueyo Editores, Madrid, 721 pp.

CALAVERA, J.et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

FERNÁNDEZ CÁNOVAS, M. (2004). Hormigón. 7ª edición, Colegio de Ingenieros de Caminos, Canales y Puertos. Servicio de Publicaciones, Madrid, 663 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València.

MONTERO, E. (2006). Puesta en obra del hormigón. Exigencias básicas. Consejo General de la Arquitectura Técnica de España, Madrid, 750 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Cursos:

Curso de fabricación y puesta en obra del hormigón.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.