Silos fijos de cemento

Figura 1. Silo de cemento atornillado. https://www.machinio.es/anuncios/80213364-silo-de-cemento-vertical-de-200-toneladas-silo-de-hormigon-en-esmirna-turquia

Durante mucho tiempo, el cemento se ha suministrado en sacos de papel. Sin embargo, en la actualidad, en la mayoría de los casos, se transporta a granel en camiones cisterna y se almacena en silos herméticos que forman parte integral de las centrales. Los silos se pueden clasificar según su movilidad en fijos y móviles. En este artículo se describen las características principales de los silos fijos.

Los silos fijos de cemento suelen ser depósitos cilíndricos metálicos que terminan en la parte inferior con un cono donde se encuentra la base de salida. La extracción en los silos de cemento se realiza por gravedad, con un ángulo de inclinación en el cono inferior de aproximadamente 50 grados. Este diseño asegura un flujo eficiente del material, permitiendo que el cemento se desplace de manera constante y sin obstrucciones hacia la salida del silo​. El conjunto se apoya en una estructura de perfiles con una altura variable, siendo muy importante formar unos buenos cimientos para evitar caídas de silos.

Estas instalaciones ofrecen varias ventajas en comparación con el almacenamiento tradicional en sacos, especialmente cuando la producción horaria del hormigón debe superar los 10 m³:

  • Ahorro en la compra de cemento: Se puede obtener una reducción de costos entre el 10% y el 15%.
  • Reducción de pérdidas de material: Se evita el desperdicio de cemento causado por sacos rotos o mojados.
  • Dosificación precisa: Permite una dosificación regulable para cualquier cantidad, incluyendo múltiplos de 50 kg e incluso 25 kg.
  • Incremento de la productividad: El cemento está inmediatamente disponible, lo que mejora la eficiencia operativa de la planta.
  • Economías en la manipulación: Se reducen los costos asociados con la descarga, almacenamiento y manipulación del cemento.

Los inconvenientes son relativamente pocos: aunque los silos tienen generalmente un costo inicial bajo, su precio aumenta considerablemente cuando se les equipa con los dispositivos necesarios para su funcionamiento (chimenea filtrante, sistemas antibóveda, indicadores de nivel, etc.). No obstante, las ventajas económicas y la eficiencia operativa que proporcionan superan con creces estas desventajas en comparación con el método de almacenamiento en sacos.

El material principal para la fabricación del silo de cemento es acero de diversos grados, adecuado para las condiciones del área de instalación, y recubierto con un compuesto protector anticorrosivo. El espesor de las partes del silo varía entre 6 y 10 mm. En áreas con bajas temperaturas invernales, el silo se aísla externamente para mantener el cemento en condiciones óptimas.

Para capacidades entre 25 y 40 t, los silos se construyen de una sola pieza con un diámetro máximo de 2,50 m, lo que permite su transporte por carretera en camiones. También se pueden fabricar en un diseño telescópico, donde una sección del silo se inserta dentro de otra, permitiendo así su transporte en un solo camión y alcanzando capacidades de hasta 60 t. Para capacidades superiores, surgen problemas de transporte, por lo que los silos se construyen de manera desmontable. Estos silos están divididos en secciones ensambladas longitudinalmente con bridas y se atornillan en el sitio de la obra. De esta manera, se pueden alcanzar grandes capacidades de 200, 500 y hasta 1000 t.

La carga se realiza a través de un tubo de 3” o 4” para el llenado neumático, y en la parte superior cuentan con un respiradero o un filtro que permite la salida del aire durante el vaciado o el llenado. Los silos suelen estar equipados con un sistema de fluidificación para evitar la formación de bóvedas en su interior. Este sistema consiste en boquillas que inyectan aire a una presión no superior a 200 kPa.

En la parte inferior, los silos disponen de un cierre de tajadera o de mariposa, que permite cerrar la salida de cemento cuando es necesario realizar una reparación.

Es obligatorio que los silos estén equipados con una escalera con protecciones para acceder a la parte superior, donde también es preceptivo contar con barandillas de seguridad. En algunos casos, los silos de cemento están equipados con indicadores de nivel que informan sobre su estado de llenado. Además, es importante tener en cuenta que cada tipo de cemento debe ser almacenado en silos separados, designados específicamente para un tipo y procedencia determinados. Se deben tomar las precauciones necesarias para evitar cualquier tipo de mezcla.

Os dejo algunos vídeos que, espero, os sean de interés.

Os paso también algunas instrucciones de seguridad respecto a los silos.

Descargar (PDF, 467KB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Indicadores de nivel en los silos de cemento

Figura 1. Silos de cemento. https://www.machinio.es/anuncios/72938606-silo-de-cemento-en-esmirna-turquia

En grandes instalaciones, los silos de cemento se vacían con rapidez, requiriendo una monitorización constante del volumen de su contenido para realizar los pedidos y consumir el cemento según una programación predefinida. Cuando se trata de almacenar productos de cemento, la tecnología también debe abordar desafíos relacionados con la humedad. Esta tiende a aglutinar materiales, provocando problemas como la baja densidad y la constante dieléctrica reducida. Además, durante el invierno, se puede producir condensación, lo que potencialmente afecta a las mediciones. Para medir el nivel de llenado de los silos, se utilizan diversos tipos de indicadores de nivel, como los mecánicos, ultrasónicos, electrónicos, entre otros.

Existe una amplia gama de estos dispositivos, con algunos altamente sofisticados. Se pueden clasificar en dos categorías principales: aquellos que ofrecen una indicación continua del nivel de llenado y aquellos que operan en un modo de “todo o nada”. Estos últimos, además de no proporcionar una medida continua, requieren al menos dos dispositivos para ofrecer dos informaciones clave: si el silo está vacío o lleno. Se pueden colocar en diversas ubicaciones dentro del silo, ya sea en la parte superior, inferior, en el cono o en ambas. Los dispositivos de “todo o nada” pueden ser útiles en instalaciones con múltiples silos que contienen el mismo producto (se activa el segundo cuando el primero está vacío), donde el nivel exacto de llenado no es esencial.

Hasta hace algunos años, los procedimientos más comunes eran los dispositivos mecánicos o electromecánicos. Sin embargo, actualmente, estos han ido siendo reemplazados cada vez más por procedimientos electrónicos. Ya sea que se trate de dispositivos mecánicos o electrónicos, todos operan según dos métodos: por contacto o sin contacto con el material.

Los dispositivos mecánicos pueden ser los siguientes:

  • De paletas, aletas y semiesferas giratorias: Estos dispositivos constan de pequeños motores ubicados cerca de las paredes de los silos, los cuales accionan un eje equipado con paletas. Cuando el material desciende y libera las paletas previamente bloqueadas por el cemento, el motor se activa y se enciende un piloto luminoso como aviso.
  • De contrapeso o palpador: Consisten en un torno que permite descender un peso hasta el nivel del cemento, emitiendo una señal al alcanzar dicho nivel y deteniendo el motor del torno. La longitud del cable proporciona información sobre el nivel de cemento. Una vez conocido, se enrolla nuevamente el cable y se repite el proceso según intervalos programados periódicamente.
  • De diafragmas presiométricos: En este tipo de dispositivo, el circuito eléctrico permanece abierto cuando el cemento ejerce presión sobre el diafragma. Cuando el nivel de cemento desciende y la presión disminuye, el circuito se cierra, activando un piloto luminoso como indicador.
  • De péndulo: Estos dispositivos constan de un péndulo de corta longitud que, al entrar en contacto con el cemento durante el llenado del silo, se inclina, abriendo un circuito eléctrico. De manera similar, al vaciarse el silo, el circuito se cierra, activando un indicador luminoso de nivel, ubicado ya sea en el propio silo o en el panel de control del puesto de mando.

Los dispositivos electrónicos principales comprenden:

  • Detectores de láminas vibrantes: Estos dispositivos generan vibraciones en unas horquillas de acero inoxidable mediante corriente eléctrica. La frecuencia de vibración varía dependiendo de si las horquillas están libres o cubiertas por el cemento, lo que indica si el nivel de este ha superado la altura de las láminas.
  • Medidores de conductividad: Consisten en una columna vertical en el centro del silo con emisores de impulsos eléctricos distribuidos uniformemente en altura. En la pared del silo, receptores miden la conductancia o capacitancia del medio (aire o cemento), lo que permite conocer constantemente la altura del cemento en el silo.
  • Medidores de ondas: Estos dispositivos se basan en la propagación y medición de ondas sónicas, infrasónicas o de isótopos radioactivos. Aunque son precisos, son más costosos y delicados en comparación con los electromecánicos, que son menos precisos pero más robustos.
  • Medidores de ultrasonidos: Utilizan parejas de emisores-receptores ubicados a diferentes alturas en la misma horizontal. Comparando las velocidades ultrasónicas en aire o cemento, es posible determinar la altura del material.
  • Medidores de ondas sónicas: Funcionan según el mismo principio que los anteriores y pueden tener una disposición similar. También pueden situarse en la parte superior del silo, midiendo el tiempo que tarda la onda sónica emitida por el aparato en reflejarse en el cemento y ser captada nuevamente, lo que proporciona una indicación precisa del nivel de cemento.
  • Detectores de nivel de ondas radioactivas: Estos dispositivos se basan en la emisión de rayos gamma desde una fuente en la parte superior del silo y en unos captadores (contadores Geiger) que se activan cuando no están bajo presión del cemento, indicando así su nivel.

Os dejo varios vídeos explicativos que, espero, sean de vuestro interés:

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CORMON, P. (1979). Fabricación del hormigón. Editores Técnicos Asociados, Barcelona, 232 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MORILLA, I. (1992). Plantas de fabricación de hormigón y grava-cemento. Monografías de maquinaria. Asociación Española de la Carretera, Madrid.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tipo de cemento para hormigones resistentes a sulfatos en cimentaciones

Figura 1. Ataque por sulfatos del hormigón. https://anfapa.com/articulos-tecnicos-morteros-de-reparacion-de-hormigon/1164/causas-quimicas-del-deterioro-del-hormigon

Los sulfatos son compuestos químicos que están presentes en una gran variedad de concentraciones en el suelo, aguas subterráneas, aguas superficiales y aguas de mar. Entre los sulfatos de origen natural se encuentran algunos suelos orgánicos, suelos con turbas y algunos suelos arcillosos. Otra fuente natural de sulfatos es el agua de mar, los sulfatos de origen biológico, industrial o minero.

La mayoría de los suelos contienen sulfatos, que pueden presentarse en formas tales como calcio, magnesio, sodio, amonio y potasio, ya sea en el suelo mismo o en las aguas subterráneas. Es habitual que las cimentaciones de las estructuras se sitúen en este tipo de suelos, dándose la posibilidad de que los sulfatos presentes ataquen el hormigón. El deterioro del hormigón debido al ataque de sulfatos se distingue por una reacción química en la que el ion sulfato, actuando como agente corrosivo, interactúa con componentes como aluminato, iones de sulfato, calcio y grupos oxhidrilo del cemento Portland endurecido, así como de otros cementos que contienen clínker Portland, generando principalmente etringita y, en menor medida, yeso, así como una descalcificación. Este fenómeno se denomina “formación diferida de etringita” o etringita “secundaria”. Estas reacciones expansivas también pueden ocasionar fisuras, desprendimientos y pérdida de resistencia en el hormigón, dado que ocurren después de que el hormigón ha alcanzado su estado endurecido y se ha vuelto un cuerpo rígido.

El ataque de los sulfatos derivados de sales es un fenómeno reconocido desde hace décadas. Ya en 1887, Candlot observó el deterioro de los morteros utilizados en la construcción de las fortificaciones de París, particularmente en áreas donde estuvieron en contacto con agua que contenía sulfatos (selenitosas). Esta reacción química genera expansión en la pasta y crea una presión capaz de romperla y, finalmente, desintegrar el hormigón. Es conocido el hecho de combinarse el sulfato cálcico con la alúmina del cemento para formar la sal de Candlot (etringita), sulfo-aluminato cálcico, lo que provoca un notable aumento de volumen.

La naturaleza y alcance de los daños en el hormigón variarán según la concentración de sulfatos, el tipo de cationes presentes en la solución de sulfato (ya sea sodio o magnesio), el pH de la solución y, por supuesto, la microestructura de la pasta de cemento endurecida. Algunos tipos de cemento son más susceptibles al sulfato de magnesio que al sulfato de sodio. El mecanismo principal involucra el reemplazo del calcio en el silicato de calcio hidratado, que forma parte de la matriz de cemento, lo que resulta en la pérdida de las propiedades de unión de la matriz.

Por lo general, los sulfatos en estado sólido no generan un daño significativo al hormigón; sin embargo, cuando se encuentran en forma líquida, pueden penetrar los vacíos de la estructura y reaccionar con los productos de cemento hidratado. Entre los sulfatos, el de calcio tiende a causar menores daños debido a su baja solubilidad, mientras que el sulfato de magnesio representa un riesgo mayor.

La mayoría de estos sulfatos interactúan con el hidróxido de calcio y los aluminatos de calcio hidratados presentes en el hormigón, lo que provoca cambios en el volumen de la pasta de cemento y, en consecuencia, el deterioro de la estructura de hormigón. Además, el sulfato de magnesio, junto con el hidróxido de calcio, puede reaccionar con el silicato de calcio hidratado, lo que lleva a la pulverización del hormigón en masa. En un hormigón poroso, estos ataques encuentran una fácil vía para su acción destructora.

Figura 2. Corrosión en ambiente marino. https://e-struc.com/2017/05/09/patologias-asociadas-la-prescripcion-del-hormigon/

Por otra parte, el hormigón también se ve atacado por los cloruros, que afecta principalmente a la corrosión de las armaduras. Los iones cloruro, ya sean provenientes del agua marina o de las sales utilizadas en el deshielo, tienen la capacidad de penetrar a través de los poros del hormigón, tanto cuando estos están completamente saturados como parcialmente. Esta penetración puede desencadenar diversos fenómenos. En la superficie del hormigón, los efectos del ataque por cloruros se manifiestan mediante una fisuración irregular, que resulta de la exposición de las armaduras y su consiguiente corrosión generalizada. Esto conduce a la desintegración gradual del hormigón. Es muy importante recordar que el ambiente marino se considera agresivo hasta una distancia de 5 km de la costa.

Los cementos resistentes a los sulfatos (SR) o al agua de mar (MR) son muy útiles para obras en contacto con terrenos yesíferos o aguas selenitosas y deben tener bajo contenido en aluminatos. Este tipo de cementos tienen limitado en su composición un contenido en aluminato tricálcico y del alumino-ferrito tetracálcico, según la norma UNE-EN 197-1. Esta limitación en aluminato tricálcico implica un bajo calor de hidratación, menor retracción y un desarrollo más lento de sus resistencias. A cambio, disminuye la trabajabilidad de las mezclas.

Según la vigente Instrucción de Recepción de Cementos (a fecha de hoy, la RC-16), se consideran cementos resistentes a los sulfatos, además de los definidos en el Anejo I relativos a la norma UNE-EN 197-1 (SR), aquellos con la característica adicional de resistencia a los sulfatos definidos en la norma UNE 80303-1 (SRC). Asimismo, se consideran cementos resistentes al agua de mar aquellos con la característica adicional de resistencia al agua de mar definidos en la norma UNE 80303-2.

Se usarán cementos resistentes a los sulfatos en obras de hormigón en masa o armado, siempre que su contenido, expresado en iones sulfato, cuyos contenidos sean igual o mayor que 600 mg/l en el caso de aguas, o 3.000 mg/kg en el caso de suelos. Según el Capítulo 7 del Código Estructural, estos límites se ven superados en el caso de las clases de exposición XA2 y XA3, correspondientes al ataque medio y fuerte en un medio agresivo (no sería, por tanto, necesario un cemento sulforresistente en la clase XA1). En el caso de que un elemento estructural de hormigón en masa, armado o pretensado se encuentre sometido al ataque de agua de mar, el cemento a emplear deberá tener la característica adicional de resistencia al agua de mar o, en su defecto, la característica adicional de resistente a sulfatos. Lo anterior no será de aplicación en el caso de que se trate de agua de mar o el contenido en cloruros sea superior a 5.000 mg/l (Art. 43.3.4.1 del Código Estructural).

En el caso de elementos de hormigón en masa en contacto con agua de mar, y por tanto sometidos a una clase de exposición XA2, y en el caso de elementos de hormigón armado o pretensado que vayan a estar sometidos a una clase de exposición XS2 o XS3, se utilizará un cemento con la característica adicional MR, SR o SRC, según la Instrucción para la recepción de cementos vigente (Art. 43.3.4.2 del Código Estructural).

El Código Estructural recoge en su Anejo 6 las recomendaciones para la selección del tipo de cemento a emplear en hormigones estructurales. Este anejo no hace más que aconsejar, con carácter general, las condiciones que debe cumplir el cemento para su empleo según la instrucción vigente para la recepción de cementos. Además, deberá elegirse el tipo de cemento considerando la aplicación del hormigón, las circunstancias del hormigonado y las condiciones de agresividad ambiental a las que va a estar sometido el elemento de hormigón.

La aplicación estructural, en el caso de las cimentaciones, el Código diferencia entre las ejecutadas con hormigón en masa y las realizadas con hormigón armado. En ambos casos, es necesario cumplir las prescripciones de la vigente Instrucción de Recepción de Cementos relativas al empleo de la característica adicional de resistencia sulfatos (SR o SRC) o al agua de mar (MR), cuando corresponda.

  • En el caso de cimentaciones de hormigón en masa, son muy adecuados los cementos comunes tipo CEM IV/B, siendo adecuados el resto de cementos comunes, excepto los CEM II/A-Q, CEM II/B-Q, CEM II/A-W, CEM II/B-W, CEM II/A-T, CEM II/B-T y CEM III/C. En todos los casos es recomendable la característica adicional de bajo calor de hidratación (LH).
  • Si se trata de cimentaciones de hormigón armado, son muy adecuados los cementos comunes tipo CEM I y CEM II/A, siendo adecuados el resto de cementos comunes a excepción de los CEM III/B, CEM III/C, CEM IV/B, CEM II/A-Q, CEM II/B-Q, CEM II/A-W, CEM II/B-W, CEM II/A-T y CEM II/B-T.
Figura 3. Cemento sulforresistente CEM I 42,5 R-SR5

Atendiendo a la clase de exposición, los tipos de cementos recomendados para la clase XA (ataque químico al hormigón por sulfatos) son los mismos que los aconsejados para la clase XS (corrosión de las armaduras por cloruros de origen marino). En ambos casos, son muy adecuados los cementos CEM II/S, CEM II/V (preferentemente los CEM II/B-V), CEM II/P (preferentemente los CEM II/B-P), CEM II/A-D, CEM III, CEM IV (preferentemente los CEM IV/A) y CEM V/A. Se recuerda que en la clase de exposición XS, es necesario el empleo de cementos que cumplan las prescripciones relativas a la característica adicional de resistencia al agua de mar (MR).

Para el caso de las clases XA2 o XA3 (moderada o alta agresividad química), es necesario el empleo de cementos que cumplan las prescripciones relativas a la característica adicional de resistencia a los sulfatos (SR o SRC), tal y como establece el articulado del Código. En los casos en que el elemento esté en contacto con agua de mar será únicamente necesario que cumplan las prescripciones relativas a la característica adicional de resistencia al agua de mar (MR).

Una relación agua/cemento baja en la dosificación de un hormigón se ve menos afectada por los sulfatos que si es alta, pues provoca que el hormigón sea menos permeable. Además, un contenido de cemento elevado garantiza una mayor durabilidad del hormigón. Es por ello que la Tabla 43.2.1.a del Código indica una relación agua/cemento máxima de 0,50 para las clases XS1 (expuesto a aerosoles marinos, pero no en contacto con el agua del mar) y XS2 (permanentemente sumergido en agua de mar), que se reduce a 0,45 en XS3 (zonas de carrera de mareas o sapicaduras). El contenido mínimo de cemento (kg/m3) será de 300, 325 y 350 para XS1, XS2 y XS3, respectivamente. En el caso de ambiente XA1 (débil agresividad química) y XA2 (moderada agresividad química), la máxima relación agua/cemento es de 0,50, mientras que en XA3 (alta agresividad química), es de 0,45. El contenido mínimo de cemento (kg/m3) será de 325, 350 y 350 para XA1, XA2 y XA3, respectivamente.

La Tabla 43.2.1.b del Código indica la resistencia característica mínima alcanzable para un hormigón fabricado con un cemento de categoría resistente 32,5 R con los contenidos mínimos de cemento y máxima relación agua/cemento indicados en la Tabla 43.2.1.a del Código. Para hormigón en masa, la exposición XS no presenta mínimos, mientras que para hormigón armado, es de 30 N/mm² para XS1 y XS2, y de 35 N/mm² para XS3. En la exposición XA1 y XA2, la resistencia mínima es de 30 N/mm² tanto en hormigón armado o en masa, mientras que para XA3, es de 35 N/mm², en cualquier caso.

Además, una adecuada colocación del hormigón, con un control del vibrado y del curado, pueden mejorar su resistencia a los sulfatos, siempre y cuando se cumplan con las condiciones anteriormente mencionadas. Tampoco debe olvidarse que, en el caso del hormigón armado, deben guardarse unos recubrimientos mínimos que dependerán del tipo de cemento usado, de la vida útil de proyecto y de la clase de exposición, según se desprende del Capítulo 9 del Código Estructural, relativo a la durabilidad de las estructuras de hormigón.

Tabla. Requisitos de dosificación y de resistencia mínima esperada del hormigón para clases de exposición XS y XA, según el Código Estructural.

Os dejo unos vídeos explicativos.

También os dejo un artículo, que creo de interés.

Descargar (PDF, 4.68MB)

Referencias:

ACI COMMITTEE 304. Guide for Measuring, Mixing, Transporting, and Placing Concrete. ACI 304R-00.

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

GALABRU, P. (1964). Tratado de procedimientos generales de construcción. Obras de fábrica y metálicas. Editorial Reverté, Barcelona, 610 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigoneras transportadoras o camiones hormigonera

Figura 1. Camión hormigonera. https://commons.wikimedia.org/wiki/File:Cami%C3%B3n-hormigonera_Mercedes-Benz_2224.jpg

El hormigón producido en una planta de producción de hormigón se transporta a las obras donde se utilizará mediante camiones hormigonera (Figura 1). Estos vehículos, aunque diseñados para agitar, se utilizan con mucha frecuencia como mezcladores. Consisten principalmente en una cuba cilindro-cónica construida con chapa de alta resistencia al desgaste y de gran capacidad (de 6 a 10 m³), cuyo eje está inclinado aproximadamente 15º respecto a la horizontal. Estos camiones tienen dos modos de rotación: uno para cargar y mezclar, y otro opuesto para descargar. La mayoría de las autohormigoneras se emplean en centrales de venta de hormigón.

El principio de amasado es similar al de las mezcladoras de tambor horizontal con inversión de marcha. En el interior de la cuba, se encuentran dos hileras de espirales helicoidales de acero con piezas de desgaste fijadas a la pared. El material ingresa a la cuba a través de una tolva en la parte superior de la boca y sale por la parte inferior, cayendo primero en una tolva y luego en una canaleta de distribución plegable y orientable para el transporte.

La cuba está montada sobre un chasis general que se sitúa en la plataforma del camión. Los componentes giratorios incluyen una banda zunchada en la parte superior, que se apoya sobre dos rodillos, y un eje en el fondo de la cuba, que gira en un cojinete montado en un contrafuerte del chasis.

Figura 2. Detalle de las espiras de un camión hormigonera

La cuba presenta dos capacidades operativas distintas (eje 8/6,6):

  • En su función de agitador, se utiliza para recibir el hormigón previamente mezclado en la central y agitarlo durante el transporte, con una capacidad mayor de 8 m³.
  • En su rol de mezcladora, recibe la mezcla seca de la central de dosificación y la amasa durante el transporte, con una capacidad menor de 6,6 m³.

El volumen del tambor o cuba debe ser mayor, con una relación aproximada de 10 m³/8 m³/6,6 m³.

Para las operaciones de amasado o simplemente de agitación, la cuba gira en dirección que desplaza los productos hacia el fondo de la misma. La rotación en sentido contrario garantiza un vaciado total. Es común contar con dos velocidades para el proceso de amasado y una para el de descarga:

  • La primera velocidad, más lenta, se emplea para la agitación durante el transporte, cuando el material ya está amasado, ya sea porque se cargó hormigón mezclado en la central o porque se ha amasado durante parte del trayecto un material previamente cargado sin amasar.
  • La segunda velocidad, más rápida, se utiliza durante la carga de la hormigonera, la cual debe ser lo más rápida posible. También se emplea para el amasado en el caso de que se haya cargado dosificación sin amasar.
Tabla. Velocidades de rotación de la cuba para distintas operaciones

Los sistemas utilizados para el movimiento de la cuba son los siguientes:

  • Motor auxiliar, generalmente diésel, independiente del camión, lo que conlleva las siguientes ventajas:
    • Mayor durabilidad del motor del camión.
    • En caso de avería del camión, la hormigonera puede seguir funcionando sin que el hormigón fragüe.
  • Uso del mismo motor del camión. La caja de cambios cuenta con una salida lateral a la que se acopla una transmisión hidráulica que acciona el tambor. El inconveniente es que requiere camiones con una potencia considerablemente mayor, pero las ventajas son las siguientes:
    • Se utiliza un solo motor diésel, lo que resulta en un menor consumo de combustible.
    • Reducción de costes y menor necesidad de reparaciones y repuestos.
Figura 3. Partes de un camión hormigonera

El sistema de agua está compuesto por los siguientes elementos:

  • Depósito de agua con una capacidad de 500 a 700 litros, dependiendo de la capacidad requerida. Cuando no se realiza el mezclado en la central, el agua de amasado se añade al final del trayecto, unos minutos antes del vaciado. Esta práctica maximiza las ventajas del conjunto formado por las centrales y las hormigoneras.
  • Bomba de agua de tipo centrífugo.
  • Contador de agua y tuberías de distribución.

En cuanto al fraguado del cemento, este está influenciado por la temperatura ambiente y la calidad del mismo. Sin embargo, suele comenzar aproximadamente a los 20 minutos en climas cálidos y a los 40 minutos en invierno.

La norma C94-71 de la American Society for Testing and Materials (ASTM) establece un tiempo máximo de transporte de hormigón de 90 minutos cuando se utiliza un camión con agitador, y de 45 minutos cuando se transporta en camiones basculantes sin agitador. Por otro lado, el Código Estructural recomienda que, en condiciones normales, el intervalo de tiempo entre la adición del agua de amasado al cemento y a los áridos, y la colocación del hormigón, no debe exceder de una hora y media.

En la práctica, cuando las distancias a recorrer superan los 90 minutos, se opta por transportar mezclas secas y añadir agua al final del trayecto. Sin embargo, esta solución compromete la correcta dosificación del agua en la central.

Os dejo algunos vídeos sobre esta máquina.

Os dejo también la NTP 93: Camión hormigonera, que es una guía de buenas prácticas para el manejo seguro de la máquina.

Descargar (PDF, 175KB)

Referencias:

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Necesidad del curado del hormigón

Figura 1. Curado del hormigón. https://ingeniero-de-caminos.com/curado-del-hormigon/

El término “curado”, según la DRAE, significa endurecido, seco, fortalecido o curtido. En el ámbito del hormigón, se refiere a las acciones tomadas para facilitar la hidratación del cemento. Esto implica prevenir la pérdida de humedad del hormigón por evaporación y, si es necesario, proporcionar humedad adicional. Además, se busca mantener una temperatura favorable durante el fraguado y primeros días de endurecimiento.

Si el hormigón se dejara secar al aire, su resistencia podría disminuir hasta en un 40%, al tiempo que aumentaría la porosidad y la probabilidad de fisuras debido a la retracción. Los métodos empleados en el proceso de curado deben ser suficientes para evitar la desecación del hormigón, promover un adecuado endurecimiento, prevenir la fisuración debido a la contracción térmica y hacer que el hormigón sea resistente a las heladas prematuras.

Durante la hidratación del cemento, los granos se cubren con un gel de cemento, producto de la reacción, que forma una red uniendo los granos de cemento anhidro. El agua requerida para la hidratación del cemento Portland es igual a 0,45 veces la masa de cemento hidratado. Esta cantidad se divide entre el agua químicamente combinada (equivalente a 0,25 veces la masa de cemento) y el agua adsorbida en las superficies y espacios de la estructura del gel (0,20 veces la masa de cemento).

Es importante señalar que la hidratación solo ocurre en un entorno casi saturado de agua. Por lo tanto, es necesario agregar agua adicional (durante el proceso de curado) para mantener saturados los poros capilares de la pasta. De esta manera, el cemento continuará hidratándose hasta que todo el espacio disponible se llene con los productos de la reacción o hasta que se complete la hidratación de todo el cemento.

El desarrollo de la resistencia y durabilidad del hormigón radica en el relleno de los poros entre las partículas de cemento con los productos de la hidratación. Esto se consigue partiendo de un volumen inicial de poros muy reducido, lo que se logra mediante una baja relación agua/cemento (a/c), y mediante un curado húmedo para hidratar una cantidad significativa de cemento.

Si el agua de amasado excede considerablemente la cantidad necesaria para la hidratación, es crucial garantizar que no se evapore durante el proceso de curado. En casos donde la proporción inicial de agua es menor, se requerirá un curado adicional con agua para mantener la hidratación. Por ello, en hormigones con una relación a/c igual o superior a 0,50, el uso de una membrana impermeable, sin necesidad de agregar agua externa, puede ser un método efectivo de curado.

En el hormigón con baja relación a/c, ocurre el fenómeno de la autodesecación, que implica el secado interno del hormigón debido al consumo de agua durante la hidratación. Este problema suele estar asociado con mezclas de a/c iguales o menores a 0,45, para las cuales se requiere un curado húmedo. No obstante, con valores de a/c tan bajos, la permeabilidad de la pasta suele ser tan reducida que el agua aplicada externamente no penetra más allá de la capa superficial, la única que se beneficia del proceso de curado.

Figura 2. Curado mediante láminas para evitar la desecación. https://deepex.net/curado-del-hormigon/

El curado es una etapa fundamental en la ejecución de elementos de hormigón, destacándose como una de las más significativas debido a su influencia determinante en la resistencia y demás características del producto final. La carencia de un adecuado proceso de curado resulta especialmente perjudicial para la durabilidad de la estructura, pues esta depende en gran medida de la impermeabilidad de las capas exteriores del hormigón, las cuales son las más sensibles a un curado defectuoso.

Es crucial tener en cuenta que el interior de las piezas (a menos que sean extremadamente delgadas) retiene la humedad durante periodos prolongados y es menos vulnerable a los efectos de un curado deficiente en comparación con las capas superficiales. En consecuencia, si el hormigón no recibe un adecuado proceso de curado, la capa de recubrimiento de las armaduras se verá afectada, volviéndose porosa y permeable, lo que significativamente acortará la vida útil de la estructura.

En líneas generales, los métodos que suministran agua resultan más eficaces que aquellos que buscan evitar su evaporación. La duración y la intensidad del proceso de curado dependen principalmente de la temperatura y la humedad del ambiente, así como de la acción del viento y la exposición directa al sol. Otros factores importantes incluyen el tipo y la cantidad de cemento, la relación a/c, y especialmente las condiciones de exposición de la estructura en servicio. A medida que estas condiciones sean más adversas, se requerirá un período de curado más prolongado.

En un artículo anterior, expusimos el uso del nomograma de Menzel para evitar el agrietamiento plástico durante el fraguado del hormigón. Otro artículo de interés es el relativo a la terminación, texturado y curado del pavimento de hormigón.

Figura 3. Nomograma de Menzel.

Os dejo algunos vídeos que os pueden ser de interés.

Referencias:

CALAVERA, J. et al. (2004). Ejecución y control de estructuras de hormigón. Intemac, Madrid, 937 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València, 189 pp.

MENZEL, C.A. (1954). Causes and Prevention of Crack Development in Plastic Concrete. Proceedings of the Portland Cement Association, Vol. 130:136.

LERCH, W. (1957). Plastic shrinkage. ACI Journal, 53(8):797-802.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Hormigón reforzado con fibra de vidrio

Figura 1. Fibra de vidrio. https://fibereagle.com/refuerzo-de-hormigon-con-fibra-de-vidrio/

El mortero de cemento reforzado con fibra de vidrio (GRC, en inglés), combina un mortero de cemento con fibras cortas de vidrio. Su evolución comenzó en la década de 1950 con la idea de incorporar fibras de vidrio en lugar de usar armaduras de hormigón. Sin embargo, el GRC actual surgió en los años 60 debido al reemplazar las fibras de amianto, que eran cancerígenas. Los primeros tipos empleaban fibras de vidrio basadas en sílice y mortero de cemento Portland. Sin embargo, estas propiedades a corto plazo se deterioraban debido a la corrosión de las fibras por el cemento. Para ampliar las aplicaciones del GRC, se desarrollaron fibras de vidrio resistentes a ambientes alcalinos, con circonio como elemento base, denominadas “alcali resistant “o AR.

El GRC sobresale por su resistencia mecánica y capacidad de adaptación en aplicaciones no estructurales, lo que lo convierte en un valioso recurso en proyectos de ingeniería civil y arquitectura que buscan soluciones estéticas y funcionales. Su flexibilidad en el diseño lo hace idóneo para la creación de diversas formas con grosores de aproximadamente 10 mm, sin el uso de armaduras. En la ingeniería civil, el GRC se aplica a elementos prefabricados para saneamiento, encofrados perdidos, pantallas de aislamiento acústico y revestimiento de túneles. La versatilidad de este material, en términos de diseño, permite la creación de encofrados perdidos con mosaicos y formas sumamente complejas.

Figura 2. Fachada de GRC para el Palacio de Justicia de Córdoba. https://arqzon.com.mx/2021/06/23/grc-concreto-reforzado-fibra-de-vidrio-en-la-construccion/

El mortero reforzado con fibra de vidrio se caracteriza por su resistencia al agrietamiento y a la tracción mecánica. Además, es eficaz en la prevención de daños por impacto y aumenta su capacidad de deformación, lo que contribuye a una mayor resistencia a las tensiones externas. También destaca su resistencia a la congelación, la descongelación, la fatiga, el peso y los cortes. Además, reduce significativamente la segregación, el sangrado y las filtraciones de líquidos, mejorando la integridad de las estructuras en las que se utiliza.

Las fibras de vidrio suelen tener un módulo de elasticidad a 25 °C de 70 GPa, una resistencia a tracción de una fibra de 3600 MPa (de 1750 MPa si es un haz de fibras) y una deformación en rotura del 2%. Es importante destacar que las fibras de vidrio no son monolíticas, pues se componen por un haz de alrededor de 200 filamentos de vidrio, cada uno con un diámetro de unos 10-20 μm.

La cantidad necesaria de fibra de vidrio varía en función del método de fabricación. Hay que prestar cuidado a que las cantidades de cada componente sea la justa. Así se evita que la fibra de vidrio aparezca en la superficie, al tiempo que se consigue obtener la máxima resistencia. Si el GRC se proyecta, se añade una fracción volumétrica del 5% de fibras de vidrio. Cuando se opta por una mezcla premezclada de fibras y mortero de cemento, la fracción se reduce al 3,5%. La longitud de las fibras empleadas se encuentra en el rango de 25 a 40 mm. El cemento Portland es prácticamente el único empleado en la fabricación de GRC. La arena suele ser de origen silíceo. Además, suele añadirse un plastificante que confiere al mortero la viscosidad adecuada. Asimismo, se pueden introducir diversos aditivos y pigmentos para lograr que los elementos adquieran el aspecto deseado.

Por lo general, se emplean cantidades iguales de cemento y arena, con una relación agua/cemento en torno a 0,4. No obstante, esta relación puede ajustarse para lograr la fluidez adecuada al proceso de fabricación. Para evitar un exceso de agua, se recurre a superplastificantes. Para mantener las características del material en etapas avanzadas de su vida útil, en ocasiones se recurre al humo de sílice o al metacaolín. Es importante destacar que el GRC cambia sus propiedades con el paso del tiempo, con una pérdida apreciable de ductilidad y capacidad de carga.

Hoy día se emplean tres métodos principales para la fabricación del GRC: la proyección conjunta del GRC, la mezcla previa de GRC y la mezcla previa de GRC con posterior proyección. Cada uno de estos métodos presenta sus propias variantes y particularidades. Veamos las características de cada uno de ellos.

Fabricación por proyección conjunta

La proyección se ejecuta mediante una pistola que dispara las fibras y el mortero por orificios separados, los cuales se unen y mezclan en el molde. Una bobina suministra una cuerda de fibras de vidrio que se corta a la longitud deseada en el cabezal de la pistola. Por su parte inferior fluye el mortero a través de una manguera. La consistencia del mortero debe ser fluida para facilitar la proyección. Hay dos posibilidades, la proyección manual y la proyección automática.

En la proyección manual, se aplica un desencofrante en el molde y se efectúa una primera pasada depositando el material mediante movimientos oscilantes. Una vez que el molde presenta una fina capa del material, se utiliza un rodillo helicoidal para que el mortero y las fibras se adapten a la forma del encofrado. La proyección continúa hasta alcanzar el espesor deseado, y finalmente, se emplea una llana sobre la superficie libre para lograr uniformidad. Requiere una gran cantidad de mano de obra, pero este método ofrece resultados de alta calidad, particularmente cuando el operario posee la experiencia adecuada. En España, este método de fabricación es el habitual.

La proyección automática se emplea en la fabricación de paneles rectangulares de formas simples y planas. Aunque es menos versátil que el método manual, también existen dos variantes: una utiliza un cabezal de proyección móvil, mientras que el otro implica el movimiento del molde. En ambos casos, se regula la velocidad de proyección para asegurar una distribución precisa del material. Para igualar el espesor de la pieza, se recurre a un sistema automático que pasa una llana, un rodillo u otra herramienta sobre la cara expuesta del material.

La principal ventaja de este método es su capacidad para lograr una mayor producción a un menor costo. Además, el sistema automatizado se ha mejorado mediante moldes con pequeños agujeros que evacuan el exceso de agua. Esto reduce la relación agua/cemento, aumenta la densidad del material y mejora sus propiedades mecánicas. Otra variante de este método pasa por aplicar una carga en la cara libre del material para que la mezcla se adapte con precisión a los diseños y patrones del molde.

Fabricación por premezclado

El método de premezclado implica la combinación previa del cemento, fibras de vidrio, agua, arena, plastificante y adiciones, antes de verterlos en el molde. Hay que preparar el mortero de cemento y luego incorporar las fibras de vidrio. Para evitar que las fibras se enreden, se sumergen en aditivos que las lubrican, facilitando su dispersión en la matriz de mortero. Es esencial minimizar el tiempo de mezcla del mortero y las fibras para prevenir la segregación y la pérdida de agua en la mezcla. Una vez se han mezclado los componentes, la pasta se vierte en los moldes. Luego, se someten los moldes a una vibración externa para eliminar burbujas de aire y espacios vacíos. Si es necesario rellenar moldes con cavidades, es preferible la inyección del GRC premezclado, aunque puede dañar las fibras y, a veces, introducir burbujas de aire.

Fabricación por premezclado y proyección

En los últimos años, ha surgido un método conocido como “sprayed premix.” Las fibras de vidrio se integran durante la mezcla del mortero y, posteriormente, se proyectan ambos componentes, ya mezclados, en el molde. A pesar de obtener resultados similares a la proyección tradicional, la calidad de los elementos fabricados depende en menor medida de la destreza del operario; la determinación del contenido de fibra se realiza en peso, más preciso que el método tradicional; se elimina la formación de burbujas en la mezcla, y la maquinaria de proyección se simplifica considerablemente.

Os dejo algún vídeo explicativo que espero os sea de interés.

Referencias:

ACHE (2000). Monografía M-2. Manual de tecnología del hormigón reforzado con fibras de acero.

GÁLVEZ, J.C.; ALBERTI, M.G.; ENFEDAQUE, A.; PICAZO, A. (2019). Fundamentos de hormigón reforzado con fibras. García-Maroto Editores, 51 pp.

SERNA, P. (2007). Recientes ejemplos estructurales de aplicación de hormigón de fibras. Monografía sobre aplicaciones estructurales de hormigones con fibras, pp. 33-47.

Maquinaria y procedimientos de construcción: Problemas resueltos

Os presento el libro que he publicado sobre maquinaria y procedimientos de construcción. Se trata de una completa colección de 300 problemas resueltos, abarcando aspectos relacionados con la maquinaria, medios auxiliares y procedimientos de construcción. Su contenido se enfoca en la mecanización de las obras, costos, disponibilidad, fiabilidad y mantenimiento de equipos, estudio del trabajo, producción de maquinaria, sondeos y perforaciones, técnicas de mejora del terreno, control y abatimiento del nivel freático, movimiento de tierras, equipos de dragado, explosivos y voladuras, excavación de túneles, instalaciones de tratamiento de áridos, compactación de suelos, ejecución de firmes, maquinaria auxiliar como bombas, compresores o ventiladores, cables y equipos de elevación, cimentaciones y vaciados, encofrados y cimbras, fabricación y puesta en obra del hormigón, organización y planificación de obras.

Es un libro, por tanto, muy enfocado a los ámbitos de la ingeniería de la construcción, tanto en el ámbito de la edificación, de la minería o de la ingeniería civil. Además, se incluyen 27 nomogramas originales y 19 apéndices para apoyar tanto a estudiantes de ingeniería o arquitectura, como a profesionales que enfrentan desafíos similares en su práctica diaria en obra o proyecto. La colección se complementa con un listado de referencias bibliográficas que respaldan los aspectos teóricos y prácticos abordados en los problemas. Estos problemas son similares a los tratados durante las clases de resolución de casos prácticos en la asignatura de Procedimientos de Construcción del Grado en Ingeniería Civil de la Universitat Politècnica de València (España). Por tanto, el libro resulta adecuado tanto para estudiantes de grado como para cursos de máster relacionados con la ingeniería civil y la edificación.

El libro tiene 562 páginas. Este libro lo podéis conseguir en la propia Universitat Politècnica de València o bien directamente por internet en esta dirección: https://www.lalibreria.upv.es/portalEd/UpvGEStore/products/p_376-7-1

Sobre el autor: Víctor Yepes Piqueras. Doctor Ingeniero de Caminos, Canales y Puertos. Catedrático de Universidad del Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil de la Universitat Politècnica de València. Número 1 de su promoción, ha desarrollado su vida profesional en empresas constructoras, en el sector público y en el ámbito universitario. Ha sido director académico del Máster Universitario en Ingeniería del Hormigón (acreditado con el sello EUR-ACE®), investigador del Instituto de Ciencia y Tecnología del Hormigón (ICITECH) y profesor visitante en la Pontificia Universidad Católica de Chile. Imparte docencia en asignaturas de grado y posgrado relacionadas con procedimientos de construcción y gestión de obras, calidad e innovación, modelos predictivos y optimización en la ingeniería. Sus líneas de investigación actuales se centran en la optimización multiobjetivo, la sostenibilidad y el análisis de ciclo de vida de puentes y estructuras de hormigón.

Referencia:

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

A continuación os paso las primeras páginas del libro, con el índice, para hacerse una idea del contenido desarrollado.

Descargar (PDF, 17.88MB)

Mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio

Acaban de publicarnos en DYNA, revista indexada en el JCR, un artículo sobre la mejora de la evaluación de la sostenibilidad de puentes en entornos agresivos mediante la decisión grupal multicriterio. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo contribuye al campo de la evaluación de la sostenibilidad de los puentes en entornos agresivos mediante la aplicación de técnicas de toma de decisiones grupales en el ámbito de los criterios múltiples. Aborda el desafío de combinar las dimensiones económica, ambiental y social en un único indicador holístico para la toma de decisiones en el diseño de infraestructuras.
  • El estudio evalúa cinco alternativas de diseño diferentes para un puente de hormigón expuesto a un entorno costero utilizando cuatro técnicas de toma de decisiones (ANP, TOPSIS, COPRAS y VIKOR). Los resultados indican que los hormigones que contienen pequeñas cantidades de humo de sílice funcionan mejor a lo largo de su ciclo de vida que otras soluciones que suelen aumentar la durabilidad.
  • La investigación contribuye al desarrollo de herramientas y métodos para evaluar la sostenibilidad de las infraestructuras y guiar las futuras acciones de diseño en diversas estructuras. Se alinea con el enfoque en promover las iniciativas de economía circular y el cumplimiento de los requisitos ambientales y sociales específicos en las licitaciones de proyectos públicos

Abstract:

The construction industry is increasingly recognized as critical in achieving Sustainable Development Goals. Construction activities and infrastructure have both beneficial and non-beneficial impacts, making infrastructure design a focal point of current research investigating how best to contribute to sustainability as society demands. Although methods exist to assess infrastructures’ economic, environmental, and social life cycle, the challenge remains in combining these dimensions into a single holistic indicator to facilitate decision-making. This study applies four decision-making techniques (ANP, TOPSIS, COPRAS, and VIKOR) to evaluate five different design alternatives for a concrete bridge exposed to a coastal environment. The results indicate that concretes containing even small amounts of silica fume perform better over their life cycle than other solutions usually considered to increase durability, such as water/cement ratio reduction or concrete cover increase.

Keywords:

Sustainable design, bridges, life cycle assessment, Analytic Network Process, TOPSIS, VIKOR, COPRAS, Multi-criteria decision-making

Reference:

NAVARRO, I.J.; MARTÍ, J.V.; YEPES, V. (2023). Enhancing sustainability assessment of bridges in aggressive environments through multi-criteria group decision-making. DYNA, 98(5):477-483. DOI:10.6036/10816

Os paso el artículo en abierto, tanto en inglés como en español.

Descargar (PDF, 520KB)

Descargar (PDF, 390KB)

Cálculo de la temperatura de fabricación del hormigón en tiempo frío

Figura 1. Hormigonado en tiempo frío. https://madridsurarquiobras.es/blog/?p=199

La temperatura del hormigón es un factor crítico, especialmente en climas fríos, donde se debe evitar su congelación durante todas las etapas del proceso. La temperatura de amasado depende del grosor mínimo de las piezas a hormigonar, la temperatura del aire y la pérdida de temperatura durante el transporte hasta el lugar de trabajo. A medida que aumenta el volumen de la sección hormigonada, la pérdida de calor se vuelve más lenta y el calor generado durante la hidratación se vuelve más importante. Por lo tanto, se recomienda una temperatura más baja para la masa de hormigón que se va a colocar y también una temperatura de salida más baja en el amasado. En estructuras de gran volumen, es crucial limitar la temperatura del hormigón para evitar problemas de fisuración.

Es relevante considerar que las pérdidas de calor aumentan en proporción a la diferencia de temperaturas. Por lo tanto, elevar la temperatura del hormigón por encima de los valores recomendados no garantiza una protección proporcional contra la congelación, sino que puede generar efectos no deseados, como un mayor consumo de agua, una rápida disminución de la consistencia, fraguado acelerado o incremento de la retracción térmica.

También es importante tener en cuenta que las superficies expuestas del hormigón pueden experimentar una rápida pérdida de humedad debido a que, debido a su temperatura, calientan el aire frío que entra en contacto con ellas, lo que disminuye la humedad relativa y provoca la evaporación del agua superficial. Por tanto, se recomienda que la temperatura del hormigón durante su colocación sea lo más baja posible, tal y como se comentó anteriormente. A partir de esta temperatura de colocación y la pérdida de temperatura durante el transporte hasta el lugar de trabajo, se puede determinar la temperatura de amasado del hormigón.

La temperatura de amasado del hormigón se puede lograr mediante el calentamiento de los distintos materiales que lo componen. El cálculo de la temperatura de la mezcla se obtiene a partir del balance térmico de los diferentes materiales, ya que la cantidad total de calor de los materiales antes y después del amasado es la misma, siendo la única incógnita la temperatura final. No se debe olvidar el calor latente de fusión del hielo en caso de que el agua de los áridos esté congelada.

A continuación os dejo un problema resuelto que, espero, os sea de interés.

Descargar (PDF, 93KB)

Os dejo también algún vídeo explicativo.

Referencias:

AENOR (2022). UNE 83151-1 IN Hormigonado en condiciones climáticas especiales. Parte 1: Hormigonado en tiempo frío. Madrid, 27 pp.

MARTÍ, J.V.; YEPES, V.; GONZÁLEZ, F. (2014). Fabricación, transporte y colocación del hormigón. Apuntes de la Universitat Politècnica de València. 189 pp.

YEPES, V. (2023). Maquinaria y procedimientos de construcción. Problemas resueltos. Colección Académica. Editorial Universitat Politècnica de València, 562 pp. Ref. 376. ISBN 978-84-1396-174-3

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Comparativa entre el Código Estructural (CE) y la Instrucción de Hormigón Estructural (EHE-08)

Os paso a continuación un documento, en abierto, que, aunque breve, resulta muy interesante. Realiza una comparativa entre el Código Estructural y la Instrucción de Hormigón Estructural (EHE-08). Este documento se ha realizado bajo la supervisión del Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc) perteneciente al Consejo Superior de Investigaciones Científicas (CSIC) y la Dirección General de Agenda Urbana y Arquitectura del Ministerio de Transportes, Movilidad y Agenda Urbana.

Además, uno de los coautores, junto con Alejandro Calle García, es mi amigo Juan Carlos Arroyo Portero, profesor de estructuras de la Universidad Politécnica de Madrid y autor, entre otros, de los libros “Números gordos en el proyecto de estructuras” y “Montoya-esencial. Hormigón armado“. Recomendables ambos dos.

El enlace a este documento lo podéis encontrar aquí: https://www.codigotecnico.org/Guias/AvanceGuiaCE.html?fbclid=IwAR1Bbq_egzA-2fDmnbA3Ocj213eizqsKA2q1CEU6jcgLGDbIs2_vcQNa5ww&fs=e&s=cl

Descargar (PDF, 4.31MB)