Los distintivos de calidad en el Código Estructural

https://www.mitma.gob.es/organos-colegiados/comision-permanente-del-hormigon/cph/reconocimiento-de-distintivos

El distintivo de calidad oficialmente reconocido (DCOR) fue una posibilidad que se introdujo en la derogada Instrucción de Hormigón Estructural EHE-08 como una certificación de la calidad del hormigón que asegurase una mayor normalización del producto y que permitiese reducir los controles de calidad de la obra.

En el Código Estructural, DCOR se recoge en numerosos artículos. Veamos los más relevantes:

  • Art. 4.2.2 Condiciones técnicas del proyecto, se establece que “a la vista de las posibles mayores garantías técnicas y de trazabilidad que pueden estar asociadas a los distintivos de calidad, el autor del proyecto valorará la inclusión, en el correspondiente pliego de prescripciones técnicas particulares, de la exigencia de emplear materiales, productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“.
  • Art. 4.2.3 Condiciones técnicas en la ejecución, se refuerza esta posibilidad, pues “la dirección facultativa valorará la conveniencia de exigir productos y procesos que dispongan de un distintivo de calidad oficialmente reconocido“. En el Art. 18 Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad, una de las formas por las que se pueden garantizar los productos y procesos es “mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio“; además, el Código permite ciertas consideraciones especiales en la recepción de los productos y procesos con DCOR que no requieran el marcado CE.
  • Art. 21.1 Control documental de los suministros, se incide en el certificado final del suministro del producto suministrado cuando dispongan DCOR. En ese caso, si presentan una garantía superior, debe efectuarse un control documental específico, para lo que “los suministradores entregarán al constructor, quien los facilitará a la dirección facultativa, los certificados que avalen que los productos que se suministrarán están en posesión de un distintivo de calidad oficialmente reconocido vigente“.
  • Art. 22.2 Control de la ejecución mediante inspección de los procesos, en el caso de que un proceso de ejecución de la estructura se encuentre en posesión de un DCOR, “la dirección facultativa podrá eximir de la realización de las inspecciones externas“.

El DCOR es de carácter voluntario y puede estar oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Sin embargo, es importante resaltar que en los productos con marcado CE, los DCOR no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

A continuación hemos representado en un mapa conceptual las características relevantes del DCOR (Figura 2).

 

Figura 1. Distintivo de calidad oficialmente reconocido (DCOR). Imagen: V. Yepes.

Os dejo a continuación el Artículo 18 del Código Estructural para su consulta.

Artículo 18. Garantía de la conformidad de productos y procesos de ejecución, distintivos de calidad.

La ejecución de la estructura se llevará a cabo según el proyecto y las modificaciones autorizadas y documentadas por la dirección facultativa. Durante la ejecución de la estructura se elaborará la documentación que reglamentariamente sea exigible y en ella se incluirá, sin perjuicio de lo que establezcan otras reglamentaciones, la documentación a la que hace referencia el Anejo 4 de este Código.

En todas las actividades ligadas al control de recepción, podrá estar presente un representante del agente responsable de la actividad o producto controlado (autor del proyecto, suministrador de hormigón, suministrador de las armaduras elaboradas,
suministrador de los elementos prefabricados, constructor, etc.). En el caso de la toma de muestras, cada representante se quedará con copia del acta correspondiente. Cuando se produzca cualquier incidencia en la recepción derivada de resultados de ensayo no conformes, el suministrador y en su caso, el constructor, tendrá derecho a recibir una copia del correspondiente informe del laboratorio y que deberá ser facilitada por la dirección facultativa.

La conformidad de los productos y de los procesos de ejecución respecto a las exigencias básicas definidas por este Código, requiere que satisfagan con un nivel de garantía suficiente un conjunto de especificaciones.

De forma voluntaria, los productos y los procesos pueden disponer de las garantías necesarias para que se cumplan los requisitos mínimos contemplados en este Código, mediante la incorporación de sistemas (como por ejemplo, los distintivos de calidad) que
avalen, a través de las correspondientes auditorías, inspecciones y ensayos, que sus sistemas de calidad y sus controles de producción, cumplen las exigencias requeridas para la concesión de tales sistemas. Dichos sistemas deberán ser coherentes con las consideraciones especiales contempladas en este Código, con el fin de que el índice de fiabilidad de la estructura sea al menos el mismo, independientemente de los materiales que utilice.

A los efectos de este Código, dichas garantías pueden demostrarse por cualquiera de los siguientes procedimientos:

a) mediante la posesión de un distintivo de calidad oficialmente reconocido (DCOR) concedido a un organismo de certificación acreditado conforme al Reglamento (CE) N.º 765/2008 del Parlamento Europeo y del Consejo, de 9 de julio,
b) en el caso de productos fabricados en la propia obra o de procesos ejecutados en la misma, mediante un sistema equivalente validado y supervisado bajo la responsabilidad de la dirección facultativa, que asegure que el índice de fiabilidad de la estructura es al menos el mismo.

Este Código contempla la aplicación de ciertas consideraciones especiales en la recepción para aquellos productos y procesos que presenten las garantías necesarias para su cumplimiento mediante cualquiera de los dos procedimientos mencionados en el párrafo anterior.

El control de recepción tendrá en cuenta las garantías asociadas a la posesión de un distintivo, siempre que este cumpla unas determinadas condiciones. Así, tanto en el caso de los procesos de ejecución, como en el de los productos que no requieran el marcado CE según el Reglamento (UE) N.º 305/2011, de 9 de marzo de 2011, este Código permite aplicar unas consideraciones especiales en su recepción, cuando ostenten un distintivo de calidad de carácter voluntario que esté oficialmente reconocido por la Subdirección General de Normativa y Estudios Técnicos del Ministerio de Transportes, Movilidad y Agenda Urbana u otro órgano directivo con competencias en el ámbito de la edificación o de la obra pública y perteneciente a la Administración Pública de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo.

Lo dispuesto en el párrafo anterior será también de aplicación a los productos de construcción fabricados o comercializados legalmente en un Estado que tenga un acuerdo de asociación aduanera con la Unión Europea, cuando ese acuerdo reconozca a esos productos el mismo tratamiento que a los fabricados o comercializados en un Estado miembro de la Unión Europea.

De acuerdo al apartado 4.1, en el caso de los productos con marcado CE, los distintivos de calidad oficialmente reconocidos no podrán certificar la conformidad con las prestaciones declaradas en lo que respecta a las características esenciales cubiertas por la norma armonizada, ni tampoco con las prestaciones de ninguna característica esencial relacionada con los requisitos básicos incluidos en el anexo I del Reglamento (EU) 305/2011, de 9 de marzo de 2011.

18.1 Procedimiento de reconocimiento oficial de distintivos de calidad.

El reconocimiento oficial del distintivo se desarrollará conforme al procedimiento que establezca la Administración reconocedora de cualquier Estado miembro de la Unión Europea, de Turquía o de cualquier Estado de la Asociación Europea de Libre Comercio
signatario del Acuerdo sobre el Espacio Económico Europeo.

En el caso de los reconocimientos de distintivos por parte del Ministerio de Transportes, Movilidad y Agenda Urbana, se aplicará el siguiente procedimiento.

Estarán legitimados para presentar las solicitudes de reconocimiento oficial de un distintivo de calidad, los organismos de certificación acreditados conforme a los apartados de este Código que le sean de aplicación y a la norma UNE-EN ISO/IEC 17065 según el Reglamento (CE) N.º 765/2008, del Parlamento Europeo y del Consejo de 9 de julio, por el que se establecen los requisitos de acreditación y vigilancia del mercado relativos a la comercialización de productos.

Las solicitudes deberán acompañarse de al menos la siguiente documentación:

a) Memoria explicativa y justificativa de la solicitud.
b) Reglamento regulador del distintivo en donde se definan las garantías particulares, procedimiento de concesión, régimen de funcionamiento, requisitos técnicos y reglas para la toma de decisiones. En cualquier caso, dicho reglamento incluirá la declaración explícita del cumplimiento del contenido de este Código.
c) Cualquier otra documentación que la Administración reconocedora establezca o considere necesaria en relación al ámbito de certificación en el que se desarrolle el distintivo.

La Administración reconocedora podrá recabar los informes o dictámenes de los expertos por ella designados, en función de las características de la certificación cuyo reconocimiento se solicita.

Para mayor difusión y comodidad en el acceso de la información por parte de los usuarios, cualquier Administración reconocedora de las contempladas en los párrafos anteriores para el reconocimiento oficial de un distintivo de calidad, podrá solicitar la publicación de los distintivos por ellas reconocidas en las páginas web de las Comisiones Permanentes que proponen este Código, creadas a tal efecto.

Si la resolución de la Administración reconocedora fuese desfavorable al reconocimiento, la finalización del procedimiento se produciría con la comunicación al solicitante.

La enmienda o retirada del reconocimiento oficial del distintivo podrá ser realizada a instancia o de parte, para lo cual se iniciará el procedimiento mediante la oportuna solicitud y se regirá conforme a los mismos trámites que para su reconocimiento.

La Administración reconocedora vigilará la correcta aplicación de los distintivos, por lo que podrá participar en todas aquellas actividades que se consideren relevantes para el correcto funcionamiento del distintivo así como asistir a las inspecciones que realicen los servicios de inspección correspondientes a las instalaciones que ostenten el distintivo de calidad, para verificar la correcta actuación de estos en la supervisión de las características técnicas de los productos y la adecuación del control interno sobre su producción.

Si se detectase alguna anomalía en estos procedimientos, la Autoridad reconocedora podrá incoar un expediente y podrá suspender el reconocimiento, comunicando previamente la propuesta de retirada al solicitante con el objeto de que pueda formular alegaciones. La validez del reconocimiento quedará condicionada durante el período de validez, al mantenimiento de las condiciones que los motivan.

18.2 Distintivos de calidad concedidos por entidades de certificación en otros Estados.

No será necesaria la declaración explícita requerida en el punto b) del apartado 18.1, si una entidad de certificación de otro Estado miembro de la Unión Europea, de Turquía o de cualquiera de los Estados firmantes del Acuerdo sobre el Espacio Económico Europeo, evalúa la conformidad respecto a cualquier norma o reglamento que, manteniendo al menos las garantías necesarias para verificar un nivel similar de calidad del producto o proceso y de sus características técnicas, demuestre que se cumplen los requisitos de seguridad estructural contemplados en este Código.

También resulta de interés recoger el comentario que se hace al respecto de este artículo:

“En el caso de los productos o procesos (como por ejemplo, el hormigón) que presentan un nivel de garantía adicional de acuerdo con el articulado y se fabrican o desarrollan, según el caso, a partir de otros productos (como por ejemplo, cementos) susceptibles de estar también en posesión de distintivos de calidad, la utilización de estos permite una mejora en la trazabilidad global y facilita la consecucion de los niveles adicionales de garantía en los productos finales.

En el caso de que se realicen ensayos o comprobaciones experimentales sobre cualquier producto o proceso que esté en posesión de un distintivo oficialmente reconocido y de los resultados de ensayos realizados pueda confirmarse una no conformidad del producto respecto a lo establecido en este Código, la dirección facultativa notificará dicha circunstancia al Organismo emisor del distintivo y a la Administración que hubiera efectuado el reconocimiento”.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Control documental de los suministros según el Código Estructural

https://www.anefhop.com/

Los suministros están sujetos, tanto en el actual Código Estructural, como en la anterior Instrucción de Hormigón Estructural EHE-08, de una estricta verificación de los documentos. El Artículo 21.1 del Código es el que trata del control documental de los suministros, mientras que en la EHE-08 lo hacía el Artículo 79.3.1. Aunque son similares en cuanto a su redacción, conviene resaltar algunas diferencias, unas formales y otras de fondo.

Lo más destacable es el tratamiento de los suministros con distintivos de calidad. Recordemos que desaparece el concepto de idoneidad al uso de los productos con marcado CE, y se sustituye por la presunción de veracidad de la declaración de prestaciones del producto por parte del fabricante. Pero veamos en detalle los cambios:

  • En primer lugar, destaca la existencia de un Anejo 4 donde se especifica la documentación de suministro y control de los productos recibidos directamente en obra.
  • Otra de las modificaciones del control documental tiene que ver antes del suministro: se pide la declaración responsable del fabricante y se actualiza la legislación al vigente Reglamento (UE) N.º 305/2011 del Parlamento Europeo y del Consejo, de 9 de marzo de 2011.
  • Asimismo destaca la inclusión del certificado de inspección de la central suministradora del hormigón preparado, según proceda, en función de lo establecido en la reglamentación industrial vigente relativa al control de producción de hormigones fabricados en central. Esto se debe a la correlación existente entre el Código estructural y el  Real Decreto 163/19, por el que se aprueba la Instrucción Técnica para la realización del control de producción de los hormigones fabricados en central.
  • Además, y como curiosidad, a partir de ahora se exige una fotocopia de la declaración del suministrador donde se indique que el producto está en posesión de un distintivo de calidad oficialmente reconocido, además de la propia declaración del suministrador firmada.
  • Otra de las novedades tiene que ver después del suministro, donde será obligatorio un certificado final del producto suministrado. Antes se solicitaba un certificado de garantía del suministro. Ahora se insiste en que se trata de un certificado final, y no solo de garantía el producto.
  • La incorporación más destacable, no obstante, se relaciona con el control documental específico requerido para los suministros que dispongan de distintivos de calidad oficialmente reconocidos que supongan una garantía superior y que vienen contemplados en el Artículo 18 del Código. Aquí, los suministradores deben entregar al constructor, y este a la dirección facultativa, los certificados que avalen el distintivo de calidad.
  • Y por último, otro de los cambios es la responsabilidad expresa que recae sobre la dirección facultativa de cerciorarse que el material certificado se adapta al especificado en el proyecto. Además, deberá fijar la realización de las comprobaciones previstas en los Capítulos 13, 23 y 33 del Código para este tipo de distintivos.

Os dejo a continuación la transcripción del Artículo 21.1 del Código Estructural para su consulta.

Artículo 21.1 Control documental de los suministros

Los suministradores entregarán al constructor, quien los trasladará a la dirección facultativa, cualquier documento de identificación del producto exigido por la reglamentación aplicable o, en su caso, por el proyecto o por la dirección facultativa. Sin perjuicio de lo establecido adicionalmente para cada producto en otros artículos de este Código, se facilitarán, al menos, los siguientes documentos que se detallan en el Anejo 4:

a) antes del suministro:

– los documentos de conformidad, declaración responsable del fabricante o autorizaciones administrativas exigidas reglamentariamente, incluida cuando proceda la documentación correspondiente al marcado CE de los productos de construcción, de acuerdo al Reglamento (UE) N.º 305/2011 del Parlamento Europeo y del Consejo, de 9 de marzo de 2011.
– en su caso, certificado de inspección de la central suministradora del hormigón preparado, según proceda, en función de lo establecido en la reglamentación industrial vigente relativa al control de producción de hormigones fabricados en central.
– en su caso, declaración del suministrador firmada por persona física con poder de representación suficiente en la que conste que, en la fecha de la misma, el producto está en posesión de un distintivo de calidad oficialmente reconocido, y fotocopia del mismo,

b) durante el suministro:

– las hojas de suministro de cada partida o remesa,

c) después del suministro:

– el certificado final de suministro del producto suministrado, firmado por persona física con poder de representación suficiente.

En el caso de que los productos suministrados dispongan de distintivos de calidad oficialmente reconocidos que supongan una garantía superior y que vienen contemplados en el Artículo 18 de este Código, deberá efectuarse un control documental específico. Para ello los suministradores entregarán al constructor, quien los facilitará a la dirección facultativa, los certificados que avalen que los productos que se suministrarán están en posesión de un distintivo de calidad oficialmente reconocido vigente. La documentación ha de ir acompañada de una declaración del suministrador firmada por persona física en la que conste la fecha de vigencia del distintivo, acompañado de copia del certificado.

Antes del suministro, la dirección facultativa comprobará que el material certificado se adapta al especificado en el proyecto y fijará la realización de las comprobaciones previstas en el Capítulo 13, 23 y 33 de este Código para este tipo de distintivos.

Os dejo también el Anejo 4 del Código Estructural: Documentación de suministro y control de los productos recibidos directamente en obra.

Descargar (PDF, 864KB)

También os paso una ficha de control documental para elementos prefabricados de hormigón, adaptada al nuevo Código Estructural que me ha proporcionado ANDECE.

Descargar (PDF, 174KB)

Resinas de poliuretano en la construcción

Inyección de resina base poliuretano expandible en contacto con agua. https://www.restic.cl/servicio/reparacion-de-filtraciones/

Las resinas de poliuretano constituyen un material de base orgánica empleadas en la reparación del hormigón. Son resinas que se obtienen por policondensación (poliadición) entre el grupo hidrófilo de un polialcohol y un disocianato. La policondensación puede hacerse por la reacción de los isocianatos con la propia humedad contenida en el aire, por lo que se pueden utilizar productos de un solo componente. Cuando se utilizan dos componentes, la reticulación es más lenta. En la construcción se utilizan estas resinas para ejecutar juntas, para realizar revestimientos de pequeño espesor y en suelos.

Una vez endurecidas la resinas, éstas pueden formar productos rígidos o flexibles. Además de tener una excelente resistencia a la abrasión y tracción, estas resinas pueden unir estructuras, formando uniones adhesivas resistentes a los impactos, que solidifican rápidamente y se pueden adherir a distintas superficies, incluyendo el hormigón. Además, son resistentes a productos químicos como los disolventes, aceites o grasas. Son además productos de alta durabilidad, resistentes al rayado y que forma una buena barrera que evita la carbonatación del hormigón. No obstante, presenta una elevada sensibilidad al fuego y es tóxico cuando se quema, por los gases generados por los cianatos.

Frente a las resinas epoxi, una de sus ventajas es que puede endurecer a temperaturas cercanas a 0º C, aunque es cierto que aumentan su viscosidad cuando desciende la temperatura, lo cual puede entorpecer su puesta en obra. Si se utilizan hormigones basados en resinas de poliuretano, su rápido endurecimiento (de 10 a 20 minutos), permiten una puesta en servicio muy rápida. Por su parte la resina de poliuretano, frente a la epoxi, es más expansiva (puede expandirse hasta 20 veces su tamaño) y por lo tanto más resistente a las quebraduras y más recomendada para aplicarse en el exterior, además se seca rápidamente una vez aplicada. Con carácter general, se utilizará una resina en base epoxi cuando se quiera reparar una fisura muerta y de carácter estructural, es decir, que transmita esfuerzos. Sin embargo, para fisuras vivas o con penetración de agua o humedad, se recomienda el uso de resinas acuoreactivas en base poliuretano. Sin duda, ante filtraciones de agua, la expansividad e impermeabilidad de las resinas acua-reactivas de poliuretano, junto su rapidez, permiten barreras impermeabilizantes y eliminan humedades por filtración en todo tipo de construcciones como obras subterráneas, canales, consolidación de terrenos, fisuras en el hormigón, juntas de dilatación, entre otras.

Os dejo a continuación la ejecución de un suelo de resina con poliuretano antideslizante para un pavimento industrial.

En este otro vídeo se observa cómo se pueden reparar grietas en paredes con resinas expansivas.

Referencias:

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las resinas epoxi en la reparación del hormigón estructural

Solución de anclajes con resina epoxi. https://teoriadeconstruccion.net/blog/resinas-epoxy-solucion-de-anclajes/

Las resinas epoxi constituyen uno de los materiales de base orgánica más utilizados en la construcción. Se han empleado en pavimentos industriales desde los años 60, sobre todo en Europa. Con este nombre se hace referencia tanto a los componentes como al producto final, ya curado. Se trata de un fuerte adhesivo termoplástico resultante de la mezcla de un polímero termoestable y un agente catalizador. Pero también puede llevar otros componentes que modifiquen su comportamiento antes o después del endurecimiento como diluyentes, agentes de curado y otros aditivos. Sin embargo, la composición más simple es la resina epoxi y un endurecedor. El curado de las resinas epoxi tiene lugar a temperatura ambiente, durante el cual se forman enlaces cruzados lo que da como resultado que su peso molecular sea elevado.

Las resinas epoxi pueden usarse puras o en forma de morteros y hormigones si presentan árido fino o fino y grueso. Normalmente se utilizan en trabajos de reparación, refuerzo, sellado de juntas y protección de estructuras de hormigón que se vean atacadas por agentes químicos, físicos o biológicos. La resistencia de la resina epoxi puede ser tan alta como la del hormigón, o incluso duplicarla, con la ventaja de que no presenta fisuras y es impermeable. No obstante, la resistencia aumenta si se añaden compuestos químicos específicos.

En el ámbito de la reparación estructural, las principales aplicaciones de las resinas epoxi serían las siguientes (Pelufo, 2003): reparación de grietas en el hormigón por inyección; unión de hormigón nuevo con el existente para reparar estructuras dañadas; unión de bandas metálicas de acero en refuerzos en hormigón estructural; mortero para relleno de grietas y coqueras, parcheos; hormigón para rellenos de grandes oquedades. Sin embargo, también se pueden utilizar como protección de revestimientos de superficies

En cuanto a sus propiedades, las que destacan por su aplicabilidad a la construcción son las siguientes: retracción despreciable; adherencia a piedra, fábrica de ladrillo, hormigón y acero; resistencia a tracción de hasta 90 MPa, y a compresión entre 120 y 210 MPa; resistencia a productos químicos (excepto al ácido nítrico); comportamiento regular frente a algunos disolventes orgánicos; buen comportamiento frente a cloruros. Como problema podemos destacar su alta sensibilidad a temperaturas superiores a 80ºC, y por tanto, nula resistencia al fuego.

En el caso del uso de las resinas epoxi como material de reparación en hormigón, no hay que olvidar que su coeficiente de dilatación térmica (de 2 a 6 x 10-6 m/mºC), que puede ser muy diferente al del hormigón. Además, si la temperatura varía mucho, se puede producir un fallo de la reparación en la superficie de adherencia del hormigón base.

Tampoco se recomienda la reparación de un hormigón dañado por la corrosión de sus armaduras con un mortero u hormigón de epoxi, pues se pueden crear diferentes zonas de potencial eléctrico, formar pilas galvánicas y acelerar la corrosión en los perímetros de la reparación.

Os dejo algunos vídeos sobre la utilización de la resina epoxi en la construcción.

Os dejo a continuación, por su interés, un artículo de Fernández Cánovas donde se realiza una breve exposición de lo que son estas resinas, nada menos que del año 1964.

Descargar (PDF, 5.31MB)

Referencias:

Fernández Cánovas, M. (1964). Las resinas epoxi en la construcción. Informes De La Construcción16(159), 101–104. https://doi.org/10.3989/ic.1964.v16.i159.4570

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Materiales de reparación del hormigón estructural

Deterioro prematuro del hormigón. Imagen: V. Yepes

No es extraño encontrar en medios de prensa noticias relacionadas con las costosas reparaciones de estructuras de hormigón de todo tipo. Lejos quedó la consideración del hormigón armado como un material resistente a cualquier tipo de ataque. La alcalinidad del hormigón y el recubrimiento de sus armaduras parecían suficientes para asegurar una larga vida útil para estas estructuras. Pues no, la vida útil de las estructuras de hormigón es una realidad que obliga a reparaciones si lo que se pretende es alcanzar una vida prevista suficientemente holgada. Sobre este tema ya hemos hablado en artículos anteriores. Por ejemplo, cuando poníamos en entredicho una vida útil de 100 años para los puentes; cuando exponíamos los métodos matemáticos para estimar la vida útil de los puentes; o cuando definíamos la durabilidad y la vida útil de las infraestructuras, entre otros muchos más artículos, a los que remitimos al lector dentro de este mismo blog.

En este artículo nos centramos en resumir, de forma breve, los materiales que se utilizan en la reparación del hormigón estructural. Estos materiales deben resistir acciones químicas, físicas o mecánicas que afecten a la durabilidad de la estructura y que requieran a su reparación. Fernández Cánovas (1994) indicaba que las condiciones que debe cumplir un material de reparación deberían ser, entre otras, las siguientes: mayor durabilidad que el material estructural existente; protección del acero al mejorar la alcalinidad del medio y aumentar la impermeabilidad; buena estabilidad dimensional con una mínima retracción y fluencia; y una buena adherencia tanto en acero como en hormigón. Además, como cualquier material de construcción, se debe exigir a estos productos requisitos relativos a la funcionalidad, seguridad, durabilidad, estética y economía.

Aunque es posible encontrar diversas clasificaciones de los materiales empleados en la reparación del hormigón estructural, la literatura europea los clasifica en tres grupos atendiendo al ligante que sirve de cohesión. Pueden ser estos ligantes hidráulicos, como el cemento; orgánicos, como las resinas sintéticas, o mixtos, es decir, que sean a la vez ligantes hidráulicos y orgánicos. Los ligantes hidráulicos pueden estar modificados o no por un polímero orgánico. Los productos basados en resinas sintéticas varían según la estructura del polímero resultante. Los materiales de base mixta se benefician tanto de las propiedades debidas al endurecimiento de los ligantes hidráulicos como de la reticulación del polímero.

Desde el 1 de Enero de 2009, es de obligado cumplimiento en toda la Unión Europea la Norma UNE-EN 1504, que especifica los requisitos para la identificación, comportamiento y seguridad de los productos y sistemas a utilizar para la reparación y protección estructural y no estructural del hormigón.

Veamos una pequeña clasificación de dichos materiales (Pelufo, 2003):

Materiales de base inorgánica

Se trata de productos basados en el cemento. Pueden ser de base inorgánica tradicional como los cementos portland (lechadas, morteros, microhormigones y hormigones). Las no tradicionales pueden emplear cemento portland, aluminoso, sin retracción, cementos basados en fosfato de magnesio, etc. Estos últimos son materiales de reparación con propiedades especiales: retracción compensada, endurecimiento rápido, altas resistencias, etc.

Materiales de base orgánica

Se basan en un aglomerante de resinas o polímeros, normalmente termoestables, como las resinas epoxídicas, los poliuretanos o los poliésteres. Estos ligantes polimerizan con un endurecedor. En el mercado existe una gran variedad de este tipo de materiales.

Materiales de base mixta

Hay quien opina que si el producto está compuesto por un conglomerante hidráulico y un polímero que se disuelve de forma estable en agua, éste producto pertenece al grupo de materiales de base inorgánica. No obstante, otros autores como Fernández Cánovas (1994) los consideran como materiales de base mixta. Estos productos de base mixta suelen tener por base cemento portland y polímeros termoplásticos. Las resinas que lo componen suelen ser acrílicas, estireno-butadieno, polivinilo y archilamidas. Como no podía ser de otra forma, las propiedades variarán en función de los componentes y proporciones utilizadas.

Os dejo algunos vídeos sobre este tema de la reparación de estructuras de hormigón. Espero que os gusten.

Referencias:

Fernández Cánovas; M. (1994). Patología y terapéutica del hormigón armado. 3ª edición, Servicio de Publicaciones del Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

Pelufo, M.J. (2003). Caracterización del comportamiento mecánico y frente a la corrosión de morteros de reparación del hormigón estructural. Tesis doctoral. Departamento de Ingeniería de la Construcción y Proyectos de Ingeniería Civil, Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Las cremas solares y los hormigones autolimpiables

Hormigón auto limpiable con nano partículas de TiO2. Iglesia Jubilar en Roma. https://nuevastecnologiasymateriales.com/otros-importantes-materiales-de-construccion-nano-estructurados/hormigon-autolimpiable/

¿Qué tendrá que ver una crema de protección solar y un hormigón que es capaz de limpiarse por sí solo? Pues el nexo común es el dióxido de titanio (TiO2). El titanio es el noveno elemento más común en la corteza terrestre, siendo un metal común en las plantas y los animales. Su combinación con el oxígeno es muy habitual en los minerales. Pues bien, es el dióxido de titanio un ingrediente activo del protector solar. Actúa como ingrediente de filtración de los rayos ultravioleta y protege la piel bloqueando la luz UV del sol.

Sin embargo, lo curioso es que si se fabrica un hormigón con cementos que incorporen como fotocatalizador el dióxido de titanio, éste degrada los componentes orgánicos que se adhieren a su superficie por efecto de los rayos UV de la luz solar. A estos hormigones se les llama autolimpiables o autolavables. Una inclusión de un 2% de dióxido de titanio es razonablemente económica para su comercialización.

La fotocatálisis descontamina de forma similar a la propia naturaleza. Al igual que la fotosíntesis, debido a la luz solar, puede eliminar el dióxido de carbono para producir materia orgánica; asimismo, la fotocatálisis elimina otros contaminantes comunes en la atmósfera, como óxidos de nitrógeno, óxidos de azufre y compuestos orgánicos volátiles, mediante un proceso de oxidación activado por energía solar. Se trata de “hormigones antipolución“, siendo el TiO2 el fotocatalizador más comúnmente utilizado.

Un ejemplo del empleo de hormigón descontaminante, en este caso reforzado con fibras, lo encontramos en la Torre Diagonal Zero en Barcelona. Se trata de una torre de 26 plantas con más de 100 m de altura construida por ACCIONA. A los paneles prefabricados empleados en este edificio, se les ha aplicado una veladura superficial transpirable e hidrófuga a base de silicatos cuya formulación incorpora dióxido de titanio.

Empleo de hormigón descontaminante en la Torre Diagonal Zero en Barcelona://www.hormigonespecial.com/blog/

Os dejo a continuación algunos vídeos explicativos.

 

Contención del agua mediante inyección de lechadas inestables

Figura 1. Inyección de lechada. Fuente: https://www.suelosingenieria.com/index.php/actividades/construccion/mejoramientos-de-suelos/inyecciones-lechada

La inyección de morteros o suspensiones inestables es el caso habitual de las lechadas de cemento (Figura 1). Se trata de una suspensión de cemento en agua cuya homogeneidad está condicionada a la agitación de la mezcla. Una vez cesa la agitación, se inicia la sedimentación del cemento. Esa sedimentación provoca el taponamiento de los poros y la inyección se obstaculiza. El cemento es un excelente material de inyección, pues no solo rellena los huecos, sino que, al fraguar, endurece el terreno o los macizos rocosos.

La aplicación habitual de la inyección de lechadas inestables es aumentar la resistencia de un macizo rocoso, aunque también se consigue impermeabilizar, especialmente si se emplean lechadas tratadas químicamente (estables). Lo habitual es que la inyección con lechadas de cemento sea por impregnación (2 a 5 MPa) o por fractura (9 a 10 MPa). También se podría realizar una inyección de compactación, pero requiere que el fluido sea muy denso, de forma que los bulbos de mortero fraguado desplacen y compacten la masa de suelo en sus alrededores.

La impermeabilización facilita tanto la ejecución de trabajos posteriores, como es el caso de la excavación de pozos o galerías bajo nivel freático que luego se revestirán, como para completar trabajos definitivos, como es la ejecución de pantallas estancas bajo presas, cuando se adivinan filtraciones de agua importantes (Figura 2). La inyección a alta presión no sería necesaria para garantizar la impermeabilización, sin embargo, es frecuente pues permite utilizar explosivos en la excavación posterior sin perjudicar la calidad del tratamiento.

Figura 2. Tratamiento de inyecciones en presa de hormigón. Adaptado de Houlsby (1990)

La consolidación mediante inyecciones de cemento en un macizo rocoso facilita la ejecución de trabajos posteriores, como es el caso de la perforación de galerías en terrenos difíciles y mejora la capacidad resistente de la cimentación de una obra, por ejemplo, bajo la pila de un puente, en los estribos de una presa bóveda, etc.

Figura 3. Formación de una bóveda a la entrada de un intersticio en un suelo granular

El prototipo de suspensión inestable es un mortero de un tipo análogo al de uso corriente, pero suficientemente diluido para que pueda ser inyectable. Es decir, un mortero muy fluido (lechada), inestable por el tamaño de los granos de cemento y por el proceso de fabricación. El grado de dilución en este tipo de suspensiones es variable, con relaciones máximas de 10 litros de agua/1 kg de cemento, y lo mismo que en los morteros estables pueden añadirse proporciones de arena. Las relaciones agua/cemento varían desde 0,5:1 hasta 10:1, aunque es habitual una proporción de 0,8:1 a 5:1 (Bell, 1993).

La penetrabilidad de las lechadas de cemento depende del tamaño de los granos de cemento, de la posibilidad de formación de un cúmulo de granos en bóveda al atravesar un intersticio (Figura 3) y de la velocidad del fluido con la que comienza la sedimentación del cemento. Es por ello una solución muy adecuada para materiales granulares gruesos como zahorras, gravas y arenas gruesas, o bien para la inyección de grietas en macizos rocosos. En cambio, resulta un procedimiento poco eficaz en arenas, excepto si lo que se pretende es la consolidación o compactación conseguida cuando se inyecta en cortos intervalos (Tomlinson, 1982). Se trata de una solución sencilla y de relativamente poco coste, pero que se encuentran limitadas por la permeabilidad del medio. El uso de cemento portland corriente y agua ya no es adecuado en suelos con una permeabilidad menor a 10-3 m/s.

Figura 4. Selección de inyección para consolidación y estabilización de suelos. Fuente: https://col.sika.com/dms/getdocument.get/8de57674-59ac-3af1-ada7-a6bddb323deb/CONSOLIDACION,%20ESTABILIZACION%20E%20IMP%20DE%20SUELOS%20Y%20ROCAS.pdf

Se pueden distinguir, entre las lechadas de cemento, las siguientes:

  • Suspensiones de cemento puro: con una relación cemento/agua que oscila entre 0,1 y 0,5 en peso.
  • Suspensiones de cemento rebajado: donde se reemplaza parte del cemento por un polvo inerte como una arena fina o cenizas volantes. Con el porcentaje de arena, la resistencia decrece rápidamente, pero no es problema si se pretende impermeabilidad. No obstante, las suspensiones de arena desgastan rápidamente las bombas de inyección.

El equipo empleado para la elaboración de las mezclas de cemento consta de un turbo mezclador de altas revoluciones (más de 1250 rpm); un mezclador de bajas revoluciones (de 60 a 80 rpm) que mantiene en agitación la mezcla durante la inyección; bombas de tornillo sinfín o de doble pistón con capacidad de inyección variable de 0 a 60 l/min y presión ajustable de 0 a 3 o 4 MPa; obturadores mecánicos, neumáticos o hidráulicos y manómetros registradores (Figura 5).

Figura 5. Esquema del equipo de inyección (Cambefort, 1968)

El tiempo de inyección está relacionado con la evolución de la viscosidad del material inyectado, con la presión de inyección admisible y con el radio efectivo (Bielza, 1999). En las suspensiones de cemento, el tiempo de inyección se limita a 2-4 horas. Cuando comienza la hidratación total, se inicia el fraguado del cemento. La lechada es bombeable desde la fase de agitación hasta que son inyectadas, también después del inicio de la hidratación. Sin embargo, tras ese comienzo la resistencia final del material se reduce. Por tanto, no se aconseja la inyección de suspensiones bajo condiciones de hidratación. Las resistencias normales a compresión simple oscilan entre 5 y 50 MPa a 28 días. El tiempo de fraguado aumenta con la relación agua/cemento. Así, las lechadas de cemento fraguan en unas 4-5 horas, pero si están muy diluidas, este periodo se puede alargar a las 10-15 horas. Incluso algunas lechadas con relaciones agua/cemento mayores a 10 nunca llegan a fraguar.

Como las lechadas de cemento son inestables, su velocidad de flujo baja rápidamente conforme crece la distancia desde la perforación hasta la zona de inyección, sedimentando las partículas en una proporción decreciente con la relación agua/cemento de la mezcla. Es decir, cuanta mayor dosificación tenga el mortero, más elevada será la velocidad crítica de sedimentación. Es por ello que se aconseja que la lechada inicial tenga poca dosificación, por ejemplo, una relación a/c de 10:1 a 15:1 para evitar los taponamientos prematuros. La dosificación ideal sería la más pequeña que permita alcanzar la contrapresión de rechazo establecida de antemano. En la práctica, la dosificación inicial se determina a partir del resultado del ensayo de agua (ensayo Lugeon).

Para aumentar la penetrabilidad se aconseja el empleo de cemento de alta finura de molido o micro cementos. Se evitan las bóvedas de granos al atravesar intersticios utilizando mezclas muy fluidas, denominadas mezclas medias. Sin embargo, el tratamiento de impregnación en masa no resulta aconsejable con este tipo de suspensiones inestables. Para que una inyección inestable sea factible, o no sea muy complicada, el tamaño mínimo de las partículas del terreno debería situarse entre 5 y 10 mm. Además, en terrenos con un 10% de finos ya no es factible inyectar cemento. En arenas y gravas se hincan tubos de punta perdida, un tubo de inyección cada 4 m2 aproximadamente, inyectándose por zonas de unos 50 cm de altura. Si las inyecciones son con lechadas de cemento de molido normal y tamaños muy diferentes (0 a 160 μ) no se pueden utilizar en fisuras de abertura inferior a 0,1 mm ni en suelos arenosos de tamaño inferior a 0,8 mm, pues se produce un filtrado de las partículas y la lechada no penetra en el terreno (Schulze y Simmer, 1978). Es decir, las arcillas no pueden ser inyectadas. Por el contrario, si son los huecos demasiado grandes, se deposita inmediatamente la lechada, dando a la inyección un radio de acción muy pequeño.

En cambio, la aplicabilidad de las lechadas de cemento se encuentra plenamente justificada en el caso de macizos rocosos fisurados (presencia de diaclasas, planos de debilidad, estratificación). La presión del fluido desciende con la distancia, y también la velocidad, con lo cual comienza la sedimentación. Son habituales taladros de 60 a 90 mm separados de 2 a 5 m, según la roca. La lechada de cemento se inyecta por capas de 3 a 5 m de espesor, según el porcentaje de finos a cerrar.

En rocas o materiales gruesos se puede realizar una excavación bajo nivel freático colocando una cortina de mortero inyectado. Tomlinson (1982) recomienda dos filas de perforaciones para una inyección primaria con sus centros separados de 3 a 6 m en ambas direcciones, con unos segundos taladros, incluso terceros, entre ellos (Figura 6). Una regla empírica habitual para inyectar pasta en las grietas de los estratos rocosos es el uso de 0,07 kg/cm2 por cada 30 cm de profundidad de la perforación. Se proporciona mayor presión en las inyecciones secundarias y terciarias en función de la eficacia de la inyección primaria.

Figura 6. Disposición de las perforaciones para formar una cortina impermeable con inyección de lechada de cemento alrededor de una excavación. Adaptado de Tomlinson (1982)

La presión de inyección de las lechadas inestables constituye uno de los parámetros de diseño más importantes, pues favorece la apertura de las fisuras en el caso de una roca fisurada. Esta presión puede alcanzar de 8 a 9 MPa. La presión facilita la expulsión del exceso de agua y permite corregir errores en la dosificación. Agranda tanto la longitud de penetración como las fisuras existentes, creando nuevas fisuras. Independientemente de la presión utilizada, la calidad del cemento depositado en las fisuras aumenta con la presión de inyección.

Por otra parte, la lechada discurre de forma casi paralela a los planos de estratificación o diaclasas del macizo rocoso. Las fisuras perpendiculares a la inclinación general del macizo son artificiales y ocurren en capas menos resistentes bajo la acción de presiones superiores a 10 MPa.

La mayor parte de los tratamientos de inyección en roca están relacionados con la construcción y mantenimiento de presas y túneles, y también en algunas aplicaciones en minería. Se trata de obras subterráneas donde las inyecciones tratan de reducir y controlar la filtración del agua. Suele ser habitual las lechadas de cemento, aunque en algunos casos se han realizado inyecciones químicas e inyecciones con resina.

Hay que apuntar, por último, que en la actualidad se utilizan las mezclas estables en la mayoría de los tratamientos de inyección y consolidación por sus mejores características reológicas. Sin embargo, si el terreno no presenta muchas dificultades, las inyecciones con lechadas inestables son un método económico y eficaz.

Referencias:

  • BELL, F.G. (1993). Engineering treatment of soils. E & F Spon, Londres.
  • BIELZA, A. (1999). Manual de técnicas de tratamiento del terreno. Carlos López Jimeno, Madrid, 432 pp.
  • CAMBEFORT, H. (1968). Inyección de suelos. Omega, Barcelona.
  • HOULSBY, A.C. (1990). Construction and Design of Cement Grouting. John Wiley & Sons, Inc, New York.
  • SCHULZE, W.E.; SIMMER, K. (1978). Cimentaciones. Editorial Blume, Madrid, 365 pp.
  • TOMLINSON, M.J. (1982). Diseño y construcción de cimientos. URMO, S.A. de Ediciones, Bilbao, 825 pp. POWERS, J.P. (1992). Construction dewatering: New methods and applications. Ed. Wiley et al., New York.
  • YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.
  • YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Capas y bases tratadas: Gravacemento

En España es habitual el empleo de la gravacemento en las capas de base de los denominados firmes semirrígidos. También se puede emplear bajo pavimentos de hormigón, aunque su función es diferente respecto al caso anterior. El artículo 513 del PG3 define gravacemento como una mezcla homogénea de áridos, cemento, agua y eventualmente adiciones que, convenientemente compactada, se utiliza en la construcción de firmes de carretera. Su origen se corresponde a las mezclas de granulometría gruesa utilizadas en California.

Figura 1. Gravacemento. https://www.promsa.com/es/productos/p/grava-cemento

Los áridos utilizados serán naturales o procedentes del machaqueo y trituración de piedra de cantera o grava natural. Serán limpios, sólidos y resistentes, de uniformidad razonable, exentos de polvo, suciedad, arcilla y otros materiales extraños. El desgaste de Los Ángeles debe ser inferior a 30 y el equivalente de arena mayor a 30. Los husos granulométricos deben ser estrictos (GC-1 y GC2). El contenido en cemento en masa varía entre el 3% y el 5%. Se exige una resistencia a compresión a los 7 días de 4,5 MPa y, a largo plazo, que supere los 8 MPa. Si el contenido de cemento supera el 5-7%, entonces se puede hablar de gravacemento de altas prestaciones.

Las características del cemento empleado para la gravacemento se recogen en el artículo 202 del PG3. Su clase resistente es 32,5N. En el caso de existir sulfatos solubles en el suelo, se deberá emplear un cemento sulforresistente. El principio del fraguado debe ser posterior a las 2 horas. El contenido de agua se selecciona mediante un Proctor Modificado, de forma que la humedad óptima proporcione la densidad máxima. No obstante la humedad suele ser un 0,5% inferior a la óptima para alcanzar la máxima resistencia. Se utilizan retardadores de fraguado para ampliar la trabajabilidad del material, siendo obligatorio cuando la temperatura durante la extensión de la mezcla supera los 30ºC.

El cemento proporciona resistencia a la capa resultante. Se exige una densidad superior o igual al 98% del Proctor Modificado, y una resistencia mínima de 4,5 MPa a siete días. La resistencia máxima a siete días será de 7,0 MPa en calzada y 6,0 MPa en arcenes. Estas resistencias son medias sobre, al menos tres probetas de la misma amasada.

Figura 2. Descarga de gravacemento en obra. https://conorsa.es/catalog/gravacemento/

La mezcla del material se realiza en central, se transporta en volquetes y se extiende con extendedoras. Las extendedoras proporcionan una mayor regularidad que las motoniveladoras, que se podrían emplear si la mezcla presentan suficiente trabajabilidad. La fabricación en central permite un porcentaje homogéneo y controlado de humedad y cemento.

El proceso de ejecución será el siguiente:

  • Preparación de la superficie
  • Fabricación de la mezcla
  • Transporte de la mezcla
  • Vertido y compactado de la mezcla
  • Ejecución de las juntas
  • Curado

La terminación de la capa debe presentar una textura uniforme, exenta de segregaciones y ondulaciones. La rasante no superará la teórica en ningún punto y no debe quedar por debajo de la teórica en más de 15 mm. La anchura de la capa no será inferior a la definida en planos, ni superarla en más de 10 cm. El espesor no deber ser, en ningún punto, menor al previsto. En tiempo caluroso se aconseja no solo un retardador de fraguado, sino un riego con emulsión bituminosa de rotura rápida para garantizar el curado. Por otra parte, aunque se aconsejan varios días para permitir la circulación de vehículos sobre la gravacemento, parece ser que solo sería necesaria una protección superficial.

En los firmes semirrígidos, la capa de gravacemento es estructural, absorbiendo la mayor parte de las tensiones del tráfico. El principal problema a resolver es el agrietamiento por retracción, que puede reflejarse a través del pavimento bituminoso en función de los gradientes termohigrométricos y el espesor del pavimento. Por dicho motivo, el espesor del pavimento para tráfico pesado no suele bajar de 12-15 cm. Las grietas pueden solucionarse conjuntas en fresco, antes de la compactación, separadas unos 3 m. También se pueden interponer capas o membranas que absorban las tensiones concentradas.

Cuando la capa de gravacemento sirve de apoyo a un firme rígido, los requerimientos estructurales pasan a segundo plano, siendo más importante la formación de una buena plataforma de trabajo y de apoyo estable a largo plazo. En este caso, la gravacemento puede apoyarse directamente sobre una zahorra natural o sobre la propia explanada si ésta es de cierta calidad. Basta en este caso que la capa de gravacemento presente un ancho mínimo constructivo de 15 cm.

Os dejo un vídeo de la profesora Ana María Pérez, de la Universitat Politècnica de València, que explica las características más relevantes del gravacemento utilizado en las capas de base de las carreteras.

En esta ponencia, Amaia Lisbona, de Tecnalia, explica cómo fabricar suelocemento y gravacemento a partir de áridos reciclados procedentes de los residuos de la construcción y demolición.

Os dejo a continuación el artículo 513 del PG3 donde se regulan los materiales tratados con cemento (suelocemento y gravacemento).

Descargar (PDF, 534KB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Mezcla profunda de suelos como técnica de mejora del terreno

Es habitual mezclar los suelos con cemento, cal o aglutinantes para estabilizarlos (“Soil Mixing Methods“). En un relleno, la mezcla se puede hacer antes o después de su colocación, pudiéndose compactar en su caso. Es frecuente estabilizar los suelos “in situ” con cemento o cal utilizando máquinas específicas para ello. Son técnicas adecuadas que mejoran y refuerzan los suelos blandos como arcillas, limos, arenas sueltas, etc. La mezcla consigue mayor estabilidad, capacidad portante, resistencia al corte, menor compresibilidad y permeabilidad que el terreno original.

Dentro de estas técnicas destacan aquellas que consiguen la estabilización en profundidad, las llamadas mezclas profundas de suelos (“Deep Soil Mixing“, DSM”). Se obtienen así una serie de inclusiones en forma de columna, elementos lineales, pantallas o secciones rectangulares de un material mejorado del tipo suelo-cemento. Se trata de una técnica desarrollada en Japón y en países escandinavos en los años 70 del siglo pasado. Estos sistemas están evolucionando rápidamente en cuanto a su aplicabilidad, rentabilidad y ventajas medioambientales.

Figura 1. Fases de ejecución de la mezcla profunda de suelos (Deep Soil Mixing). https://menardoceania.com.au/technique/soil-mixing/

Dentro de las técnicas de mejora profunda de suelos podrían incluirse las inyecciones y el Jet Grouting, pero son procedimientos que difieren del DSM en la forma de desestructurar el terreno. En efecto, en el caso que nos ocupa, la deconstrucción es mecánica, con un ligante hidráulico que facilita la reacción química entre el suelo y el agua. Se usa el cemento, la cal y la bentonita como ligantes habituales, aunque es posible usar yesos, cenizas y aditivos específicos para mejorar el terreno.

Se utilizan diferentes medios mecánicos para romper, batir y mezclar el suelo con el ligante. Pueden ser cadenas y cangilones, tambores giratorios con elementos cortantes, ejes con aletas y otros mecanismos similares, que son más complicados a medida que aumenta la finura y la rigidez del terreno. El ligante se puede aportar por vía seca o por vía húmeda.

Se han desarrollado procedimientos registrados por las diferentes empresas como es el sistema Trenchmix, el sistema Cutter Soil Mixing (CSM-Geomix), o las columnas de suelo-cemento (CSC-Springsol). El método CSM emplea un cortador para formar paredes, proporcionando un a solución rentable y rápida en la construcción de pantallas mediante la mezcla de suelo “in situ” con una lechada de cemento/lechada de bentonita. Trenchmix se vale de herramientas de corte para excavar zanjas en aplicaciones estructurales o pantallas impermeables.

En la Figura 2 se observan las fases constructivas con un equipo Trenchmix. Consta de una zanjadora diseñada especialmente para no extraer el terreno, permitir la incorporación del ligante y efectuar la mezcla in situ. Este ligante puede introducirse en polvo o mediante una lechada. La profundidad de la pantalla se limita a la longitud de la sierra, hasta unos 8 m. El espesor de la pantalla varía entre 400 y 600 mm.

Figura 2. Fases de ejecución de una pantalla con el sistema Trenchmix. https://www.rodiokronsa.es/exclusivas/trenchmix/

A continuación os dejo un vídeo donde se puede ver la mezcla profunda de suelos mediante una fresadora.

En este otro caso se observa la mezcla profunda de suelos mediante Trenchmix.

En este otro vídeo se observa la técnica de Deep Soil Mixing mediante un cabezal rotatorio.

Referencias:

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Estabilización de suelos con cemento

Figura 1. https://www.obrasurbanas.es/stabile-estabilizacion-suelos-carreteras/

Un suelo se puede estabilizar con cemento. Según el artículo 512 del PG3, consiste en la mezcla íntima, convenientemente compactada, de terreno, cemento, agua y eventualmente adiciones, a la cual se le exigen unas determinadas condiciones de insusceptibilidad al agua, resistencia y durabilidad.

En efecto, al fraguar e hidratarse los silicatos y aluminatos cálcicos anhidros, une las partículas del suelo, reduce su sensibilidad al agua, disminuye la deformación del suelo estabilizado y proporciona cierta resistencia a tracción según la dosificación empleada. Se pueden estabilizar tanto los suelos granulares como los de grano fino, excepto si son muy plásticos o presentan mucha humedad. En este último caso, se podrían tratar previamente con cal. No se podrán utilizar suelos con material vegetal u orgánica, o cualquier otra sustancia que perjudiquen el fraguado del cemento.

Según las propiedades de la mezcla resultante, el suelo estabilizado con cemento se puede dividir en dos grupos:

  • Suelos mejorados con cemento, al que se agrega una cantidad relativamente pequeña de cemento para mejorar algunas propiedades, como es su sensibilidad a los cambios de humedad o su mayor capacidad de soporte, quedando suelto el material tras su tratamiento. Es una técnica orientada a mejorar las explanadas. La mezcla se realiza in situ, con dosificaciones inferiores al 3% sobre el peso seco del suelo. El PG3 los clasifica en S-EST 1 y S-EST 2.
  • Suelos estabilizados con cemento, donde tras el fraguado del cemento, se obtiene un material con cierta resistencia mecánica. No se trata de un hormigón, pues los granos no se ven envueltos en pasta de cemento, sino que su unión es puntual. El PG3 los divide en S-EST 3 si la resistencia a compresión a 7 días es de 1,5 MPa, para uso en explanadas, y los suelos estabilizados para subbases y bases, donde se eleva dicha resistencia mínima a 2,5 MPa. En este último caso, su denominación habitual es suelocemento, cuya fabricación se realiza en central. Se exige un adecuado curado, lo que implica que tras la extensión y compactación de la capa, se riega con una emulsión bituminosa de rotura rápida para evitar la evaporación prematura.

Se necesitaría un elevado contenido de cemento si el suelo presenta muchos finos plásticos, lo que, además, dificultaría el mezclado. Por ello se limitan los tratamientos con cemento a suelos que cumplan las siguientes condiciones:

  • Límite líquido < 40 en los S-EST 2 y S-EST 3
  • Índice de plasticidad < 15
  • Cernido ponderal por el tamiz UNE 2 mm > 20 %
  • Cernido ponderal por el tamiza UNE 0,063 mm ≤ 35 % (50 % en los S-EST 1 y S-EST 2)

Con carácter general, el procedimiento constructivo de una estabilización con cemento para por las siguientes fases: preparación del terreno, mezclado “in situ” o en central, compactación, ejecución de juntas y curado de la mezcla. Normalmente se compacta por capas de 20 a 30 cm.

Los cementos más adecuados para estabilizar suelos son aquellos que presentan un plazo elevado para que se puedan trabajar fácilmente, un moderado calor de hidratación y un lento desarrollo de resistencia que minimice las fisuras de retracción. Por ello son adecuados cementos con mayor contenido de adiciones activas (escorias de horno alto, puzolanas naturales y cenizas volantes), tales como los tipos CEM III, IV y V.

Os dejo un enlace al “Manual de estabilización de suelos con cemento o cal” que creo os puede ser de ayuda. También os aconsejo acudir a la página web de ANTER (Asociación Nacional Técnica de Suelos y Reciclado de Firmes).

Aquí podéis ver una pequeña explicación de la profesora Ana María Pérez, de la Universitat Politècnica de València, de lo que es un suelocemento.

Os dejo algunos vídeos de esta técnica de mejora de suelos.

A continuación os dejo una guía de soluciones para obras de estabilización de suelos, ejecución de suelo-cemento in situ y reciclado de firmes elaborada por la Asociación Nacional Técnica de Estabilizados de Suelos y Reciclados de Firmes (ANTER).

Descargar (PDF, 5.38MB)

Referencias:

JOFRE, C.; KRAEMER, C. (dir.) (2008). Manual de estabilización de suelos con cemento o cal. Instituto Español del Cemento y sus Aplicaciones (IECA), 217 pp.

KRAEMER, C.; MORILLA, I.; DEL VAL, M.A. (1999). Carreteras II. Explanaciones, firmes, drenaje, pavimentos. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid.

MARTÍ, J.V.; GONZÁLEZ, F.; YEPES, V. (2004). Temas de procedimientos de construcción. Mejora de terrenos. Editorial de la Universidad Politécnica de Valencia. Ref. 2004.844.

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

YEPES, V. (2020). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia, 2ª edición. Editorial Universitat Politècnica de València, 480 pp. Ref. 328. ISBN: 978-84-9048-903-1.

YEPES, V. (2021). Procedimientos de construcción para la compactación y mejora del terreno. Colección Manual de Referencia, 1ª edición. Editorial Universitat Politècnica de València, 426 pp. Ref. 428. ISBN: 978-84-9048-603-0.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.