Necrológica: Ha fallecido el profesor José Javier Díez González

Homenaje a nuestros Directores de Escuela en el 50 Aniversario. De izquierda a derecha: D. José Aguilar Herrando, D. Francisco Ramos Ramis, D. José Soler Sanz, D. Eugenio Pellicer Armiñana, D. José Javier Diez González, D. Joaquín Andreu Álvarez, D. Vicent Esteban Chapapria y D. Francisco Pérez Puche

Ayer recibimos la triste noticia del fallecimiento de nuestro compañero José Javier Díez González, Catedrático de Puertos y Costas y también Director de nuestra Escuela de Ingenieros de Caminos de Valencia desde el 30 de mayo de 1981 hasta el 5 de marzo de 1984.

José Javier, nacido en La Robla (León) era en la actualidad Catedrático Emérito por la Universidad Politécnica de Madrid (UPM) en las disciplinas de Puertos y Costas y de Oceanografía e Ingeniería de Costas, en la Escuela de Ingenieros de Caminos, Canales y Puertos, en la que inició sus actividades docentes e investigadoras en 1970 y obtuvo su doctorado como Ingeniero de Caminos en 1973. Fue asimismo profesor de esas materias en Valencia entre 1977 y 1984 y de Físico-Química en la facultad de Farmacia de la Universidad Complutense entre 1974 y 1977 y ha sido profesor visitante en varias universidades del Reino Unido, EE. UU., México, Argentina y Chile. José Javier es también Licenciado en Farmacia (1969) y Licenciado en Economía (1974); títulos ambos obtenidos en la Universidad Complutense de Madrid.

Os dejo a continuación una entrevista que le realizó la Asociación Meteorológica Española.

Descargar (PDF, 120KB)

Una breve introducción a la dinámica litoral de nuestras costas

Son muchas las actividades que está desarrollando la Escuela de Caminos, Canales y Puertos de la Universitat Politècnica de València con motivo de su 50 aniversario. Una de ellas es la elaboración de una serie de vídeos divulgativos de la Ingeniería Civil y su papel en la sociedad.

Para empezar tenemos este vídeo producido por  y editado por Diodo Media. En él se describe la dinámica litoral de nuestras costas. Esperamos que lo disfrutéis.

¿Es el agua de mar agresiva para el hormigón?

http://www.ohlinnovacion.com/soluciones-tecnologicas-innovadoras/cubipod/

La gran cantidad de obras marítimas que se realizan han obligado a realizar numerosos estudios sobre el comportamiento de los hormigones sometidos a la acción del agua del mar. El hormigón, como material heterogéneo que es, presenta propiedades que varían de las características de sus componentes, de sus cantidades, de la forma de poner dicho hormigón en obra, del curado y conservación, del medio donde va a estar trabajando, entre otras.

En efecto, el agua de mar provoca un proceso muy complejo sobre el hormigón en el que intervienen gran número de parámetros mecánicos, físicos, químicos, biológicos y atmosféricos. Sin embargo, la agresividad química de los componentes del agua marina sobre los productos de hidratación del cemento, en especial el hidróxido de magnesio (Mg(OH)2) y el sulfato cálcico (CaSO4), provocan expansiones debidas a la reacción álcali-árido, si hay árido reactivo, a la presión de cristalización de sales en el hormigón, a la acción del hielo en climas fríos, a la corrosión de las armaduras y a la erosión física debida al oleaje. Estas acciones aumentan la permeabilidad del hormigón, lo que retroalimenta el proceso. Son los iones sulfato del interior de la matriz los que reaccionan con el monosulfatoaluminato produciendo estringita, que es la responsable de la expansión y la rotura. Con todo, el agua de mar es menos agresiva para el hormigón que cada una de las soluciones que la componen individualmente debido a que el comportamiento expansivo asociado con formación de estringita está inhibido por la presencia de cloruros y facilita su solubilidad. Además, el CO2 disuelto en el agua carbonata gradualmente al hormigón, formando una capa superficial de carbonato cálcico que actúa como protector frente al ataque del hidróxido de magnesio y del sulfato cálcico los cuales terminan colmatando los poros restantes.

Lo anteriormente expuesto indica que, en un hormigón de razonable calidad, no suele ser un serio problema el ataque químico por el agua de mar. El parámetro esencial que determina el buen comportamiento de un hormigón es su compacidad y la morfología de sus poros. Por tanto, aunque el agua de mar podría considerarse como poco agresiva respecto de los hormigones, el ambiente marino, por sí mismo, resulta fuertemente agresivo. En efecto, el ataque químico del agua de mar depende de si el hormigón se encuentra sumergido total o parcialmente. Si está totalmente sumergido, tienen lugar fundamentalmente los procesos químicos. En la zona de oscilación, actúan los ataques químicos con otras acciones físicas como cristalizaciones de sales, heladas, etc. En la zona no sumergida, pero cercana al agua, ésta sube por capilaridad y arrastra sales que pueden cristalizar dando lugar a expansiones. Además, los cloruros del agua marina (MgCl2) solubilizan el hidróxido de calcio (Ca(OH)2) (portlandita) que se ha formado durante el fraguado y endurecimiento del cemento, formando cloruro de calcio e hidróxido de magnesio.

http://blog.hidrodemolicion.com/2013/02/corrosion-del-hormigon-en-ambiente.html

El tema se complica cuando tratamos con hormigón armado. Efectivamente, los cloruros (incluso los bromuros) presentes en el agua marina atacan a las armaduras. Los iones cloruro penetran por difusión por los poros del hormigón y llegan a las armaduras, donde forman un electrolito conductor que rompe su capa pasivante y se produce la oxidación llamada de “picadura”. Es por ello, que en las estructuras de hormigón armado situadas en ambiente marino, resulta fundamental respetar los recubrimientos recomendados para evitar la corrosión descrita.

Os dejo a continuación una guía técnica de IECA donde se describe con mayor detalle el comportamiento del hormigón en ambiente marino.

Descargar (PDF, 4.78MB)

Instalación de un cubípodo de 45 t en la Escuela de Ingenieros de Caminos de Valencia

Esta mañana, a las 7 de la mañana, empezaron las maniobras para la instalación de un cubípodo de 45 toneladas en un jardín anexo a la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Se trata de una de las acciones encaminadas a conmemorar el 50 aniversario de nuestra Escuela. Por cierto, esto nos hermana con la Escuela de Ingenieros de Caminos de A Coruña, que también tiene uno en sus jardines (ver la última fotografía).

Para ello se ha utilizado una grúa de 200 t. Este cubípodo se ha utilizado, entre otros sitios, en el contradique de Langosteira.

Felicito desde esta página al director de nuestra Escuela, Eugenio Pellicer y a su equipo por la iniciativa. Os dejo algunas fotografías y vídeo sobre esta instalación.

 

 

Cubípodo instalado en la Escuela de Ingenieros de Caminos de A Coruña. Imagen: V. Yepes

Os dejo algún vídeo explicativo de este cubípodo, desarrollado por profesores de nuestra Escuela e instalado por SATO.

 

Curso de Planificación y Gestión de Playas. Universidad de Oporto

La Faculdade de Engenharia da Universidade do Porto (Portugal), a través del Instituto de Hidráulica y Recursos Hídricos (FEUP), junto con la Universitat Politècnica de València, han organizado un Curso de Planificación y Gestión de Playas, que tendrá lugar en Oporto entre los días 25 y 29 de junio de 2018. Esta es la segunda vez que se programa este curso, de 25 horas, que en su primera edición en 2010, tuvo un éxito muy notable en cuanto a participación e inscripción. El curso se desarrollará en español, contando con la participación de tres catedráticos de la UPV: Víctor Yepes, Vicent Esteban y José Serra.

Si estás interesado, las inscripciones las puedes realizar a través del siguiente enlace: https://cursopraiasihrh.weebly.com/inscriccedilotildees.html. Asimismo, el contacto con los organizadores del Curso lo podéis obtener en la siguiente dirección: https://cursopraiasihrh.weebly.com/contactos.html

El programa que se desarrollará será el siguiente:

Bloque 1: Planificación. 5 horas. Víctor Yepes.

  1. El turismo litoral, evolución y tendencias.
  2. La importancia económica de las playas turísticas.
  3. La ordenación de usos y zonificación de las playas.
  4. Capacidad de carga turística de una playa.
  5. La gestión integrada del litoral.

Bloque 2: Infraestructuras. 5 horas. Víctor Yepes.

  1. Infraestructuras lúdicas y deportivas.
  2. Infraestructuras higiénicas y estrategias de ahorro hídrico.
  3. Diseño y gestión de playas accesibles.
  4. Servicios de información, salvamento y primeros auxilios.
  5. Equipos de limpieza de playas.

Bloque 3: Sistemas de gestión de calidad y medio ambiente. 5 horas. Víctor Yepes.

  1. La innovación y gestión de la calidad y del medio ambiente en las playas.
  2. Gestión ambiental de recursos turísticos litorales. Banderas azules.
  3. La aplicación de la norma ISO 9001 e ISO 14001 a las playas.
  4. El sistema de calidad turístico español: La “Q” del ICTE.
  5. La incidencia de la gestión turística en las playas encajadas.

Bloque 4: Procesos y riesgos litorales en playas turísticas. 5 horas. José C. Serra.

  1. El medio costero-litoral: Dinámica, procesos y formas.
  2. Estabilidad, evolución, prognosis y control y seguimiento de playas.
  3. Riesgos en el litoral.
  4. Restauración y sostenibilidad del medio costero-litoral.
  5. Diseño y gestión de paseos marítimos.

Bloque 5: Turismo náutico e instalaciones náutico-deportivas. 5 horas. Vicent Esteban.

  1. La práctica de la náutica deportiva.
  2. Las instalaciones náuticas de recreo.
  3. Tipología de usuarios y servicios náuticos.
  4. Organización y gestión de infraestructuras náuticas.
  5. Impacto socio-económico de las instalaciones náuticas de recreo.

El paisaje en la planificación y gestión de los puertos deportivos en Andalucía

Acaban de publicarnos un artículo en la Revista de Obras Públicas sobre el paisaje en la planificación y gestión de los puertos deportivos en Andalucía. La Revista de Obras Públicas, decana de la prensa española no diaria y editada por el Colegio de Ingenieros de Caminos, Canales y Puertos de España, se adentra en un mundo más amplio que el de las revistas puramente profesionales, atendiendo al mundo de la ciencia y de la tecnología; a la economía o a la política de infraestructuras; a las enseñanzas técnicas o a la historia de la ingeniería, dedicando preferente atención dentro de ellas a la investigación y a la innovación en el sector. Tal ha sido su línea editorial desde su fundación en 1853, y su objetivo sigue siendo mantener esa línea de reflexión sobre el oficio.

Os dejo a continuación la referencia, el resumen y el enlace al artículo. Espero que os sea de interés. El enlace al artículo es el siguiente: http://ropdigital.ciccp.es/detalle_articulo.php?registro=19994&anio=2017&numero_revista=3593

 

RESUMEN:

El paisaje constituye un concepto complejo que trata de las relaciones entre las personas y su entorno. El concepto engloba, por tanto, muchas perspectivas y por ello, cada área del conocimiento lo aborda de forma diferente. Los puertos son elementos singulares dentro del paisaje, con gran atractivo y de gran ornamento desde tiempos antiguos y su posición en el litoral representa una base espléndida para observar el paisaje. En este sentido, este artículo introduce el paisaje en los puertos deportivos de Andalucía —partiendo de sus particularidades de función y escala con respecto a otras instalaciones portuarias— evidenciando su influencia en su planificación y gestión. Basándose en el concepto de paisaje y tras un análisis de la literatura y documentos existentes, se plantean en el artículo los diversos elementos que se deben considerar en cada una de las escalas de aproximación. Este planteamiento sistematizado constituye una herramienta que permite una mejor comprensión y gestión del paisaje en este tipo de instalaciones, considerando los diferentes elementos que se interrelacionan en el entorno natural y social.

Palabras clave:

Paisaje, puerto deportivo, planificación, gestión

ABSTRACT:

The landscape is a complex concept that affects the relation between people and their environment. The concept of landscaping and setting incorporates many perspectives and each area of knowledge is subsequently tackled in a different manner. Ports are unique areas within the landscape that have held great attraction and embellishment since ancient times and their setting on the coastline serves as a perfect location to observe the landscape. This article considers the aspect of landscape at marinas in Andalucia – on the basis of their function and scale with respect to other harbour works- and where this is seen to have a clear influence over their planning and administration. On establishing the concept of landscape and following an analysis of available literature and documents, the authors consider the different elements that should be taken into account in each scale of approach. This systematic approach serves to obtain a greater understanding and administration of the concept of landscape in these types of installation, when considering all the different elements interlinking the natural and social environments.

Key words:

Landscape, marina, planning, management

Referencia:

MARTÍN, R.; YEPES, V. (2017). El paisaje en la planificación y gestión de los puertos deportivos en Andalucía. Revista de Obras Públicas, 164 (3593):38-55.

Descargar (PDF, 612KB)

¿Fueron los romanos más ingenieros que arquitectos?

Reconstrución de un Polyspastos romano en Bonn, Alemania.

En una entrada anterior tuvimos la ocasión de repasar brevemente algunos aspectos de la ingeniería romana, como fue la construcción de calzadas o puentes. Como podréis comprobar, el tema da para varias enciclopedias y el objetivo aquí es simplemente dar un par de pinceladas para despertar la curiosidad sobre aspectos históricos de la ingeniería. Además, en internet existen multitud de enlaces que permiten ampliar el tema considerablemente.

Podríamos empezar por la ingeniería municipal. Las ciudades del imperio romano disponían de sistemas de drenaje y suministro de agua, calefacción, baños públicos, calles pavimentadas, mercados de carne y pescado y otras infraestructuras municipales comparables a las actuales. La aplicación de la ingeniería en las artes militares y en los problemas de navegación, adecuación de puertos y bahías implicó, como en los otros casos, el uso de máquinas, materiales y procesos, que hablan del grado de desarrollo de la ingeniería romana, de la cual quedó constancia escrita en muchos tratados escritos en aquel tiempo y entre los cuales descuellan los trabajos de Marco Vitruvio. Su libro De Archítectura, lo escribió durante primer siglo d.C., donde incluyó el concocimiento del momento sobre materiales y métodos de construcción, hidráulica, mediciones, diseño y planificación urbana. Otra innovación en el ámbito urbano fue la invención del alumbrado público en la ciudad de Antioquía, aproximadamente hacia el año 3~0 d.C. Una innovación interesante de esa época fue la reinvención de la calefacción doméstica central indirecta, que se había usado cerca de 1200 a.C., en Beycesultan, Turquía. Lo extraño es que, tras la caída del Imperio Romano, este tipo de calefacción no se volviera a utilizar.

Restos de los acueductos Aqua Claudia y Anio Novus, integrados como portones de la Muralla Aureliana en el año 271.

Los romanos también fueron buenos ingenieros hidráulicos. En comparación con los anteriores, sus acueductos  eran mayores y más numerosos. Casi todo lo que se sabe actualmente del sistema romano de distribución de aguas proviene del libro “De Aquis Urb’is Romae” de Sexto Julio Frontino, quien fue autor del Aquarum de Roma, de 97 a 104 a.C. Frontino llevaba registros de la utilización del agua, que indican que el emperador usaba el 17%, el 39% se usaba en forma privada, y el 44% en forma pública. Se calcula que en Roma diariamente se consumían entre 380 y 1 100 millones de litros de agua. La fracción del 44% para uso público estaba subdividida adicionalmente en 3% para los cuarteles, el 24% para los edificios públicos, incluidos once baños públicos, 4% para los teatros, y 13% para las fuentes. Había 856 baños privados a la fecha del informe. En todo caso, la administración del agua en Roma era una tarea considerable e importante. Gran parte del agua que supuestamente debería entrar a la ciudad jamás lo hizo, debido a las derivaciones que tenían escondidas los usuarios privados.

Para resolver el problema de la toma de agua para las ciudades, los romanos construyeron acueductos  siguiendo en esencia el mismo diseño, que usaba arcos semicirculares de piedra montados sobre una hilera de pilares. Cuando un acueducto cruzaba una cañada, con frecuencia requería niveles múltiples de arcos. Uno de los mejor conservados de la actualidad es el Pont du Gard en Nimes, Francia, que tiene tres niveles. El nivel inferior también tenía una carretera. Los romanos usaron tubería de plomo y luego comenzaron a sospechar que no eran salubres. Sin embargo, el envenenamiento por plomo no se diagnosticó específicamente sino hasta que Benjamín Franklin escribió una carta en 1768 relativa a su uso.

Las técnicas utilizadas en la edificación por los romanos eran muy depuradas empleando, ya en aquellos tiempos, en sus edificios públicos el hormigón y el ladrillo, construyendo grandes bóvedas, como la del Panteón de Roma de 44 m de luz, realizada en el siglo II a.C. e impresionantes acueductos. Estas técnicas no fueron superadas en Europa hasta cerca del 1800. Uno de los grandes triunfos de la construcción pública durante este periodo fue el Coliseo, que fue el mayor lugar de reunión pública hasta la construcción del Yale Bowl en 1914.

El Coliseo de Roma

En el campo de las cimentaciones de los edificios, una de las innovaciónes reseñables son sus plataformas de hormigón en masa, donde la capacidad hidráulica del cemento puzolánico permitió la colocación de las plataformas de cimentación incluso bajo el agua. En algunos casos, la utilización de estas cimentaciones continuas de gran espesor (losa de cimentación), supuso una solución eficaz en suelos pobres, con riesgo de asientos diferenciales. Así, por ejemplo, El Coliseo se alza sobre el antiguo lago del palacio de Nerón, sobre un anillo macizo de 12 m de profundidad y 170 m de diámetro, compuesto de hormigón y de grandes bloques de piedra. De forma similar el Panteón descansa sobre un anillo sólido de 4,5 m de profundidad y más de 7 m de anchura.

El Panteón de Agripa o Panteón de Roma.

La ingeniería civil romana, y sobre todo la rama que se dedicó a las obras marítimas, experimentó un gran avance cuando descubrió la forma de fabricar morteros y hormigones hidráulicos. Vitruvio comentaba las condiciones para la construcción de distintas obras marítimas. Por ejemplo, en el caso de un dique vertical de hormigón en masa establecía que era necesaria la existencia de una playa apropiada, calidad de los fondos aceptable, posibilidad de utilizar en obra el cemento puzolánico y solicitaciones de oleaje de pequeña entidad. El procedimiento constructivo comenzaba construyendo un recinto tablestacado mediante la hinca de maderas de roble. Posteriormente se procedía a sanear sus capas superficiales dragando, al mismo tiempo que se realizaba el perfilado de la cimentación. Las dragas eran manuales, iguales a las que se han utilizado hasta principios del siglo XIX. Posteriormente se hormigonaba bajo el agua, llenando el recinto de conglomerado hidráulico. Se desencofraba retirando las tablestacas y se procedía a un nuevo avance repitiendo los pasos descritos. Se finalizaba la obra coronando el dique con un cabecero realizado mediante muros perimetrales de ladrillo o sillería. El hueco entre ellos se rellenaba de “todo uno” y sobre este material disgregado, se construía la calzada. Se desarrollaron grúas y barcazas que se utilizaron intensivamente en la construcción. Otro de los procedimientos constructivos a destacar es la de los cajones flotantes celulares herméticos, precursor de los diques monolíticos actuales. También hicieron uso de diques con baja cota de coronación (como en Cesarea Marítima, Israel en el 20 a.C.) para reducir la energía del oleaje antes de alcanzar el dique principal. El mayor complejo portuario artificial fue el Puerto Imperial de Roma, diseñado por Trajano, con una dársena hexagonal y un tráfico de trigo con Egipto y Francia de 300,000 t anuales.

Por supuesto, nos dejamos para otros posts, otros aspectos que irán surgiendo sobre la ingeniería y la arquitectura romanas.

Os dejo un vídeo explicativo de la construcción de los muros en este periodo.

 

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Gánguil o pontón

Gánguil BOCAMI – FCC Construcciones, S.A. www.astillerosdeaviles.com

El gánguil, también llamado pontón o barcaza, es una embarcación plana, con una cántara o depósito donde se almacena el material dragado y que sirve para transportarlo hasta el lugar de vertido.

Presenta una capacidad entre 50 y 2000 m3. Pueden ser autopropulsados (mar abierto) o remolcados (aguas poco profundas).

Según el modo de descarga, los gánguiles se pueden clasificar en:

  • Gánguil cerrado: descarga por medios mecánicos auxiliares
  • Gánguil de compuerta de fondo: descarga por la apertura de una compuerta giratoria
  • Gánguil de charnela: vaciado por apertura longitudinal del casco
  • Gánguil de volcado lateral

Vamos a ver en un par de vídeos varios ejemplos de cómo funciona esta máquina de transporte. En el primer vídeo veremos un gánguil de 57 m de eslora y 11,20 m de manga, con una capacidad de transporte de 1400 toneladas de escollera.

En el segundo, podremos ver el sistema de apertura de cántara de doble sentido y de velocidad controlable.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Qué es una draga estacionaria de succión?

http://www.hollandmt.com/
http://www.hollandmt.com/

La draga estacionaria de succión (plain suction dredger, en inglés) es una draga hidráulica dotada de un mecanismo de succión sumergible, similares a las de succión en marcha. Sin embargo, a diferencia de las dragas de succión en marcha, las estacionarias operan ancladas. La succión crea una depresión en el lecho en forma de cono invertido, vertiéndose el material extraído sobre barcazas o bien impulsándose mediante bombeo. Son máquinas muy útiles cuando la zona de trabajo se encuentra muy lejos de la zona de vertido, pero su inconveniente es que la carga del material sobre gánguiles sólo se puede efectuar en aguas tranquilas.

Este tipo de dragas se emplea normalmente en la extracción de material granular para la posterior restauración de terrenos, alcanzándose grandes rendimientos cuando la capa de sedimentos presenta un buen espesor, de al menos 3 m. El límite habitual de profundidad máxima de dragado es de unos 50 m. La máquina puede operar incluso con alturas máximas de ola de 3 m y una velocidad máxima de corriente de 3 nudos.

http://www.theartofdredging.com/

El modo de operación es el siguiente:

  • Estacionamiento en la zona de trabajo
  • Posicionamiento de la barcaza junto a la draga o conexión a las tuberías de impulsión en el caso de bombeo
  • Descenso de los equipos de succión hasta la capa de material granular
  • Puesta en marcha de la succión y de los cabezales inyectores de agua que fluidifican y arrastran el terreno
  • Carga de los gánguiles a través de conductos elevados con difusores o bombeo

Os pongo un vídeo que muestra el funcionamiento de esta máquina de succión. Espero que os sea útil.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2006). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universidad Politécnica de Valencia. Ref. 2006.4038.

 

Importancia de las obras de dragado

https://es.m.wikipedia.org/wiki/Archivo:Dragagem_Luschi.jpg
https://es.m.wikipedia.org/wiki/Archivo:Dragagem_Luschi.jpg

Entendemos por dragado al conjunto de tareas de limpieza de rocas, sedimentos y otros materiales situados bajo el agua, ya sea en medio marino, fluvial o lacustre. Comprende las operaciones de extracción, transporte y vertido de dichos materiales. El objetivo puede ser aumentar el calado de ríos, canales o accesos portuarios para facilitar el tráfico de embarcaciones o bien aumentar la capacidad de transporte de agua en ríos para evitar inundaciones aguas abajo. La extracción de materiales se realiza mediante equipos de dragado, el transporte del material del punto de extracción al de vertido se puede realizar con la misma embarcación que realiza el dragado, mediante gánguiles de carga o por tuberías. Por último, el vertido suele realizarse por el fondo de la embarcación de transporte o bien mediante bombeo por tubería, si bien últimamente el aprovechamiento de los materiales dragados es cada vez más frecuente.

La aplicación de los dragados es muy amplia, fundamentalmente ingeniería civil y minería. Se clasifican según: objetivo del dragado, emplazamiento y características de los terrenos a dragar. El dragado se considera como un medio para conseguir un objetivo determinado. Entre otros se podrían enunciar los siguientes:

  • Construcción y ampliación de puertos
  • Mantenimiento y mejora de calados en puertos y cauces
  • Mantenimiento y mejora de capacidad de desagüe en ríos y canales
  • Recuperación de zonas bajas inundables y drenaje de zonas pantanosas
  • Sustitución de terrenos de bajas características geotécnicas
  • Creación de suelo ganando terreno al mar
  • Cimentación y protección de Obras marítimas (offshore)
  • Construcción de rellenos para bases de carreteras, diques y aeropuertos
  • Trincheras submarinas para oleoductos, tuberías y emisarios
  • Extracción de materiales para la construcción y minerales
  • Extracción de sedimentos y áridos marino
  • Extracción de arenas para la regeneración de playas
  • Creación de Islas artificiales en aguas costeras
  • Limpieza de fondos contaminados y sustitución de los mismos
  • Actuaciones de regeneración de hábitats subacuáticos

 

Draga con tolva continua. https://es.m.wikipedia.org/wiki/Archivo:Draga_con_tolva_continua.jpg
Draga con tolva continua. https://es.m.wikipedia.org/wiki/Archivo:Draga_con_tolva_continua.jpg

Las operaciones de dragado requieren de altas inversiones en maquinaria y medios especiales, por lo que la elección del equipo para caso determinado resulta crítica. Una primera clasificación de los equipos atendería a los métodos de excavación, forma de operación y desalojo del material (subida del material a la superficie). De esta forma tendríamos dragas mecánicas, dragas hidráulicas y dragas especiales. Las primeras utilizan medios mecánicos para la excavación y el desalojo, mientras las segundas lo hacen con medios hidráulicos (succión o inyección). Los medios especiales son muy diversos y de usos muy específicos.

Antes de realizar un dragado, se necesitan conocer una serie de aspectos sobre las zonas de extracción y de vertido como son la batimetría, las características geotécnicas y geológicas del material a dragar y las condiciones medioambientales de las zonas de dragado, transporte y vertido. Estos datos servirán para reducir al máximo posible los costes ambientales y económicos asociados.

También podéis consultar mi canal Youtube para ver más vídeos de obras marítimas y dragados: https://www.youtube.com/playlist?list=PLcy8Kq2fLuWlw_QLb3O6M3tvYxyFoqYNG

Referencia:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.