¿Cómo se han diseñado los arcos a lo largo de la historia?

Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Fotografía V. Yepes.
Pequeño puente de fábrica sobre el río de Pola de Somiedo (Asturias). Imagen: © V. Yepes, 2010

Seguimos con este post un repaso histórico de los arcos. Como en su día se dijo, este es un “invento diabólico” que revolucionó en su momento el arte de construir. Vamos, pues a seguir con esta labor divulgadora, a sabiendas que nos dejamos muchas cosas por el camino.

Desde la Roma clásica al Renacimiento, los arcos y los estribos se diseñaban con reglas de buena práctica y con criterios geométricos. Los constructores, desconocedores de las nociones de las fuerzas y sus líneas de acción, tuvieron que utilizar reglas en forma de proporciones o bien hacer modelos. Estos criterios empíricos no deberían ser tan absurdos pues, como indica Huerta (1996:18), la prueba es que muchas estructuras construidas en la época “pre-científica” -donde se incluyen todas las catedrales góticas-, fueron concebidas de esta forma.

Los secretos del oficio, guardados celosamente por los gremios y transmitidos oralmente, en un lenguaje hermético y oscurantista, empiezan a difundirse con los tratados de Arquitectura a partir del Renacimiento. Diego de Sagredo, Alberti o Palladio encabezan un listado de tratadistas que divulgan el pensamiento arquitectónico renacentista.

Pont Neuf, Toulouse. Imagen: © V. Yepes, 2017

Alberti[1] es el primer autor que establece, en 1452, las reglas para conseguir la estabilidad y constructibilidad de un puente de fábrica. Su tratado de arquitectura, De re aedificatoria, fue un compendio del saber constructivo de su época (Huerta, 2000:514). Sin embargo la edición en latín se publicó en 1485 –antes que la primera edición de Vitruvio[2]– y en España no se tradujo hasta 1582. La intuición mecánica de Alberti le sugiere que la forma del arco es la base para valorar su modo de trabajar: “El arco poco curvo es seguro para su propio peso, pero si se carga conviene componer muy bien su trasdós”, o bien: “El arco muy curvado será en sí mismo débil, cuanto más se carga menos problemas tendrá en su trasdós”. Cuanto más apuntado es un arco, es decir, cuanta mayor sensación visual da de no caer, más resistencia se le confiere.

Palladio[3], en su tratado I Quattro Libri dell’Architettura, de 1570, recoge el dimensionamiento de ejemplos de puentes romanos, dándolos como reglas prácticas.

Leonardo da Vinci[4] fue el primero que intentó estudiar los arcos desde el punto de vista mecánico, como muestran numerosos dibujos del Códice de Madrid, aunque sus análisis desconocían la ley del paralelogramo de fuerzas, fundamental en cualquier estudio estático, que no se resolvió hasta 1586 por Stevenin[5] (Heyman, 1999:92), si bien se formula en su forma actual en 1724 por Varignon[6] en su obra Nouvelle mécanicque.

Arco Leonardo
Códice de Leonardo da Vinci

La primera explicación científica del arco tuvo que esperar a Hooke[7], quien en 1676 apuntó que funcionaba justo al revés que un cable colgado, si bien no halló la ecuación matemática de dicha curva. En 1697 Gregory[8], de forma independiente a Hooke, formula la condición de estabilidad del arco cuando menciona la catenaria como directriz óptima. En 1695, La Hire[9] idealiza las dovelas en bolas de billar y observa que la forma resultante es como si engarzaran en un cable perfectamente elástico y sin peso, definiéndose su forma como antifunicular[10], lo contrario del cuelgue natural. Por tanto, el trazado de un arco ideal pasaría por conocer el estado de carga al que está sometido, donde el peso propio del arco es uno de los componentes principales, lo cual implica un proceso iterativo para establecer la forma definitiva.

Puente la Reina, sobre el río Arga. Camino de Santiago, Navarra. Imagen: © V. Yepes

Couplet, ofreció en 1730 una solución completa al problema, estableciendo el modo de colapso del arco por formación de un mecanismo de cuatro barras; pero fue Coulomb[11] en 1773 quien retomó el problema prácticamente de nuevo, dando una solución sintética a todos los modos de colapso posibles. A finales de la década de 1830, Moseley y Méry desarrollan casi simultáneamente el concepto de línea de empujes, que debe situarse dentro del espesor del arco. En 1833 Navier[12] enuncia la regla del tercio central, por donde debía circular la línea de presiones para evitar las tracciones. Poncelet[13], en 1835, desarrolla un método gráfico que ahorra considerablemente los tiempos de cálculo. Rankine[14] fue el primero en dar una aplicación práctica a la línea de empujes, siendo Barlow y Fuller los encargados de desarrollar la parte gráfica. En 1879 Castigliano[15]abre un nuevo enfoque analítico con planteamientos energéticos, sistematizándose a partir de ese momento el análisis de los arcos de fábrica. Ese mismo año Winkler propuso de forma explícita la aplicación de la teoría elástica para determinar la posición de la línea de empujes.

Sin embargo, el cálculo elástico, a pesar de su racionalidad, plantea sistemas de ecuaciones que son muy sensibles a las pequeñas variaciones en las condiciones de equilibrio (ver Huerta, 2005:78). Los procedimientos desarrollados por Heyman (1966) aplicando la teoría del análisis límite, validando el siguiente supuesto: si existe una configuración de equilibrio, es decir, una línea de empujes contenida dentro del arco, éste no se hundirá. Como consecuencia, la labor del calculista no es buscar el estado de equilibrio real del arco, sino encontrar estados razonables de equilibrio para la estructura estudiada (Heyman, 1967). Este ha sido el enfoque implícito en los diseños geométricos de los maestros de la antigüedad, tal y como indica Huerta (2005:81), justificando la validez de dichos planteamientos. Una recopilación del desarrollo histórico de la teoría del arco de fábrica puede seguirse en Huerta (1999, 2005).
Ejemplo de puente arco de madera. Cangas de Onís (Asturias). Fotografía V. Yepes.
Puente arco de madera. Cangas de Onís (Asturias). Imagen: © V. Yepes, 2010

[1] Leon Battista Alberti (1404-1472), fue arquitecto, matemático, humanista y poeta italiano.

[2] El texto fue descubierto en 1414 por Bracciolini. La edición princeps de la obra vitruviana fue publicada en latín por Giovani Suplicio da Verole en 1486, y en su epístola al cardenal Rafael Riario, se llama a esta obra divinum opus Vitruvi (Blánquez, 2007:XVII). En italiano no se imprimió hasta 1521 y en castellano hasta 1582.

[3] Andrea di Pietro della Góndola, más conocido como Andrea Palladio (1508-1580) fue un reconocido arquitecto italiano del Manierismo, que influyó notablemente en el Neoclasicismo. Una importante aportación a la ingeniería estructural fue la introducción del concepto de cercha o entramado.

[4] Leonardo di ser Piero da Vinci (1452-1519), nacido en Florencia, fue pintor y polímata, genial arquetipo del humanismo renacentista.

[5] Simón Stevenin (1548-1620), fue matemático holandés, ingeniero militar e hidráulico, entre otros oficios.

[6] Pierre Varignon (1654-1722), matemático francés precursor del cálculo infinitesimal, desarrolló la estática de estructuras.

[7] Robert Hooke, científico inglés (1635-1703). Formuló su famosa ley en la que describe cómo un cuerpo elástico se estira de forma proporcional a la fuerza que se ejerce sobre él. En esta época, para reclamar la paternidad de un descubrimiento, los hombres de ciencia enviaban anagramas a sus colegas para, después, cuando las circunstancias eran propicias, les hacían llegar o publicaban el mensaje que los anagramas escondías. Eso fue lo que ocurrió con la descripción que hizo Hooke en 1676 sobre el funcionamiento estructural del arco.

[8] David Gregory (1661-1708), profesor escocés de matemáticas y astronomía en la Universidad de Edimburgo.

[9] Philippe de La Hire, matemático, astrónomo y gnomonicista francés (1640-1719). La obra donde trata el arco es: Traité de mécanique: ou l’on explique tout ce qui est nécessaire dans la pratique des arts, & les propriétés des corps pesants lesquelles ont un plus grand usage dans la physique (1695).

[10] Del latín, funicŭlus, cuerda. Arenas (1996:10) define la antifunicularidad como una afinidad geométrica entre las ordenadas de la directriz de la bóveda y la ley de momentos flectores que produce el sistema de cargas sobre una viga virtual de la misma luz que el arco.

[11] Charles Agustin de Coulomb, físico e ingeniero militar francés (1736-1806), conocido por su famosa ley sobre atracción de cargas eléctricas. Elaboró en el campo estructural la actual teoría de la flexión y una primera teoría de la torsión (1787). También fueron importantes sus ideas sobre la deformación tangencial y el rozamiento.

[12] Claude Louis Marie Henri Navier, ingeniero y físico francés (1785-1836), trabajó en las matemáticas aplicadas a la ingeniería, la elasticidad y la mecánica de fluidos.

[13] Jean Victor Poncelet (1788-1867) fue un matemático e ingeniero francés que recuperó la geometría proyectiva.

[14] William John Macquorn Rankine, ingeniero y físico escocés (1820-1872), conocido también por sus trabajos en termodinámica.

[15] Carlo Alberto Castigliano, ingeniero italiano (1847-1884), elaboró nuevos métodos de análisis para sistemas elásticos.

REFERENCIAS

HEYMAN, J. (1966). The stone skeleton. International Journal of Solids and Structures, 2: 249-279.

HEYMAN, J. (1967). On the shell solutions of masonry domes. International Journal of Solids and Structures, 3: 227-241.

HEYMAN, J. (1999). Teoría, historia y restauración de estructuras de fábrica. CEHOPU, 2ª edición, Madrid.

HUERTA, S. (1996). La teoría del arco de fábrica: desarrollo histórico. Obra Pública, 38:18-29.

HUERTA, S. (2000): Estética y geometría: el proyecto de puentes de fábrica en los siglos XV al XVII, en Graciani, A.; Huerta, S.; Rabasa, E.; Tabales, M. (eds.): Actas del Tercer Congreso Nacional de Historia de la Construcción. Instituto Juan de Herrera/CEHOPU, Sevilla, 513-526.

HUERTA, S. (2005). Mecánica de las bóvedas de fábrica: el enfoque del equilibrio. Informes de la Construcción, 56(496):73-89.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Fueron los romanos más ingenieros que arquitectos?

Reconstrución de un Polyspastos romano en Bonn, Alemania.

En una entrada anterior tuvimos la ocasión de repasar brevemente algunos aspectos de la ingeniería romana, como fue la construcción de calzadas o puentes. Como podréis comprobar, el tema da para varias enciclopedias y el objetivo aquí es simplemente dar un par de pinceladas para despertar la curiosidad sobre aspectos históricos de la ingeniería. Además, en internet existen multitud de enlaces que permiten ampliar el tema considerablemente.

Podríamos empezar por la ingeniería municipal. Las ciudades del imperio romano disponían de sistemas de drenaje y suministro de agua, calefacción, baños públicos, calles pavimentadas, mercados de carne y pescado y otras infraestructuras municipales comparables a las actuales. La aplicación de la ingeniería en las artes militares y en los problemas de navegación, adecuación de puertos y bahías implicó, como en los otros casos, el uso de máquinas, materiales y procesos, que hablan del grado de desarrollo de la ingeniería romana, de la cual quedó constancia escrita en muchos tratados escritos en aquel tiempo y entre los cuales descuellan los trabajos de Marco Vitruvio. Su libro De Archítectura, lo escribió durante primer siglo d.C., donde incluyó el concocimiento del momento sobre materiales y métodos de construcción, hidráulica, mediciones, diseño y planificación urbana. Otra innovación en el ámbito urbano fue la invención del alumbrado público en la ciudad de Antioquía, aproximadamente hacia el año 3~0 d.C. Una innovación interesante de esa época fue la reinvención de la calefacción doméstica central indirecta, que se había usado cerca de 1200 a.C., en Beycesultan, Turquía. Lo extraño es que, tras la caída del Imperio Romano, este tipo de calefacción no se volviera a utilizar.

Restos de los acueductos Aqua Claudia y Anio Novus, integrados como portones de la Muralla Aureliana en el año 271.

Los romanos también fueron buenos ingenieros hidráulicos. En comparación con los anteriores, sus acueductos  eran mayores y más numerosos. Casi todo lo que se sabe actualmente del sistema romano de distribución de aguas proviene del libro “De Aquis Urb’is Romae” de Sexto Julio Frontino, quien fue autor del Aquarum de Roma, de 97 a 104 a.C. Frontino llevaba registros de la utilización del agua, que indican que el emperador usaba el 17%, el 39% se usaba en forma privada, y el 44% en forma pública. Se calcula que en Roma diariamente se consumían entre 380 y 1 100 millones de litros de agua. La fracción del 44% para uso público estaba subdividida adicionalmente en 3% para los cuarteles, el 24% para los edificios públicos, incluidos once baños públicos, 4% para los teatros, y 13% para las fuentes. Había 856 baños privados a la fecha del informe. En todo caso, la administración del agua en Roma era una tarea considerable e importante. Gran parte del agua que supuestamente debería entrar a la ciudad jamás lo hizo, debido a las derivaciones que tenían escondidas los usuarios privados.

Para resolver el problema de la toma de agua para las ciudades, los romanos construyeron acueductos  siguiendo en esencia el mismo diseño, que usaba arcos semicirculares de piedra montados sobre una hilera de pilares. Cuando un acueducto cruzaba una cañada, con frecuencia requería niveles múltiples de arcos. Uno de los mejor conservados de la actualidad es el Pont du Gard en Nimes, Francia, que tiene tres niveles. El nivel inferior también tenía una carretera. Los romanos usaron tubería de plomo y luego comenzaron a sospechar que no eran salubres. Sin embargo, el envenenamiento por plomo no se diagnosticó específicamente sino hasta que Benjamín Franklin escribió una carta en 1768 relativa a su uso.

Las técnicas utilizadas en la edificación por los romanos eran muy depuradas empleando, ya en aquellos tiempos, en sus edificios públicos el hormigón y el ladrillo, construyendo grandes bóvedas, como la del Panteón de Roma de 44 m de luz, realizada en el siglo II a.C. e impresionantes acueductos. Estas técnicas no fueron superadas en Europa hasta cerca del 1800. Uno de los grandes triunfos de la construcción pública durante este periodo fue el Coliseo, que fue el mayor lugar de reunión pública hasta la construcción del Yale Bowl en 1914.

El Coliseo de Roma

En el campo de las cimentaciones de los edificios, una de las innovaciónes reseñables son sus plataformas de hormigón en masa, donde la capacidad hidráulica del cemento puzolánico permitió la colocación de las plataformas de cimentación incluso bajo el agua. En algunos casos, la utilización de estas cimentaciones continuas de gran espesor (losa de cimentación), supuso una solución eficaz en suelos pobres, con riesgo de asientos diferenciales. Así, por ejemplo, El Coliseo se alza sobre el antiguo lago del palacio de Nerón, sobre un anillo macizo de 12 m de profundidad y 170 m de diámetro, compuesto de hormigón y de grandes bloques de piedra. De forma similar el Panteón descansa sobre un anillo sólido de 4,5 m de profundidad y más de 7 m de anchura.

El Panteón de Agripa o Panteón de Roma.

La ingeniería civil romana, y sobre todo la rama que se dedicó a las obras marítimas, experimentó un gran avance cuando descubrió la forma de fabricar morteros y hormigones hidráulicos. Vitruvio comentaba las condiciones para la construcción de distintas obras marítimas. Por ejemplo, en el caso de un dique vertical de hormigón en masa establecía que era necesaria la existencia de una playa apropiada, calidad de los fondos aceptable, posibilidad de utilizar en obra el cemento puzolánico y solicitaciones de oleaje de pequeña entidad. El procedimiento constructivo comenzaba construyendo un recinto tablestacado mediante la hinca de maderas de roble. Posteriormente se procedía a sanear sus capas superficiales dragando, al mismo tiempo que se realizaba el perfilado de la cimentación. Las dragas eran manuales, iguales a las que se han utilizado hasta principios del siglo XIX. Posteriormente se hormigonaba bajo el agua, llenando el recinto de conglomerado hidráulico. Se desencofraba retirando las tablestacas y se procedía a un nuevo avance repitiendo los pasos descritos. Se finalizaba la obra coronando el dique con un cabecero realizado mediante muros perimetrales de ladrillo o sillería. El hueco entre ellos se rellenaba de “todo uno” y sobre este material disgregado, se construía la calzada. Se desarrollaron grúas y barcazas que se utilizaron intensivamente en la construcción. Otro de los procedimientos constructivos a destacar es la de los cajones flotantes celulares herméticos, precursor de los diques monolíticos actuales. También hicieron uso de diques con baja cota de coronación (como en Cesarea Marítima, Israel en el 20 a.C.) para reducir la energía del oleaje antes de alcanzar el dique principal. El mayor complejo portuario artificial fue el Puerto Imperial de Roma, diseñado por Trajano, con una dársena hexagonal y un tráfico de trigo con Egipto y Francia de 300,000 t anuales.

Por supuesto, nos dejamos para otros posts, otros aspectos que irán surgiendo sobre la ingeniería y la arquitectura romanas.

Os dejo un vídeo explicativo de la construcción de los muros en este periodo.

 

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

¿Por qué los romanos fueron grandes ingenieros?

El puente de Alcántara sobre el Río Tajo.

A lo largo de estos meses hemos repasado aspectos históricos y constructivos de la ingeniería de todos los tiempos (Egipto, Mesopotamia, Grecia, por ejemplo), sin embargo aún no hemos dicho nada de Roma. Ello merece no sólo un post, sino varios (el puente de Alcántara debería contar, por méritos propios, con un post de oro). Es más, yo diría que es un atrevimiento por mi parte intentar contar en tan breve espacio  lo más relevante de la ingeniería romana, puesto que, con total seguridad nos dejaremos cosas por el camino. Grandes ingenieros españoles como Fernández Casado abordaron con gran interés estos temas, y hoy día hay verdaderos especialistas en el tema, publicaciones, congresos, páginas web, etc. El propio arquitecto e ingeniero de Julio César, Marco Vitruvio nos ha legado el tratado sobre construcción más antiguo que se conserva De Architectura, en 10 libros (probablemente escrito entre los años 23 y 27 a. C.).  Para resolver cómo abordar el problema de divulgar aspectos de interés sobre la ingeniería romana, lo mejor será hacer varias entregas, dejar cuestiones abiertas, dar enlaces a otras páginas web y recibir todas las sugerencias habidas y por haber de los amables lectores. Vamos allá.

La ingeniería tiene un gran desarrollo y perfección en Roma como lo demuestra la construcción de abastecimientos de agua o poblaciones con toda la infraestructura de canales y acueductos que ello conlleva, el saneamiento de las ciudades, las defensas y las vías de comunicación (calzadas y puentes) que tanta importancia tuvieron en el Imperio. Puede decirse que mientras Grecia fue Arquitectura, Roma fue Ingeniería (Fernández, 2001).

Sin embargo, los ingenieros romanos tuvieron más que ver con sus antiguos colegas de Egipto y Mesopotamia que con sus predecesores griegos.  Los romanos tomaron ideas de los países conquistados para usarlas en la guerra y las obras públicas. Fueron pragmáticos, empleando esclavos y tiempo para sus obras. Las innovaciones romanas en ciencia fueron, comparativamente, más limitadas que las de los griegos; sin embargo, contaron con abundantes soldados, administradores, dirigentes y juristas de gran nivel. Los romanos fueron capaces de poner en práctica muchas de las ideas que les habían precedido y se convirtieron, con toda probabilidad, en los mejores ingenieros de la antigüedad. Quizá no fueron originales, pero aplicaron su técnica ampliamente a lo largo de todo un imperio.  Los ingenieros romanos fueron superiores en la aplicación de las técnicas, entre las cuales son notables los puentes que usaron en vías y acueductos. Para juzgar la extensión de los conocimientos técnicos entre las legiones romanas basta leer en los Comentarios de César la descripción de la construcción de puentes de pilotes que tendían sus ejércitos sobre los ríos helados y los terrenos pantanosos.

Existen datos históricos que prueban el conocimiento y empleo de diversos tipos de hormigones en civilizaciones tan antiguas como la egipcia (3000 a.C.), la griega o la cartaginesa. Sin embargo, como en tantas otras ocasiones, es con los romanos cuando la utilización del hormigón en sus más variadas aplicaciones ha dado lugar a innumerables obras, muchas de las cuales -o sus vestigios- han alcanzado nuestro siglo dando fe de ello. Este material les permitía levantar estructuras laminares monolíticas de gran luz, para cúpulas y bóvedas. El hormigón romano se hacía a base de cal mezclada con arena volcánica, llamada puzolana. Se aplicaba en capas, con un material de relleno o árido, como tejas rotas, entre dos superficies de ladrillo que formaban la cara exterior e interior. Al contrario que el hormigón moderno, no iba armado y requería contrafuertes exteriores, al no poder resistir esfuerzos de tracción. Además, no era tan fluido como el actual, lo cual limitaba la complejidad de los encofrados. El hormigón romano constituía un sistema constructivo económico, rápido y eficaz. El encofrado lo construían grupos reducidos de carpinteros expertos; el hormigón se fabricaba y ponía en obra mediante grandes grupos de trabajadores no especializados.

El Puente del Diablo, en Martorell.

Pasemos ahora, brevemente, a los puentes. Una palabra tan familiar hoy día como “Pontífice” tiene su origen en la designación de los ingenieros constructores de puentes, carácter semántico que insiste en el contenido sagrado del trabajo de estos técnicos. Los romanos construyeron muchos puentes de caballete con madera, uno de los cuales se describe con detalle en la obra citada anteriormente de Julio César. Sin embargo, los puentes romanos que se mantienen en pie suelen sustentarse en uno o más arcos de piedra, como el puente de Martorell cerca de Barcelona, en España y el Ponte di Augusto en Rímini, Italia. El Pont du Gard en Nimes, Francia, tiene tres niveles de arquerías que elevan el puente a 48 m sobre el río Gard, con una longitud de 261 m; es el ejemplo mejor conservado de gran puente romano y fue construido en el siglo I a.C. La utilización de arcos de medio punto derivó más tarde en la de arcos apuntados.

Puente de Tiberio de Rímini

Ningún ingeniero hispanorromano excede en renombre al autor del puente de Alcántara. Por la importancia de su obra, de filiación incontrovertible, y por el monumento que honra su memoria, Cayo Julio Lacer ha quedado como representante arquetípico de los antiguos ingenieros españoles. La inscripción que dejó en el arco conmemorativo situado sobre la calzada es explícita acerca de sus intenciones: Pontem Perpetui Mansurum in Saecula: Dejo un puente que permanecerá por los siglos.

Pont du Gard, Francia.

Además de los notables puentes de los acueductos, visibles en Europa y Asia y de los cuales son ejemplos famosos el acueducto de Segovia, y el Pont du Gard, cerca de Nimes, con 50 m de altura y 300 de largo, son altamente notables las famosas vías imperiales como la Via Appia y la Via Flaminia, que atraviesan Italia longitudinalmente. La Vía Appia, que se inicio en 312 a.C., y fue la primera carretera importante recubierta de Europa. Al principio, la carretera medía 260 km e iba desde Roma hasta Capua, pero en 244 a.C., se alargó hasta Brindisi, siendo entonces una obra de prestigio tal, que la aristocracia flanqueó con monumentos funerarios ambos lados del camino a la salida de Capua. Además, tal era la densidad de tráfico pesado en aquella época que el propio Julio César prohibió que ningún vehículo de cuatro ruedas circulara por las calles de Roma, medida moderna a la vista de nuestros problemas actuales. En la cumbre del poder romano la red de carreteras cubría 290,000 km. desde Escocia hasta Persia.

Los ingenieros romanos mejoraron significativamente la construcción de las carreteras, tanto como herramienta al servicio del mantenimiento del poder imperial como por el hecho de que una carretera bien construida implicaba menores costes de mantenimiento a largo plazo. Esta idea de coste del ciclo de vida, tan vigente hoy día, ya era sobradamente conocida por los ingenieros romanos, pues sus carreteras podían durar cien años sin necesitar grandes reparaciones. Es apenas hasta fechas recientes que la construcción de carreteras ha vuelto a la base de “alto costo inicial – poco mantenimiento”.

Las calzadas romanas podía estar enlosadas (stratus lapidibus), afirmadas (iniecta glarea) o simplemente explanadas y sin firme (terrenae). Las sucesivas capas de firme: el statumen o cimiento de piedra gruesa, el rudus, de piedra machacada y el nucleus, de tierra. En ocasiones se disponía de la suma cresta, de grava cementada con cal, o incluso con enlosado. En este tipo de secciones se constata muchas veces una capa inicial compuesta de canto grueso, con grandes bolos en los flancos, a modo de caja y asiento de las capas superiores. Las calzadas romanas eran construidas con zahorras naturales como material básico. Cada capa tiene en torno a 15 cm, entre otras razones porque la energía de compactación que podía aplicarse en aquella época era casi nula y se reduciría al uso del agua sumado a un simple planchado con un rodillo más o menos pesado. El empleo de cal en la estabilización de suelos, terraplenes y capas de firme es también frecuente, y se debería sobre todo a la imposibilidad de dotar al material de la densidad adecuada con aporte exterior de energía de compactación. Era el factor tiempo y el agua los que realizaban la compactación. Las vías romanas estaban dotadas sistemáticamente de firme, y además adecuado tanto al tráfico rodado como al de caballerías. Incluso cuando se asentaban directamente sobre el sustrato rocoso debían de disponer de una capa mínima de rodadura compuesta por material pétreo de grano fino. Según Moreno (2001), muchos de los caminos empedrados que se imputan a los romanos no poseen las características técnicas que las vías romanas poseían, infravalorándose en numerosas ocasiones la capacidad técnica de los ingenieros romanos. Para aquellos que queráis profundizar más en la ingeniería y técnica constructiva de las vías romanas, os recomiendo la referencia de Moreno (2004)  y la página: http://www.viasromanas.net/

Nos dejamos para otros artículos aspectos de la ingeniería romana relacionados con la hidráulica, las obras marítimas, las cimentaciones o los grandes edificios.

Referencias:

ADAM, J.P. (2002).  La construcción romana. Materiales y técnicas. Editorial de los Oficios, 2ª edición, León.

FERNÁNDEZ, M. (2001). Ingeniería militar e ingeniería civil, dos ingeniería íntimamente vinculadas. Revista de Obras Públicas, 3.413: 47-57.

FERNÁNDEZ CASADO, C. (1983). Ingeniería hidráulica romana. Colegio de Ingenieros de Caminos, Canales y Puertos. Madrid.

MORENO, I. (2001). Características de la infraestructura viaria romana. OP ingeniería y territorio, 56: 4-13.

MORENO, I. (2004). Vías romanas. Ingeniería y técnica constructiva. Ed. Ministerio de Fomento CEDEX-CEHOPU.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.