Tipología de las estaciones de bombeo

https://commons.wikimedia.org/wiki/

Las estaciones de bombeo son un elemento fundamental en el conjunto de los sistemas hidráulicos. El conjunto de elementos que, junto con las bombas, sirven para dar y controlar la presión en las instalaciones así como suministrar caudal, se encuentran en la estación de bombeo. Los tipos de estaciones dependen del papel que la misma juegue en el conjunto del sistema, desde las más amplias trayendo agua potable hasta las de pozo o de instalaciones de aguas residuales. En el presente objeto se realiza una panorámica de todas ellas. Veamos la explicación de la profesora: Petra Amparo López Jiménez, de la Universitat Politècnica de València. Espero que os sea de interés.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.

Tendencias tecnológicas en el sector de maquinaria de construcción, obras públicas y minería

Me ha hecho llegar Joaquín Durán Álvarez, profesor de la Universidad de Granada, un documento elaborado por ANMOPYC (Asociación Española de Fabricantes de Maquinaria de Construcción, Obras Públicas y Minería), en el que se analizan las tendencias tecnológicas del sector. Tal y como indica el propio documento, el estudio nació con tres objetivos: a) conocer la situación actual del sector y los retos que se le plantean, b) realizar una prospectiva tecnológica concreta del sector y c) tener un referente documental en el que poder indagar y profundizar sobre cada una de las tendencias tecnológicas detectadas como fundamentales para alcanzar la competitividad de las empresas del sector.

Debido al interés del tema, os dejo el documento. Espero que os sea de interés.

Descargar (PDF, 2.46MB)

Zonas de un anclaje

Figura 1. Componentes de un anclaje activo

Un anclaje es el elemento capaz de transmitir esfuerzos de tracción desde la superficie del terreno hasta una zona interior del mismo. En artículos anteriores vimos el concepto y la clasificación de los anclajes, la forma de ejecutar un anclaje y aspectos relacionados con la seguridad en su ejecución. En este artículo vamos a describir brevemente las diferentes zonas de un anclaje.

En los anclajes se distinguen las siguientes zonas (Figura 1):

  • Zona o bulbo de anclaje: es la parte solidaria al terreno en profundidad, encargada de transferirle los esfuerzos. Tiene características muy distintas dependiendo del procedimiento constructivo empleado. Teóricamente se trataría de una parte fija, es decir, que no se movería ni durante el tesado ni durante la movilización del empuje activo. En la práctica se puede mover algo, pero no debe despegarse del terreno, pues entonces desaparecería la capacidad del anclaje.
  • Zona libre: es la parte en la que la armadura es independiente del terreno que la rodea, de forma que está libre su deformación al tensionarse. En efecto, la capacidad de deformación de esta zona libre es la que provoca la progresiva puesta en carga del anclaje. Conviene una longitud mínima de unos 5 m para que el esfuerzo aplicado se vea poco afectado por los posibles desplazamientos de la cabeza respecto a la zona de anclaje al terreno. Puede garantizarse la independencia del anclaje respecto al terreno en esta zona mediante camisas de PVC o metálicas. Sin embargo, debe garantizarse su protección contra la corrosión.
  • Cabeza: es la unión de la armadura a la placa de apoyo, sobre la que se ejerce la fuerza estabilizadora sobre la estructura. Dependen de cada fabricante y son similares a las utilizadas en hormigón pretensado.

En la Figura 2 se puede observar la cabeza para un anclaje de 8 torones.

Figura 2. Cabeza para un anclaje de 8 torones. https://publicworkstoolscad.blogspot.com/

Os dejo una animación de Keller Cimentaciones respecto a la ejecución de una inyección.

Referencias:

AETESS (2006). Guía Técnica de Seguridad AETESS. Micropilotes y anclajes.

DIRECCIÓN GENERAL DE CARRETERAS (2001). Guía para el diseño y la ejecución de anclajes al terreno en obras de carretera. Madrid.

YEPES, V. (2016). Procedimientos de construcción de cimentaciones y estructuras de contención. Colección Manual de Referencia. Editorial Universitat Politècnica de València, 202 pp. Ref. 328. ISBN: 978-84-9048-457-9.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Traílla remolcada

Figura. Traílla remolcable. Imagen: V. Yepes

La traílla remolcada consiste en una caja montada sobre dos ejes con neumáticos; un eje portador en la parte posterior y un eje, con timón de remolque y dirección, en la parte delantera. Se remolca normalmente por medio de un tractor de orugas. El chasis puede llevar en la parte de atrás un tampón de empuje con miras a la utilización de un empujador. Son adecuadas para distancias cortas. Se fabrican hasta de 24 m3 de capacidad, aunque están siendo sustituidas por las mototraíllas. Presentan un mayor esfuerzo de tiro, debido a una buena tracción incluso en pistas de mal estado. Salvo algún caso excepcional, hoy solo se utilizan en trabajos de poca envergadura o de tipo agrícola. En la figura puede verse una traílla remolcada por un tractor agrícola usada en la redistribución de arena en las playas.

Os dejo a continuación un par de vídeos que ilustran bien el modo de trabajo de estas máquinas. En el primer vídeo se puede ver una máquina utilizada en movimiento de tierras, mientras que en el segundo se ve un trabajo de tipo agrícola.

 

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Palas cargadoras

pala cargadoraLa norma ISO 6165:2012 define como cargadora a la máquina autopropulsada sobre ruedas o cadenas con un equipo montado en la parte frontal cuya función principal es la operación de carga (utilizando una cuchara), con la que carga o excava mediante el movimiento de la máquina hacia delante. Por tanto, aparte de la cuchara frontal, su estructura soporte y un sistema de brazos articulados capaz de cargar y excavar mediante su desplazamiento y el movimiento de sus brazos, y de elevar, transportar y descargar materiales.

Son máquinas diseñadas para la excavación, carga y pequeño transporte de material. Se denominan genéricamente palas cargadoras, aunque otros nombres podrían ser la de pala tractora o cargadora frontal. Se trata de un tractor al que se le acopla una cuchara que se llena por empuje de la máquina sobre el terreno, dotada de un dispositivo de elevación y otro de volteo para manipular las tierras. Estas máquinas tienen como funciones principales las de cargar en las unidades de transporte materiales sueltos o la alimentación de tolvas, acopiar productos, efectuar operaciones de excavación en terrenos no muy duros o compactos, elevación y manejo de cargas y acarreos a distancias pequeñas de materiales (no más de 30 o 50 m. si no se quiere bajar rápidamente su producción). Atendiendo a su sistema de desplazamiento se dividen en palas cargadoras sobre neumáticos y sobre orugas.

Como una imagen vale más que mil palabras, os dejo unos vídeos para que veáis cómo trabaja esta máquina. En este vídeo podemos ver un Volvo L350F cargando.

Referencias:AENOR (2012). UNE-EN ISO 6165 “Maquinaria para movimiento de tierras. Tipos básicos. Identificación, términos y definiciones”.

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Tractor sobre ruedas: el turnadozer

Figura 1. Turnadozer Caterpillar 824

El turnadozer es un tractor montado sobre neumáticos. A diferencia de los tractores montados sobre orugas, los buldóceres (bulldozers, en inglés), los turnadozers transmiten mayor presión específica sobre el terreno (0,35 MPa). Presentan una tracción de hasta 82 t, necesitan tracción a las cuatro ruedas y son más veloces que los buldóceres (hasta 60 km/h), por lo que presentarían cierta ventaja en el desplazamiento de tierras a mayores distancias (aunque entraría en competencia con las cargadoras). Sin embargo, no son aconsejables en terrenos rocosos por el desgaste y los cortes de neumáticos. Es por ello que no son muy frecuentes en las obras. En una de mis primeras obras tuve la ocasión de utilizar uno de ellos, debido a exigencias de uso del parque de maquinaria de la empresa, pero se usaba principalmente para labores auxiliares de limpieza de la zona de carga y en el mantenimiento de pistas y caminos de obra.

Un vídeo antiguo sobre esta máquina, que espero os guste.

Aquí tenéis otro vídeo ilustrativo:

En este otro podemos ver un turnadozer con múltiples ejes de ruedas.

Referencias:

YEPES, V. (2014). Maquinaria de movimiento de tierras. Apuntes de la Universitat Politècnica de València, Ref. 204. Valencia,  158 pp.

 

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Fresadoras

Figura. Fresado de firme envejecido. Imagen: Grupo Sorigué

Las fresadoras son máquinas que arrancan un determinado grueso del firme de una carretera. El equipo de trabajo dispone de piezas metálicas en revolución que levantan las partes defectuosas del pavimento sin tocar las que estén en buen estado. El corte se realiza mediante unas cuchillas o dientes situados en el tambor fresador. El material arrancado se carga directamente en un camión mediante una cinta transportadora. El material resultante puede ser reutilizado para la fabricación de nuevas mezclas asfálticas o como suelo seleccionado o adecuado en la misma obra. Si se efectúan una sola pasada que elimine el largo, ancho y espesor necesario, los tiempos de trabajo se reducen considerablemente reduciéndose el impacto en el tráfico.

El grupo fresador está formado por un rodillo al que se unen unos dientes o cuchillas que giran en sentido contrario al sentido de avance de la máquina. Estos dientes son de acero endurecido, reemplazables cuando se rompen o desgastan. La tracción de la máquina puede realizarse mediante orugas o con ruedas de goma macizas.

Os dejo algunos vídeos de cómo funciona esta máquina.

Referencias:

YEPES, V. (2014). Maquinaria para la fabricación y puesta en obra de mezclas bituminosas. Apuntes de la Universitat Politècnica de València. Ref. 749.

 

Gánguil o pontón

Gánguil BOCAMI – FCC Construcciones, S.A. www.astillerosdeaviles.com

El gánguil, también llamado pontón o barcaza, es una embarcación plana, con una cántara o depósito donde se almacena el material dragado y que sirve para transportarlo hasta el lugar de vertido.

Presenta una capacidad entre 50 y 2000 m3. Pueden ser autopropulsados (mar abierto) o remolcados (aguas poco profundas).

Según el modo de descarga, los gánguiles se pueden clasificar en:

  • Gánguil cerrado: descarga por medios mecánicos auxiliares
  • Gánguil de compuerta de fondo: descarga por la apertura de una compuerta giratoria
  • Gánguil de charnela: vaciado por apertura longitudinal del casco
  • Gánguil de volcado lateral

Vamos a ver en un par de vídeos varios ejemplos de cómo funciona esta máquina de transporte. En el primer vídeo veremos un gánguil de 57 m de eslora y 11,20 m de manga, con una capacidad de transporte de 1400 toneladas de escollera.

En el segundo, podremos ver el sistema de apertura de cántara de doble sentido y de velocidad controlable.

Referencias:

CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J.; MARTÍ, J.V. (2010). Temas de procedimientos de construcción. Equipos de dragado. Editorial de la Universitat Politècnica de València. Ref. 2010.4038.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Turbina Francis

turbin4
Figura 1. Esquema turbina Francis

La turbina Francis, desarrollada por James B. Francis, es una turbomáquina motora a reacción y de flujo mixto. Son turbinas hidráulicas que se pueden diseñar para un amplio rango de saltos y caudales,  capaces de operar en desniveles que van de los dos metros hasta varios cientos de metros. Esto, junto con su alta eficiencia, ha hecho que este tipo de turbina sea el más usado en el mundo, principalmente para la producción de energía eléctrica en centrales hidroeléctricas.  Son muy costosas de diseñar, fabricar e instalar, pero pueden funcionar durante décadas.

Estas turbinas presentan un diseño hidrodinámico que garantiza un alto rendimiento debido a las bajas pérdidas hidráulicas. Son robustas, con bajo costo de mantenimiento. Sin embargo, no se recomienda su instalación con alturas de agua mayores de 800 m ni cuando existen grandes variaciones de caudal. Asimismo es muy importante controlar la cavitación.

Figura 2. Espiral de entrada de una turbina Francis, Presa Grand Coulee.

Las partes de una turbina Francis son las siguientes:

  • Cámara espiral: distribuye uniformemente el fluido en la entrada del rodete. La forma en espiral o caracol se debe a que la velocidad media del fluido debe permanecer constante en cada punto de la misma. La sección transversal  puede ser rectangular o circular, siendo esta última la más utilizada.
  • Predistribuidor:  formado por álabes fijos que tienen una función netamente estructural, para mantener la estructura de la caja espiral y conferirle rigidez transversal, que además poseen una forma hidrodinámica para minimizar las pérdidas hidráulicas.
  • Distribuidor: constituido por álabes móviles directores, cuya misión es dirigir convenientemente el agua hacia los álabes del rodete (fijos) y regular el caudal admitido, modificando de esta forma la potencia de la turbina de manera que se ajuste en lo posible a las variaciones de carga de la red eléctrica, a la vez de direccionar el fluido para mejorar el rendimiento de la máquina. Este recibe el nombre de distribuidor Fink.
  • Rotor o rodete: es el corazón de la turbina, pues aquí tiene lugar el intercambio de energía entre la máquina y el fluido. En forma general, la energía del fluido al momento de pasar por el rodete es una suma de energía cinéticaenergía de presión y energía potencial. La turbina convierte esta energía en energía mecánica que se manifiesta en el giro del rodete. El rodete a su vez transmite esta energía por medio de un eje a un generador eléctrico dónde se realiza la conversión final en energía eléctrica. El rotor puede tener diversas formas dependiendo del número específico de revoluciones para el cual esté diseñada la máquina, que a su vez depende del salto hidráulico y del caudal de diseño.
  • Tubo de aspiración: es la salida de la turbina. Su función es darle continuidad al flujo y recuperar el salto perdido en las instalaciones que están por encima del nivel de agua a la salida. En general se construye en forma de difusor, para generar un efecto de aspiración, el cual recupera parte de la energía que no fuera entregada al rotor en su ausencia.

 

Las turbinas Francis se pueden clasificar en función de la velocidad específica del rotor y de las características del salto:

  • Turbina Francis lenta: para saltos de gran altura, alrededor de 200 m o más
  • Turbina Francis normal: indicada en saltos de altura media, entre 200 y 20 m
  • Turbina Francis rápidas y extrarrápidas: apropiadas para saltos de pequeña altura, inferiores a 20 m

A continuación os paso un par de vídeos explicativos que espero os sean de utilidad:

Os paso un vídeo de una Turbina Francis de la Central Hidroeléctrica de la Presa Susqueda en funcionamiento produciendo 27,5 MW por caída hidráulica de 162 m.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 212 pp.

El elevador de cangilones

Elevador de cangilones. A. Zona de carga; B. Zona de descarga.

Se entiende por elevador de cangilones el conjunto de una cadena sinfín de la cual van colgados cangilones iguales para el transporte del material. Consta de los siguientes elementos (ver figura):

  • Cangilones de transporte del material.
  • Un elemento sinfín sobre el cual se fijan los cangilones.
  • Una rueda motora superior y otra inferior, cuyos ejes de giro están en la misma vertical.
  • Un grupo motor de accionamiento, acoplado a la rueda superior.
  • Una caja, dentro de la cual se sitúan el elemento sinfín, los cangilones y las ruedas. En su parte superior lleva una boca de descarga, y en la inferior, la de carga.

La forma de los cangilones y la velocidad del elevador depende de los materiales a transportar. Suelen tener forma de cubeta con la parte superior abierta. Los cangilones se sujetan espaciados sobre una banda de algodón y goma o sobre una o dos cadenas. Aunque son normalmente verticales, pueden disponerse en planos inclinados. El sistema de descarga puede ser por gravedad o centrífugo.

Las velocidades de elevación varían entre 0.5 y 4 m/seg. La anchura de los cangilones puede llegar a 1,5 m. La altura de elevación puede ser de 50 m y más; y su capacidad, hasta 500 ó 600 m3/hora.

A continuación os dejo una animación de su funcionamiento.

Referencias:

YEPES, V.; MARTÍ, J.V. (2017). Máquinas, cables y grúas empleados en la construcción. Editorial de la Universitat Politècnica de València. Ref. 814. Valencia, 210 pp.